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Abstract. We construct smooth irreducible curves of the lowest possible degrees in
quadric and cubic surfaces whose complements are Kobayashi hyperbolically imbed-
ded into those surfaces. Moreover we characterize line bundles on quadric and cubic
surfaces such that the complete linear systems of the line bundles have a smooth
irreducible curve whose complement is Kobayashi hyperbolically imbedded.

1. Introduction and main result

Kobayashi [9], [10] introduced the Kobayashi hyperbolicity and proposed the follow-
ing famous conjecture.

Conjecture 1 (Kobayashi conjecture). Let X be a general hypersurface of degree d in
Pn(C).

(i) If d ≥ 2n− 1, X is Kobayashi hyperbolic for n ≥ 3.
(ii) If d ≥ 2n+ 1, Pn(C) \X is Kobayashi hyperbolically imbedded into Pn(C).

A lot of researchers have studied about Kobayashi conjecture. For example, Păun [16]
showed that a (very) general smooth surface of degree d ≥ 18 in P3(C) is Kobayashi
hyperbolic and Rousseau [17] showed that P2(C)\X is Kobayashi hyperbolically imbed-
ded into P2(C) if X is a very general curve of degree d ≥ 14 improving the results of
[19], [15], [3] and [6]. It seems that there exist some difficulties to prove Kobayashi
conjecture with optimal degrees even in the case of low dimensions. We note that Fuji-
moto [7] proved that the statement of Kobayashi conjecture (ii) is true if X is a union
of d-hyperplanes with simple normal crossing.
On the other hand, concrete examples of Kobayashi hyperbolic hypersurfaces in Pn(C)

are known. Masuda and Noguchi [11] constructed algebraic families of hyperbolic hy-
persurfaces in Pn(C) for large degrees. Duval [5] constructed smooth Kobayashi hyper-
bolic hypersurfaces of degree six in P3(C). Shiffman and Zaidenberg [18] constructed
smooth Kobayashi hyperbolic hypersurfaces of degree d in P3(C) for d ≥ 8. A smooth
Kobayashi hyperbolic hypersurface of degree five in P3(C) is not known yet. Zaiden-
berg [21] showed that, for each degree d ≥ 5, there exists a smooth irreducible curve of
degree d in P2(C) such that the complement of the curve is Kobayashi hyperbolically
imbedded into P2(C). In this paper, we construct smooth irreducible curves of the low-
est possible degrees in quadric and cubic surfaces whose complements are Kobayashi
hyperbolically imbedded into those surfaces.

Theorem 1. Let Q = P1(C) × P1(C). Let L = OP1(C)×P1(C)(m,n) be a line bundle on
Q. There exists a smooth irreducible curve X in the linear system |L| such that Q \X
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is Kobayashi hyperbolically imbedded into Q if and only if m and n are larger than or
equal to four.

Remark 1. We cannot remove the irreducibility of X. For example, (P1(C)\{0, 1,∞})×
(P1(C) \ {0, 1,∞}) is Kobayashi hyperbolically imbedded into P1(C)× P1(C).

Theorem 2. Let S be a general cubic surface in P3(C) and let L be a holomorphic
line bundle on S. There exists a smooth curve X in |L| such that S \X is Kobayashi
hyperbolically imbedded into S if and only if the intersection number L. l is larger than
or equal to three for any line l in S.

Remark 2. It is known that there exist 27-lines in S, where a line is a smooth rational
curve of degree one in P3(C) (cf. Proposition IV. 12 of [1]).

Remark 3. Let M be a compact complex manifold and let L be a line bundle on M .
Let D ∈ |L| be a smooth divisor on M whose complement is Kobayashi hyperbolically
imbedded into M . Then there exists a family of divisors in |L| whose complements
are Kobayashi hyperbolically imbedded into M . More precisely, there exists a small
neighborhood U of D ∈ |L| in the sense of classical topology such that the complement
of any element of U is Kobayashi hyperbolically imbedded into M (see [21]).

