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Abstract We are concerned with the finite volume approximation for a non-
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1 Introduction

We consider the finite volume methods to a simplified Keller-Segel model (cf.
[20]) for the functions u = u(x, t) and v = v(x, t) of (x, t) ∈ Ω × [0, T ],

∂u

∂t
= ∇ · (∇u− u∇v) in Ω × [0, T ],

−∆v + v = u in Ω × [0, T ],

∂u

∂ν
=
∂v

∂ν
= 0 on Γ × [0, T ],

u(x, 0) = u0(x) on Ω,

(1.1)

where Ω ⊂ R2 is a bounded domain with the boundary Γ = ∂Ω, ν is the
outer unit normal vector to Γ , ∂/∂ν represents differentiation along ν on Γ ,
and u0 ≥ 0, u0 6≡ 0. Although we will deal with the one space-dimensional
problem (5.1) in Section 5, we mainly study the two space-dimensional problem
(1.1).

The system (1.1) describes the aggregation of slime molds resulting from
their chemotactic features. Therein, u is defined to be the density of the cellular
slime molds and v the concentration of the chemical substance.

The mathematical study for (1.1) is well developed. The unique solvability
locally in time when Γ and u0 are sufficiently smooth has been showed by Biler
[3] and Yagi [36]. The solution (u, v) to (1.1) has the properties of conservation
of positivity

u(x, t) > 0, (x, t) ∈ Ω × (0, T ], (1.2)

and the conservation of total mass∫
Ω

u(x, t) dx =

∫
Ω

u0(x) dx, t ∈ [0, T ], (1.3)

which imply the conservation of L1 norm,

‖u(t)‖L1(Ω) = ‖u0‖L1(Ω), t ∈ [0, T ]. (1.4)

Besides of the fundamental existence results, relevant properties of the so-
lutions, including blow-up, chemotactic collapse and aggregation, have been
well concerned by many researchers, and one can refer to survey articles and
monographs Horstmann [17,18] and Suzuki [31,32] for those mathematical re-
sults. For example, it is showed in [22,23] that the value of ‖u0‖L1(Ω) plays a
crucial role in the blow-up and globally existence of solutions. For example, if
‖u0‖L1(Ω) < 4π, the solution exists globally in time; whereas if ‖u0‖L1(Ω) > 8π

and

∫
Ω

u0|x− x0|2 dx is sufficiently small with some x0 ∈ Ω, then the solution

blows up in finite time.
Another important feature of (1.1) is the existence of the free energy (cf.

[24]) which is expressed as

d

dt
W (u(·, t), v(·, t)) ≤ 0, t ∈ [0, T ], (1.5)
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where

W (u(·, t), v(·, t)) =

∫
Ω

(u log u− u) dx− 1

2

∫
Ω

uv dx

=

∫
Ω

(u log u− u) dx− 1

2

∫
Ω

(|∇v|2 + |v|2) dx.

(1.6)

We have triple purpose in this paper that are briefly summarized as fol-
lows. As mentioned before, the L1 conservation (1.4) and the free energy (1.5)
are essential requirements; it is desirable that solutions of numerical schemes
preserve these properties. After introducing the admissible mesh, we first con-
sider a linear finite volume scheme for (1.1) satisfying the discrete analogues
of (1.2), (1.3) and (1.5) (cf. Theorems 2.1, 2.2 and 2.3). Our second aim is to
establish the error estimates of the finite volume scheme (cf. Theorem 3.1),
with some additional assumptions on the solution and admissible mesh. An
important and interesting aspect of the Keller-Segel system (1.1) is the pos-
sibility of blow-up of solutions in finite time. Our last motivation is to give
analysis of the blow-up phenomenon for numerical solutions.

Below, we explain our work in detail. Several numerical schemes with con-
servation laws (the discrete version of (1.2) and (1.3)) have been proposed for
(1.1). An upwind finite difference scheme proposed by Saito and Suzuki [30] is
proved to satisfy the conservation of positivity with a time-step size control.
Filbert [15] introduced a nonlinear finite volume scheme. The existence of pos-
itive solution is proved under some condition of time-step size. Saito [27] then
proposed a conservation upwind finite element scheme with adjusting a time
step increment τn at every discrete time-step tn = τ1+· · ·+τn to guarantee the
positivity of the solution. A conservative upwind approximation of Baba and
Tabata [2] is applied to the finite element method to obtain the conservation
of mass. Bessemoulin-Chatard and Jüngel [5] considered a nonlinear finite vol-
ume scheme for the Keller-Segel model with additional cross-diffusion, which
is obtained by replacing the second equation of (1.1) with

−∆v − δ∆u+ v − u = 0, δ > 0, x ∈ Ω, t ∈ [0, T ].

The existence of solution to the nonlinear scheme with the conservation laws
are proved.

For the discrete free energy, a time-discrete version has been proved in
[30]. However, any space-discretization is not undertaken. An entropy stability
(similar to the free energy) of discrete solution of finite volume method is
derived in [5] for the system with additional cross-diffusion.

For the convergence of numerical scheme, Filbert [15] proved the conver-
gence of the nonlinear finite volume scheme for the Keller-Segel model (1.1).
However, the error estimate with explicit convergence rate is still open at
present. A similar convergence result is obtained in [5] for Keller-Segel model
with additional cross-diffusion. Saito [27] succeeded in deriving explicit error
estimates of the form

sup
0≤n≤l

‖u(tn)− unh‖p, sup
0≤n≤l

‖v(tn)− v̂nh‖1,∞ ≤ C(h1−2/p + τσ), (1.7)
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where unh and vnh denote the finite element approximation of u(x, tn) and
v(x, tn), respectively, τ the size of the time discretization, σ ∈ (0, 1], and
p ∈ (2, µ) with the shape constant µ > 2 of Ω (cf. Paragraph 2.1).

With a slight change of the nonlinear scheme in [15], we propose a linear
finite volume scheme that preserves the conservation law without time-step
control (cf. Theorems 2.1 and 2.2). The existence and uniqueness of a solution
of the linear finite volume scheme are obvious, and since the linear scheme
reduces the complexity of computation, it is well applicable to numerical ex-
periments. Then, we introduce a discrete version of the energy function to the
linear finite volume scheme, and show the time-decreasing property of it (cf.
Theorem 2.3). In the error analysis, we consider the case where the admissible
Voronoi mesh has a dual triangulation, since the convergence is proved in [15]
for general admissible meshes. By introducing a mass-lumping operator based
on the circumcentric domain, we can employ the technique of error analysis in
[27] for finite element method to our case, and develop the error analysis. Let
(unh, v

n
h) be the solution of finite volume scheme (2.4) at a discrete time step

tn. Under some assumptions on the regularity of solution (u, v) to (1.1) and
some a priori estimates on discrete solution unh, we have (cf. Theorem 3.1)

sup
0≤tn≤T

‖u(tn)− unh‖Lp(Ω) ≤ C(h1−2/p + τσ). (1.8)

Moreover, we have the error estimate for v(tn)− vnh that is described as

sup
0≤n≤l

‖v(tn)− v̂nh‖1,∞ ≤ C2h
1−2/p + C3 sup

0≤n≤l
‖u(tn)− unh‖p, (1.9)

where v̂nh is the projection of vnh to a linear piecewise continuous function
which subordinate to the dual triangulation of the Voronoi admissible mesh.
The precise definition of v̂nh is presented below. As mentioned above, our error
analysis extending from the method of finite element approximation proposed
by [27] is different from the argument of error analysis for finite volume method
in [14]. Some Lp error estimates results in [7] for finite volume approximation
to elliptic problems with Dirichlet boundary condition on a mesh of barycentric
type has been extended to the case of Neumann boundary value problem on
Voronoi mesh (cf. Lemma 4.2), which can be applied to our problem. The
convergence rate h1−2/p in (1.8) is due to the approximation of the nonlinear
term ∇ · (u∇v) in (1.1). We can summarize the strategy of establishing the
error estimates as follows (Sections 3 and 4):

(i) A dual triangulation of Voronoi mesh and a mass-lumping operator Mh is
introduced (Section 3.1 and 3.2);

(ii) Operators Ah and Lh are denoted as the finite volume and finite element
approximation of −∆+1, respectively, and we present some error estimates
on A−1h and L−1h (Paragraph 4.1.3);

(iii) We show that −Ah satisfies the resolvent estimates in a modified Lp norm,
which is an analogue to the results in Crouzeix and Thomée (cf. [13])
(Paragraph 4.1.4);
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(iv) Some estimates about time discretization error ∂τnu − u and the error of
approximating to the nonlinear term b − Bh are derived (Section 4.2 and
4.3);

(vi) With the aid of Mh, Ah, the projection operator Rh, Ph, and the estimates
of (iv), we reformulate the variational equation of error ŵnh = ûnh−Rhu(tn)
into a single equation. Then we make the use of Duhamel’s principle, frac-
tional powers of operators and the smoothing properties of semigroup to
derive the error estimates (Section 4.4).

Our final topic is the blow-up of solution of Keller-Segel model (1.1). We
see from previous works [15,21,27] that numerical solutions seem to reproduce
the “blow-up” phenomenon (the mass concentration at some elements) under
the large initial condition. On the other hand, the solution of conservative
numerical schemes cannot blow up in finite time (the solution goes to infinity
at some points in finite time), since any norm (in space) are equivalent in a
finite dimensional space. Therefore, it is natural to ask whether numerical so-
lutions can reproduce the blow-up phenomena. There are plenty mathematical
theory for the blow-up study of (1.1) (cf. [11,8,22,23]). In [22], to show the
chemotactic collapse is not possible in the one dimension, it is proved

0 ≤ v(x, t) ≤ 1

2L
(1 + 4L2)θ, (1.10)

|vx(x, t)| ≤ θ, (1.11)

where Ω = (−L,L) and θ =
∫
Ω
u0dx. Moreover, when considering only radially

symmetric solutions in the ball Ω = B(0, L) with the radius L the and center
at the origin and u0(x) = u0(r) with r = |x|, the global existence of a solution
for θ =

∫
B(0,L)

u0(x) dx < 8π is proved by showing (cf. [22])

0 ≤ v(x, t) ≤ 2l +
1

2
θ, (1.12)

|vx(x, t)| ≤ L(l + 4k), (1.13)

where l, k > 0 depend on θ. To establish the blow-up results, setting the
moment

M2(t) =

∫
Ω

u(x, t)|x|2 dx = 2π

∫ L

0

u(r, t)r3 dr, (1.14)

it is proved that

d

dt
M2(t) ≤ 4θ − 1

2π
θ2 +

1

πL2
θM2(t) +

1

2eπ
θ

3
2M2(t)

1
2 . (1.15)

From (1.15), if θ > 8π and M2(0) is sufficiently small, then we have

d

dt
M2(t) < 0, t > 0,

which implies M2(t) goes to 0 at some time t = tmax. In view of u > 0 and∫
Ω
u(x, t) = θ, the function u actually blows up in finite time tmax.
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In this article, the conservative finite volume scheme is applied to the one
dimensional and two dimensional system. We derive the discrete versions of
(1.10), (1.11), (1.12) and (1.13) (cf. Theorems 5.1 and 5.2). Moreover, we
define the discrete moment Mn

2 for the n-th time step, and obtain a discrete
analogue of (1.15) (cf. Theorem 5.3) for a nonconservative scheme, and draw
a remark to explain the difference of moment equation between conservative
and nonconservative scheme.

