
UTMS 2013–6 June 11, 2013

Structure of

the positive radial solutions for

the supercritical Neumann problem

ε2∆u− u+ up = 0 in a ball

by

Yasuhito Miyamoto

T
UNIVERSITY OF TOKYO

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES

KOMABA, TOKYO, JAPAN



STRUCTURE OF
THE POSITIVE RADIAL SOLUTIONS FOR

THE SUPERCRITICAL NEUMANN PROBLEM
ε2∆u− u+ up = 0 IN A BALL

YASUHITO MIYAMOTO

Abstract. We are interested in the structure of the positive ra-
dial solutions of the supercritical Neumann problem in a unit ball

ε2
(
Urr +

N−1
r Ur

)
− U + Up = 0, 0 < r < 1,

Ur(1) = 0,

U > 0, 0 < r < 1,

where N is the spatial dimension and p > pS := (N + 2)/(N − 2),
N ≥ 3. We show that there exists a sequence {ε∗n}∞n=1 (ε∗1 >
ε∗2 > · · · → 0) such that this problem has infinitely many singular
solutions {(ε∗n, U∗

n)}∞n=1 ⊂ R × (C2(0, 1) ∩ C0(0, 1]) and that the
nonconstant regular solutions consist of infinitely many smooth
curves in the (ε, U(0))-plane. It is shown that each curve blows up
at ε∗n and if pS < p < pJL, then each curve has infinitely many
turning points around ε∗n. Here,

pJL :=

{
1 + 4

N−4−2
√
N−1

(N ≥ 11),

∞ (2 ≤ N ≤ 10).

In particular, the problem has infinitely many solutions if ε ∈
{ε∗n}∞n=1. We also show that there exists ε̄ > 0 such that the
problem has no nonconstant regular solution if ε > ε̄. The main
technical tool is the intersection number between the regular and
singular solutions.
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1. Introduction and main results

Let Ω ⊂ RN , N ≥ 3 be a bounded domain with smooth boundary.

We are concerned with the elliptic Neumann problem

(1.1)


ε2∆U − U + Up = 0, in Ω,

∂νU = 0, on ∂Ω,

U > 0, in Ω,

where p > 1 and ε ∈ R+ := {x; x > 0}. The problem (1.1) arises

in physical and biological models. In particular, (1.1) appears in the

stationary problem of the Keller-Segel model for chemotaxis aggrega-

tion [19] and the shadow system of the Gierer-Meinhardt model for
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biological pattern formations [12]. For these two decades (1.1) has at-

tracted considerable attention and solutions with various shapes have

been found. See [29, 31] for single-peak solutions, [14] for multi-peak

solutions, and [21] for boundary concentrating solutions. Many papers,

including [14, 21, 27, 29, 31], study the subcritical case 1 < p < pS,

where

pS :=

{
N+2
N−2

, (N ≥ 3),

∞, (N = 1, 2).

In this case the compact embedding H1(Ω) ↪→ Lp+1(Ω) is applicable,

hence a variational method works well. In this paper we are inter-

ested in the solution structure of (1.1) in the supercritical case p > pS.

Specifically, we consider the case where the domain Ω is the unit ball

B := {x ∈ RN ; ∥x∥ < 1}, and study the bifurcation diagram {(λ, U)}
of the positive radial solutions. The problem (1.1) can be reduced to

the ODE

(1.2)


ε2
(
Urr +

N−1
r

Ur

)
− U + Up = 0, 0 < r < 1,

Ur(1) = 0,

U > 0, 0 ≤ r ≤ 1,

Throughout the present paper we define f(U) := −U + Up and λ :=

1/ε2. Then λ ∈ R+ and λ diverges as ε ↓ 0. Since we study the

bifurcation diagram of (1.2), it is convenient to transform (1.2) into

(1.3)


Urr +

N−1
r

Ur + λf(U) = 0, 0 < r < 1,

Ur(1) = 0,

U > 0, 0 ≤ r ≤ 1.

We need some notations. We call the constant solutions {(λ, 1)} the

trivial branch which is denoted by C0. Let ∆N denote the Neumann

Laplacian, and let {µn}∞n=0 be the eigenvalues of−∆N on B in the space

of radial functions. Since each µn is simple, 0 = µ0 < µ1 < µ2 < · · · .
Let λ̄n := µn/(p− 1). By Crandall-Rabinowitz bifurcation theorem we

easily see that (λ̄n, 1) (n = 1, 2, · · · ) is a bifurcation point from which

a curve of nontrivial solutions emanates. We denote the closure of the

curve by Cn. We will see in Proposition 3.1 of the present paper that

each curve Cn, which we call the branch, can be locally parametrized by

γ := Un(0). Then each curve Cn can be described as {(λn(γ), Un(r, γ))}
(γ := Un(0, γ)). We define

C+
n := Cn ∩ {γ > 1}, C−

n := Cn ∩ {γ < 1}.
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By ZI [v( · )] we denote the number of the zeros of the function v( · ) in
the interval I ⊂ R, i.e.,

ZI [v( · )] := ♯{x ∈ I; v(x) = 0}.

Let (λn, Un) ∈ Cn. Every zero of Un(r) − 1 (0 ≤ r ≤ 1) is sim-

ple, because of the uniqueness of the solution of the ODE (1.3). If

(λn, Un) is near (λ̄n, 1), then Un(r) − 1 is close to the n-th eigen-

function of the corresponding eigenvalue problem. By Sturm-Liouville

theory, Z[0,1][Un( · , γ) − 1] = n provided that (λn, Un) is near (λ̄n, 1).

Since each zero is simple and Un(r) − 1 continuously changes along

each Cn, Z[0,1][Un( · , γ) − 1] is preserved along each Cn. Therefore,

Z[0,1][Un( · , γ)− 1] = n along Cn.
Let us recall known results about (1.3). It was shown in [18] that in

the subcritical case 1 < p < pS the set of the regular solutions of (1.3)

is bounded in L∞, i.e.,

(γ∗ :=) sup{∥U∥∞; U is a solution of (1.3).} < ∞.

and that λ1(γ) → ∞ as γ ↑ γ∗. Since ∂γλ1(γ)|γ=1 < 0 ([24]), the branch

C1 has at least one turning point. Moreover, if γ(< γ∗) is close to γ∗,

then Un(γ) is nondegenerate, hence ∂γλ1(γ) > 0 ([31]). In the critical

case p = pS the solution structure depends on the spatial dimension

N . For N ∈ {4, 5, 6}, (1.3) admits a (nonconstant) radially decreasing

solution for 0 < λ < λ̄1 ([1]), which implies that C1 is unbounded in γ.

For N ≥ 7, there is λ > 0 such that (1.3) has no nonconstant solution

for 0 < λ < λ ([1, 2, 3]). When N = 3, the structure depends on the

radius of the ball. See [1] for a partial result. In the supercritical case

p > pS, there are few results about (1.1). When p = pS + ε for small

ε > 0, [9] constructed a bubble tower solution of (1.1). See [26, 20, 11]

for other results. A brief history of this problem is written in [11].

On the other hand, the branch of the positive solutions of the critical

or supercritical Dirichlet problem

(1.4)


Urr +

N−1
r

Ur + λg(U) = 0, 0 < r < 1,

U(1) = 0,

U > 0, 0 ≤ r < 1,
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was studied by [4, 7, 15, 17, 23]. In [17] the case g(U) = (1 + U)p was

studied. The structure depends on p and N . Let

(1.5) pJL :=

{
1 + 4

N−4−2
√
N−1

, (N ≥ 11),

∞, (2 ≤ N ≤ 10).

When pS < p < pJL, Joseph-Lundgren[17] have shown that the branch

which emanates from (0, 0) has infinitely many turning points around

λ = λ∗ := θ (N − 2− θ) and blows up at λ = λ∗, where

(1.6) θ :=
2

p− 1
.

Moreover, there is a singular solution U∗ = r−θ−1 ∈ H1
0 (B) for λ = λ∗.

When p ≥ pJL, the branch exists for 0 < λ < λ∗, does not have a

turning point, and blows up at λ = λ∗. Moreover the singular solution

(λ∗, U∗) exists. In particular, (1.3) has a unique regular solution for

0 < λ < λ∗.

In the study of the bifurcation diagram singular solutions play an

important role. First we study the problem

(1.7)

{
uss +

N−1
s

us + f(u) = 0, s > 0,

u(0) = γ, us(0) = 0.

Theorem 1.1. Suppose that p > pS. There is a singular positive

solution u∗(s) of{
uss +

N−1
s

us + f(u) = 0, 0 < s < ∞,

u(s) → ∞ (s ↓ 0).

u∗(s) oscillates around 1 hence it has infinitely many critical points.

Moreover, u(s, γ) → u∗(s) in C0
loc(0,∞) as γ → ∞. Here u(s, γ) is the

solution of (1.7).

When p > pJL, this theorem was already proved by [5, Theorem 1.1].

Our method is different from [5] and it can prove the case p > pS.

Using the singular solution u∗, we prove the existence of singular so-

lutions of (1.3). The first main result is the following:

Theorem A. Suppose that p > pS. The problem (1.3) has infinitely

many singular solutions (λ∗
n, U

∗
n(r)) ∈ R+ × (C2(0, 1) ∩ C0(0, 1]) (n =

1, 2, · · · and λ∗
1 < λ∗

2 < · · · → ∞) such that the following assertions

hold:
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(i) U∗
n(r) satisfies

(1.8) U∗
n(r) = A(p,N)(

√
λ∗
nr)

−θ(1 + o(1)) as (r ↓ 0),

where

(1.9) A(p,N) := {θ(N − 2− θ)}
1

p−1 .

(ii) Z(0,1][U
∗
n( · )− 1] = n.

(iii) U∗
n(r) > 0 (0 < r ≤ 1).

Moreover, the singular solution (λ∗
n, U

∗
n) is unique, i.e., if (λ̃

∗
n, Ũ

∗
n) is a

singular solution such that (i) and (ii) hold, then (λ̃∗
n, Ũ

∗
n) = (λ∗

n, U
∗
n).

The second main result of the paper is the following:

Theorem B. Suppose that p > pS. Let λ∗
n (n = 1, 2, · · · ) be as in

Theorem A. Let S denote the set of the regular solutions of (1.3). Then

(1.10) S = C0 ∪
∞∪
n=1

(
C+
n ∪ C−

n

)
.

Each Cn (n = 1, 2, · · · ) can be parametrized by γ = Un(0), hence Cn can

be described as {(λn(γ), Un(r, γ))}. Moreover, λn(γ) ∈ C1(0,∞) and

the following assertions hold:

(i) For each n ≥ 1, λn(1) = λ̄n.

(ii) For each n ≥ 1, λn(γ) → λ∗
n (γ → ∞).

(iii) If pS < p < pJL, then for each n ≥ 1, λn(γ) oscillates around λ∗
n

infinitely many times as γ → ∞.

(iv) For each n ≥ 1, λn(γ) → ∞ (γ ↓ 0).

(v) If γ > 0 is small, then U1(r, γ) is nondegenerate, and it becomes a

boundary concentrating solution as γ ↓ 0.

(vi) For each γ ∈ R+, λ1(γ) < λ2(γ) < · · · .

See Figure 1 for the case pS < p < pJL.

(iv), (v), and (vi) of Theorem B hold for every p > 1.

It follows from Theorem B (iii) that each branch C+
n has infinitely

many turning points around λ∗
n if pS < p < pJL.

Remark 1.2. If 3 ≤ N ≤ 10, then pJL = ∞. Hence, the supercritical

equation (1.3) always has infinitely many solutions for λ = λ∗
n (n =

1, 2, · · · ) and each C+
n has infinitely many turning points.
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Figure 1. The schematic picture of the bifurcation di-
agram of (1.3) in the case pS < p < pJL.

Corollary 1.3. Suppose that p > pS. There exists λ > 0 such that if

0 < λ < λ, then (1.3) has no nonconstant solution. Moreover, there

is λ̄ > 0 such that the radially decreasing solution does not exist for

λ > λ̄.

Corollary 1.4. Suppose that pS < p < pJL. There exists λ > 0 such

that (1.3) has a nonconstant solution if λ ≥ λ and that (1.3) has no

nonconstant solution if 0 < λ < λ.

Let us explain technical details. In [17] they used a special change

of variables in the study of (1.4) with g(U) = (1 + U)p. The equation

(1.4) can be transformed to a first order autonomous system. See

(2.5) in the present paper. They used a phase plane analysis to obtain

the bifurcation diagram. However, for a general nonlinearity g, we

cannot expect such a change of variables. In [23] the author studied the

bifurcation diagram of the solutions of (1.4) when g(U) = Up+h(U)(>

0) and h(U) is a lower order term. Let u(s) := U(r) and s :=
√
λr.

The equation (1.4) becomes

(1.11)


uss +

N−1
s

us + g(u) = 0, 0 < s <
√
λ,

u(
√
λ) = 0,

u > 0, 0 ≤ s <
√
λ.

The equation (1.11) has a singular solution (λ∗, u∗(s)). Let (λ, u(s, γ))

denote the regular solution of (1.11) such that u(0, γ) = γ and us(0, γ) =
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0. It was shown that λ is a C1-function of γ. He used the intersection

number between u∗(s) and u(s, γ) which can be written as

(1.12) ZIγ [u
∗( · )− u( · , γ)],

where Iγ := (0,min{
√
λ∗,
√
λ(γ)}]. He showed by a scaling argument

that if pS < p < pJL, then

(1.13) ZIγ [u
∗( · )− u( · , γ)] → ∞ (γ → ∞).