We note that any smooth quadric surface in P3(C) is isomorphic to P1(C) × P1(C)
imbedded by OP1(C)×P1(C)(1, 1). By Theorem 1 and Theorem 2, there exists a hypersur-
face Y in P3(C) of degree d such that Y |Q (resp. Y |S) is a smooth curve and Q \ Y |Q
(resp. S \ Y |S) is Kobayashi hyperbolically imbedded into Q (resp. S) if d ≥ 4 (resp.
d ≥ 3). However, there exists no such hypersurface of degree d if d ≤ 3 (resp. d ≤ 2).
Furthermore, the above Y |Q for d = 4 (resp. Y |S for d = 3) is a smooth irreducible curve
of the lowest possible degree whose complement is Kobayashi hyperbolically imbedded
into Q (resp. S). This follows from the nefness of L−OP1(C)×P1(C)(4, 4) (resp. L−OS(3))
for any line bundle L on Q (resp. S) which satisfies the condition in Theorem 1 (resp.
Theorem 2). The nefness of L − OP1(C)×P1(C)(4, 4) is clear, and see the paragraph fol-
lowing Fourth Step of Section 3 for the nefness of L−OS(3).

The plan of this paper is as follows. Since the proof of Theorem 1 is similar to and
simpler than that of Theorem 2, we first prove Theorem 2. In Section 2, we prove the
necessity of Theorem 2 and prove that there exists a non-irreducible curve of degree
nine in S such that the complement of the curve is Kobayashi hyperbolically imbedded
into S. In Section 3, we deform the above non-irreducible curve to a smooth irreducible
curve preserving the Kobayashi hyperbolic imbedding as [21] and we complete the proof
of Theorem 2. In Section 4, we prove Theorem 1.

Acknowledgments. The authors would like to express their gratitude to Professor
Junjiro Noguchi and Professor Joël Merker for fruitful advices. The authors also thank
Dr. Yoshihiko Matsumoto for useful comments.

2. Kobayashi hyperbolic imbedding of the complement of lines in S

Let S ⊂ P3(C) be a general smooth cubic surface and set OS(1) = OP3(C)(1)|S. Then
S is isomorphic to the blow-up of P2(C) at six points (cf. Theorem IV.13 of [1]). Let
π : S → P2(C) be the blow-up at six points p1, . . . , p6 ∈ P2(C). Let Ei (1 ≤ i ≤ 6) be
the exceptional divisor over pi, let Lij ⊂ S (1 ≤ i < j ≤ 6) be the strict transform of
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the hyperplane in P2(C) through pi and pj under π, and let Ci (1 ≤ i ≤ 6) be the strict
transform of the conic in P2(C) through five points pj (j ̸= i) under π (such conic is
uniquely exist since S is a smooth cubic surface). It is known that Ei (1 ≤ i ≤ 6), Lij

(1 ≤ i < j ≤ 6), and Ci (1 ≤ i ≤ 6) are all the lines on S (cf. Proposition IV.12 of [1]).

The necessity of Theorem 2 is easily shown as follows.

Proof of the necessity of Theorem 2. Assume that there exists a line l on S such that
L. l ≤ 2. Let X ∈ |L| be a smooth irreducible curve in S. If X = l, X intersects another
line l′ at most one point. Hence, there exists a non-constant holomorphic map from C
to l′\X|l′ ⊂ S\X and S\X is not Kobayashi hyperbolically imbedded into S. If X ̸= l,
X ∩ l contains at most two points. Hence there exists a non-constant holomorphic map
from C to l \ X|l. This implies that S \ X is not Kobayashi hyperbolically imbedded
into S. □

To prove the sufficiency of Theorem 2, we show the following proposition.

Proposition 1. Let D be a divisor on S such that

D = E4 + E5 + E6 + L45 + L46 + L56 + C4 + C5 + C6.

Then S \D is Kobayashi hyperbolically imbedded into S.

Before proving Proposition 1, we recall some theorems.