The numerically “blow-up” study is important. It is not only for under-
standing the properties of numerical solution, but it also shows some hints
to approximating the blow-up time of exact solution. For nonlinear parabolic
and wave equations, there are well-developed theories of approximating the
blow-up time (cf. [9,10,29]); however, those techniques are not applicable to
conservative numerical schemes. Our final motivation is to develop the method
to approximate the blow-up time and this paper is the first step towards this
end.

The paper is organized as follows. In Section 2, we briefly introduce the
admissible mesh and present the linear finite volume scheme. The conserva-
tion laws and discrete free energy are proved. In Section 3, we consider the
Voronoi admissible mesh with dual triangulation and define the associated
mass-lumping operator Mh. Some properties of Mh are given, and the main
theorem of error estimates is presented. The proof of main theorem of error
estimates is presented in Section 4, including the discrete Laplace operators, re-
solvent estimates of −Ah in a modified Lp norm, and the estimates of ∂τnu−u
and b−Bh. The finite volume scheme is applied to the 1-dimensional system
and 2-dimensional symmetric system in Section 5, and some analysis of numer-
ical solution concerned with blow-up theory are presented. Several numerical
experiments are performed in Section 6 to verify our theoretical results.

Notation

Throughout this paper, we follow the notation of [1]. Namely we use standard
Lebesgue and Sobolev spaces. We set Wm,p = Wm,p(Ω), Hm = Wm,2(Ω),
Lp = Lp(Ω), ‖ · ‖m,p = ‖ · ‖Wm,p , ‖ · ‖p = ‖ · ‖Lp for m ∈ N and p ∈ [1,∞]. For
p ∈ [1,∞),

Wp =

{
v ∈W 1,p | ∂v

∂n
= 0 on Γ

}
.

The inner-product of L2 is denoted by (·, ·). For Banach space X, we denote
X∗ as its dual space, and 〈·, ·〉 is denoted as their dual product.

General positive constant depending on Ω are denoted as C, C ′ and so
forth. In particular, C does not depend on discretization parameters h and τ
described below. We use Cα,β or C(α, β) to specify the C depending on other
parameters, say α, β, if necessary.

The d-dimensional Lebesgue measure of O ⊂ Rd is denoted by m(O) =
md(O).
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2 Finite volume scheme: conservation laws and discrete free energy

2.1 Weak formulation

Throughout the paper (except for Subsection 5.1), we suppose that Ω is a
convex polygonal domain in R2. Then, we have the following elliptic regularity
in the Lp sense (cf. [16]): there exists µ ∈ (2,∞) such that, for any p ∈ (1, µ),
the linear elliptic equation

−∆v + v = u in Ω,
∂v

∂ν
= 0 on Γ (2.1)

admits a unique solution v ∈ Wp satisfying

‖v‖2,p ≤ C(p,Ω)‖u‖p. (2.2)

We introduce an operator G : Lp →Wp by

Gu = v,

where v denotes the solution of (2.1) for u ∈ Lp. We then introduce the
trilinear form b on L2 ×H1 ×H1:

b(w, u, χ) = −
∫
Ω

u∇(Gw)∇χ (w ∈ L2, u, χ ∈ H1).

The weak form of (1.1) reads as: find u ∈ C1([0, T ];H1) such that, for all
t ∈ (0, T ),{

(∂tu(t), χ) + (∇u(t),∇χ) + b(u(t), u(t), χ) = 0, ∀χ ∈ H1,

u(0) = u0 ∈ H1.
(2.3)

2.2 Admissible mesh

We follow the standard notation of the finite volume method described in [14].
Let T be an admissible mesh (cf. [14, Definition 9.1]) such that

Ω =
⋃
K∈T

K.

An element K ∈ T is called a control volume. We introduce the neighborhood
of K ∈ T as

NK := {L ∈ T | L ∩K 6= ∅},

We write K|L or σK,L to express the common edge L ∩K of control volumes
K and L, and set

Eint = {K|L | ∀K ∈ T , ∀L ∈ NK}.
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Moreover, letting σK,Γ = K ∩Γ be the edge of control volume K on Γ , we set

Eext = {σK,Γ | ∀K ∈ T , K ∩ Γ 6= ∅}

and

E = Eint ∪ Eext.

For every control volume K, xk ∈ K (or denoted as PK) is the control point,
where PKPL is the perpendicular to K|L for all K ∈ T , L ∈ NK (see Fig-
ure 2.1). Set

dK,L = dist(xk, xL), τK,L =
m(K|L)

dK,L
= τL,K , K, L ∈ T ,

dK,σ = dist(xk, σK,Γ ), τK,σ =
m(σK,Γ )

dK,σ
, σK,Γ ∈ Eext.

Following [14], we assume there exists ξ > 0 such that

dxK ,σK,L
≥ ξdK,L, ∀K ∈ T ,∀L ∈ NK .

K

LdK,L
σK,L=K|L

PL

PK

Fig. 2.1 Control volume K,L of admis-
sible mesh T .

PK

PL

PJ

Fig. 2.2 Dual triangulation T̂ to
Voronoi mesh T .

2.3 A linear finite volume scheme

Setting Xh = span{φK | K ∈ T }, where φK the characteristic function of K,
i.e.,

φK =

{
1 on K,

0 otherwise.
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In general, for uh ∈ Xh and K ∈ T , we write as uK = uh(PK). Given the
initial condition

u0h ∈ Xh, u0h ≥ 0,

∫
Ω

u0h =
∑
K∈T

m(K)u0K ≡M > 0,

we state the finite volume scheme for (1.1): find (unh, v
n
h) ∈ Xh×Xh for n ≥ 1,

integer, such that

∑
L∈NK

τK,L(vn−1K − vn−1L ) +m(K)vn−1K = m(K)un−1K , ∀K ∈ T ,

m(K)∂τnu
n
K +

∑
L∈NK

τK,L(unK − unL)

+
∑
L∈NK

τK,L

[
(Dvn−1K,L )+u

n
K − (Dvn−1K,L )−u

n
L

]
= 0, ∀K ∈ T ,

(2.4)

where w+ = max(w, 0), w− = max(−w, 0), w = w+ − w−,

DvK,L = vL − vK for vh ∈ Xh, DvK,σ = 0 for σ ∈ Eext.

Here, τn > 0 is the time-step increment, tn = τ1 + · + τn, and ∂τnu
n
K is the

backward Euler difference quotient approximating to ∂tu(tn), which is defined
by

∂τnu
n
K =

unK − u
n−1
K

τn
.

The scheme is a modification of the nonlinear scheme presented in [15] which
is obtained by following the basic idea of the finite volume method.

2.4 Conservation laws

Theorem 2.1 (Conservation of total mass) {unh}n≥0 ⊂ Xh is the solution
of (2.4), then we have

(vnh , 1) = (unh, 1) = (u0h, 1), ∀n ≥ 0. (2.5)

Proof Taking a summation with K ∈ T of (2.4) leads to (2.5).

Theorem 2.2 (Well-posedness and conservation of positivity) u0h ≥ 0,
u0h 6≡ 0. (2.4) admits a unique solution {(unh, vnh)}n≥0 ⊂ Xh ×Xh, and unh > 0
for n ≥ 1, vnh > 0 for n ≥ 0.

Proof Following the same argument of [5, Section 3], (2.4) is written into

Anu(n) = u(n−1),

where
u(n) = (unK)K∈T , An = (anK,L)K,L∈T ,
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anK,K =
m(K)

τn
+
∑
L∈NK

τK,L(1 + (Dvn−1K,L )+) > 0,

anK,L = −τK,L(1 + (Dvn−1K,L )−) ≤ 0, L ∈ NK .

Since τK,L = τL,K and (DvK,L)+ = (DvL,K)−, we have

anK,K +
∑
L∈NK

anL,K =
m(K)

τn
> 0.

Consequently, An is irreducibly diagonally dominant with respect to the columns
so that we can apply [35, Corollary 3.20] to obtain (An)−1 > 0, which yields,

u(n) = (An)−1u(n−1) > 0, n ≥ 1,

under the assumption that u(0) ≥ 0 and not identically 0 (u0h ≥ 0, u0h 6= 0).
Finally, vnh > 0 for n ≥ 0 is proved in the same way.

Remark 2.1 In previous papers, [27,28,30], we proved that corresponding co-
efficient matrices are irreducibly diagonally dominant with respect to the row
under a certain restriction on a time-step size. Consequently, we need to em-
ploy a time-step size control to ensure the positivity of discrete solutions.
However, we can remove such restrictions by considering that corresponding
coefficient matrices are irreducibly diagonally dominant with respect to the
column.

Corollary 2.1 {unh}n≥0 ⊂ Xh is the solution of (2.4) as in Theorem 2.2, then
we have

‖vnh‖1 = ‖unh‖1 = ‖u0h‖1, ∀n ≥ 0. (2.6)

2.5 Discrete free energy

The free energy for system (1.1) is given by (1.5) and (1.6). For {(unh, vnh)}n≥0
the solution to (2.4), we define the discrete free energy function: for all uh, vh ∈
Xh,

Wh(uh, vh) ≡
∑
K∈T

m(K)(uK log uK − uK)− 1

2

∑
K∈T

m(K)uKvK , (2.7)

and set Wn
h = Wh(unh, v

n
h).