Because of the uniqueness of the solution of the ODE (1.11), each zero

of u∗( · ) − u( · , γ) is simple. Hence, each zero depends continuously

on γ. The number of the zeros in Iγ is preserved if another zero does

not come from the boundary of Iγ. Since u∗(0) − u(0, γ) = ∞, a zero

cannot enter Iγ from s = 0. Because of (1.13), a zero enters Iγ from

s = min{
√
λ∗,
√

λ(γ)} infinitely many times as γ → ∞. Therefore,

λ(γ) oscillates around λ∗ infinitely many times which indicates that

the branch has infinitely many turning points. This method cannot be

directly applied to the Neumann problem, since in the Neumann case

u(
√
λ(γ), γ) is not necessarily equal to u∗(

√
λ∗) and the oscillation of

λ(γ) around λ∗ is not trivial. The shape of the singular solution u∗

of the Neumann problem becomes important to study the behavior of

each zero.

In our problem (1.3) we see that Cn is locally parametrized by γ =

Un(0) (Proposition 3.1). We can write the solution as (λn(γ), Un(r, γ)).

Section 3 is devoted to the study of the fundamental property of λn(γ).

In Lemma 3.3 we show that for each γ∗ > 1, λn(γ) does not diverge as

γ ↑ γ∗. Therefore, combining this result and the local parametrization

of Cn, we show in Lemma 3.4 that the domain of λn(γ) can be extended

to γ > 1. It is perhaps interesting to note that the nondivergence of

λn(γ) is proved by the nonexistence of the entire positive solution of

∆u − u + up = 0 (p ≥ pS) which is proved by the Pohozaev identity.

We also show that λn(γ) can be extended to 0 < λ < 1. Hence, λn(γ)

is defined in γ ∈ R+.
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In Section 4 we study the singular solution of (1.3) and prove Theo-

rem A. Let u(s) := U(r) and s :=
√
λr. The equation (1.3) is trans-

formed to the problem

(1.14)


uss +

N−1
s

us + f(u) = 0, 0 < s <
√
λ,

us(
√
λ) = 0,

u > 0, 0 ≤ s ≤
√
λ.

In Lemma 4.1 we construct the singular solution u∗(s) of the equation

in (1.14) near s = 0 and show that u∗(s) = As−θ(1 + o(1)) (s ↓ 0). In

Lemma 4.4 we show that the domain of u∗(s) can be extended to 0 <

s < ∞, that u∗(s) satisfies the equation in (1.14), and that u∗(s) > 0 for

s > 0. In Lemma 4.8 we show that u∗(s) oscillates around 1 infinitely

many times as s → ∞ and that u∗(s) has the set of the critical points

{s∗n}∞n=1 of u∗ such that 0 < s∗1 < s∗2 < · · · → ∞ and{
s∗n is a local minimum point of u∗ and u∗(s∗n) < 1 if n ∈ {1, 3, 5, · · · },
s∗n is a local maximum point of u∗ and u∗(s∗n) > 1 if n ∈ {2, 4, 6, · · · }.

We set λ∗
n := (s∗n)

2 and U∗
n(r) := u∗(s) (s =

√
λ∗
nr). Then, (λ∗

n, U
∗
n) is

a singular solution stated in Theorem A.

Let (λn(γ), u(s, γ)) denote the solution of (1.14) such that u(0, γ) = γ

and us(0, γ) = 0. In Section 5 we show that λn(γ) → λ∗
n as γ → ∞

and that u(s, γ) converges to u∗(s) in an appropriate sense. In [22] the

authors proved a similar convergence result for the Dirichlet problem
Urr +

N−1
r

Ur + λU + Up = 0, 0 < r < 1,

U(1) = 0,

U > 0, 0 ≤ r < 1.

when p > pS. In Theorem 5.1 we show that u(s, γ) → u∗(s), following

arguments in the proof of [22, Theorem A].

In Section 6 we show that λn(γ) oscillates around λ∗
n if pS < p < pJL.

Let ρ := γ
p−1
2 s. We define ũ(ρ, γ) := u(s, γ)/γ and ũ∗(ρ) := u∗(s)/γ.

We use the intersection number between ũ and ũ∗. The function ũ(ρ, γ)

satisfies

(1.15)

{
ũρρ +

N−1
ρ

ũρ + ũp − 1
γp−1 ũ = 0, 0 < ρ < ∞,

ũ(0) = 1, ũρ(0) = 0.
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Let ū(ρ, γ) be the regular solution of

(1.16)

{
ūρρ +

N−1
ρ

ūρ + ūp = 0, 0 < ρ < ∞,

ū(0) = γ, ūρ(0) = 0.

We show that as γ → ∞,

ũ(ρ, γ) → ū(ρ, 1) in C2
loc(0,∞) ∩ C0

loc[0,∞)

and

ũ∗(ρ) → ū∗(ρ) in C0
loc(0,∞),

where ū∗(ρ) is given by (2.2) which is a singular solution of the equation

in (1.16). In Section 2 we recall the fact that Z(0,∞)[ū
∗( · )− ū( · , 1)] =

∞. Hence, for each δ > 0,

(1.17) Z(0,δ)[u
∗( · )− u( · , γ)] → ∞ (γ → ∞),

since s ∈ (0, δ) is corresponding to ρ ∈ (0, δγ
N−1

2 ) and δγ
N−1

2 → ∞
(γ → ∞). Since each zero of u∗( · )−u( · , γ) is simple, each zero depends

continuously on γ. The divergence (1.17) tells us that a zero which

is simple enters the interval (0,
√

λ∗
n] from s =

√
λ∗
n infinitely many

times. Therefore, there exists a sequence of large numbers {γj}∞j=1

(γ1 < γ2 < · · · → ∞) such that us(
√

λ∗
n, γj) < 0 for j ∈ {1, 3, 5, · · · }

and us(
√

λ∗
n, γj) > 0 for j ∈ {2, 4, 6, · · · }. In Theorem 6.1, using the

convergence u(s, γ) → u∗(s), we show that if n ∈ {1, 3, 5, · · · } (resp.

n ∈ {2, 4, 6, · · · })

(1.18) λn(γj)

{
> λ∗

n, (j ∈ {1, 3, 5, · · · }),
< λ∗

n, (j ∈ {2, 4, 6, · · · }),(
resp. λn(γj)

{
< λ∗

n, (j ∈ {1, 3, 5, · · · }),
> λ∗

n, (j ∈ {2, 4, 6, · · · }).

)
which implies that λn(γ) oscillates around λ∗

n infinitely many times as

γ → ∞.

In Section 7 we construct a smooth branch of boundary concentrating

solutions, using a standard blow-up argument with the contraction

mapping theorem. We also show that this branch is in C1 and that

λ1(γ) → ∞ (γ ↓ 0).

The paper consists of 8 sections. In Section 2 we recall known re-

sult about the intersection number and the nonexistence of the entire

solution. In Section 3 we collect fundamental properties of λn(γ). In

Section 4 we prove Theorem A. In Section 5 we prove the convergence
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to (λ∗
n, U

∗
n). In Section 6 we prove the oscillation of λn(γ). In Section 7

we prove (iv) and (v) of Theorem B. In Section 8 we prove the other

assertions of Theorem B and Corollaries 1.3 and 1.4.

2. Preliminaries

2.1. Regular and singular solutions of the limit equation. Let

us consider the radial solution ū(ρ) of the elliptic equation on RN

(2.1)

{
∆ū+ ūp = 0 in RN ,

ū > 0 in RN .

It is well known that

(2.2) ū∗(ρ) := Aρ−θ

is a singular solution of (2.1), where θ is defined in (1.6) and A :=

A(p,N) is defined in (1.9). Next, we consider the regular radial solution

ū(ρ). The solution ū(ρ) satisfies (1.16). We define v̄(ρ) := A−1ρθū(ρ).

The function v̄(ρ) satisfies
v̄ρρ +

1
ρ
(N − 1− 2θ) v̄ρ +

Ap−1

ρ2
(v̄p − v̄) = 0, 0 < ρ < ∞,

r−θv̄(ρ) → γ
A

(ρ ↓ 0),

v̄ > 0, 0 ≤ ρ < ∞.

In order to make the equation autonomous we change variables to t :=

A
p−1
2 log ρ and y(t) := v̄(ρ). The function y(t) satisfies

(2.3)


y′′ + αy′ − y + yp = 0, −∞ < t < ∞,

e−θmty(t) → γ
A

(t → −∞),

y > 0, −∞ < t < ∞,

where the prime stands for the derivative,

(2.4) m := A− p−1
2 , and α := m(N − 2− 2θ).

The equation (2.3) is transformed into the first order autonomous sys-

tem

(2.5)

{
y′ = z

z′ = −αz + y − yp.

This system has two equilibrium points (0, 0) and (1, 0). By simple

calculation we see that (0, 0) is a saddle point. The eigenvalues of the

linearized operator at (0, 0) are the roots of Λ2 + αΛ − 1 = 0. The

eigenvalues are mθ(> 0) and −m(N − 2 − θ)(< 0). On the other



12 YASUHITO MIYAMOTO

hand, the eigenvalues of the linearized operator at (1, 0) are the roots

of Λ2 + αΛ+ p− 1 = 0. Therefore, (1, 0) is a spiral point if and only if

(2.6) α2 − 4(p− 1) < 0, i.e., (N − 2− 2θ)2 − 8(N − 2− θ) < 0.

Then,

(2.7) (N − 4− 2
√
N − 1)/2 < θ < (N − 4 + 2

√
N − 1)/2.

We easily see that 1+4/(N−4+2
√
N − 1) < pS(< p). Thus, θ < (N−

4+2
√
N − 1)/2 always holds. If N ≤ 10, then (N−4−2

√
N − 1)/2 ≤

0(< θ), hence (2.7) holds. When N ≥ 11, (2.7) holds if

p < 1 +
4

N − 4− 2
√
N − 1

(= pJL).

If p ≥ pJL, then two eigenvalues are negative. Thus, we have the

following:
If N ≤ 10, then (1, 0) is a spiral point for p > pS.

If N ≥ 11, then (1, 0) is a


spiral point for pS < p < pJL.

(resp. degenerate) node for

(resp. p = pJL) p > pJL.

Let

(2.8) E(y, z) :=
1

2
z2 − 1

2
y2 +

1

p+ 1
yp+1.

By direct calculation we have d
dt
E(y(t), z(t)) = −αz2(t). If p > pS, then

α > 0 and E is a Lyapunov function. A phase plane analysis with this

Lyapunov function reveals that there is a heteroclinic orbit from (0, 0)

to (1, 0) which is in the right half-plane. Note that the eigenvalue θm

is compatible with the limit condition in (2.3), because y(t) ∼ C0e
θmt

(t → −∞). This orbit corresponds to a regular solution ū(ρ) of (1.16)

for some γ, and ū is positive. Since ū(ρ) is a solution, γū(γ
p−1
2 ρ) is also

a solution. Without loss of generality, we assume that ū(0) = 1. Every

solution of (1.16) can be written as γū(γ
p−1
2 ρ). Since the equilibrium

point (1, 0) corresponds to the singular solution ū∗(ρ) of (1.16) and

(1, 0) is a spiral point for pS < p < pJL, the intersection number of

ū(ρ, γ) and ū∗(ρ) is infinite for each γ, i.e., Z(0,∞)[ū
∗( · )− ū( · , γ)] = ∞.

We have

Proposition 2.1. Suppose that p > pS. Then the problem (1.16)

has a unique (positive) solution ū(ρ, γ) and ū(ρ, γ) = γū(γ
p−1
2 ρ, 1).
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Moreover, if pS < p < pJL, then, for each γ > 0, Z(0,∞)[ū
∗( · ) −

ū( · , γ)] = ∞.

In Section 4 we use Proposition 2.1 in order to prove (1.17).

2.2. Nonexistence of the entire solution.

Proposition 2.2. If u(s) ∈ C2(ε, R) ∩ C0[ε,R] satisfies

(2.9) uss +
N − 1

s
us + f(u) = 0 (ε < s < R)

and u(s) > 0 (ε < s < R), then

(2.10)

0 =

(
N

2
− 1− N

p+ 1

)∫ R

ε

sN−1u2
sds+

(
N

2
− N

p+ 1

)∫ R

ε

sN−1u2ds

+
N

p+ 1

(
RN−1u(R)us(R)− εN−1u(ε)us(ε)

)
+
1

2

(
RNus(R)2 − εNus(ε)

2
)

− 1

2

(
RNu(R)2 − εNu(ε)2

)
+

1

p+ 1

(
RNu(R)p+1 − εNu(ε)p+1

)
.

Proof of Proposition 2.2. Multiplying (2.9) by sNus and integrating it

over [ε,R], we have

0 =

∫ R

ε

sNus

{
1

sN−1
(sN−1us)s − u+ up

}
ds

=

∫ R

ε

(sN−1us)ssusds−
∫ R

ε

sNuusds+

∫ R

ε

sNupusds

=: I1 + I2 + I3.

Then,

I1 =
[
sN−1ussus

]R
ε
−
∫ R

ε

sN−1us(suss + us)ds

= RNus(R)2 − εNus(ε)
2 −

∫ R

ε

sNusussds−
∫ R

ε

sN−1u2
sds.

Since∫ R

ε

sNusussds =

[
sN

u2
s

2

]R
ε

−
∫ R

ε

NsN−1u
2
s

2
ds

=
1

2

(
RNus(R)2 − εNus(ε)

2
)
− N

2

∫ R

ε

sN−1u2
sds,
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we have

I1 = RNus(R)2 − εNus(ε)
2 −

∫ R

ε

sN−1u2
sds

− 1

2

(
RNus(R)2 − εNus(ε)

2
)
+

N

2

∫ R

ε

sN−1u2
sds

=

(
N

2
− 1

)∫ R

ε

sN−1u2
sds+

1

2

(
RNus(R)2 − εNus(ε)

2
)
.