Theorem 3 (Logarithmic Bloch-Ochiai’s theorem [12], [13]). Let A be a semi-abelian
variety and let f : C → A be a holomorphic map. Then the Zariski closure of the image
f(C) is a translation of a semi-abelian subvariety.

Theorem 4 (Theorem 5.2 of [2]). Let A be a semi-abelian variety and let B be an
effective reduced divisor on A. Let f : C → A be a non-constant holomorphic map
whose image f(C) is Zariski dense in A. Assume that the dimension of the stabilizer

Stab(B) = {x ∈ A : x+B = B}

is zero. Then there exists at least one irreducible component B′ of B such that the
intersection f(C) ∩ B′ is Zariski dense in B′. In particular, if dimA ≥ 2, f(C) ∩ B is
infinite.

We use Theorem 3 and Theorem 4 only for the case when A is an algebraic torus.

Proof of Proposition 1. Let Di (1 ≤ i ≤ 9) be irreducible components of D. Hence
Di is equal to Ek or Lkl or Cl. Assume that S \ D is not Kobayashi hyperbolically
imbedded into S. Then there exists a partition of indices I ∪ J = {1, 2, . . . , 9} and
a non-constant holomorphic map from C to

∩
i∈I Di \

∪
j∈J Dj (cf. Theorem (1.8.3) of

[14]). Here I may be the empty set and we define
∩

i∈I Di = S in that case. Since each
Di is isomorphic to P1(C) and each Di intersects

∪
j ̸=iDj at four points, there exists no

non-constant holomorphic map from C to Di \
∪

j ̸=iDj by the small Picard theorem.
Therefore I must be empty and there exists a non-constant holomorphic map f from
C to S \

∪9
i=1 Di = S \ D. Put g = π ◦ f : C → P2(C). It follows that the image of

g is contained in T := P2(C) \ π(L45 ∪ L46 ∪ L56) and T is isomorphic to the algebraic
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torus (C∗)2. Since π is isomorphic over T \ {p1, p2, p3} and f(C)∩
∪6

i=4 Ci = ∅, we have
g(C) ∩

∪6
i=4 π(Ci) ⊂ {p1, p2, p3}. It is easy to see that the dimension of

Stab

(
6∑

i=4

π(Ci)|T

)

is zero. Since g(C) ∩
∪6

i=4 π(Ci) is a finite set, g(C) is not Zariski dense in T by
Theorem 4. We take a homogeneous coordinate [x : y : z] of P2(C) such that

π(L45 ∪ L46 ∪ L56) = {[x : y : z] ∈ P2(C) : xyz = 0}.

By Theorem 3, g(C) is contained in a translation of a subtorus in T . Hence we may
assume that there exist non-negative integers m,n (m ≤ n) and a non-zero complex
number β such that g(C) is contained in

G = {[x : y : z] ∈ T ⊂ P2(C) : xmyn − βzm+n = 0} ≃ C∗.

Let q be a point in G∩π(Ci) for 4 ≤ i ≤ 6. We show that q ∈ {p1, p2, p3}. Otherwise,
g(C) does not contain q since g(C) ∩ π

(∪6
i=4Ci

)
⊂ {p1, p2, p3}. Hence g(C) is in the

complement of one points in G ≃ C∗ and g is a constant map by the small Picard
theorem. This is a contradiction. Therefore q ∈ {p1, p2, p3}.
If G is tangent to π(Ci) (i = 4, 5, 6) at pj (j = 1, 2, 3), the strict transform of G

under π intersects Ci over pj. Then g(C) does not contain pj. By the same argument
as above, g is a constant map. This is a contradiction. Hence G intersects π(Ci)
(i = 4, 5, 6) transversally.
We denote by G the Zariski closure of G in P2(C), that is, G = {[x : y : z] ∈ P2(C) :