Theorem 2.3 (Discrete free energy) Let {(unh, vnh)}n≥0 be the solution to
(2.4), then we have

1

τn
(Wn

h −Wn−1
h ) ≤ 0, n ≥ 1. (2.8)

To state the proof, we need the following lemma, which is a version of [15,
Lemma 3.1] and whose proof is exactly the same.
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Lemma 2.1 Let φ : R → R be an increasing C1-function and {(unh, vnh)}n≥1
the solution to finite volume scheme (2.4), then we have

∑
K∈T

(unK − un−1K )φ(unK) ≤ −τn
2

∑
K∈T

∑
L∈NK

τK,L

[
DunK,L

√
φ′(ũnK,L)

]2
+
τn
2

∑
K∈T

∑
L∈NK

τK,Lũ
n
K,Lφ

′(ũnK,L)Dvn−1K,LDu
n
K,L,

(2.9)

where ũnK,L = snK,Lu
n
K + (1− snK,L)unL, snK,L ∈ (0, 1), (DχK,L = χL − χK).

Proof (Proof of Theorem 2.3)

Wn
h −Wn−1

h =
∑
K∈T

m(K)(unK log unK − un−1K log un−1K )︸ ︷︷ ︸
=I1

+
∑
K∈T

m(K)(unK − un−1K )︸ ︷︷ ︸
=0, ∵(2.5)

− 1

2

∑
K∈T

m(K)(unKv
n
K − un−1K vn−1K )︸ ︷︷ ︸

=I2

.

Since for all a, b > 0, b(log a− log b) ≤ a− b, we see that

I1 =
∑
K∈T

m(K)(unK − un−1K ) log unK +
∑
K∈T

m(K)un−1K (log unK − log un−1K ),

≤
∑
K∈T

m(K)(unK − un−1K ) log unK +
∑
K∈T

m(K)(unK − un−1K )︸ ︷︷ ︸
=0, ∵(2.5)

.

Applying Lemma 2.1 with φ(x) = log(x)( log′(x) = x−1), we have

I1 ≤ −
τn
2

∑
K∈T

∑
L∈NK

τK,L
|DunK,L|2

ũnK,L
+
τn
2

∑
K∈T

∑
L∈NK

τK,LDv
n−1
K,LDu

n
K,L.

I2 =
∑
K∈T

m(K)(unK − un−1K )vn−1K︸ ︷︷ ︸
=I21

+
1

2

∑
K∈T

m(K)(unKv
n
K − 2unKv

n−1
K + un−1K vn−1K )︸ ︷︷ ︸

=I22

.
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In view of (2.4), we have

I21 = −τn
2

∑
K∈T

∑
L∈NK

τK,LDv
n−1
K,LDu

n
K,L

+
τn
2

∑
K∈T

∑
L∈NK

τK,LDv
n−1
K,L

(
(Dvn−1K,L )+u

n
K − (Dvn−1K,L )−u

n
L

)
= −τn

2

∑
K∈T

∑
L∈NK

τK,LDv
n−1
K,LDu

n
K,L +

τn
2

∑
K∈T

∑
L∈NK

τK,Lũ
n
K,L|Dvn−1K,L |

2

+
τn
2

∑
K∈T

∑
L∈NK

τK,L

(
(Dvn−1K,L )2+(1− snK,L)unK + (Dvn−1K,L )2−s

n
K,Lu

n
L

)
︸ ︷︷ ︸

=I213≥0

.

In view of (2.4), we have

I22 =
1

2

(∑
K∈T

m(K)|vnK |2 +
1

2

∑
K∈T

∑
L∈NK

τK,L|DvnK,L|2
)

−

(∑
K∈T

m(K)vnKv
n−1
K +

1

2

∑
K∈T

∑
L∈NK

τK,LDv
n
K,LDv

n−1
K,L

)

+
1

2

(∑
K∈T

m(K)|vn−1K |2 +
1

2

∑
K∈T

∑
L∈NK

τK,L|Dvn−1K,L |
2

)

=
1

2

(∑
K∈T

m(K)|vnK − vn−1K |2 +
1

2

∑
K∈T

∑
L∈NK

τK,L|DvnK,L −Dvn−1K,L |
2

)
.

Hence I22 ≥ 0. Combining those estimates, we have

1

τn
(Wn

h −Wn−1
h ) =

1

τn
I1 − I2 =

1

τn
I1 − I21 − I22

≤− 1

2

∑
K∈T

∑
L∈NK

τK,L
|DunK,L|2

ũnK,L
+
∑
K∈T

∑
L∈NK

τK,LDv
n−1
K,LDu

n
K,L

− 1

2

∑
K∈T

∑
L∈NK

τK,Lũ
n
K,L|Dvn−1K,L |

2 − (I213 + I22)/τn

=− 1

2

∑
K∈T

∑
L∈NK

τK,L

∣∣∣∣∣DunK,L√
ũnK,L

−Dvn−1K,L

√
ũnK,L

∣∣∣∣∣
2

≤ 0.

(2.10)

Thus, we complete the proof.

3 Error estimate: dual triangulation and mass lumping operator

As mentioned in Introduction, Filbert [15] proved the convergence of the non-
linear finite volume scheme defined in general admissible mesh without any
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explicit convergence rate. The aim of our error analysis is to derive an error
estimate with explicit convergence rate. To this end, we assume that admis-
sible mesh is obtained from a non-obtuse triangulation of the finite element
method.

3.1 Voronoi mesh and its dual triangulation

We assume the admissible mesh T of Voronoi type has a dual triangulation,
denoted as T̂ . We set

P̂ = {PK | K ∈ T },

Ê = {PKPL | ∀K ∈ T , L ∈ NK},

where P̂ and Ê are the sets of vertices and edges of triangles, respectively (see
Figure 2.2). T̂ is the triangle of T̂ .

Assumptions

– Ω = ∪K∈TK = ∪T̂∈T̂ T̂ .

– Every two elements of T (or T̂ ) meet only in entire common faces or in
vertices.

– There exist two positive constants ξ1, ξ2, such that

ξ1 ≤ τK,L ≤ ξ2, ∀K ∈ T , L ∈ NK . (3.1)

– There exists a positive constants γ1, such that

hT̂ ≤ γ1ρT̂ , ∀T̂ ∈ T̂ . (3.2)

where hT̂ = diam(T̂ ), ρT̂ = max{diam(Ŝ) | Ŝ is ball included in T̂}.
– ĥ = maxT̂∈T̂ hT̂ . There exist positive constants γ2, γ̂2 such that

γ2h ≤ hK , ∀K ∈ T , γ̂2ĥ ≤ hT̂ , ∀T̂ ∈ T̂ .

Remark 3.1 Those assumptions are fulfilled if admissible mesh is defined as
the dual mesh of an non-obtuse triangulation of the finite element method (cf.
[14,19]).

Remark 3.2 The above assumptions imply that for any K ∈ T , L ∈ NK and
T̂ ∈ T̂ ,

h w ĥ, m(K),m(T̂ ) w h2, dK,L,m(K|L) w h, (3.3)

where, for a, b > 0, a w b means the existence of positive constants C1, C2

satisfying

C1a ≤ b ≤ C2a.
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3.2 A mass-lumping operator

We associate a function φ̂K ∈ C(Ω) with PK (the control point of K or

vertex of some triangle in T̂ ), such that φ̂K is linear on each T̂ ∈ T̂ , and

φ̂Ki
(PKj

) = δij for any Ki,Kj ∈ P̂, where δij is the Kronecker’s delta.

X̂h = span{φ̂K | PK ∈ P̂}.

The mass-lumping operator Mh is defined by

Mh : X̂h → Xh; ûh 7→ uh = Mhûh,

satisfying

ûh(PK) = uh(PK), ∀PK ∈ P̂.

It is easy to verify that Mh is a bijection, ûh = M−1h uh, and we have the
following estimates:

C‖ûh‖p ≤ ‖Mhûh‖p ≤ C ′‖ûh‖p (p ∈ [1,∞], uh ∈ X̂h). (3.4)

‖Mhûh − ûh‖p ≤ Ch‖∇ûh‖p (p ∈ [1,∞], uh ∈ X̂h). (3.5)

We put

(ûh, v̂h)h = (uh, vh). (3.6)

Pi

Pj

Di

Fig. 3.1 Barycentric domain Di.

Remark 3.3 All arguments in [2,27,7,13] are associated to a mass-lumping
operator M̄h based on the barycentric coordinate, which is different to our case;
to be more specific, we reorder the control points (or the vertices of triangles)
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P̂ = {Pi}Ni=1, the barycentric domain Di (see Figure 3.1) corresponding to Pi
is defined as

Di = ∪T̂∈Ji
{x ∈ T̂ | ϕT̂j (x) ≤ ϕT̂i (x) (Pj ∈ V(T̂ ), Pj 6= Pi)},

where Ji = {T̂ ∈ T̂ | Pi ∈ T̂}, V(T̂ ) = {Pj ∈ P̂ | Pj ∈ T̂}, and {ϕT̂i }
d+1
i=1 are

the barycentric coordinates of T̂ with respect to Pi. And we denote the mesh
T̄ = {Di}Ni=1. Let φ̄i be the characteristic function of Di,

X̄h = span{φ̄i | i = 1, . . . , N},

then we define

M̄h : X̂h → X̄h; ûh 7→ ūh = M̄hûh, M̄hûh =

N∑
i=1

ûh(Pi)φ̄i. (3.7)

The operator M̄h, which is called lumping operator, has the properties as
(3.4) and (3.5); moreover, it satisfies( cf. [34], Lemma 15.1), for all p ∈ (1,∞),
p−1 + q−1 = 1,

|(M̄hûh, M̄hv̂h)− (ûh, v̂h)| ≤ Ch2‖ûh‖1,p‖v̂h‖1,q, ∀ûh, v̂h ∈ X̂h, (3.8)

which follows from the relationship between the barycentric partition and the
quadrature formula: ∫

T̂

ûh =

∫
T̂

M̄hûh, ∀T̂ ∈ T̂ . (3.9)

For Mh, we have the estimates,

|(Mhûh,Mhv̂h)− (ûh, v̂h)| ≤ Ch(‖ûh‖p‖∇v̂h‖q + ‖v̂h‖p‖∇ûh‖q). (3.10)

The effect of this difference between Mh and M̄h to the error analysis for
finite-volume approximation will be explained in Sect. 4.1.3( see Remark 4.1).