Next, we have

I2 = −
[
sN

u2

2

]R
ε

+

∫ R

ε

NsN−1u
2

2
ds

=
N

2

∫ R

ε

sN−1u2ds− 1

2

(
RNu(R)2 − εNu(ε)2

)
,

I3 =

[
sN

up+1

p+ 1

]R
ε

−
∫ R

ε

NsN−1 u
p+1

p+ 1
ds

= − N

p+ 1

∫ R

ε

sN−1up+1ds+
1

p+ 1

(
RNu(R)p+1 − εNu(ε)p+1

)
.

Adding I1, I2, and I3, we have

0 = I1 + I2 + I3(2.11)

=

(
N

2
− 1

)∫ R

ε

sN−1u2
sds+

N

2

∫ R

ε

sN−1u2ds

− N

p+ 1

∫ R

ε

sN−1up+1ds

+
1

2

(
RNus(R)2 − εNus(ε)

2
)
− 1

2

(
RNu(R)2 − εNu(ε)2

)
+

1

p+ 1

(
RNu(R)p+1 − εNu(ε)p+1

)
.

Multiplying (2.9) by sN−1u and integrating it over [ε,R], we have

0 =

∫ R

ε

sN−1u

{
1

sN−1
(sN−1us)s − u+ up

}
ds

=

∫ R

ε

(sN−1us)suds−
∫ R

ε

sN−1u2ds+

∫ R

ε

sN−1up+1ds.

Since∫ R

ε

(sN−1us)suds =
[
sN−1usu

]R
ε
−
∫ R

ε

sN−1u2
sds

= −
∫ R

ε

sN−1u2
sds+RN−1u(R)us(R)− εN−1u(ε)us(ε),
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we have

(2.12) 0 = −
∫ R

ε

sN−1u2
sds−

∫ R

ε

sN−1u2ds+

∫ R

ε

sN−1up+1ds

+RN−1u(R)us(R)− εN−1u(ε)us(ε).

Calculating (2.11) + N
p+1

(2.12), we have (2.10). □

Proposition 2.3. Suppose that p ≥ pS. The problem

(2.13)


uss +

N−1
s

us + f(u) = 0, 0 < s < ∞,

us(0) = 0, u(0) < ∞, u(∞) = 0,

u > 0, 0 ≤ s < ∞

does not admit a solution.

Proof of Proposition 2.3. Since f ′(0) = −1 < 0, it is well known that

u(s) and us(s) decay exponentially as s → ∞. Thus, the four terms

RN−1u(R)us(R), RNus(R)2, RNu(R)2, and RNu(R)p+1 converge to

zero as R → ∞. It is clear that the four terms εN−1u(ε)us(ε), ε
Nus(ε)

2,

εNu(ε), and εNu(ε)p+1 converge to zero as ε ↓ 0. Taking the limit of

(2.10) as ε ↓ 0 and R → ∞, we have(
N

2
− 1− N

p+ 1

)∫ ∞

0

sN−1u2
sds+

(
N

2
− N

p+ 1

)∫ ∞

0

sN−1u2ds = 0.

Since p ≥ pS,
N
2
− 1− N

p+1
≥ 0. The above equality implies that (2.13)

does not admit a solution. □

3. Local and global parametrization results

In this section we study the parametrization of each branch Cn of the

solution of (1.3). Let U(r) be a regular solution of (1.3). We sometimes

use the stretched variable s :=
√
λr(= r/ε). We define u(s) := U(r).

Then u(s) satisfies (1.14). We denote the solution of the initial value

problem (1.7) by u(s, γ).

3.1. Local parametrization result. To begin with, we study the

local parametrization of the branch.

Proposition 3.1 ([24, Proposition 3.1]). Let (λ0, U0) be a nonconstant

regular solution of (1.3), and let γ0 := U0(0). Then, all solutions near

(λ0, U0) can be parametrized as {(λ(γ), U(r, γ))}|γ−γ0|<ε (U(0, γ) = γ,

λ(γ0) = λ0, U(r, γ0) = U0(r)).
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This proposition was obtained in [24]. We prove this proposition for

readers’ convenience.

Proof of Proposition 3.1. Let s :=
√
λr and u(s) := U(r). Then, u

is not constant and u satisfies (1.14). We consider the initial value

problem (1.7) and denote the solution by u(s, γ). Then, u is a C2-

function of (s, γ) and U(r, λ, γ)(= u(
√
λr, γ)) satisfies (1.3). Since

Ur(1, λ, γ) = 0,
√
λus(

√
λ, γ) = 0. We will show that ∂λus(

√
λ, γ) ̸= 0.

Since ∂λus(
√
λ, γ) = uss(

√
λ, γ)/(2

√
λ), it is enough to show that

uss(
√
λ, γ) ̸= 0. Suppose the contrary, i.e., uss(

√
λ, γ) = 0. Differ-

entiating (1.7) with respect to s, we have

usss +
N − 1

s
uss +

(
f ′(u)− N − 1

s2

)
us = 0.

Since us(
√
λ, γ) = uss(

√
λ, γ) = 0, we see by the uniqueness of the so-

lution of the ODE that us(s, γ) ≡ 0. Thus, u is a constant solution of

(1.7) which contradicts that U is not constant. Hence, uss(
√
λ, γ) ̸= 0.

We can apply the implicit function theorem to us(
√
λ, γ) = 0. We see

that there is a C1-function λ = λ(γ), which is defined in a neighbor-

hood of γ0, such that us(
√

λ(γ), γ) = 0 and that all the solutions near

(λ0, U0) can be written as (λ(γ), u(
√

λ(γ)r, γ)) (|γ − γ0| < ε). The

positivity u(
√
λ(γ)r, γ) > 0 (0 ≤ r ≤ 1) follows from the maximum

principle. □

Remark 3.2. It follows from Proposition 3.1 that another radial branch

does not emanate from Cn. However, the branch may have a turning

point.

3.2. Local bifurcation from the trivial branch. We work on the

space of radial functions. Let ϕn be the eigenfunction of the lineariza-

tion of (1.3) at (λ̄n, 1). Since∫ 1

0

ϕn ∂Uλ(λf(U))|(λ,U)=(λ̄n,1)
ϕnr

N−1dr = (p− 1)

∫ 1

0

ϕ2
nr

N−1dr ̸= 0,

the transversality condition of Crandall-Rabinowitz type holds, hence

(λ̄n, 1) is a bifurcation point.

3.3. Extension to 1 < γ < ∞. For each n ≥ 1, the branch Cn em-

anates from (λ̄n, 1) and it is locally parametrized by γ = Un(0), hence
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Cn = {(λn(γ), Un(r, γ))} (γ = Un(0, γ)). In this subsection we extend

the branch in the direction γ → ∞. In particular, we show that, for

each γ∗ > 1, λn(γ) does not diverge as γ ↑ γ∗.

Lemma 3.3. For each γ∗ > 1, there are C > 0 and ε > 0 such that

|λn(γ)| < C for γ ∈ (γ∗ − ε, γ∗).

Proof. First, we prove the case n = 1. We use a contradiction argu-

ment. Suppose the contrary, i.e.,

(3.1) there is a sequence {γj}∞j=1 (γj < γ∗, γj ↑ γ∗)

such that λ1(γj) → ∞ (j → ∞).

Let u(s, γj) denote the solution of (1.7), and let uj(s) := u(s, γj). Then,

uj(0) = γj. We show that there exists a solution u∗(s) ∈ C2(0,∞) ∩
C0[0,∞) of the problem

(3.2)


uss +

N−1
s

us + f(u) = 0, 0 < s < ∞,

us(0) = 0, u(0) = γ∗, u(∞) = 0,

u > 0, us < 0, 0 < s < ∞.

Since the problem (1.7) is well-posed, there exists ũ∗(s) ∈ C2(0,∞) ∩
C0[0,∞) such that ũ∗ satisfies{

(ũ∗)ss +
N−1
s

(ũ∗)s + f(ũ∗) = 0, 0 < s < ∞,

(ũ∗)s(0) = 0, ũ∗(0) = γ∗,

and uj(s) → ũ∗(s) in C2
loc(0,∞) ∩ C0

loc[0,∞) as j → ∞. Therefore, in

order to show that ũ∗(s) ≡ u∗(s) we show that ũ∗ satisfies

(3.3)

{
ũ∗(∞) = 0,

ũ∗ > 0, (ũ∗)s < 0, 0 < s < ∞.

If there is s̃0 > 0 such that ũ∗(s̃0) < 0, then, for large j ≥ 1, uj(s̃0) < 0,

since uj → ũ∗ in C0
loc[0,∞). We obtain a contradiction, because s̃0 <√

λ1(γj) for large j ≥ 1 and uj(s) > 0 (0 < s <
√

λ1(γj)) for every

j ≥ 1. Thus ũ∗(s) ≥ 0 (0 ≤ s < ∞). By the maximum principle we see

that ũ∗(s) > 0 (0 ≤ s < ∞). If there is s̃1 > 0 such that ∂sũ∗(s̃1) > 0,

then, for large j ≥ 1, ∂suj(s̃1) > 0. We obtain a contradiction, because

s̃1 <
√

λ1(γj) for large j ≥ 1 and ∂suj(s) < 0 (0 < s <
√
λ1(γj)).

Thus, ∂sũ∗(s) ≤ 0 (0 < s < ∞). Let v := ∂sũ∗. If there is s̃2 > 0

such that v(s̃2) = 0, then vs(s̃2) = 0, since v(s) ≤ 0 (0 < s < ∞). We
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obtain a contradiction, because v satisfies

vss +
N − 1

s
vs +

(
f ′(ũ∗)−

N − 1

s2

)
v = 0 (0 < s < ∞)

and Hopf’s lemma says that vs(s̃2) ̸= 0. Therefore, v(s) < 0 (0 < s <

∞) and ∂sũ∗(s) < 0 (0 < s < ∞). Since ũ∗ > 0 and ∂sũ∗ < 0, ũ∗(∞)

exists and ∂sũ∗(∞) = 0. Since ũ∗ satisfies (1.7), ∂ssũ∗(∞) exists and

it follows from the boundedness of ũ∗ that ∂ssũ∗(∞) = 0. Because of

(1.7), f(ũ∗(∞)) = 0, hence ũ∗(∞) = 0 or 1. Suppose that ũ∗(∞) = 1.

Let w := u− 1. Then w satisfies

(3.4) wss +
N − 1

s
ws +

(w + 1)p − (w + 1)

w
w = 0.

If w is close to 0, then {(w + 1)p − (w + 1)}/w is close to p− 1. Since

p − 1 > 0, by Sturm’s oscillation theorem we see that w oscillates

around 0 which contradicts that ws < 0. Thus, ũ∗(∞) = 0. We have

shown that (3.3) holds and ũ∗ ≡ u∗.

By Proposition 2.3 we see that if p ≥ pS, then (3.2) has no solution.

We obtain a contradiction. Then, (3.1) does not hold, and |λ1(γ)| is
bounded for γ ∈ (γ∗ − ε, γ∗). Therefore, there exists a subsequence,

which is still denoted by {γj}, such that λ1(γj) converges as j → ∞.

We define λ1(γ
∗) = limj→∞ λ1(γj). Because of Proposition 3.1, λ1(γ

∗)

does not depend on the subsequence and it is uniquely determined.

Moreover, us(
√

λ1(γ∗), γ∗) = 0.

Second, we prove the case n ≥ 2. Let E be as given by (2.8). Then

(3.5)
d

ds
E(u(s), v(s)) = −N − 1

s
v2 ≤ 0.

Therefore, E(u(s), v(s)) ≤ E(u(
√

λ1(γ∗)), 0) < 0 (s >
√
λ1(γ∗)),

which implies that

(3.6) u(s) ≥ u(
√

λ1(γ∗))(> 0).

Let w(s) := u(s)− 1. Then w satisfies (3.4). Because of (3.6), there is

δ > 0 such that

(w + 1)p − (w + 1)

w
>

u(
√

λ1(γ∗)))p − u(
√

λ1(γ∗))

u(
√
λ1(γ∗))− 1

> δ > 0 (γ > 0)

provided that s >
√

λ1(γ∗). Sturm’s oscillation theorem says that w

oscillates around 0 infinitely many times. Therefore, u(s) has the n-th

positive critical point sn. Since λn(γ
∗) = s2n and λn(γ) is continuous at

γ∗ (Proposition 3.1), we see that |λn(γ)| < C for γ ∈ (γ∗ − ε, γ∗). □
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Using Lemma 3.3, we prove the global parametrization result.

Lemma 3.4. For each n ≥ 1, {(λn(γ), Un(γ))} can be defined in 1 <

γ < ∞.

Proof. Let Cn := {(λn(γ), Un(γ))} be the branch which emanates from

(λ̄n, 1). We extend Cn. We define

γ∗ := sup{γ̄ > 1; λn(γ) < ∞ for every γ ∈ (1, γ̄).}.

Suppose the contrary, i.e., γ∗ < ∞. Let {γj}∞j=1 (γj < γ∗, γj ↑ γ∗) be a

sequence. Let Un,j(r) be a solution of (1.3) such that Un,j(0) = γj and

∂rUn,j(0) = 0. Because of Lemma 3.3, there are λ∗ ≥ 0 and a subse-

quence of {γj}, which is still denoted by {γj}, such that λn(γj) → λ∗

(j → ∞). Note that it is clear that λ∗ > 0. Because of the continuous

dependence of the solution U(r, γ, λ) of

(3.7)

{
Urr +

N−1
r

Ur + λf(U) = 0, 0 < r < 1,

Ur(0) = 0, U(0) = γ

on (γ, λ) in C1
loc[0,∞), there exists a solution U∗ of (3.7) with (γ, λ) =

(γ∗, λ∗) such that ∂rU∗(1) = 0. Since each zero of Un( · , γ)−1 is simple,

Z(0,1)[U∗( · )− 1] = Z(0,1)[Un( · , γj)− 1] = n for large j ≥ 0. Therefore,

(λ∗, U∗) is a solution of (1.3) and (λ∗, U∗) ∈ Cn. By Proposition 3.1 we

can extend the branch Cn to 1 < γ < γ∗ + ε for small ε > 0. This

contradicts to the definition of γ∗. Thus, γ∗ = ∞. □

The branch C+
n is unbounded in γ.