xmyn − βzm+n = 0}. Assume that m = 0, i.e. G is a hyperplane in P2(C). Two of
{p4, p5, p6} are not contained in G, say p4, p5 ̸∈ G. It follows that G∩π(C6) = G∩π(C6).
By Bézout’s theorem, π(C6) intersects G at two points of {p1, p2, p3}. Since p6 ∈ G,
three points of {p1, . . . , p6} are in the hyperplane G and such case does not occur since
S is a general cubic surface. This is a contradiction.
We have m > 0. Then G contains two points of {p4, p5, p6}, say p4 and p5. We may

assume that p4 = [1 : 0 : 0] in the homogeneous coordinate [x : y : z] in P2(C). Let
U = {[x : y : z] ∈ P2(C) : x ̸= 0} and let u = y

x
, v = z

x
be a local coordinate on U . On

U , π(C5) is defined by

au+ bv + P (u, v) = 0,

where a, b ∈ C and P (u, v) is a homogeneous polynomial of u, v of degree two. Since S
is a general cubic surface, π(C5) intersects π(L45) and π(L46) transversally. Therefore a
and b are non-zero. Since G is defined by un = βvm+n on U , the intersection multiplicity
of G and π(C5) at p4 is equal to n. By Bézout’s theorem, G intersects π(C5) at 2m+n
different points in T (recall that G intersects π(C5) transversally in T and π(C5) does
not contain p5). Since G ∩ π(C5) ∩ T = G ∩ π(C5) ⊂ {p1, p2, p3}, it follows that
2m+ n ≤ 3. Since 0 < m ≤ n, we have m = n = 1. Then G is a conic which contains
{p1, p2, p3, p4, p5}, which means G coincides with π(C6) by the uniqueness of such conic.
This is a contradiction and the proof of Proposition 1 is completed. □
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3. Deformation of curves

We show the sufficiency of Theorem 2. From First Step to Fourth Step, we deform
the nine lines in Proposition 1 to three smooth elliptic curves keeping the Kobayashi
hyperbolic imbedding.
First Step. We first deform E4 and L45 to an irreducible conic in S keeping other lines.

Since Lij is linearly equivalent to π∗OP2(C)(1) − Ei − Ej and Ci is linearly equivalent
to π∗OP2(C)(2) −

∑
j ̸=iEj, Ei + Lij + Cj (4 ≤ i < j ≤ 6) is linearly equivalent to

OS(1) = π∗OP2(C)(3) −
∑6

i=1Ei (cf. Chap. IV of [1]). Hence there exists a hyperplane
Hij in P3(C) such that Hij|S = Ei + Lij + Cj. Let Ht (t ∈ C, |t| < 1) be a deformation
family of hyperplanes in P2(C) such that C5 ⊂ Ht for all t and H0 = H45. Since there
exist only finite lines in S, Ht|S is a union of C5 and an irreducible conic for small t ̸= 0.
We show that there exists small δ > 0 such that S \ (Ht ∪ H46 ∪ H56)|S is Kobayashi
hyperbolically imbedded into S for |t| < δ. Otherwise, there exists a sequence {tν}ν∈N
such that tν → 0, tν ̸= 0 and S \ (Htν ∪ H46 ∪ H56)|S is not Kobayashi hyperbolically
imbedded into S. Then there exist holomorphic maps fν from ∆(ν) = {z ∈ C : |z| < ν}
to S\(Htν∪H46∪H56)|S such that fν converges uniformly to a non-constant holomorphic
map f : C → S on compact subsets (cf. Section 2 of [21]). Let D be the hypersurface
in S ×∆(1) such that D|S×{t} = (Ht ∪H46 ∪H56)|S. Then we may consider fν (resp.
f) as a holomorphic map from C to S × {tν} \ D|S×{tν} (resp. S × {0} \ D|S×{0}).
Let C be an irreducible component of D. By Hurwitz’ theorem, f(C) ⊂ C|S×{0} or
f(C) ∩ C|S×{0} = ∅. Because there exists no non-constant holomorphic map from C
to S \ D, f(C) is contained in an irreducible component of H45|S or H46|S or H56|S.
Since any irreducible component of D intersects other components of D at four points,
f(C) must be contained in E4 or L45. Without loss of generality, we may assume that
f(C) ⊂ E4. Since E4 intersects the divisor D − (E4 + L45) at three points, it follows
that f is constant by the small Picard theorem. This is a contradiction and we have
that S \ (Ht0 ∪H46 ∪H56)|S is Kobayashi hyperbolically imbedded into S for small t0.
Second Step. Next we deform Ht0|S to an irreducible curve with a node in S. Since