3.2.1 ‖ · ‖1,p,T norm for Xh

Although the function in Xh is not differentiable, we can define a norm ‖·‖1,p,T
(cf. [4,14]) for Xh, which is similar to W 1,p-norm ‖ · ‖1,p for X̂h. With the
assumptions on mesh T in Sect. 3.1, for p ∈ [1,∞), we define, ∀uh ∈ Xh

‖uh‖p1,p,T =
∑

K|L∈Eint

τK,Ld
2−p
K,L|uK − uL|

p. (3.11)

‖uh‖1,∞,T = max
K|L∈Eint

|uK − uL|
dK,L

. (3.12)

Lemma 3.1 Under the assumptions on mesh T and its dual mesh T̂ in
Sect. 3.1, we have, for p ∈ [1,∞],

‖uh‖1,p,T w ‖∇ûh‖0,p, ∀uh ∈ Xh, ûh = M−1h uh. (3.13)
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Proof With (3.3), we have

‖uh‖p1,p,T w
∑
K∈T

m(K)

∣∣∣∣uK − uLdK,L

∣∣∣∣p w ‖∇ûh‖p0,p.

3.2.2 Variational forms of finite volume scheme (2.4)

For any uh, χh ∈ Xh,

Ah(uh, χh) :=
∑
K∈T

χK
∑
L∈NK

τK,L(uK − uL)

=
∑

K|L∈Eint

τK,LDuK,LDχK,L.
(3.14)

For any uh ∈ Xh, there exists vh ∈ Xh such that

(vh, χh) +Ah(vh, χh) = (uh, χh), ∀χh ∈ Xh. (3.15)

Then we define the operator Gh which is a discrete version of G, with

Gh : Xh → Xh; uh 7→ vh = Ghuh,

And we have
vnh = Ghu

n
h, n ≥ 0, (3.16)

for the finite-volume scheme (2.4). For any wh, uh, χh ∈ Xh, we set

Bh(wh, uh, χh)

≡
∑
K∈T

χK
∑
L∈NK

τK,L [(D(Ghwh)K,L)+uK − (D(Ghwh)K,L)−uL] . (3.17)

Now, we can write the scheme (2.4) into a variational form,{
find unh ∈ Xh, n ≥ 1, such that,

(∂τnu
n
h, χh) +Ah(unh, χh) +Bh(un−1h , unh, χh) = 0, ∀χh ∈ Xh.

(3.18)

Variational form with mass-lumpling operator Mh

To derive error estimates, we need to applying the mass-lumpling operator to
scheme (2.4) or (3.18) to rewrite its into a variational form of finite element
type. In view of that, for any uh, χh ∈ Xh, ûh = M−1h uh ∈ X̂h, χ̂h = M−1h χh ∈
X̂h,

Ah(uh, χh) = (∇ûh,∇χ̂h), (3.19)

(3.18) is equivalent to:{
find ûnh ∈ X̂h, n ≥ 1, such that,

(∂τn û
n
h, χ̂h)h + (∇ûnh,∇χ̂h) + bh(ûn−1h , ûnh, χ̂h) = 0, ∀χ̂h ∈ X̂h,

(3.20)

where (·, ·)h is defined by (3.6), and for all ŵh, ûh, χ̂h ∈ Xh,

bh(ŵh, ûh, χ̂h) := Bh(wh, uh, χh), wh = Mhŵh, uh = Mhûh, χh = Mhχ̂h.

We then state our main result.
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3.3 Results on error estimates

Since Ω is not smooth, Lp solution is considered, and we make the following
regularity assumption on the solution u of (1.1) (cf. [33,31,27]):

u ∈ C([0, T ];Wp), u′ ∈ C([0, T ];W 1,p) ∩ Cσ([0, T ];Lp), (3.21)

for some p ≥ 2, σ ∈ (0, 1], and put

α1,p = sup
t∈[0,T ]

‖u(t)‖2,p, α2,p = sup
t∈[0,T ]

‖u′(t)‖1,p,

α3,p = sup
t,s∈[0,T ]

‖u′(t)− u′(s)‖p
|t− s|σ

,

where u′ = du/dt. In addition, we make the a priori estimates assumption on
discrete solution {unh}Jn=1, J = max{n ∈ N | tn < T}, that

‖unh‖p, ‖unh‖1,2,T ≤ C(u0h), (p > d). (3.22)

Remark 3.4 The proof of a priori estimates to {unh}Jn=1 is quite technical. In
[15], it shows the results for a non-linear scheme,

‖unh‖2 +

n∑
j=1

‖unh‖1,2,T ≤ C1(‖u0h‖2 + ‖u0h log(u0h)‖1),

‖unh‖3 ≤ C2(‖u0h‖2 + ‖u0h log(u0h)‖1).

with the similar argument of [15], one can obtain,

‖unh‖4 ≤ C3(‖u0h‖2 + ‖u0h log(u0h)‖1 + ‖u0h‖1,2,T ).

However, the a priori estimate ‖unh‖1,2,T ≤ C(u0h) has not been verified yet.
Assumption (3.22) is used in Lemma 4.1, Lemma 4.9 and Remark 4.2.

Theorem 3.1 (Error estimates) Assume (1.1) admits a unique solution u
satisfying (3.21) for some p ∈ (d, µ) and σ ∈ (0, 1]. Let u0h ∈ Xh with

‖u0 − u0h‖p ≤ C0h
1−2/p. (3.23)

{(unh, vnh)}Jn=1 is the solution of (2.4) satisfying (3.22). Then we have the error
estimates

sup
0≤n≤l

‖u(tn)− unh‖p ≤ C1(h1−2/p + τσ), (3.24)

sup
0≤n≤l

‖v(tn)− v̂nh‖1,∞ ≤ C2h
1−2/p + C3 sup

0≤n≤l
‖u(tn)− unh‖p, (3.25)

where τ = max τn, tn =
∑n
i−1 τi. C1, C2, C3 are the constants depending on

Ω, p, d, C0, αi, i = 1, 2, 3.
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4 Proof of error estimates

To start the error analysis, we need some preliminary results.

4.1 Some preliminary results

4.1.1 Sobolev and inverse inequalities

The following inequalities can be found in [1,12].

‖v‖∞ ≤ C‖v‖1,p (p ∈ (d,∞], v ∈W 1,p). (4.1)

Let T̂ ∈ T̂ , we have the inverse inequality

‖v̂h‖W l,p(T̂ ) ≤ Ch
m−l+min{0, dp−

d
q }

T̂
‖vh‖Wm,q(T̂ ), (v̂h ∈ X̂h), (4.2)

where p, q ∈ [1,∞], l,m are integers, m < l.

max
x,y∈T̂

|v̂h(x)− v̂h(y)| ≤ Ch1−d/p
T̂

‖∇v̂h‖Lp(T̂ ) (p ∈ [1,∞], vh ∈ X̂h). (4.3)

4.1.2 Interpolation and H1-projection operators

We use the Lagrange interpolation operator Πh and the H1-projection oper-
ator Rh (cf. [12,34,6]).

Πh : C(Ω)→ X̂h, Πhv(Pi) = v(Pi), ∀Pi ∈ P̂. (4.4)

For any T̂ ∈ T̂ , v ∈W 2,p(T̂ ), p ∈ (d/2,∞], we have

‖Πhv − v‖Lp(T̂ ) + h‖∇(Πhv − v)‖Lp(T̂ ) ≤ Ch
2
T̂
‖v‖W 2,p(T̂ ), (4.5)

and for p ∈ (d,∞],

‖Πhv − v‖L∞(T̂ ) + h‖∇(Πhv − v)‖L∞(T̂ ) ≤ Ch
2−d/p
T̂

‖v‖W 2,p(T̂ ). (4.6)

H1-projection operator Rh is defined by

Rh : H1 → X̂h, v 7→ Rhv,

satisfying

(∇Rhv −∇v,∇χ̂h) + (Rhv − v, χ̂h) = 0, ∀χ̂h ∈ X̂h. (4.7)

Under the assumption that for any v ∈W r,p, p ≥ 2

inf
χ̂h∈X̂h

(‖v − χ̂h‖p + h‖∇(v − χ̂h)‖p) ≤ Chr‖v‖r,p, r = 1, 2,

we have

‖Rhv − v‖p + h‖∇(Rhv − v)‖p ≤ Chr‖v‖r,p, r = 1, 2. (4.8)

Also, we have

‖Rhv‖1,p ≤ C‖v‖1,p (p ∈ (1,∞], v ∈W 1,p). (4.9)
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4.1.3 Discrete Laplace operators

We define two discrete Laplace operators: Lh and G−1h .( Gh is defined by
(3.15).)

Lh : X̂h → X̂h, ŵh 7→ Lhŵh = ûh,

(∇ŵh,∇χ̂h) + (ŵh, χ̂h) = (ûh, χ̂h), ∀χ̂h ∈ X̂h. (4.10)

G−1h : Xh → Xh, vh 7→ G−1h vh = uh,

Ah(vh, χh) + (vh, χh) = (uh, χh), ∀χh ∈ Xh. (4.11)

For any vh, uh ∈ Xh satisfying uh = G−1h vh, or equivalently (4.11), setting
v̂h = M−1h vh, ûh = M−1h uh, we define the operator

Ah : X̂h → X̂h, v̂h 7→ Ahv̂h = ûh. (4.12)

In view of (3.19) and (3.6), we have

(∇v̂h,∇χ̂h) + (v̂h, χ̂h)h = (ûh, χ̂h)h, ∀χ̂h ∈ X̂h. (4.13)

Lemma 4.1 For uh ∈ Xh, let ûh = M−1h uh, ŵh = L−1h ûh, vh = Ghuh,
v̂h = M−1h vh, we have

‖∇(v̂h − ŵh)‖2 + ‖v̂h − ŵh‖2 ≤ Ch(‖∇ûh‖2 + ‖ûh‖2), (4.14)

Proof Subtracting (4.10) from (4.13), it yields, for any χ̂h ∈ X̂h,

(∇(v̂h − ŵh),∇χ̂h) + (v̂h − ŵh, χ̂h) = (ûh + ŵh, χ̂h)− (ûh + ŵh, χ̂h)h. (4.15)

Substituting χ̂h = v̂h − ŵh into (4.15), (4.14) follows form (3.4) and (3.5).

Applying (4.2) to (4.14), we obtain

‖∇(v̂h − ŵh)‖p = ‖∇(M−1h Ghuh − L−1h M−1h uh)‖p ≤ Ch1+d/p−d/2. (4.16)

The estimate (4.16) is not sharp, applying which we will obtain the error
estimate of order hd/p + h1−d/p instead of h1−d/p in (3.24). We extend the
method of [7] to obtain a sharper error estimate for M−1h Gh − L−1h M−1h .