3.4. Extension to 0 < γ < 1. We extend C−
n .

Lemma 3.5. For each n ≥ 1, {(λn(γ), Un(γ))} can be defined in 0 <

γ < 1.

Proof. Let

γ∗ := inf{γ > 0; λn(γ) < ∞ for every γ < γ < 1}.

Suppose the contrary, i.e., γ∗ > 0. Let u(s) be the solution of the (1.7)

with γ = γ, and let v(s) := us(s). Let E be as given by (2.8). Then

(3.5) holds. Therefore, E(u(s), v(s)) ≤ E(γ, 0) < 0, which implies that

(3.8) u(s) ≥ u(0)(= γ > 0).
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Let w(s) := u(s)− 1. Then w satisfies (3.4). Because of (3.8), there is

δ > 0 such that {(w+1)p−(w+1)}/w > (u(0)p−u(0))/(u(0)−1) > δ >

0 (γ > 0). Sturm’s oscillation theorem says that w oscillates around

0 infinitely many times. Therefore, u(s) has the n-th positive critical

point sn. Let λn := s2n. Then (λ(γ), u) is a solution of (1.7) with

γ = γ. By Proposition 3.1 we can extend λn(γ), which contradicts

to the definition of γ. Thus, γ = 0, and λn(γ) can be defined in

0 < γ < 1. □

The branch C−
n is defined in 0 < γ < 1.

4. Entire singular solution

In this section we prove Theorem A. Let (λ, U(r)) be a solution of

(1.3). Then u(s) := U(r) (s :=
√
λr) satisfies (1.14). We use the same

change of variables y(t) := A(p,N)−1sθu(s) and t := m−1 log s as in

Section 2. Here

m := {θ(N − 2− θ)}−
1
2 ,

and θ is defined by (1.6). The function y(t) satisfies

(4.1) y′′ + αy′ − y + yp −m2e2mty = 0,

where α := m(N − 2− 2θ). We mainly consider (4.1) in this section.

4.1. Existence of the singular solution near r = 0. We construct

the singular solution of (1.14) near s = 0.

Lemma 4.1. The problem

(4.2)

{
y′′ + αy′ − y + yp −m2e2mty = 0,

y(t) → 1 (t → −∞)

has a unique solution.

The proof is essentially the same as one of [22, Theorem A]. We use

the following lemma to prove Lemma 4.1.

Lemma 4.2. Assume that (4.2) has a solution y∗(t). Then, y∗(t)

satisfies

(4.3) y∗(t) = 1 +O(e2mt) (t → −∞).
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Proof. Let ζ := −t and η(ζ) := y(t)− 1. The function η(ζ) satisfies

(4.4)

{
η′′ − αη′ + (p− 1)η = g(η), ζ0 < ζ < ∞,

η(ζ) → 0 (ζ → ∞),

where ζ0 is a large number,

(4.5) g(ζ) := m2e−2mζ(1 + η(ζ))− φ(η(ζ)),

(4.6) φ(η) := (1 + η)p − 1− pη.

There are three possibilities:

(4.7) (1) p− 1 >
(α
2

)2
, (2) p− 1 <

(α
2

)2
, (3) p− 1 =

(α
2

)2
.

Case (1): Let β :=
√

(p− 1)−
(
α
2

)2
. Because the linearly independent

solutions of the homogeneous equations associated with the equation

in (4.4) becomes unbounded as ζ → ∞, we have

(4.8) η(ζ) =
e

α
2
ζ

β

∫ ∞

ζ

e−
α
2
σ sin(β(σ − ζ))g(σ)dσ.

If |η| is small, then there are ε > 0 and ζε > 0 such that

(4.9) |φ(η)| ≤ |(1 + η)p − 1− pη| ≤ ε|η| (ζ > ζε).

By (4.5) and (4.9) we have

(4.10) |g(ζ)| ≤ C0e
−2mζ + ε|η(ζ)| (ζ > ζε).

Using (4.8), we have∫ ∞

ζ

|η(σ)|dσ ≤
∫ ∞

ζ

e
α
2
σ

β

∫ ∞

σ

e−
α
2
τ |g(τ)|dτdσ

=

[
2e

α
2
σ

αβ

∫ ∞

σ

e−
α
2
τ |g(τ)|dτ

]∞
ζ

+

∫ ∞

ζ

2e
α
2
σ

αβ
e−

α
2
σ|g(σ)|dσ

≤ −2e
α
2
ζ

αβ

∫ ∞

ζ

e−
α
2
σ|g(σ)|dσ +

2

αβ

∫ ∞

ζ

|g(σ)|dσ

≤ 2

αβ

∫ ∞

ζ

|g(σ)|dσ,(4.11)

where we use

lim
σ→∞

2
∫∞
σ

e−
α
2
τ |g(τ)|dτ

αβe−
α
2
σ

= lim
σ→∞

−2e−
α
2
σ|g(σ)|

αβ
(
−α

2

)
e−

α
2
σ
= 0.

By (4.10) and (4.11) we have∫ ∞

ζ

|η(σ)|dσ ≤ 2

αβ

∫ ∞

ζ

(
C0e

−2mσ + ε|η(σ)|
)
dσ (ζ > ζε).
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Hence,

(
1− 2ε

αβ

)∫ ∞

ζ

|η(σ)|dσ ≤ 2C0

αβ

∫ ∞

ζ

e−2mσdσ

=
C0e

−2mζ

αβm
(ζ > ζε).(4.12)

On the other hand, by (4.8) and (4.10) we have

|η(ζ)| ≤ e
α
2
ζ

β

∫ ∞

ζ

e−
α
2
σ
(
C0e

−2mσ + ε|η(σ)|
)
dσ

=
C0

β
e

α
2
ζ

∫ ∞

ζ

e−(
α
2
+2m)σdσ +

ε

β

∫ ∞

ζ

|η(σ)|dσ

=
C0e

−2mζ

β
(
α
2
+ 2m

) + ε

β

∫ ∞

ζ

|η(σ)|dσ.(4.13)

By (4.12) and (4.13) we have

|η(ζ)| ≤ C0e
−2mζ

β
(
α
2
+ 2m

) + C0ε(
1− 2ε

αβ

)
αβ2m

e−2mζ

=: C1e
−2mζ .(4.14)

Case (2): Let β :=
√(

α
2

)2 − (p− 1). Then, α
2
− β > 0. We have

(4.15) η(ζ) =
e

α
2
ζ

β

∫ ∞

ζ

e−
α
2
σ sinh(β(σ − ζ))g(σ)dσ.

Using (4.15) and | sinh(β(τ − σ))| ≤ eβ(τ−σ)/2 (τ ≥ σ), we have
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∫ ∞

ζ

|η(σ)|dσ ≤
∫ ∞

ζ

e
α
2
σ

β

∫ ∞

σ

e−
α
2
τ | sinh(β(τ − σ))||g(τ)|dτdσ

≤
∫ ∞

ζ

e
α
2
σ

β

∫ ∞

σ

e−
α
2
τ e

β(τ−σ)

2
|g(τ)|dτdσ

=

∫ ∞

ζ

e(
α
2
−β)σ

2β

∫ ∞

σ

e−(
α
2
−β)τ |g(τ)|dτdσ

=

[
e(

α
2
−β)σ

β(α− 2β)

∫ ∞

σ

e−(
α
2
−β)τ |g(τ)|dτ

]∞
ζ

(4.16)

+
1

β(α− 2β)

∫ ∞

ζ

|g(σ)|dσ

= − e(
α
2
−β)ζ

β(α− 2β)

∫ ∞

ζ

e−(
α
2
−β)τ |g(τ)|dτ(4.17)

+
1

β(α− 2β)

∫ ∞

ζ

|g(σ)|dσ

≤ 1

β(α− 2β)

∫ ∞

ζ

|g(σ)|dσ,(4.18)

where we use α
2
− β > 0 and

lim
σ→∞

∫∞
σ

e−(
α
2
−β)τ |g(τ)|dτ

β(α− 2β)e−(
α
2
−β)σ

= lim
σ→∞

−e−(
α
2
−β)σ|g(σ)|

β(α− 2β)
(
−α

2
+ β

)
e−(

α
2
−β)σ

= 0.

In the case (2) (4.10) also holds. By (4.10) and (4.18) we have

∫ ∞

ζ

|η(σ)|dσ ≤ 1

β(α− 2β)

∫ ∞

ζ

(
C0e

−2mσ + ε|η(σ)|
)
dσ (ζ > ζε).

Hence,

(
1− ε

β(α− 2β)

)∫ ∞

ζ

|η(σ)|dσ ≤ C0

β(α− 2β)

∫ ∞

ζ

e−2mσdσ

=
C0

2mβ(α− 2β)
e−2mζ (ζ > ζε).(4.19)
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On the other hand, by (4.15) and (4.10) we have

|η(ζ)| ≤ e
α
2
ζ

β

∫ ∞

ζ

e−
α
2
σ e

β(σ−ζ)

2

(
C0e

−2mσ + ε|η(σ)|
)
dσ

=
C0

2β
e(

α
2
−β)ζ

∫ ∞

ζ

e−(
α
2
−β+2m)σdσ

+
ε

2β
e(

α
2
−β)ζ

∫ ∞

ζ

e−(
α
2
−β)σ|η(σ)|dσ

≤ C0e
−2mζ

2β
(
α
2
− β + 2m

) + ε

2β

∫ ∞

ζ

|η(σ)|dσ.(4.20)

By (4.19) and (4.20) we have

|η(ζ)| ≤ C0e
−2mζ

β(α− 2β + 4m)
+

C0ε

4mβ (β(α− 2β)− ε)
e−2mζ

=: C2e
−2mζ (ζ > ζε).(4.21)

Case (3): In this case we have

(4.22) η(ζ) = e
α
2
ζ

∫ ∞

ζ

e−
α
2
σ(σ − ζ)g(σ)dσ.

For each β > 0, we have

|σ − ζ| ≤ 1

β
| sinh(β(σ − ζ))|.

Hence,

|η(ζ)| ≤ e
α
2
ζ

β

∫ ∞

ζ

e−
α
2
σ| sinh(β(σ − ζ))||g(σ)|dσ.

Therefore, by the same argument as in Case (2) we have (4.21). How-

ever, β is not the same value as in Case (2).

We have verified all the cases. □

Proof of Lemma 4.1. There are three cases (4.7) as in the proof of

Lemma 4.2. We consider only the case (1).

We transform (4.2) to the integral equation

(4.23) η(ζ) = F(η)(ζ).

The integral operator F is different in each case. In this proof we write

g(η, σ) in order to stress the dependence of g on η. In the case (1) F
becomes

F(η)(ζ) =
e

α
2
ζ

β

∫ ∞

ζ

e−
α
2
σ sin(β(σ − ζ))g(η, σ)dσ.
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We show by contraction mapping theorem that (4.23) has a unique

solution. Let ζ0 > 0 be large. Hereafter, by ∥ · ∥ we denote ∥ · ∥C0[ζ0,∞).

We set X := {η(ζ) ∈ C0[ζ0,∞); ∥η(ζ)∥ < ∞} and B := {η(ζ) ∈
X; ∥η∥ < η̄}. Let η1, η2 ∈ B. If η̄ > 0 is small, then there is a small

ε > 0 such that

(4.24) |φ(η1)− φ(η2)| ≤ ε|η1 − η2|.

Using (4.24), we have

|g(η1, σ)− g(η2, σ)| ≤ m2e−2mζ |η1 − η2|+ ε|η1 − η2|

≤ 2ε|η1 − η2|,(4.25)

provided that ζ > 0 is large. By (4.25) we have

∥F(η1)−F(η2)∥ ≤
∥∥∥∥eα

2
ζ

β

∫ ∞

ζ

e−
α
2
σ|g(η1, σ)− g(η2, σ)|dσ

∥∥∥∥
≤ 2ε

∥∥∥∥eα
2
ζ

β

∫ ∞

ζ

e−
α
2
σdσ

∥∥∥∥ ∥η1 − η2∥

=
4ε

αβ
∥η1 − η2∥.(4.26)

On the other hand,

∥F(0)∥ ≤
∥∥∥∥eα

2
ζ

β

∫ ∞

ζ

e−
α
2
σ|g(0, σ)|dσ

∥∥∥∥
≤
∥∥∥∥eα

2
ζ

β

∫ ∞

ζ

e−
α
2
σm2e−2mσdσ

∥∥∥∥
=

m2

β
(
α
2
+ 2m

)e−2mζ

< ε,(4.27)

provided that ζ > 0 is large. By (4.26) and (4.27) we see that if ε > 0

is small, then

∥F(η1)∥ = ∥F(η1)−F(0) + F(0)∥

≤ ∥F(η1)−F(0)∥+ ∥F(0)∥

≤ 4ε

αβ
∥η1∥+ ε

< η̄.(4.28)

Because of (4.26) and (4.28), if ε > 0 is small, then F is a contraction

mapping from B into itself. Therefore, (4.23) has a unique solution. □
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Hereafter, let y∗(t) be the solution given by Lemma 4.1, and

(4.29) u∗(s) := As−θy∗(m−1 log s).