two components of Ht0 |S intersect at two points, there exist two nodes in Ht0 |S. Let p
be one of those nodes. Then Ht0 is the tangent plane of S at p. Let ϵ : P3(C)×S → S be

the second projection and let H̃ be the divisor on P3(C)×S such that H̃q = H̃|P3(C)×{q}

(q ∈ S) is the tangent plane of S at q in P3(C). Then H̃|S×S is a divisor on S × S.

Lemma 1. Let U be a sufficiently small neighborhood of p in S. Then the divisor H̃|S×S

consists of two smooth transversally intersecting irreducible components in U × U .

Proof. Let (x, y) be a local coordinate on U such that x(p) = y(p) = 0 and Ht0 |S is
equal to the divisor defined by xy in U . Let πi : S × S → S be the i-th projection. We
will still write x = π∗

1x, y = π∗
1y by abuse of notation. Let u = π∗

2x, v = π∗
2y. There

exists a holomorphic function f(x, y, u, v) on U × U which defines the divisor H̃|U×U .
Then we write

f(x, y, u, v) = f1,0(u, v)(x− u) + f0,1(u, v)(y − v) + f2,0(u, v)(x− u)2

+ f1,1(u, v)(x− u)(y − v) + f0,2(u, v)(y − v)2 +O((|x− u|+ |y − v|)3).

Let q = (a, b) be any point in U . The divisor H̃|S×{q} is defined by f(x, y, a, b) on U .

Because of the singularity of H̃|S×{q} at q, we have f1,0(a, b) = f0,1(a, b) = 0. Since
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(a, b) is any point in U , we have

f(x, y, u, v) = f2,0(u, v)(x− u)2 + f1,1(u, v)(x− u)(y − v) + f0,2(u, v)(y − v)2

+O((|x− u|+ |y − v|)3).

Since Ht0 |S is defined by xy on U , we may assume f(x, y, 0, 0) = xy. In particu-
lar, we have that f2,0(0, 0) = f0,2(0, 0) = 0 and f1,1(0, 0) = 1. Hence f1,1(u, v)

2 −
4f2,0(u, v)f0,2(u, v) ̸= 0 on the small open set U , and we take the branch of the function√
f1,1(u, v)2 − 4f2,0(u, v)f0,2(u, v) as

−π

2
< arg

(√
f1,1(u, v)2 − 4f2,0(u, v)f0,2(u, v)

)
<

π

2
.

It follows that

f(x, y, u, v) =

(
x′ +

2f0,2(u, v)

f1,1(u, v) +
√

f1,1(u, v)2 − 4f2,0(u, v)f0,2(u, v)
y′

)

×
(
f2,0(u, v)x

′ +
1

2

(
f1,1(u, v) +

√
f1,1(u, v)2 − 4f2,0(u, v)f0,2(u, v)

)
y′
)

+O((|x′|+ |y′|)3),

where x′ = x− u, y′ = y − v. We take

x′′ = x′ +
2f0,2(u, v)

f1,1(u, v) +
√

f1,1(u, v)2 − 4f2,0(u, v)f0,2(u, v)
y′,

y′′ = f2,0(u, v)x
′ +

1

2

(
f1,1(u, v) +

√
f1,1(u, v)2 − 4f2,0(u, v)f0,2(u, v)

)
y′.