Lemma 4.2 (An analogue of Theorem 2.1 of [7]) Let uh ∈ Xh, set
vh = Ghuh, v̂h = M−1h vh. Let V = Guh, be the solution of

−∆V + V = uh in Ω, ∂νV = 0 on Γ.

Then, we have

‖v̂h − V ‖1,p ≤ Ch‖V ‖2,p, 2 ≤ p < µ. (4.17)
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Proof v̂h = M−1h Ghuh ∈ X̂h is the solution of

a∗(v̂h, χh) = (uh, χh), χh ∈ Xh, (4.18)

where

a∗(ŵh, χh) :=
∑
Pi∈P̂

χh(Pi)(−
∫
∂KPi

∇ŵh · νds) + (wh, χh),

= Ah(wh, χh) + (wh, χh), ∀ŵh ∈ X̂h, wh = Mhŵh, χh ∈ Xh.

Let p ∈ [1,∞], 1
p + 1

q = 1, we have

|a(v − v̂h, Πhv)− a∗(v − v̂h,MhΠhv)|
≤Ch(‖∇(v − v̂h)‖p + ‖v‖2,p)‖∇v‖1,q,

(4.19)

where

a(u, v) = (∇u,∇v) + (u, v), ∀u, v ∈ H1.

The proof of (4.19) is the same to (2.1) in [7]( see Lemma 2.1 of [7]).
In view of Theorem 2.1 of [7], (4.19) implies (4.17).

Remark 4.1 In [7], the authors consider lumping operator M̄h( defined by
(3.7)) instead of Mh. However, (4.19) and (4.17) hold for both Mh and M̄h,
since the proof of (4.19), (4.17) only use the properties (3.5), (3.6) and (3.10),
which are verified for both Mh and M̄h. Different to Mh, M̄h satisfies (3.9),
(3.8), which gives a higher-order error estimate

‖M̄−1h − V ‖0,p ≤ Ch2‖V ‖3,p.

This higher-order estimates is not necessary to our case.

Following form Lemma 4.2 and the Lp error estimates for G− Lh, we have

Lemma 4.3 For uh ∈ Xh, ûh = M−1h uh,

‖∇(M−1h Gh − L−1h M−1h )uh‖p ≤ Ch(‖∇ûh‖p + ‖ûh‖p), (4.20)

Proof Set vh = Ghuh, ŵh = L−1h M−1h uh, V = Guh. We have by Lemma 4.2,

‖v̂h − V ‖1,p ≤ Ch‖V ‖2,p ≤ Ch‖uh‖p, (v̂h = M−1h vh).

For finite element method, we have

‖(L−1h −G)M−1h uh‖1,p ≤ Ch‖G(M−1h uh)‖2,p ≤ Ch‖M−1h uh‖p ≤ Ch‖uh‖p.

It is obvious that

‖G(uh −M−1h uh)‖2,p ≤ C‖uh −M−1h uh‖p ≤ Ch‖∇M−1h uh‖p.

Combining those inequalities, we prove the lemma.
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4.1.4 Lp estimates of Ah

We state some results on Lp estimates for Ah( defined by (4.12)). Setting a
new norm ‖ · ‖h,p for X̂h, with

‖v̂h‖h,p := ‖vh‖p, vh = Mhv̂h, ∀v̂h ∈ Xh, (4.21)

we denote Xh,p as the Banach space X̂h equipped with norm ‖ · ‖h,p. Further-
more, we extend Ah to space Xh,p, with

‖Ah‖h,p = sup
v̂h∈Xh

‖Ahv̂h‖h,p
‖v̂h‖h,p

.

We have the following properties.

Lemma 4.4 Let p ∈ (1,∞), then

(i) Ah is sectorial in Xh,p, and its fractional powers Aαh , α ∈ (0, 1), are defined.
(ii) Ah and Aαh , α ∈ (0, 1), are positive and self-adjoint in Xh,2.

(iii) For any θ ∈ (0, 1) and {τj}nj=1, τj > 0, we have

‖r(τnAh) · · · r(τ1Ah)Aθh‖h,p ≤ Cθ(τn + · · ·+ τ1)−θ, (4.22)

where r(τjAh) = (I + τjAh)−1.

Proof It is not difficult to verify that, the result (i)( cf. [13]), (ii)( cf. [26]), and
(iii)( cf. [25]), which are all derived originally for mass lumping operator M̄h

can be extended to Mh.

Lemma 4.5 (Lemma 4.4 of [27]) Under the assumptions on mesh T̂ in
Sect. 3.1, we have

‖v̂h‖1,p ≤ C‖Aθhv̂h‖h,p (v̂h ∈ X̂h) (4.23)

for p ∈ (µ/(µ− 1), µ) and θ ∈ (1/2, 1].

Now, we can state the error estimates. In the following, we separate the
error

unh − u(tn) = unh −MhRhu(tn) +MhRhu(tn)− u(tn). (4.24)

Following from (3.5), (4.9) and (4.8) for r = 2 we have

‖MhRhu(tn)− u(tn)‖p ≤ C(h+ h2)α1,p. (4.25)

Setting

wnh = unh −MhRhu(tn),

the following argument is aim to estimate ‖wnh‖p.
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4.2 Estimates on ∂τnu
n
h − u′(tn)

Lemma 4.6 For any χh ∈ Xh, χ̂h = M−1h χh, we have, p ∈ (2,∞), 1/p +
1/q = 1,

|(∂τnMhRhu(tn), χh)− (u′(tn), χ̂h)| ≤ C(α2,p + α3,p)(h+ τσn )‖χ̂h‖1,q. (4.26)

Proof The argument is quite standard. We make the separation,

(∂τnMhRhu(tn), χh)− (u′(tn), χ̂h)

=((Mh − I)∂τnRhu(tn), χh) + ((Rh − I)∂τnu(tn), χh)

+ (∂τnu(tn)− u′(tn), χh) + (u′(tn), χh − χ̂h) =

4∑
i=1

Ii,

By (3.5) and (4.9) we have

I1 ≤ Ch‖∇Rh∂τnu(tn)‖p‖χh‖q ≤ Ch‖∂τnu(tn)‖1,p‖χh‖q

≤ Ch

∥∥∥∥∥τ−1n
∫ tn

tn−1

u′(s)ds

∥∥∥∥∥
1,p

‖χh‖q ≤ Cα2,ph‖χh‖q.
(4.27)

I4 ≤ Chα2,p‖∇χ̂h‖q. (4.28)

I3 ≤ C

∥∥∥∥∥ 1

τn

∫ tn

tn−1

u′(tn)− u′(s)ds

∥∥∥∥∥
p

‖χh‖q

≤ Cτ1/q−1n

(∫ tn

tn−1

‖u′(tn)− u′(s)‖ppds

)1/p

‖χh‖q

≤ Cα3,pτ
1/q−1
n

(∫ tn

tn−1

|t− s|σp
)1/p

ds‖χh‖q ≤ Cα3,pτ
σ
n ‖χh‖q.

(4.29)

The estimate of I2 follows from (4.8) for r = 1,

I2 ≤ C ‖(Rh − I)∂τnu(tn)‖p ‖χh‖q
≤ Ch‖∂τnu(tn)‖1,p‖χh‖q ≤ Chα2,p‖χh‖q.

(4.30)

The proof is completed.

4.3 Estimates on b−Bh

We shall estimate b(u(tn), u(tn), χ̂h)−Bh(un−1h , unh, χh).

Lemma 4.7 Let {un}Jn=0 be the solution of (2.4), and u be the solution of
(1.1). For any χh ∈ Xh, χ̂h = M−1h χh, we have

|Bh(un−1h , unh, χh)− b(u(tn), u(tn), χ̂h)|
≤C(τn + h1−d/p + ‖ŵnh‖p + ‖ŵn−1h ‖p)‖χ̂h‖1,q,

(4.31)

where p ∈ (2,∞), 1/p+ 1/q = 1, wnh = unh −MhRhu(tn), and ŵnh = M−1h wnh .
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To prove Lemma 4.7, we first state some lemmas on b, b̃h and Bh, where the
definition of b̃h is given below.

4.3.1 Lemmas on b, b̃h and Bh

Lemma 4.8 For b(u, v, w) =
∫
Ω
∇(Gu)v∇w, we have ∀u ∈ Lp, v ∈ L∞, w ∈

Lq,

|b(u, v, w)| ≤ C‖u‖p‖v‖p‖∇w‖q, p ∈ (d, µ),
1

p
+

1

q
= 1. (4.32)

Lemma 4.9 For any uh, vh, χh ∈ Xh, set ûh = M−1h uh, v̂h = M−1h vh, χ̂h =
M−1h χh. B(uh, vh, χh) is defined by (3.17), then we have

|B(uh, vh, χh)| ≤ C‖ûh‖1,p‖v̂h‖p‖∇χ̂‖q, p ∈ (d, µ),
1

p
+

1

q
= 1. (4.33)

Proof From (3.17), we have

|B(uh, vh, χh)| ≤ C max
K|L∈Eint

{
|D(Ghuh)K,L|

dK,L

}

·

 ∑
K|L∈Eint

τK,Ld
2−q
K,L|χK − χL|

q

1/q ∑
K|L∈Eint

τK,Ld
2
K,L|vK |p

1/p

≤ C‖Ghuh‖1,∞,T ‖vh‖p‖χh‖1,q,T .

Applying Lemma 3.1, we have

‖χh‖1,q,T ≤ C‖∇χ̂h‖q, ‖Ghuh‖1,∞,T ≤ C‖∇M−1h Ghuh‖∞.

To estimate ‖∇M−1h Ghuh‖∞, we see that,

‖∇M−1h Ghuh‖∞ ≤ ‖∇(M−1h Gh − L−1h M−1h )uh‖∞ + ‖∇L−1h M−1h uh‖∞.

By (4.2) and Lemma 4.3 we have

‖∇(M−1h Gh − L−1h M−1h )uh‖∞
≤h−d/p‖∇(M−1h Gh − L−1h M−1h )uh‖p ≤ Ch1−d/p‖û‖1,p.

Applying Lemma 4.5 in [27], we obtain the estimate

‖∇L−1h M−1h uh‖∞ ≤ C‖ûh‖p.