Then the following corollary is an immediate consequence of Lem-

mas 4.1 and 4.2.

Corollary 4.3.

(4.30) u∗(s) = As−θ (1 + o(1)) as s ↓ 0.

Here, A = A(p,N).

4.2. Positivity of the entire singular solution.

Lemma 4.4. The domain of the singular solution y∗(t) obtained in

Lemma 4.1 can be extended to t ∈ (−∞,∞), and y∗(t) > 0 (−∞ <

t < ∞). Therefore, the domain of u∗(s) can be extended to s ∈ (0,∞),

and u∗(s) > 0 (0 < s < ∞).

Proof. In the proof we denote y∗ by y for simplicity. We extend the

domain of y(t). The equation (4.1) is equivalent to

(4.31)

{
y′ = z,

z′ = −αz + y − yp +m2e2mty.

Then, the solution of (4.1) can be considered as the orbit (y(t), z(t)) of

(4.31). Let

(4.32) Ẽ(y, z) :=
z2

2
− β(t)

2
y2 +

yp+1

p+ 1
,

where β(t) := 1 +m2e2mt. Then

(4.33)
d

dt
Ẽ(y(t), z(t)) = −αz2 −m3e2mty2 ≤ 0.

Since (y(−∞), z(−∞)) = (1, 0), Ẽ(y(−∞), z(−∞)) = −1/2 + 1/(p +

1) < 0. Because of (4.33), (y(t), z(t)) ∈ {(y, z); Ẽ(y, z) < 0}. Since

−β(t)y2/2 + yp+1/(p+ 1) < 0,

(4.34) 0 < y(t) <

(
p+ 1

2
β(t)

) 1
p−1

(−∞ < t < ∞).

Therefore, y(t) > 0 (−∞ < t < ∞). Since Ẽ(y, z) < 0, z2 < β(t)y2 −
2yp+1/(p+ 1), hence

(4.35) 0 < z(t) <

(
p− 1

p+ 1
β(t)1+θ

) 1
2

(−∞ < t < ∞).
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Because of (4.34) and (4.35), neither y(t) nor z(t) blows up. Hence, the

solution (y(t), z(t)) of (4.31) can be extended to t ∈ (−∞,∞). Because

of (4.29), the conclusion about u∗(s) also holds. □

4.3. Nonexistence of the entire singular solution.

Lemma 4.5. Let y∗(t) be as in Lemma 4.1. Then,

(4.36) (y∗)′(t) =
m

2(N − 1)− 3θ
e2mt +O(e2m(1+ν)t) (t → −∞),

where ν = min{p− 1, 1}.

Proof. Let ζ := −t and η(ζ) = y(t)− 1. By (4.6) and (4.14) we have

(4.37) |φ(η)| ≤ C1e
−2m(1+ν)ζ .

Because of (4.6) and (4.37), we have

(4.38) g(ζ) = m2e−2mζ +O(e−2m(1+ν)ζ).

There are three cases (4.7) as in the proof of Lemma 4.2. We consider

only the case (1).

Differentiating (4.8) with respect to ζ, we have

(4.39) η′(ζ) =
α

2β
e

α
2
ζ

∫ ∞

ζ

e−
α
2
σ sin(β(σ − ζ))g(σ)dσ

− e
α
2
ζ

∫ ∞

ζ

e−
α
2
σ cos(β(σ − ζ))g(σ)dσ.

By (4.38) and (4.39) we have

η′(ζ) =
αm2

2β
e

α
2
ζ

∫ ∞

ζ

e−(
α
2
+2m)σ sin(β(σ − ζ))dσ

−m2e
α
2
ζ

∫ ∞

ζ

e−(
α
2
+2m)σ cos(β(σ − ζ))dσ +O(e−2m(1+ν)ζ)

=
−2m3(

α
2
+ 2m

)2
+ β2

e−2mζ +O(e−2m(1+ν)ζ)

= − m

2(N − 1)− 3θ
e−2mζ +O(e−2m(1+ν)ζ).

Since (y∗)′(t) = −η′(ζ), we obtain (4.36). In the other cases (2) and

(3) we also obtain (4.36), using (4.15) and (4.22). □

Corollary 4.6. Suppose that p > pS. Let δ > 0. Then, u∗ ∈ H1(Bδ),

and

(4.40) u∗
s(s) = −θAs−θ−1(1 + o(1)) (s ↓ 0).
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Proof. Differentiating (4.29) with respect to s, we have

u∗
s(s) = −θAs−θ−1y∗(

1

m
log s) + As−θ(y∗)′(

1

m
log s)

1

s

= −θAs−θ−1(1 + o(1)) + As−θ−1o(s)

= −θAs−θ−1(1 + o(1)),

where we use Lemma 4.5. Then, we obtain (4.40). We show that∫ δ

0

{
(u∗)2 + (u∗

s)
2
}
sN−1ds < ∞.

We have{
u∗(s)2 + u∗

s(s)
2
}
sN−1 ≤

(
C0s

−2θ + C1s
−2θ−2

)
sN−1

= C0s
−2θ+N−1 + C1s

−2θ−2+N−1.

Since p > pS, −2θ − 2 +N − 1 > −1 and −2θ +N − 1 > −1. Hence,∫ δ

0
(C0s

−2θ+N−1 + C1s
−2θ−2+N−1)ds < ∞, which indicates that u∗ ∈

H1(Bδ). □

Lemma 4.7. Suppose that p > pS. The problem

(4.41)


uss +

N−1
s

us + f(u) = 0, 0 < s < ∞,

u(s) = As−θ(1 + o(1)) (s ↓ 0),

u(∞) = 0,

u > 0, 0 < s < ∞

does not admit a solution.

This lemma was proved by [25]. See [5] for details of nonexistence

results. However, we briefly prove the lemma.

Proof. Suppose that (4.41) has a solution. Because u(s) = As−θ(1 +

o(1)) (s ↓ 0) and the uniqueness of the solution u∗(s) obtained by

Lemma 4.1, the solution of (4.41) is u∗(s). We denote u∗ by u for

simplicity. Because f ′(0) = −1 < 0, u(s) and us(s) decay exponentially

as s → ∞. Thus, the four terms RN−1u(R)us(R), RNus(R)2, RNu(R)2,

and RNu(R)p+1 converge to zero as R → ∞. Because of (4.30) and

(4.40), we see that the four terms εN−1u(ε)us(ε), ε
Nus(ε)

2, εNu(ε)2,

and εNu(ε)p+1 converge to zero as ε ↓ 0. Taking the limit of (2.10) as

ε ↓ 0 and R → ∞, we have(
N

2
− 1− N

p+ 1

)∫ ∞

0

sN−1u2
sds+

(
N

2
− N

p+ 1

)∫ ∞

0

sN−1u2ds = 0.
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Since p > pS,
N
2
− 1− N

p+1
> 0. The above equality implies that (4.41)

does not admit a solution. □

4.4. Existence of critical points of u∗(s). The main technical lemma

in this section is the following:

Lemma 4.8. Suppose that pS < p < pJL. There is a sequence {s∗n}∞n=0

(0 = s∗0 < s∗1 < s∗2 < · · · → ∞) such that ∂su
∗(s∗n) = 0 (n ≥ 1),

u∗(s)

{
< 1 (s ∈ {s∗1, s∗3, · · · }),
> 1 (s ∈ {s∗2, s∗4, · · · })

and

∂su
∗(s)

{
< 0 (s ∈ (s∗0, s

∗
1) ∪ (s∗2, s

∗
3) ∪ · · · ),

> 0 (s ∈ (s∗1, s
∗
2) ∪ (s∗3, s

∗
4) ∪ · · · ).

Proof. First, we show that u∗ has the first positive critical point. We

use a contradiction argument. Suppose the contrary, i.e.,

(4.42) ∂su
∗(s) < 0 (0 < s < ∞).

Since u∗(s) > 0 (0 < s < ∞), u∗(s) converges as s → ∞. Since

∂su
∗ does not change sign, ∂su

∗(s) → 0 (s → ∞). We see by (1.14)

that ∂ssu
∗(s) converges as s → ∞. Since u∗(s) converges, ∂ssu

∗(s) → 0

(s → ∞). Therefore, f(u∗(∞)) = 0, and u∗(∞) = 0 or 1. If u∗(∞) = 1,

then by the same argument as in the proof of Lemma 3.3 we see that u∗

should oscillate around 1. This oscillation contradicts that ∂su
∗(s) < 0

(0 < s < ∞). Thus, u∗(∞) = 0. We see that u∗ is a solution of (4.41),

which contradicts to Lemma 4.7. Therefore, there is s∗1 > 0 such that

∂su
∗(s) < 0 (0 < s < s∗1) and ∂su

∗(s∗1) = 0.

Second, we show that there exists s∗n (n ≥ 2). Let v∗ := u∗
s, and let E

be as given in (2.8). Then

d

ds
E(u∗(s), v∗(s)) = −N − 1

s
(v∗(s))2 < 0.

Therefore, E(u∗(s), v∗(s)) < E(u∗(s∗1), 0) < 0 (s > s∗1). This implies

that

(4.43) u∗(s) > u∗(s∗1) (s > s∗1).

Let w(s) := u∗(s) − 1. Then w satisfies (3.4). Because of (4.43),

{(w+1)p−(w+1)}/w > {(u∗(s∗1))
p−u∗(s∗1)}/(u∗(s∗1)−1) > 0. Sturm’s

oscillation theorem says that w oscillates around 0 infinitely many times
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as s → ∞. Consequently, u∗ has infinitely many critical points. Be-

cause u∗ satisfies the ODE, we easily see that u∗ does not have a critical

point on {u∗ = 1} and that if u∗ has a critical point on {u∗ > 1} (resp.

{u∗ < 1}), then it is a local maximum point (resp. local minimum

point). Thus, the conclusion of the lemma holds. □

4.5. Proof of Theorem A. Since the convergence property in Theo-

rem 1.1 is proved in Section 5, the proof of Theorem 1.1 is postponed

until Section 5. Here we prove only Theorem A.

Proof of Theorem A. Let λ∗
n := (s∗n)

2. Then, (λ∗
n, u

∗(s)) is a singular

solution of (1.14) which satisfies (4.30). We define U∗
n(r) := u∗(

√
λ∗
nr).

Then by Corollary 4.3 and Lemmas 4.4 and 4.8 we see that U∗
n sat-

isfies (i), (ii), and (iii). The uniqueness of (λ∗
n, U

∗
n) follows from the

uniqueness of the solution of (4.2) which was shown in Lemma 4.1. □

5. Convergence to the singular solution as γ → ∞

Let u(s, γ) denote the solution of (1.7). Note that u(0, γ) = γ. Let

y(t) = A(p,N)−1sθu(s, γ) and t = m−1 log s. Then y(t) satisfies (4.1).

Let n ∈ N be fixed. Let λ∗
n be the number given in Theorem A, and let

y∗(t) be the singular solution given in Lemma 4.1. Then by Lemma 4.4

we see that y(t) can be defined in R. We set t∗n := m−1 log
√
λ∗
n+1.

5.1. Convergence to u∗. Our goal in this section is to prove the

following:

Theorem 5.1. Let n ≥ 1 be fixed. Let r∗n := emt∗n. Suppose that

{γj}∞j=1 is an arbitrary sequence diverging to ∞. Let u∗(s) be the sin-

gular solution defined by (4.29), and let uj(s) := u(s, γj) be the solution

of (1.7). Then, as j → ∞,

(5.1)

uj → u∗, ∂suj → ∂su
∗, and ∂ssuj → ∂ssu

∗ in C0
loc(0, r

∗
n].

We define

τ(γ) :=
1

mθ
(log γ − logA).

Lemma 5.2. Suppose that γ > 0 is large. Then, y(t) satisfies

y(t, γ) ≤ emθ(t+τ(γ)) (−∞ < t ≤ t∗n).
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Proof. Let u(s) := u(s, γ) and v(s) := us(s). Since (u(s), v(s)) satisfies

(3.5),

(5.2)

−u(s)2

2
+

u(s)p+1

p+ 1
≤ E(u(s), v(s)) ≤ E(γ, 0) = −γ2

2
+

γp+1

p+ 1
(s ≥ 0).

Since γ > 0 is large, (5.2) tells us that u(s) ≤ γ (s ≥ 0). By the

definition of y(t) we have

y(t) = A−1sθu(s) ≤ A−1emθtγ = emθ(t+τ(γ)) (−∞ < t ≤ t∗n).

□

We define

ξ := t+ τ(γ) and w(ξ, γ) := y(t, γ).

Then w(ξ, γ) is a solution of the problem

(5.3)
w′′ + αw′ − w + wp −m2e2m(ξ−τ(γ))w = 0, −∞ < ξ < t∗n + τ(γ),

w > 0, −∞ < ξ < t∗n + τ(γ),

e−mθξw(ξ) → 1 (ξ → −∞).

Because of Lemma 5.2,

(5.4) w(ξ, γ) ≤ emθξ (−∞ < ξ ≤ t∗n + τ(γ)).

Using the apriori estimate (5.4), we prove the following uniform con-

vergence:

Lemma 5.3. Let w̄(ξ) be a solution of

(5.5)


w′′ + αw′ − w + wp = 0, −∞ < ξ < t∗n + τ(γ),

w > 0, −∞ < ξ < t∗n + τ(γ),

e−mθξw(ξ) → 1 (ξ → −∞).

Then, for each fixed ξ̄ ∈ R,

w(ξ, γ) → w̄(ξ) and w′(ξ, γ) → w̄′(ξ) in C0(−∞, ξ̄)

as γ → ∞.