We have that (x′′, y′′, u, v) is a local coordinate on U×U and f = x′′y′′+O((|x′′|+|y′′|)3).
It is easy to see that f = x̃ỹ for suitable x̃ = x′′+O((|x′′|+|y′′|)2) and ỹ = y′′+O((|x′′|+
|y′′|)2) by a similar argument to Example 5.6.3 in Chapter 1 of [8]. Since (x̃, ỹ, u, v) is
a local coordinate on U × U , this completes the proof of the lemma. □

We show that S \ (H̃q ∪ H46 ∪ H56)|S is Kobayashi hyperbolically imbedded into S
if q is sufficiently close to p. Otherwise, there exists a non-constant holomorphic map

f : C → S such that f(C) ⊂ H̃p|S \ (H46 ∪H56)|S by the same argument as First Step.

We note that H̃p = Ht0 . Because of Hurwitz’ theorem and Lemma 1, we have that
f(C) does not contain the point p (cf. Lemma-Definition 3.2 of [21]). Each component

of H̃p|S intersects H46|S ∪ H56|S at more than or equal to two points. Hence f(C) is
contained in the complement of three points in a rational curve and f is a constant

map by the small Picard theorem. This is a contradiction and S \ (H̃q ∪H46 ∪H56)|S
is Kobayashi hyperbolically imbedded into S if q is sufficiently close to p.

Third Step. Let q0 be a point of S such that q0 is sufficiently close to p and H̃q0 |S is

irreducible. We deform the nodal rational curve H̃q0 |S to a smooth elliptic curve in S.

Let E ′ be a smooth irreducible elliptic curve in S which is sufficiently close to H̃q0 |S in

|OS(1)|. Since H̃q0 |S is a small deformation of H45|S, H̃q0|S intersects H46|S ∪H56|S at
six points and S \ (E ′ ∪H46|S ∪H56|S) is Kobayashi hyperbolically imbedded into S by
the same argument as First Step.
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Fourth Step. Deforming H46|S and H56|S as H45|S, there exist smooth irreducible
elliptic curves E ′′, E ′′′ in |OS(1)| such that S\(E ′∪E ′′∪E ′′′) is Kobayashi hyperbolically
imbedded into S.

Let L be a holomorphic line bundle on S such that L. l ≥ 3 for any line l on S.
Let L′ = L − OS(3). Then L′. l ≥ 0 for any line l on S and this implies that L′ is
spanned by its global sections (cf. [4]). We take a general curve D′ in |L′|. We have
that S \ (E ′ ∪ E ′′ ∪ E ′′′ ∪D′) is Kobayashi hyperbolically imbedded into S.
It follows that D is linearly equivalent to π∗OP2(C)(9)− 3

∑6
i=1Ei and this is linearly

equivalent to OS(3) (cf. Chap. IV of [1]). Hence E ′+E ′′+E ′′′+D′ is linearly equivalent
to L.
In the rest steps, we deform E ′ ∪ E ′′ ∪ E ′′′ ∪ D′ to a smooth irreducible curve in S

keeping the Kobayashi hyperbolic imbedding.
Fifth Step. Let G be a smooth irreducible curve in S which is a small deformation of

E ′ ∪E ′′. Since both elliptic curves E ′ and E ′′ intersect E ′′′ ∪D′ at more than or equal
to three points respectively, S \ (G ∪ E ′′′ ∪ D′) is Kobayashi hyperbolically imbedded
into S by the same argument as First Step. Let G′ be a smooth irreducible curve in
S which is a small deformation of E ′′′ ∪ D′. Here we put G′ = E ′′′ if D′ = 0. Note
that D′ is an irreducible smooth curve which is not a line if D′ ̸= 0. We have that E ′′′

intersects G at six points and D′ also intersects G at more than or equal to four points
if D′ ̸= 0. Hence S \ (G∪G′) is Kobayashi hyperbolically imbedded into S by the same
argument as First Step.
Sixth Step. We deform G∪G′ to an irreducible curve with a node in S. It follows that

G intersects G′ transversally at any point s ∈ G ∩ G′. Let µ : S̃ → S be the blow-up

at s and let Z be the exceptional divisor of µ. The strict transform G̃ of G+G′ under

µ is linearly equivalent to µ∗L − 2Z, and µ∗L − 2Z is a very ample line bundle on S̃.