The Lemma is proved.
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Remark 4.2 In the proof of Lemma 4.9, we obtain that

|B(uh, vh, χh)| ≤ C(‖û‖p + h1−d/p‖∇ûh‖p︸ ︷︷ ︸
≤C‖∇ûh‖2, ∵ (4.2), d=2

)‖v̂h‖p‖∇χ̂‖q, (4.34)

In [15], for (unh, v
n
h) the solution of finite-volume scheme, the a-prior estimates

‖unh‖2 +

l∑
i=1

τn‖uih‖1,2,T ≤ C, ‖unh‖3 ≤ C,

are proved, where C is some constant depending on initial data u0h. However,
the a priori estimate of ‖unh‖1,2,T has not been proved yet. In view of (4.34),
to obtain

|B(unh, vh, χh)| ≤ C‖v̂h‖p‖∇χ̂‖q,

we need assumption on the a-prior estimates that

‖unh‖p, ‖unh‖1,2,T ≤ C. (4.35)

Next, we introduce b̃h. Let

β̃±K,L(uh) :=

∫
K|L

[∇(L−1h M−1h uh) · νK,L]±ds,

where µK,L is the unit outer normal vector to the edge K|L of element K, and
thanks to the property of Voronoi mesh, that is xKxL⊥K|L, we have

β̃±K,L(uh) = m(K|L)[(L−1h M−1h uh)(xL)− (L−1h M−1h uh)(xK)].

Then we set, for any uh ∈ Xh, v̂h, χ̂h ∈ X̂h, setting vh = Mhv̂h, χh = Mhχ̂h,

b̃h(uh, v̂h, χ̂h) :=
∑
K∈T

χK
∑
L∈NK

[β̃+
K,L(uh)vK − β̃−K,L(uh)vL].

We have the following lemma.

Lemma 4.10 For p ∈ (d, µ), 1/p+ 1/q = 1,

|b̃h(uh, v̂h, χ̂h)− b(uh, v̂h, χ̂h)| ≤ Ch1−d/p‖uh‖p‖v̂h‖1,p‖∇χ̂h‖q, (4.36)

for any uh ∈ Xh, v̂h, χ̂h ∈ X̂h.

Proof We set the finite-element approximation operator Lh the same to [27],
and our b̃h is equivalent to bh of [27]. It is a direct result from Lemma 5.4 in
[27].
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4.3.2 Estimates on b−Bh( proof of Lemma 4.7)

Proof (Proof of Lemma 4.7) With wnh = unh −MhRhu(tn), we write as

Bh(un−1h , unh, χh)− b(u(tn), u(tn), χ̂h)

= b(u(tn−1)− u(tn), u(tn), χ̂h) + b(Rhu(tn−1)− u(tn−1), u(tn), χ̂h)

+b(MhRhu(tn−1)−Rhu(tn−1), u(tn), χ̂h)

+b(MhRhu(tn−1), Rhu(tn)− u(tn), χ̂h)

+b(−wn−1h , Rhu(tn), χ̂h)

+
(
Bh(un−1h , unh, χh)− b(un−1h , Rhu(tn), χ̂h)

)
≡

6∑
i=1

Ii.

Using Lemma 4.8, (4.8), (3.5) and (3.4), we have

|I1| ≤ C‖u(tn)‖∞‖u(tn−1)− u(tn)‖p‖∇χ̂h‖q

= Cα1,p

∥∥∥∥∥
∫ tn

tn−1

u′(s)ds

∥∥∥∥∥
p

‖∇χ̂h‖q

≤ Cα1,pτn‖u′‖C([0,T ],Lp)‖∇χ̂h‖q
≤ Cα2,pα1,pτn‖∇χ̂h‖q;

|I2| ≤ C‖Rhu(tn−1)− u(tn−1)‖p‖u(tn)‖p‖∇χ̂h‖q
≤ Cα2

1,ph
2‖∇χ̂h‖q;

|I3| ≤ C‖MhRhu(tn−1)−Rhu(tn−1)‖p‖u(tn)‖p‖∇χ̂h‖q
≤ Cα2

1,ph‖∇χ̂h‖q;
|I4| ≤ C‖MhRhu(tn−1)‖p‖Rhu(tn)− u(tn)‖p‖∇χ̂h‖q
≤ Cα2

1,ph
2‖∇χ̂h‖q;

|I5| ≤ C‖wn−1h ‖p‖Rhu(tn)‖p‖∇χ̂h‖q
≤ Cα1,p‖wn−1h ‖p‖∇χ̂h‖q.

To estimate I6, we divide it as

I6 = I61 + I63 + I63,

where

I61 = Bh(un−1h , unh, χh)−Bh(un−1h ,MhRhu(tn), χh),

I62 = Bh(un−1h ,MhRhu(tn), χh)− b̃h(un−1h , Rhu(tn), χ̂h),

I63 = b̃h(un−1h , Rhu(tn), χ̂h)− b(un−1h , Rhu(tn), χ̂h).

Under the assumption (4.35), applying Lemma 4.9 (or (4.34)) to I61, it yields

|I61| = −Bh(un−1h , wnh , χh) ≤ C‖wnh‖p‖∇χ̂h‖q.
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Setting

β±K,L(un−1h ) :=

∫
K|L

[∇(M−1h Ghu
n−1
h ) · νK,L]±ds,

we calculate as

|I62| =
∑
K∈T

χK
∑
L∈NK

{
[β+
K,L(un−1h )− β̃+

K,L(un−1h )]Rhu(tn)(xK)

−[β−K,L(un−1h )− β̃−K,L(un−1h )]Rhu(tn)(xL)
}

=
∑

K|L∈Eint

(χK − χL)
{

[β+
K,L − β̃

+
K,L]Rhu(tn)(xK)− [β−K,L − β̃

−
K,L]Rhu(tn)(xL)

}
≤ max
K|L∈Eint

|βK,L − β̃K,L|
dK,L

‖MhRhu(tn)‖p‖χh‖1,q,T .

To estimate I62, we see by (4.3)

|βK,L − β̃K,L|
dK,L

=
1

dK,L

∫
K|L
∇(L−1h M−1h −M−1h Gh)un−1h · νK,L

=
m(K|L)

dk,L
[(L−1h M−1h −M−1h Gh)un−1h (xK)− (L−1h M−1h −M−1h Gh)un−1h (xL)]

≤ Ch1−d/p‖∇(L−1h M−1h −M−1h Gh)un−1h ‖p.

Applying Lemma 4.3, we have

‖(L−1h M−1h −M−1h Gh)un−1h ‖p ≤ Ch‖ûn−1h ‖1,p ≤ Chd/p‖ûn−1h ‖1,2,

which gives

|βK,L − β̃K,L|
dK,L

≤ Ch‖ûn−1h ‖1,2.

Furthermore, under the assumption (4.35), we obtain,

|I62| ≤ Cα1,ph‖χ̂h‖1,q.

Following from Lemma 4.10, we have

I63 ≤ Ch1−d/p‖χ̂h‖1,q.

Combining the estimates of I6j , j = 1, 2, 3 and Im, m = 1, . . . , 6, we obtain
(4.31).
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4.4 Error estimates( proof of Theorem 3.1)

Proof (Proof of Theorem 3.1) In views of (4.24) and (4.25), we are aim to
estimate

wnh = unh −MhRhu(tn), or equivalently ŵnh = M−1h wnh .

Recalling the equation (2.3) ( the weak form of system (1.1)), and the equation
(3.20) ( the equivalent form to (2.4)), we have, for any χ̂h ∈ X̂h,

(∂τnŵ
n
h , χ̂h)h + (∇ŵnh ,∇χ̂h) + (ŵnh , χ̂h)h

=(∂τnw
n
h , χh) + (∇ŵnh ,∇χ̂h) + (wnh , χh)

= (∂τnMhRhu(tn), χh)− (u′(tn), χ̂h)︸ ︷︷ ︸
=J1

+ (wnh , χh)− (Rhu(tn)− u(tn), χ̂h)︸ ︷︷ ︸
=J2

+ (u′(tn), χ̂h)− (∂τnu
n
h, χh) + (∇u(tn)−∇ûnh,∇χ̂h)︸ ︷︷ ︸
=Bh−b=J3

+ (∇Rhu(tn)−∇u(tn),∇χ̂h) + (Rhu(tn)− u(tn), χ̂h)︸ ︷︷ ︸
=0

(4.37)
From Lemma 4.6, we have

|J1| ≤ C(α2,p + α3,p)(h+ τσn )‖χ̂h‖1,q.

|J2| ≤ C‖ŵnh‖p‖χ̂h‖q + ch2α1,p‖χ̂h‖q.

Follows from Lemma 4.7,

|J3| ≤ C(τn + h1−d/p + ‖ŵnh‖p + ‖ŵn−1h ‖p)‖χ̂h‖1,q.

Combining these estimates of Ji, i = 1, 2, 3, we rewrite (4.37) into

(∂τnŵ
n
h , χ̂h)h + (∇ŵnh ,∇χ̂h) + (ŵnh , χ̂h)h = 〈Fn, χ̂h〉, (4.38)

for some Fn ∈ X̂∗h such that

〈Fn, χ̂h〉 ≤ C(τσn + h1−d/p + ‖ŵnh‖p + ‖ŵn−1h ‖p)‖χ̂h‖1,q. (4.39)

Furthermore, we formulate (4.38) into a single equation, with the help of (4.13),

∂τnŵ
n
h +Ahŵ

n
h = Fn. (4.40)

Applying Lemma 4.4, we obtain

ŵnh = En,1ŵ
0
h +

n∑
j=1

τjEn,jF
j , (4.41)

where

En,j = r(τnAh) · · · r(τjAh), r(τjAh) = (I + τjAh)−1.
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Now, applying norm (4.21) and (4.22) in Lemma 4.4, we have

‖ŵnh‖h,p = ‖wnh‖p ≤ ‖En,1ŵ0
h‖h,p + ‖

n∑
j=1

τjEn,jF
j‖h,p

≤ ξ−θ1 ‖A
−θ
h ŵ0

h‖h,p +

n∑
j=1

τjξ
−θ
1 ‖A

−θ
h F j‖h,p,

where ξj = (τn + · · · + τj) = (tn − tj). Thanks to the following property of
A−θh , which is a consequence of Lemma 4.5,

‖A−θh v̂h‖1,q ≤ C‖v̂h‖h,q, ∀v̂h ∈ X̂h, θ ∈ (1/2, 1], q ∈ (µ/(µ−1), µ), (µ > d),

we obtain

‖A−θh F j‖h,p ≤ sup
χ̂h∈Xh,q

〈A−θh F j , χ̂h〉
‖χ̂h‖h,p

= sup
χ̂h∈Xh,q

〈F j , A−θh χ̂h〉
‖χ̂h‖h,p

≤C(τσj + h1−d/p + ‖ŵjh‖p + ‖ŵj−1h ‖p) sup
χ̂h∈Xh,q

‖A−θh χ̂h‖1,q
‖χ̂h‖q

≤C(τσj + h1−d/p + ‖ŵjh‖h,p + ‖ŵj−1h ‖h,p).