Proof. Let ε > 0 be small. Since w̄(ξ) is a solution of (5.5),

(5.6) w̄(ξ) → 0 (ξ → −∞).

Because of (5.4) and (5.6), there is ξ(< ξ̄) such that

|w(ξ, γ)| ≤ ε

2
and |w̄(ξ)| ≤ ε

2
(−∞ < ξ ≤ ξ).
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Then,

|w(ξ, γ)− w̄(ξ)| ≤ |w(ξ, γ)|+ |w̄(ξ)|

≤ ε

2
+

ε

2
= ε (−∞ < ξ < ξ).(5.7)

We show that

(5.8) |w(ξ, γ)− w̄(ξ)| < ε in [ξ, ξ̄].

Since y′(t) = A−1msθ(θu(s) + su′(s)), y′(t, γ) → 0 (t → −∞). Hence,

w′(ξ, γ) → 0 (ξ → −∞). Integrating the equation in (5.3) over (−∞, ξ],

we have

(5.9) w′(ξ) + αw(ξ) =

∫ ξ

−∞

(
w − wp +m2e2m(η−τ(γ))w

)
dη,

where we use w′(−∞) = 0 and w(−∞) = 0. There is C0 > 0 indepen-

dent of large γ > 0 such that∫ ξ

−∞

∣∣w − wp +m2e2m(η−τ(γ))w
∣∣ dη < C0 (ξ ≤ ξ̄),

because of (5.4). Then |w′(ξ)| ≤ |αw(ξ)| + C0, which indicates that

w is equicontinuous in [ξ, ξ̄]. It follows from (5.4) that w(ξ, γ) is uni-

formly bounded in [ξ, ξ̄]. By Arzelà-Ascoli theorem we see that w(ξ, γ)

converges to a certain function in C0[ξ, ξ̄] which satisfies the equation

in (5.5). This function is a solution of (5.5). Using the same argu-

ment as in the proof of Lemma 4.1, we see that the solution of (5.5)

is unique, hence the limit function is w̄(ξ). Therefore, (5.8) holds for

large γ > 0. The estimates (5.7) and (5.8) indicate that w(ξ, γ) → w̄(ξ)

in C0(−∞, ξ̄] as γ → ∞. In particular, this convergence is uniform.

Next, we show that

(5.10) w′(ξ, γ) → w̄′(ξ) in C0(−∞, ξ̄] as γ → ∞.

Because of (5.4), we see by (5.9) that |w′(ξ, γ)| is uniformly bounded

in each bounded interval. Since w′′ = −αw′+w−wp+m2e2m(ξ−τ(γ))w,

|w′′(ξ, γ)| is also uniformly bounded in each bounded interval. By

Arzelà-Ascoli theorem we see that w′(ξ, γ) uniformly converges in a

bounded interval as γ → ∞. Since the solution of (5.5) is unique, the

limit function is w̄′(ξ). Hence

(5.11) w′(ξ, γ) → w̄′(ξ) in C0
loc(−∞, ξ̄].



SUPERCRITICAL NEUMANN PROBLEM 33

By the same argument as in the case w′(−∞) we can show that w̄′(−∞) =

0. Therefore, there is ξ0 such that

(5.12) |w′(ξ, γ)− w̄′(ξ)| < ε (−∞ < ξ < ξ0).

Because of (5.11) and (5.12), (5.10) holds. The proof is complete. □

Since (w̄, w̄′) → (1, 0) (ξ → ∞), it follows from Lemma 5.3 that (y, z)

approaches (1, 0) as γ → ∞ along t = ξ̄− τ(γ) provided that ξ̄ is large

enough. In the next lemma we show that once near (1, 0), the orbit

(y, z) remains near (1, 0) until t reaches some T , which is large and

negative, but independent of γ. We set

Γρ := {(y, z); E(y, z) < E(1, 0) + ρ}, ρ > 0,

where E is defined by (2.8).

Lemma 5.4. For every ε > 0, there exists Tε(< t∗) such that the

following holds: If there is t0(< Tε) such that (y(t0), z(t0)) ∈ Γε, then

(y(t), z(t)) ∈ Γ2ε (t0 ≤ t ≤ Tε).

Proof. Let E(t) := E(y(t), z(t)). We have

(5.13) E ′(t) = −αz2 +m2e2mtyz ≤ m4

4α
e4mty2.

Hence, for t > t0,

(5.14) E(t) ≤ E(t0) +
m4

4α

∫ t

t0

e4mζy(ζ)2dζ.

However, there is K > 0 such that

(5.15) E(y, z) ≥ −K + y2.

Therefore,

(5.16) E(t) ≤ E(t0) +
m4

4α

(
K

4m
e4mt +

∫ t

t0

e4mζE(ζ)dζ

)
.

We choose Tε so that

m4

4α

{
K

4m
+

1

4m
(E(1, 0) + 2ε)

}
e4mTε < ε.

Let t0(< Tε) and define

t1 := sup{t > t0; E(t) < E(1, 0) + 2ε}.
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We show by contradiction that t1 > Tε. Suppose the contrary, i.e.,

t1 ≤ Tε. Then by (5.16) and the definition of t1 we have

E(t1) ≤ E(t0) +
m4

4α

(
K

4m
e4mt +

∫ t

t0

e4mζE(ζ)dζ

)
< E(t0) + ε

≤ E(1, 0) + ε+ ε

= E(1, 0) + 2ε,

which contradicts to the definition of t1. Hence, t1 > Tε, which indi-

cates that (y, z) ∈ Γ2ε (t0 ≤ t ≤ Tε). □

Lemma 5.5. Suppose that γ > 0 is large. There exists a constant

M > 0 independent of γ > 0 such that

|y(t)|+ |z(t)| ≤ M (t ≤ t∗n).

Proof. By the same argument as in the proof of Lemma 5.3 we show

that y′(−∞) = 0. Let Ẽ := Ẽ(y(t), z(t)). Since Ẽ(t) ≤ Ẽ(−∞) = 0,

hence

(5.17)
z(t)2

2
− β(t)

2
y(t)2 +

y(t)p+1

p+ 1
≤ 0 for t ∈ R.

When t ∈ (−∞, t∗n], β(t) is bounded, hence there is K > 0 such that

(5.18) −β(t)

2
y2 +

yp+1

p+ 1
≥ −K

2
+

y2

2
(−∞ < t ≤ t∗n).

We see by (5.17) and (5.18) that for t ∈ (−∞, t∗n],

z(t)2

2
+

y(t)2

2
− K

2
≤ z(t)2

2
− β(t)

2
y(t)2 +

y(t)p+1

p+ 1
≤ 0,

hence y(t)2 + z(t)2 ≤ K. The conclusion holds. □

Proof of Theorem 5.1. Let (yj, zj) be a solution of (4.31) such that

e−mθty(t) → γj
A

(t → −∞). By Lemma 5.5, the sequence {(yj, zj)}
is uniformly bounded in (−∞, t∗n]. Since (yj, zj) is a solution of (4.31),

the sequence {(yj, zj)} is uniformly bounded in (C2(−∞, t∗n])
2. By

Arzelà-Ascoli theorem we can extract a subsequence, which is still de-

noted by {(yj, zj)}, converges in (C1(I))2 to some function (ȳ, z̄), where

I is an arbitrary compact subset of (−∞, t∗n]. By taking the limit, we

find that (ȳ, z̄) satisfies (4.31).

It remains to show that

(5.19) ȳ(t) → 1 as t → −∞,
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for then ȳ is the solution of the problem{
y′′ + αy′ − y + yp −m2e2mty = 0, −∞ < t < t∗n,

y(−∞) = 1.

We have shown in Lemma 4.1 that this problem has a unique solution

y∗(t). Thus, ȳ(t) ≡ y∗(t) (−∞ < t ≤ t∗n). Because of this uniqueness,

the entire sequence {yj} converges to y∗. Thus, as j → ∞,

yj → y∗ and y′j → (y∗)′ in C0
loc(−∞, t∗n].

Hence, the first two convergences of the statement of the theorem are

obtained. The third convergence holds, since uj satisfies (1.7).

We show (5.19) by contradiction argument. Suppose that (5.19) does

not hold. Then there exists a sequence {tk} such that tk → −∞ as

k → ∞, and a constant δ > 0 so that

(5.20) (ȳ(tk), z̄(tk)) ̸∈ Γδ for all k ≥ 1.

Let ε := δ
4
. Then by Lemma 5.3, there exist ξ̄ ∈ R and j0 ∈ N such

that

(yj(ξ̄ − τ(γj)), zj(ξ̄ − τ(γj))) ∈ Γε if j > j0.

By Lemma 5.4, this implies that if j > j0, then

(yj(t), zj(t)) ∈ Γ2ε ⊂ Γδ in (ξ̄ − τ(γj), Tε),

where Tε depends only on ε. By choosing j large enough, the interval

(ξ̄− τ(γj), Tε) can be made to include an element of the sequence {tk}.
We obtain a contradiction, because of (5.20). □

We are in a position to prove Theorem 1.1.

Proof of Theorem 1.1. The existence of u∗(s) near s = 0 follows from

Lemma 4.1. Lemma 4.4 says that u∗ is positive and it is defined in

s ∈ (0,∞). It follows from Lemma 4.8 that u∗ oscillates around 1. The

convergence property follows from Theorem 5.1. □

5.2. Convergence to λ∗
n. Using Theorem 5.1, we prove the following:

Theorem 5.6. Let {λn(γ)}γ>1 be as in Subsection 3.3, and let λ∗
n be

as in Theorem A. Then

λn(γ) → λ∗
n as γ → ∞.
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Proof. Let s̃∗1 be the first positive zero of u∗(s) −
(
p+1
2

) 1
p−1 , and let

I1 := (0,
s̃∗1
2
). Let s1 be the first positive critical point of u(s, γ). We

show by contradiction that if γ > 0 is large,then u(s, γ) does not have

a critical point in I1. Suppose that s1 ∈ I1. Then, s1 should be a

local minimum point of u(s, γ), hence by (1.7), u(s1, γ) < 1. Then the

corresponding orbit in the (u, us)-plane is in {E ≤ 0} at s = s1, and it

cannot go out when s > s1. This contradicts to Theorem 5.1, because

u(s, γ) → u∗(s) in C0[
s̃∗1
2
, s̃∗1]. We have shown that u does not have a

critical point in I1.

Let s∗n be the n-th positive critical point of u∗(s). Let δ > 0 be small.

Because of Theorem 5.1, u(s, γ) → u∗(s) in C1[
s̃∗1
2
, s∗n + δ] as γ → ∞.

Since each zero of u∗
s is simple, sn → s∗n (γ → ∞), where sn is the n-th

positive critical point of u(s, γ). Since
√
λn(γ) = sn and

√
λ∗
n = s∗n,

we obtain the conclusion. □

6. Oscillation of λn(γ)

Let u(s, γ) be the solution of (1.7), and let (λ∗
n, u

∗) be a singular

solution of (1.14). Let {λn(γ)}γ>1 be as given in Subsection 3.3. The

goal of this section is to prove the following:

Theorem 6.1. Suppose that pS < p < pJL. λn(γ) oscillates around λ∗
n

infinitely many times as γ → ∞.

Proof. Let I := (0,
√
λ∗
n]. We define ũ(ρ, γ) := u(s, γ)/γ, ũ∗(ρ, γ) :=

u∗(s)/γ, and ρ := γ
p−1
2 s. We show that

(6.1) for each M ≥ 1, there are ρ0 ∈ [0, 1] and γ0 > 0 such that

Z(0,ρ0)[ũ
∗( · , γ)− ũ( · , γ)] ≥ M for γ ≥ γ0.

The function ũ(ρ) satisfies (1.15). Since the energy

G̃(ũ, ũρ) =
ũ2
ρ

2
− ũ2

2γp−1
+

ũp+1

p+ 1

decreases, G̃(ũ, ũρ) ≤ G̃(1, 0) < 0, hence ũ ≤
(

p+1
2γp−1

) 1
p−1

. Since

ũ/γp−1 → 0 as γ → ∞,

(6.2) ũ(ρ, γ) → ū(ρ, 1) in C2
loc(0,∞) ∩ C0

loc[0,∞) (γ → ∞),
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where ū( · , 1) is the solution of (1.16) with γ = 1. We apply the same

change of variables to the singular solution u∗(s). We have

ũ∗(ρ, γ) :=
1

γ
A

(
ρ

γ
p−1
2

)−θ

(1 + o(1)) (s ↓ 0)

= Aρ−θ(1 + o(1)) (ργ− p−1
2 ↓ 0).(6.3)

If ρ is in a compact interval in R+, then ργ− p−1
2 uniformly converges

to 0 on the interval as γ → ∞. Therefore, (6.3) indicates that

(6.4) ũ∗(ρ, γ) → ū∗(ρ) in C2
loc(0,∞) (γ → ∞),

where ū∗ is given by (2.2) which is a singular solution of the equation

in (1.16). Because of Proposition 2.1, Z[0,∞)[ū
∗( · ) − ū( · , 1)] = ∞.

Therefore, (6.2) and (6.4) indicate that (6.1) holds.

Since 0 < ρ < ρ0 is equivalent to 0 < s < ρ0γ
− p−1

2 and ρ0γ
− p−1

2 ↓ 0

(γ → ∞), (6.1) implies that

(6.5) ZI [u
∗( · )− u( · , γ)] → ∞ (γ → ∞).

Since each zero of u∗( · ) − u( · , γ) is simple, the number of the zeros

in I is preserved provided that another zero does not enter I from ∂I.