We can take a smooth irreducible divisor G̃′ in |G̃| which is sufficiently close to G̃ and

intersects Z transversally at two points. The image µ(G̃′) is an irreducible curve in S

with a node at s and S \ µ(G̃′) is Kobayashi hyperbolically imbedded into S by the
same argument as Second Step (note that the genera of G and G′ are larger than or
equal to one. Hence there exists no non-constant holomorphic map from C to G\ s and
G′ \ s).
Seventh Step. Finally we deform µ(G̃′) to a smooth irreducible curve in S. Since

the genus of the normalization of µ(G̃′) is larger than or equal to two, there exists no

non-constant holomorphic map from C to µ(G̃′). Hence the complement of a small

deformation of µ(G̃′) in S is Kobayashi hyperbolically imbedded into S by the same
argument as First Step. This completes the proof of Theorem 2.

4. The case of quadric surfaces

Proof of the sufficiency of Theorem 1. Let Q = P1(C)× P1(C). Let [X0 : X1] and [Y0 :
Y1] be the homogeneous coordinates on the first and second factors of P1(C)×P1(C). Let
H1, . . . , H4 be divisors on Q defined by X0 = 0, X1 = 0, Y0 = 0 and Y1 = 0 respectively.
Let D be a general divisor in |OQ(m − 2, n − 2)| (m,n ≥ 4). Then

∑4
i=1 Hi + D is
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linearly equivalent to L = OQ(m,n). It follows that

Q \

(
4∪

i=1

Hi ∪D

)
is Kobayashi hyperbolically imbedded into Q (cf. Theorem 1 of [20]). Let C be a
smooth irreducible curve in Q which is sufficiently close to H1 +H3 in |OQ(1, 1)|. We
have that Hi (i = 1, 3) intersects H2 +H4 +D at more than or equal to three points.
Then Q \ (C ∪H2 ∪H4 ∪D) is Kobayashi hyperbolically imbedded into Q by the same
argument as First Step of Section 3. Let C ′ be a smooth irreducible curve in Q which is
sufficiently close toH2+H4 in |OQ(1, 1)|. As the case of C, it follows that Q\(C∪C ′∪D)
is Kobayashi hyperbolically imbedded into Q. Let D′ be a smooth irreducible curve
in Q which is sufficiently close to C + C ′ in |OQ(2, 2)|. Then both C and C ′ intersect
D at more than or equal to four points respectively and Q \ (D ∪ D′) is Kobayashi
hyperbolically imbedded into Q by the same argument as the First Step of Section 3.

Let p ∈ D ∩ D′. We have that D intersects D′ transversally at p. Let µ : Q̃ → Q

be the blowing up at p and let Z be the exceptional divisor of µ. Let D̃ be the strict

transform of D+D′ under µ. We have that D̃ is an element of |µ∗OQ(m,n)− 2Z| and
the line bundle µ∗OQ(m,n) − 2Z is very ample. Note that genera of D and D′ are at
least one. By the same arguments as Sixth Step and Seventh Step of Section 3, there
exists a smooth irreducible curve in Q whose complement is Kobayashi hyperbolically
imbedded into Q. □

Proof of the necessity of Theorem 1. Let L = OQ(m,n). Without loss of generality, we
may assume that m ≤ n. Assume that m ≤ 3. Let X ∈ |L| be a smooth irreducible
curve in Q. Let π : P1(C)× P1(C) → P1(C) be the second projection.
If m ≤ 2, a general fiber F of π intersects X at less than or equal to two points.

Then there exists a non-constant holomorphic map from C to F \X, and Q \X is not
Kobayashi hyperbolically imbedded into Q.
If m = 3, π|X : X → P1(C) is ramified because of the Riemann–Hurwitz formula. Let

q ∈ P1(C) be a branch point of π|X . The fiber π−1(q) intersects X at less than or equal
to two points. There exists a non-constant holomorphic map from C to π−1(q) \ X.
This implies that Q \X is not Kobayashi hyperbolically imbedded into Q. □
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