Obviously, ‖A−θh ŵ0
h‖h,p ≤ C‖ŵ0

h‖h,p, and (3.23) gives

‖ŵ0
h‖h,p ≤ C‖Rhu0 − û0h‖p ≤ Ch1−d/p.

Noticing that
∑n
j=1 τjξ

−θ
n ≤ T 1−θ/(1− θ), (ξj = tn − tj), we obtain

‖ŵnh‖h,p ≤ C(τσn + h1−d/p) + C

n∑
j=1

τjξ
−θ
n (‖ŵj−1h ‖h,p + ‖ŵjh‖h,p).

We then introduce a discrete inequality of Volterra type (Lemma 4.7 [27]). For
{Zn}ln=1 satisfying

0 < Zn ≤ c1 + c2

n∑
j=1

τj(tn − tj)−θ(zj−1 + zj),

then, we have

zn ≤ c1c3 exp(c4c
1/(1−θ)
2 tn),

where c3, c4 only depending on θ. Putting zn = ‖ŵnh‖h,p = ‖wnh‖p, we obtain
the error estimate (3.24). And the error estimate (3.25) of vnh − v(tn) follows
directly from Lemma 4.2 and 4.3.
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5 Analysis on numerically “blow-up”

5.1 One-dimensional system

We consider the one-dimensional Keller-Segel system of (1.1) and its finite
volume approximation. For all t ∈ (0, T ), (u(x, t), v(x, t)) satisfies

ut − uxx + (uvx)x = 0, −vxx + v = u in Ω = (−L,L),

ux = vx = 0 on x = 0, L,

u(x, 0) = u0(x) on Ω.

(5.1)

We consider the finite volume scheme for (5.1) with mesh T :

−L = x 1
2
< x1+ 1

2
< · · · < xN−1+ 1

2
< xN+ 1

2
= L,

where 0 < N ∈ N is the number of control volumes, h = 2L
N is the mesh

size. xi+ 1
2

= ih − L. (xi+ 1
2
, xi+1+ 1

2
) is the control volume with control point

xi+1 = (i+ 1
2 )h, i = 0, 1, . . . , N − 1. We set u0i = u0(xi), i = 1, . . . , N . Let uni ,

vni be the approximation of u(tn, xi), v(tn, xi), respectively. The finite volume
scheme is to find un = (uni )Ni=1, vn = (vni )Ni=1 for n = 1, 2, . . . , J , such that

−
vn−1i+1 − 2vn−1i + vn−1i−1

h2
+ vn−1i = un−1i , (5.2a)

∂τu
n
i −

uni+1 − 2uni + uni−1
h2

+
1

h

{(
[vn−1i+1 − v

n−1
i ]+

h
uni −

[vn−1i+1 − v
n−1
i ]−

h
uni+1

)

+

(
[vn−1i−1 − v

n−1
i ]+

h
uni −

[vn−1i−1 − v
n−1
i ]−

h
uni−1

)}
= 0

(5.2b)

vn−10 = vn−11 , vn−1N = vn−1N+1, un0 = un1 , u
n
N = unN+1, (5.2c)

where τ > 0 is the time-step increment, ∂τu
n
i = (uni − u

n−1
i )/τ . {u0i }Ni=1 ≥ 0,

and not identically zero. It is easy to verify that scheme (5.2) satisfies the
conservation of mass and positivity,

N∑
i=1

uni h =

N∑
i=1

u0ih =: θ, uni > 0, ∀n ≥ 1, (5.3)

N∑
i=1

vni h = θ, vni > 0, n ≥ 0. (5.4)

As it mentioned in Sect. 1, the global existence of u follows from the bounded-
ness of ‖v‖1,∞. For 1-dimensional problem, (1.10) and (1.11) are proved. For
the discrete system, We have the following theorem of vn, which is an analogue
to (1.10) and (1.11).
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Theorem 5.1 We have, for any n ≥ 0 and i = 1, . . . , N − 1,

vni+1 ≤
1

2L
(1 + 4L2)θ, (5.5)

|vni+1 − vni |
h

≤ θ. (5.6)

Proof From (5.2a), we see that

vni+1 − vni
h

=

n∑
j=1

(vni − un+1
i )h.

In view of conservation laws (5.3) and (5.4), we have |
∑n
j=1(vni −u

n+1
i )h| ≤ θ,

which implies (5.6). To derive (5.5), we see tha

2Lvni+1︸ ︷︷ ︸
=
∑N

j=1 v
n
i+1h

−
N∑
j=1

vnj h =

N∑
j=1

h

i∑
k=j

(vj+1 − vj)︸ ︷︷ ︸
=vi+1−vj

=

N∑
j=1

h

i∑
k=j

vk+1 − vk
h

h︸ ︷︷ ︸
≤
∑N

j=1 h
∑i

k=j θh≤4L2θ

.

Hence, 2Lvni+1 − θ ≤ 4L2θ, which gives (5.5)

5.2 Two-dimensional system

The global existence and blow-up of solution for 2-dimensional Keller-Segel
system (1.1) is briefly discussed in Sect. 1. For the global existence of u, it is
sufficient to prove (1.12) and (1.13) under the condition θ < 8π; for the blow-
up of solution, It is crucial to estimate the moment M2(t) =

∫
Ω
u(t)|x|2dx.

SettingΩ = B(0, L) ∈ Rd, u0(x) = u0(r), the Keller-Segel system with radially
symmetric solution reads as

ut = r1−d(rd−1(ur − uvr))r, r ∈ (0, L), t ∈ (0, T ),

0 = r1−d(rd−1vr)r − v + u, r ∈ (0, L), t ∈ (0, T ),

ur = vr = 0, r = 0, L, t ∈ (0, T ),

u(r, 0) = u0(r), r ∈ (0, L).

(5.7)

Setting N ∈ N+, we define mesh T :

0 = r 1
2
< r1+ 1

2
< · · · < rN−1+ 1

2
< rN+ 1

2
= L,

where ri+ 1
2

= ih. (ri+ 1
2
, ri+1+ 1

2
) is the control volume, with control point

ri+1 = (i + 1
2 )h, i = 0, . . . , N − 1. Let d = 2, and we set the initial data

u0i = u0(ri), u
0 = (u0i )

N
i=1 ≥ 0, and not identically zero. Let uni and vni be the
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approximation of u(tn, ri) and v(tn, ri), respectively. The finite volume scheme
reads as: finding un = (uni )Ni=1, vn = (vni )Ni=1, for n = 0, 1, . . . , J , such that,

−
[
ri+ 1

2

vni+1 − vni
h

− ri− 1
2

vni − vni−1
h

]
= hri(u

n
i − vni ), (5.8a)

∂τu
n+1
i rih−

[
ri+ 1

2

un+1
i+1 − u

n+1
i

h
− ri− 1

2

un+1
i − un+1

i−1
h

]

+

{
ri+ 1

2

(
[vni+1 − vni ]+

h
un+1
i −

[vni+1 − vni ]−

h
un+1
i+1

)
+ ri− 1

2

(
[vni−1 − vni ]+

h
un+1
i −

[vni−1 − vni ]−

h
un+1
i−1

)}
= 0.

(5.8b)

vnN+1 = vnN , un+1
N+1 = un+1

N , (5.8c)

In view of
∫
Ω
u0dx = 2π

∫ L
0
u0(r)rdr, we set the mass of initial data

θ = 2π

N∑
i=1

riu
0
ih.

The conservation of mass and positivity of un, vn are easy to verify:

uni > 0,

N∑
i=1

uni rih =
θ

2π
, n ≥ 1, (5.9)

vni > 0,

N∑
i=1

vni rih =
θ

2π
, n ≥ 0. (5.10)

We have the following theorem of vn, which is an analogue to (1.12) and (1.13).

Theorem 5.2 Suppose θ < 8π, we have, n ≥ 0, i = 1, . . . , N − 1,

vni+1 ≤
θ(i+ 1)

4πi
+ 2l, (5.11)

|vni+1 − vni |
h

≤ L(l + 4k), (5.12)

where constant k > 0 is sufficiently large such that, for Uni =
∑i
j=1 rju

n
j h,

V ni =
∑i
j=1 rjv

n
j h,

U0
i , V

0
i ≤Wi :=

4kr2
i+ 1

2

1 + kr2
i+ 1

2

, i = 1, . . . , N, (5.13)

and constant l ≥ 4k.

Remark 5.1 We see that V ni , U
n
i ≥ 0, UnN = V nN = θ

2π , and Wi < Wi+1. We
also have Wi < 4, and Wi → 4 as k → ∞. Hence, in order to find some k
satisfying (5.13), we have to assume θ < 8π.
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Proof Setting Un0 = V n0 = 0, UnN+1 = UnN , V nN+1 = V nN , and in view of

UnN = V nN =
θ

2π
, uni =

Uni − Uni−1
rih

, −ri+ 1
2

vni+1 − vni
h

= Ui − Vi, (5.14)

we have, for n = 0, 1, . . . , J ,

−
ri+ 1

2

h

(
V ni+1 − V ni
hri+1

−
V ni − V ni−1

hri

)
+ V ni = Uni , (5.15a)

∂τU
n+1
i −

ri+ 1
2

h

(
Un+1
i+1 − U

n+1
i

hri+1
−
Un+1
i − Un+1

i−1
hri

)

+

(
[Uni − V ni ]−

Un+1
i − Un+1

i−1
rih

− [Uni − V ni ]+
Un+1
i+1 − U

n+1
i

ri+1h

)
= 0.