Since u∗(0) − u(0, γ) = ∞, a zero cannot enter I from s = 0. Since

(6.5) says that the number of the zeros increases, a simple zero enter

I from s =
√
λ∗
n infinitely many times as γ → ∞. Therefore, there

exists a sequence of large numbers {γj}∞j=1 (γ1 < γ2 < · · · → ∞) such

that u(
√
λ∗
n, γj) = u∗(

√
λ∗
n) and

∂su(
√

λ∗
n, γj)

{
< 0, (j ∈ {1, 3, 5, · · · }),
> 0, (j ∈ {2, 4, 6, · · · }).

Note that ∂su(
√
λ∗
n, γj) ̸= 0, because of the simplicity of the zero. We

consider only the case where n is odd, since the proof of the case where

n is even is similar to this case. In the proof of Theorem 5.6 we already

saw that u(s, γj) does not have a critical point in (0, s̃1
2
).
√
λ∗
n is a

local minimum point of u∗. Because of Theorem 5.1, u(s, γj) is close

to u∗(s) in C2[
s̃∗1
2
,
√

λ∗
n]. We easily see that the n-th positive critical

point of u(s, γ), which is
√

λn(γj), is close to
√

λ∗
n. We consider the

case where ∂su(
√
λ∗
n, γj) < 0. We show that λn(γj) > λ∗

n. Suppose the

contrary, i.e., λn(γj) < λ∗
n. Since ∂su(

√
λ∗
n, γj) < 0 and s =

√
λ∗
n is a

local minimum point of u(
√
λn(γj), γj), there is a local maximum point
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s∗ ∈ (
√

λn(γj),
√

λ∗
n). Since s

∗ is a local maximum point, u(s∗, γj) > 1

which contradicts to Theorem 5.1. Thus, λn(γj) > λ∗
n.

When ∂su(
√
λ∗
n, γj) > 0, we suppose the contrary, i.e., λn(γj) > λ∗

n.

Since
√
λn(γj) is a local minimum point, there is a local maximum

point s∗ ∈ (
√
λn(γj),

√
λ∗
n) and u(s∗, γj) > 1. We obtain a contradic-

tion, because of Theorem 5.1. Thus, λn(γj) < λ∗
n.

We have proved (1.18), which implies that λn(γ) oscillates around λ∗
n

infinitely many times as γ → ∞. □

7. Boundary concentrating solution

We construct a boundary concentrating solution which is radially in-

creasing when λ is large. We show that this solution belongs to C1. We

use different notation only in this section.

7.1. One-dimensional problem. We consider the one-dimensional

problem

(7.1)

{
ε2wxx + f(w) = 0, 0 < x < 1,

wx(0) = wx(1) = 0.

Let w̄(y) := w(x) and y := x/ε. The function w̄(y) satisfies

(7.2)

{
w̄yy + f(w̄) = 0, 0 < y < dε,

w̄y(0) = w̄y(dε) = 0,

where dε := 1/ε.

For p > 1 the system of equations for (w̄, z̄) (z̄ := w̄y) in the phase

plane {
w̄y = z̄

z̄y = −f(w̄)

has a saddle point at (0, 0) and a center (1, 0). There is a unique

homoclinic solution around the center connecting the saddle to itself.

This homoclinic solution can be written explicitly as

w∗(y) :=

(
p+ 1

2

) 1
p−1
(
cosh

(
p− 1

2
y

))− 2
p−1

.

From the phase portrait for (w̄, z̄) it is clear that all the orbits on

{w̄ > 0} satisfying the Neumann boundary conditions are inside the

region enclosed by the homoclinic orbit and that every orbit in this

region is periodic one. Hence, w̄ is a solution of (7.2) if and only if an

integral multiple of its half period is equal to the interval length dε.
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Now, we find a increasing solution. Let w̄(y) be a increasing solution

that has maximum α and minimum β. Then,

0 < β < 1 < α < ᾱ :=

(
p+ 1

2

) 1
p−1

.

Multiplying (7.2) by w̄y and integrating it, we have

w̄2
y = F (w̄)−F (β), F (α) = F (β), and F (w̄) = w̄2− 2

p+ 1
w̄p+1.

The half period is given by the integral

(7.3) T (α) :=

∫ α

β

dw̄√
F (w̄)− F (β)

.

Thus, w̄ is a increasing solution of (7.2) if and only if T (α) = dε. The

integral (7.3) was studied by De Groen and Karadzhov [8]. Among

other things, they obtained

Proposition 7.1. There is a small ε0 > 0 such that the problem (7.1)

has a smooth curve of increasing solutions {w(x; ε)}0<ε<ε0, which can

be described as a graph of ε, satisfying the following: For δ > 0, there

exists ε1 > 0 such that, if 0 < ε < ε1, then

(7.4) |w̃(s; ε)− w∗(s)| < δ for s ∈ [0, dε],

where w̃(s; ε) := w(x; ε) (x = 1− εs). Moreover, the first two eigenval-

ues of the eigenvalue problem

ε2ϕxx + f ′(w)ϕ = κϕ in (0, 1), ϕx = 0 at x = 0, 1

are

κ0(ε) =
(p− 1)(p+ 3)

4
+O

(
e−

2
ε

)
,

κ1(ε)

 = − (p−1)(5−p)
4

+O
(
e−

3−p
ε

)
(1 < p < 3),

≤ −1 +O
(
e−

2
ε

)
(3 ≤ p).

In particular, if ε > 0 is small, then κ1(ε) < 0 < κ0(ε) and w(x; ε) is

nondegenerate.

Using (7.4), we immediately have

Corollary 7.2. Let w(x; ε) be the increasing solution. Then, w satis-

fies (εwx)
2 −F (w) = −F (w(0; ε)) for x ∈ (0, 1), and −F (w(0; ε)) → 0

(ε ↓ 0). Moreover, F (w( · ; ε)) ε↓0−−→ 0 pointwisely in [0, 1].
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We recall some known results of the “limiting” operator L∗ := ∂ss +

f ′(w∗(s)) on R+ with the Neumann boundary condition. The oper-

ator L∗ has a continuous spectrum (−∞,−1] and may have discrete

eigenvalues outside (−∞,−1] ([16, p. 140]). We study the nonnegative

eigenvalues of L∗.

Proposition 7.3. The eigenvalue problem

(7.5) L∗ϕ∗ = κ∗ϕ∗ in R+, ϕ∗
s(0) = 0, ϕ∗ ∈ H1(R+)

has the unique nonnegative eigenvalue. Moreover, this eigenvalue is

the first one which is simple, κ∗
0 := (p− 1)(p+3)/4, and the associated

eigenfunction is ϕ∗
0(s) := (w∗)(p+1)/2.

By direct calculation we see that

ϕ∗
1 := (w∗)

3−p
2 − p+ 3

2(p+ 1)
(w∗)

p+1
2 and κ∗

1 := −(p− 1)(5− p)

4

satisfy

L∗ϕ∗
1 = κ∗

1ϕ
∗
1 in R+, ∂sϕ

∗
1(0) = 0, ϕ∗

1 ∈ H1(R+) (1 < p < 3).

It is known that if 1 < p < 3, then κ∗
1 is the second eigenvalue and that

if p ≥ 3, then L∗ has only one eigenvalue above −1. In particular, 0 is

not an eigenvalue and L∗ is invertible.

Corollary 7.4. For each p > 1, there is δ > 0 such that L∗ has no

eigenvalue in [−δ,∞) except κ∗
0.

7.2. Notation. From now on we assume q ∈ (max{N/2, 2}, N). Un-

der this assumption the inclusion W 2,q(B) ↪→ C0(B) is continuous

(q > N/2) and 1/r ∈ Lq(B) (q < N). Let R denote the set of the

radial functions on B. Let X := {u ∈ W 2,q(B) ∩ R; ∂νu = 0 on ∂B}
and Y := Lq(B) ∩R. By B(X,Y) we denote the space of the bounded

operators from X to Y equipped with the operator norm ∥ · ∥B(X,Y). In
this section we work on X and Y and define f(U) := −U + U |U |p−1

in order that f is defined in R. The regular radial solutions of (1.3)

satisfy

(7.6)

{
ε2
(
∂rr +

N−1
r

∂r
)
U + f(U) = 0, 0 < r < 1,

Ur(0) = Ur(1) = 0.
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Let w(r) be the increasing solution given in Proposition 7.1. We find a

solution of (7.6) near w(r). Substituting U(r) = v(r)+w(r) into (7.6),

we obtain the following equation of the error term v:

(7.7) Lv +Mw +N (v, w) = 0,

where

Lv := ε2
(
∂rr +

N − 1

r
∂r

)
v + f ′(w)v,

Mw := ε2
N − 1

r
wr,

N (v, w) := f(v + w)− f(w)− f ′(w)v.

L is an approximation of the linearized operator ε2
(
∂rr +

N−1
r

∂r
)
+

f ′(U). We easily see that L ∈ B(X,Y) and that N ( · , w) is a nonlinear

mapping from X to Y, since the inclusion X ↪→ C0(B) is continuous.

7.3. Apriori estimates. We use the following apriori estimate in or-

der to use the dominated convergence theorem.

Proposition 7.5. Let Ω be a bounded domain. Let ϕ ∈ C0(Ω)∩H1(Ω).

If

ε2∆ϕ− V (x)ϕ = 0 in Ω,

and if V (x) > C0 > 0 in Ω, then there is C1 > 0 independent of ε such

that

|ϕ(x)| ≤ 2 ∥ϕ∥∞ exp

(
−C1dist(x, ∂Ω)

ε

)
,

where dist(x, ∂Ω) is the distance from x to ∂Ω.

When ϕ ∈ C2(Ω), Proposition 7.5 was proved in [10, Lemma 4.2] for a

general operator. The proof of [10, Lemma 4.2] works in the generalized

sense, hence Proposition 7.5 holds. This proposition was also used in

[27].

Lemma 7.6. Let (κε, ϕ) ∈ R× X (∥ϕ∥∞ = 1) be the eigenpair of{
Lϕ = κεϕ in B,

∂νϕ = 0 on ∂B.

If there is a small δ0 > 0 such that |κε| < δ0 for small ε > 0, then there

are C0 > 0 and C1 > 0 independent of ε > 0 such that

|ϕ(r)| ≤ C0e
−C1(1−r)/ε (0 ≤ r ≤ 1).
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Proof. We see by Proposition 7.1 that there are C2 > 0 and δ1 > 0

such that f ′(w) < −C2 < 0 (0 ≤ r ≤ 1− δ1ε). The function ϕ satisfies

ε2
(
∂rr +

N − 1

r
∂r

)
ϕ+ f ′(w)ϕ− κεϕ = 0.

Since δ0 > 0 is small, there is C3 > 0 such that f ′(w)−κε < f ′(w)+δ0 <

−C3 < 0 (0 ≤ r ≤ 1− δ1ε). It follows from Proposition 7.5 that there

are C4 > 0 and C5 > 0 such that dist(r, ∂B) = 1− r − δ1ε and

|ϕ(r)| ≤ C4e
−C5(1−r−εδ1)/ε = C4e

δ1C5e−C5(1−r)/ε (0 ≤ r ≤ 1− δ1ε).

If we take C4 large enough, then this inequality holds for r ∈ [0, 1],

because ∥ϕ∥∞ = 1 < C4 ≤ C4e
−C5(1−r−εδ1)/ε (1 − δ1ε < r < 1). The

proof is complete. □

7.4. Invertibility of L. The main technical lemma in Section 7 is the

invertibility of L.

Lemma 7.7. The operator L ∈ B(X,Y) is invertible, and there is

C > 0 independent of small ε > 0 such that ∥L−1∥B(Y,X) ≤ C.

Proof. It is enough to show that there is a small δ > 0 such that L has

no eigenvalue in [−δ, δ]. We show this by contradiction.

Suppose the contrary, i.e., there is a small δ > 0 such that L has an

eigenvalue κε in [−δ, δ] for small ε > 0. Then there is an eigenfunction

ϕ such that {
ε2∆ϕ+ f ′(w)ϕ = κεϕ in B,

∂νϕ = 0 on ∂B.

Without loss of generality we can assume ∥ϕ∥∞ = 1. Because of Propo-

sition 7.1, f ′(w)− κε < −δ0 < 0 (0 ≤ r ≤ 1− δ1ε). By Lemma 7.6 we

have

|ϕ(r)| ≤ C0e
−C1(1−r)/ε (0 ≤ r ≤ 1).

We let ϕ̃(s) := ϕ(r), w̃(s) := w(r), and r = 1 − εs. Moreover, we set

ϕ̄(s) := ϕ̃(|s|) and w̄(s) := w̃(|s|). Then ϕ̄ satisfies

(7.8)


ϕ̄ss + a(s)ϕ̄s + f ′(w̄(s))ϕ̄ = 0, −1

ε
< s < 1

ε
,

ϕ̄s(0) = ϕ̄s(±1
ε
) = 0,∥∥ϕ̄∥∥∞ = 1,

where

a(s) := −sign(s)
(N − 1)ε2

1− ε|s|
.



SUPERCRITICAL NEUMANN PROBLEM 43

Let R > 0. If ε > 0 is small, then 2R < 1/ε, a(s) ∈ L∞(−2R, 2R).