(5.15b)

In view of (5.13), setting W0 = 0, WN+1 = WN , we obtain, for all i = 1, . . . , N,

ri+ 1
2

h

(
Wi+1 −Wi

hri+1
− Wi −Wi−1

hri

)
+ (Wi − V ni )

Wi+1 −Wi

ri+1h
≤ 0. (5.16)

Setting Y ni := Uni −Wi, and adding (5.15) to (5.16), it yields, for i = 1, . . . , N ,

∂τY
n+1
i −

ri+ 1
2

h

(
Y n+1
i+1 − Y

n+1
i

hri+1
−
Y n+1
i − Y n+1

i−1
hri

)

+ [Uni − V ni ]−
Y n+1
i − Y n+1

i−1
hri

− [Uni − V ni ]+
Y n+1
i+1 − Y

n+1
i

hri+1

+ [Uni − V ni ]−

(
−Wi+1 −Wi

hri+1
+
Wi −Wi−1

hri

)
︸ ︷︷ ︸

≥0

+Y ni
Wi+1 −Wi

hri+1︸ ︷︷ ︸
≥0

≤ 0,

which implies,

Y n+1
i ≤ 0 if Y ni ≤ 0 ∀i = 1, . . . , N. (5.17)

From (5.16) and (5.17), we obtain

Uni ≤Wi, i = 1, . . . , N, n = 0, 1, . . . , J. (5.18)

Setting Zi = lr2
i+ 1

2

, i = 1, . . . , N , Z0 = 0, ZN+1 = ZN = L2l, where l > 4k.

ZN = lL2 > θ
2π . We see that (Zi)

N
i=1 ≥ (Wi)

N
i=1, and

ri+ 1
2

h

(
Zi+1 − Zi
hri+1

− Zi − Zi−1
hri

)
− Zi + Uni = −Zi + Uni ≤ −Zi +Wi ≤ 0,

which shows, in view of (5.15a),

V ni ≤ Zi, i = 1, . . . , N, n = 0, 1, . . . , J. (5.19)
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From (5.14), (5.18) and (5.19), we have

|vni+1 − vni |/h = |Uni − V ni |/ri+ 1
2
≤ (Wn

i + Zni )/ri+ 1
2
,

which implies (5.12). In view of (5.15a) and r2i+1/2 − r
2
i−1/2 = 2rih, we get

r2i+ 1
2

V ni+1 − V ni
ri+1h

= r2i+ 1
2

V ni − V ni−1
rih

+ hri+ 1
2
(V ni − Uni )

=r2i− 1
2

V ni − V ni−1
rih

+ 2(V ni − V ni−1) + hri+ 1
2
(V ni − Uni )

= · · · =
i∑

j=1

hrj+ 1
2
(V nj − Unj︸︷︷︸

≥0

) + 2V ni − 2V n0︸︷︷︸
=0

≤
i∑

j=1

hrj+ 1
2
V nj + 2V ni ≤

i∑
j=1

hrj+ 1
2

θ

2π
+ 2lr2i+ 1

2
, (∵ (5.19))

≤1

2
ri+ 1

2
ri+ 3

2

θ

2π
+ 2lr2i+ 1

2
,

which gives

vni+1 =
V ni+1 − V ni
ri+1h

≤
ri+ 3

2

ri+ 1
2

θ

4π
+ 2l =

i+ 1

i

θ

4π
+ 2l.

Thus, we proved (5.11).

In view of M2(t) =
∫
Ω
u(t, x)|x|2dx = 2π

∫ L
0
u(t, r)r3dr, we define a discrete

moment

Mn
2 =

N∑
i=1

r3i u
n
i h.

To explain the blow-up of solution to (1.1), it proves the decreasing of M2(t)
under the condition of large mass θ and small moment M2(0)( see (1.15)). Our
motivation lies to show a discrete analogue of inequality (1.15), such as, for
n = 1, . . . , J ,

Mn
2 −Mn−1

2

τ
≤ 4θ

2π
−
(
θ

2π

)2

+ C1θM
n−1
2 + C2θ

3
2

√
Mn−1

2 + C3hθ
2, (5.20)

where C1, C2, C3 are independent of h, θ, and Mn−1
2 . However, (5.20) is im-

possible for conservation scheme. If θ is sufficiently large and M0
2 is small

enough, then Mn
2 is decreasing and goes to zero or negative value, which is

contradict to the conservation laws. In the following, we consider a numer-
ical scheme without conservation laws but satisfying (5.20), and we draw a
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remark to compare the moment equations between conservative scheme and
nonconservative scheme. The nonconservative scheme is to replace (5.8b) by

∂τu
n+1
i rih−

(
ri+ 1

2

un+1
i+1 − u

n+1
i

h
− ri− 1

2

un+1
i − un+1

i−1
h

)

+

(
ri+ 1

2

vni+1 − vni
h

uni − ri− 1
2

vni − vni−1
h

uni−1

)
= 0,

(5.21)

which satisfies the conservation of total mass, but not conservation of positiv-
ity, which means uni , v

n
i may lose positivity after some time step n.

Theorem 5.3 Let (un, vn)Jn=1 be the positive solution of nonconservative scheme
(5.21) and (5.8a), then we have the moment inequality (5.20).

Proof Follows from (5.21), we have

Mn
2 −Mn−1

2

τ
= −2

N−1∑
i=1

r2i+ 1
2
(un+1
i+1 − u

n+1
i )︸ ︷︷ ︸

=IA

+ 2

N−1∑
i=1

r2i+ 1
2
huni

vni+1 − vni
h︸ ︷︷ ︸

=IB

.

It is not difficult to derive that

IA = 4

N∑
i=1

rihu
n
i − 2L2unN ≤

4θ

2π
.

In view of (5.8a), we get

IB = 2

N−1∑
i=1

ri+ 1
2
h(−Uni + V ni )uni = IB1 + IB2,

where V ni , Uni are defined in Theorem 5.2.

IB1 = −2

N−1∑
i=1

ri+ 1
2
Uni hu

n
i ≤ −2

N−1∑
i=1

rihU
n
i u

n
i

= −(

N∑
i=1

rihu
n
i )2 − 1

2

N∑
i=1

r2i h
2(uni )2 + rNhu

n
NU

n
N

≤ −
(
θ

2π

)2

+ rNhu
n
N

θ

2π
.

To estimate IB2 = 2
∑N−1
i=1 ri+ 1

2
V ni hu

n
i , we introduce Φni and Ψi,

Φni = V ni −
θ

2π

(
ri+ 1

2

L

)2

, i = 1, . . . , N, Φn0 = 0, ΦnN+1 = ΦnN = 0,

Ψi = −10

9

θ

4π
r2i+ 1

2
log

ri+ 1
2

L
, i = 1, . . . , N, Ψ0 = 0, ΨN+1 = ΨN = 0.
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One can verify that

1

h

(
Φni+1 − Φni

h
−
Φni − Φni−1

h

)
− 1

2

(
Φni+1 − Φni
ri+1h

−
Φni − Φni−1

rih

)
− Φni = −Uni +

θ

2π

(
ri+ 1

2

L

)2

> − θ

2π
,

1

h

(
Ψi+1 − Ψi

h
− Ψi − Ψi−1

h

)
− 1

2

(
Ψi+1 − Ψi
ri+1h

− Ψi − Ψi−1
rih

)
− Ψi < −

θ

2π
−Wi ≤ −

θ

2π
,

which implies Φni ≤ Ψi and

V ni ≤ Ψ +
θ

2π

(
ri+ 1

2

L

)2

.

We have, with some calculation

IB2 ≤
θ

L2π
Mn

2 +
3

2L2π
θ

N∑
i=1

r2i h
2uni +

θ2h2

L2π
− θL

π
hunN +

5L

9π
θ

N∑
i=1

r2i hu
n
i +

10Lh

9π
θ2

≤ θMn
2

L2π
+

3hθ2

2L2π
+

10Lhθ2

9π
+
θ2h2

L2π
− θL

π
hunN +

5L

9π
θ (

N∑
i=1

rihu
n
i )

1
2

︸ ︷︷ ︸
=θ1/2

(

N∑
i=1

r3i hu
n
i )

1
2

︸ ︷︷ ︸
=(Mn

2 )1/2

.

Combining the estimates of IA, IB1 and IB2, we obtain (5.20).

Remark 5.2 For the conservative scheme (5.8), assuming vni+1 ≤ vni (the blow-
up point is at origin, and u, v are decreasing by r. The numerical solution is
showed in Figure 6.4), we have,

Mn
2 −Mn−1

2

τ
= IA + 2

N−1∑
i=1

ri+ 1
2
h(V ni − Uni )un+1

i+1︸ ︷︷ ︸
=IB′

.

The difference between IB and IB′ is slight but crucial. The numerical exper-
iment of conservative scheme also reproduce the decreasing of moment Mn

2 (
see Figure 6.6).
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6 Numerical experiments

6.1 Numerical example: error, Lyapunov’s property and blow-up phenomenon

Let Ω = (−0.5, 0.5)2, 0 < N ∈ N, and h = 1/(N − 1). We take {(−0.5 +
ih,−0.5+jh) | i, j = 0, . . . , N−1} as the set of control point for the admissible
mesh of rectangles. Setting

u0 = 100e−
x2+y2

0.04 + 60e−
(x−0.2)2+y2

0.05 + 30e−
x2+(y−0.2)2

0.05 ,

where ‖u0‖1 ≈ 26.26 > 8π, so that the corresponding solution u may blow-
up. The mass concentrating is well captured by numerical simulation( see
Figure 6.1, N = 61). The conservation laws are verified, and we show the
discrete discrete Lyapunov’s property( see Figure 6.3). Taking N = 81 and
t = 0.0625, h = 0.0125 τn = τ = 0.2h, we obtain the numerical solution
uJh(=: Ũ), J = t/τ = 10. Since the exact solution u is not obvious, we think

of Ũ as the solution closed to u. Then, for N = 11, 21, . . . , 61, 71, we exam the

error
‖uJ

h−Ũ‖p
‖Ũ‖p

, for p = 2, 3, 4, 5( see Figure 6.2).

6.2 Numerical examples for radially symmetric solution

Both conservative scheme (5.8) and nonconservative scheme (5.21) are applied
to Keller-Segel system (5.7). Ω = B(0, L), L = 1. Assume

u0(r) = 10e−
r2

0.5 + 20e−
(r−0.3)2

0.5 ,

with θ ≈ 9.31 > 4. The solution u is expected to blow-up at the origin.
Setting N = 100, h = 1/N , τ = 1

50h, we show the mass concentration of
numerical solutions( see Figure 6.4,6.5) and the decreasing of discrete moment(
see Figure 6.6,6.7). For the nonconservative scheme, we stop the computation
when positivity of solution broken.
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