By [13, Theorem 9.11] we see that ∥ϕ̄∥H2(−R,R) ≤ C2. Since the in-

clusion H2(−R,R) ↪→ C1,γ(−R,R) (0 < γ < 1/2) is continuous,

∥ϕ̄∥C1,γ(−R,R) ≤ C3. By the Arzelá-Ascoli theorem we can choose

a subsequence {ϕ̄}ε>0 such that the following holds: There is ϕ̄R ∈
C1(−R,R) such that ϕ̄

ε↓0−−→ ϕ̄R in C1(−R,R). It follows from (7.8)

that ϕ̄ss converges in C0(−R,R) as ε ↓ 0. Since the operator ∂ss that

is defined on {u ∈ C2(−R,R); us(0) = 0} is a closed operator in

C1(−R,R), ϕ̄R ∈ C2 and ϕ̄ss
ε↓0−−→ ∂ssϕ̄R in C0(−R,R). Let {Rj}j≥1

(0 < R1 < R2 < · · · → ∞) be a sequence diverging to ∞. For each

fixed Rj, there is ε > 0 such that [0, Rj) ⊂ (−1/ε, 1/ε). Using the

expanding domains {[0, Rj)}j≥1 and a diagonal argument, we see that

there is ϕ̄∗ ∈ C2(R) and κ∗ ∈ [−δ, δ] such that ϕ̄
ε↓0−−→ ϕ̄∗ in C2

loc(R) and
κε → κ∗. We set ϕ∗(s) := ϕ̄∗(s) (s ∈ R+). Since, for each φ ∈ C1

0(R+),∫ 1/ε

0

(
ϕ̃ss −

(N − 1)ε2

1− εs
ϕ̃s + f ′(w̃)ϕ̃− κεϕ̃

)
φds = 0,

we have∫
R+

(ϕ∗
ss + f ′(w∗)ϕ∗ − κ∗ϕ∗)φdx = 0, ∥ϕ∗∥∞ = 1, ϕ∗

s(0) = 0.

Since ∥ϕ∗∥∞ = 1, ϕ∗ ̸≡ 0.

We will show that ϕ∗ ∈ H1(R+). Multiplying Lϕ = κεϕ by rN−1ϕ and

integrating it, we have∫ 1

0

(
ε2ϕ2

r − f ′(w)ϕ2
)
rN−1dr = −

∫ 1

0

κεϕ
2rN−1dr.

Making the change of variables r = 1− εs, we have∫ 1/ε

0

(
ϕ̃2
s + ϕ̃2

)
(1− εs)N−1ds =

∫ 1/ε

0

(
pw̃p−1 − κε

)
ϕ̃2(1− εs)N−1ds.

By Lemma 7.6 we have |ϕ̃(s)| ≤ C0e
−C1s. The right-hand side is

bounded uniformly in ε, hence∣∣∣∣∣
∫ 1/ε

0

(
pw̃p−1 − κε

)
ϕ̃2(1− εs)N−1ds

∣∣∣∣∣ ≤ C2.
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Using Fatou’s lemma, we have∫
R+

{
(ϕ∗

s)
2 + (ϕ∗)2

}
ds =

∫
R+

lim inf
ε↓0

χ[0,1/ε]

(
ϕ̃2
s + ϕ̃2

)
(1− εs)N−1ds

≤ lim inf
ε↓0

∫ 1/ε

0

(
ϕ̃2
s + ϕ̃2

)
(1− εs)N−1ds ≤ C2,

where χ[0,1/ε] is the characteristic function. Thus ϕ
∗ ∈ H1(R+). There-

fore (κ∗, ϕ∗) is an eigenpair of (7.5). Since (7.5) has no eigenvalue in

[−δ, δ] (Corollary 7.4), we obtain a contradiction. □

7.5. Contraction mapping. Because of Lemma 7.7, L is invertible

provided that ε > 0 is small. The equation (7.7) can be transformed

to

v = T (v),

where

T (v) := −L−1[Mw]− L−1[N (v, w)].

In order to show that T is a contraction mapping on a small ball in X
we show that ∥L−1[Mw]∥X is small.

Lemma 7.8. ∥L−1[Mw]∥X = o(ε).

Proof. By Lemma 7.7 we have∥∥L−1[Mw]
∥∥
X ≤

∥∥L−1
∥∥
B(X,Y) ∥Mw∥Y ≤ C ∥Mw∥Y .

We show that ∥Mw∥Y = o(ε). Using Corollary 7.2, we have

∥Mw∥qY =

∥∥∥∥ε2N − 1

r
wr

∥∥∥∥q
q

= (N − 1)qεq
∫ 1

0

(εwr)
qrN−q−1dr

= (N − 1)qεq
∫ 1

0

(F (w(r))− F (w(0)))
q
2 rN−q−1dr.

Since |F (w(r))−F (w(0))| ≤ C (0 ≤ r ≤ 1) and |F (w(r))−F (w(0))| ε↓0−−→
0 pointwisely in [0, 1], we see that (F (w(r))− F (w(0)))q/2 rN−q−1 ε↓0−−→ 0

pointwisely in (0, 1] and that

| (F (w(r))− F (w(0)))q/2 rN−q−1| ≤ Cq/2rN−q−1 ∈ L1(0, 1).
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Here, we use the condition q < N . The dominated convergence theorem

says that ∫ 1

0

(F (w(r))− F (w(0)))
q
2 rN−q−1dr → 0 (ε ↓ 0).

Since ∥Mw∥qY = εq · o(1) = o(εq), the proof is complete. □

Let Bε := {u ∈ X; ∥u∥X < ε}. We show that the Lipschitz constant

of N ( · , w) in Bε is small.

Lemma 7.9. Let ε > 0 be small. If v1, v2 ∈ Bε, then∥∥L−1[N (v1, w)]− L−1[N (v2, w)]
∥∥
X ≤ o(1) ∥v1 − v2∥X (ε ↓ 0).

In particular, the Lipschitz constant of L−1[N ( · , w)] : Bε −→ X is less

than one.

Proof. By Lemma 7.7 we have∥∥L−1[N (v1, w)]− L−1[N (v2, w)]
∥∥
X ≤

∥∥L−1
∥∥
B(X,Y) ∥N (v1, w)−N (v2, w)∥Y

≤ C ∥N (v1, w)−N (v2, w)∥Y .

We show that ∥N (v1, w)−N (v2, w)∥Y ≤ o(ε) ∥v1 − v2∥X for v1, v2 ∈
Bε. We have

∥N (v1, w)−N (v2, w)∥q = ∥f(v1 + w)− f(v2 + w)− f ′(w)(v1 − v2)∥q
= ∥f ′(w̃)(v1 − v2)− f ′(w)(v1 − v2)∥q
≤ ∥f ′(w̃)− f ′(w)∥∞ ∥v1 − v2∥q .

Here, w̃(x) is a function such that

min{v1(x)+w(x), v2(x)+w(x)} ≤ w̃(x) ≤ max{v1(x)+w(x), v2(x)+w(x)},

hence ∥w(x)− w̃(x)∥∞ ≤ Cε. We have ∥f ′(w̃)− f ′(w)∥∞ = o(1) (ε ↓
0). Thus,

∥N (v1, w)−N (v2, w)∥q ≤ o(1) ∥v1 − v2∥q
≤ o(1)C ∥v1 − v2∥X .

The proof is complete. □

Using Lemma 7.9, we will show that T is a contraction mapping in

Bε.

Lemma 7.10. Let ε > 0 be small. Then T (Bε) ⊂ Bε. Moreover, the

Lipschitz constant of T : Bε −→ Bε is less than one, i.e., there is δ ∈
(0, 1) such that if v1, v2 ∈ Bε, then ∥T (v1)− T (v2)∥X ≤ δ ∥v1 − v2∥X.
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Proof. First, we will show that T (Bε) ⊂ Bε. By Lemma 7.9 we have

that, for v ∈ Bε,∥∥L−1[N (v, w)]
∥∥
X =

∥∥L−1[N (v, w)]− L−1[N (0, w)]
∥∥
X

≤ o(1) ∥v − 0∥X ,(7.9)

where we use Lemma 7.9. We have that, for v ∈ Bε,

∥T (v)∥X =
∥∥L−1[Mw] + L−1[N (v, w)]

∥∥
X

≤
∥∥L−1[Mw]

∥∥
X +

∥∥L−1[N (v, w)]
∥∥
X

≤ o(ε) + o(1) ∥v∥X = o(ε),

where we use Lemma 7.8 and (7.9). Thus, if ε > 0 is small, then, for

all v ∈ Bε, T (v) ∈ Bε.

Second, we show that the Lipschitz constant of T ( · ) in Bε is o(1).

We have that, for v1, v2 ∈ Bε,

∥T (v1)− T (v2)∥X =
∥∥L−1[N (v1, w)]− L−1[N (v2, w)]

∥∥
X

≤ o(1) ∥v1 − v2∥X ,

where we use Lemma 7.9. Then the later part of the lemma holds. □

Applying the contraction mapping theorem to T which is defined in

Bε, we obtain the following:

Corollary 7.11. There is a large λ0 > 0 such that (7.6) has a one-

parameter family of positive solutions {(λ, U(r, λ))}λ>λ0 and ∥U − w∥∞ <

Cε(= C/
√
λ).

Proof. Since the condition ∥U − w∥∞ < Cε does not guarantee the

positivity of U , we have to check the positivity of U . We see by apriori

estimate that U is a classical solution. If there is r0 ∈ [0, 1] such

that U(r0) < 0, then there is r1 ∈ [0, 1] such that min0≤r<1 U(r) =

U(r1) < 0. Then, 0 ≤ ε2Urr(r1) = −f(U(r1)), hence U(r1) ≤ −1. We

obtain a contradiction, because ∥U − w∥∞ < Cε. Therefore U ≥ 0.

The equality does not hold, because of the strong maximum principle.

Thus, U > 0. □

7.6. Nondegeneracy.

Lemma 7.12. Let {(λ, U)} be a family of solutions obtained in Corol-

lary 7.11, and let L := ε2
(
∂rr +

N−1
r

∂r
)
+ f ′(U). Then there is small
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δ > 0 such that L has no eigenvalue in [−δ, δ] if ε > 0 is small. In

particular, U is nondegenerate in X.

Proof. Let δ > 0 be a constant used in the proof of Lemma 7.7. Then,

L has no eigenvalue in [−δ, δ]. We show that L has no eigenvalue in

[−δ/2, δ/2]. Suppose the contrary, i.e., there is κλ ∈ [−δ/2, δ/2] such

that Lϕ = κλϕ (∥ϕ∥X = 1). Then,

(7.10) (L − κλ)ϕ+ (f ′(U)− f ′(w))ϕ = 0.

Because of Lemma 7.7, (L − κλ) is invertible and there is C > 0 inde-

pendent of small ε > 0 such that ∥(L − κλ)
−1∥B(X,Y) ≤ C. It follows

from Corollary 7.11 that ∥f ′(U)− f ′(w)∥∞ → 0 as ε ↓ 0. By (7.10) we

have

∥ϕ∥X =
∥∥(L − κλ)

−1 [(f ′(U)− f ′(w))ϕ]
∥∥
X

≤
∥∥(L − κλ)

−1
∥∥
B(X,Y) ∥(f

′(U)− f ′(w))ϕ∥Y
≤ C ∥f ′(U)− f ′(w)∥∞ ∥ϕ∥Y → 0 (ε ↓ 0),

which contradicts that ∥ϕ∥X = 1. □

7.7. Asymptotic behavior of λ1(γ) (γ ↓ 0).

Theorem 7.13. Let (λ1(γ), U1(r, γ)) ∈ C1. Then, U1(r, γ) is a bound-

ary concentrating solution obtained in Corollary 7.11 if γ > 0 is small.

Proof. Since |w(r)−w(r)p| ≤ C (0 ≤ r ≤ 1) and w(r)
ε↓0−−→ 0 pointwisely

in [0, 1), by the dominated convergence theorem we see that if r > 1/2,

then

ε2
|wr(r)|

r
≤ 1

r

∫ r

0

(|w(s)|+ |w(s)|p) ds

≤ 2

∫ 1

0

(|w(s)|+ |w(s)|p) ds → 0 (ε ↓ 0).

Hence, ∥Mw∥∞ → 0 (ε ↓ 0). Since v satisfies (7.7), by the elliptic regu-

larity we see that ∥v∥C1 → 0 (ε ↓ 0). If v(x0)+w(x0) = 1, then x0 > 1/2

and by phase plane argument we see that w′(x0)(> 0) is large. Since

v′(x0) is small, v′(x0)+w′(x0) > 0. Therefore, Z[0,1][v( · )+w( · )−1] = 1

provided that ε > 0 is small. The boundary concentrating solution ob-

tained by Corollary 7.11 belongs to C1, because of (1.10). The proof of
(1.10) is postponed until the proof of Theorem B in Section 8. □
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Corollary 7.14. Let (λ1(γ), U1(r, γ)) ∈ C1. Then, λ1(γ) → ∞ (γ ↓ 0).

Moreover, ∂γλ1(γ) < 0 for small γ > 0.

Proof. Because of Lemma 7.12, if ε > 0 is small, then U is nondegen-

erate, which indicates the following: If λ1(γ) > 0 is large, then

(7.11) ∂γλ1(γ) ̸= 0.

Because of Corollary 7.11, ∥U − w∥∞ < Cε. Since ε = (λ1(γ))
− 1

2 , we

have

(γ(λ1) =)U(0) ≤ |U(0)− w(0)|+ |w(0)|

< O(
1√
λ1

) + o(1) (λ1 → ∞).

Therefore,

(7.12) γ(λ1) → 0 (λ1 → ∞).

By (7.11) and (7.12) we see that

(7.13) ∂γλ1(γ) < 0 if λ1(γ) > 0 is large.

By (7.12) and (7.13) we see that λ1(γ) → ∞ (γ ↓ 0). □

8. Proof of Theorem B

Proof of Theorem B. (i) is mentioned in Section 1. (ii) follows from

Theorem 5.6. (iii) is proved in Theorem 6.1. (v) follows from The-

orem 7.13 and Corollary 7.14. Let u(s, γ) be the solution of (1.7).

Then, we already saw in Lemmas 3.3 and 3.5 that if γ ≠ 1, then u(s, γ)

has infinitely many critical points. Let {sn}∞n=1 (0 < s1 < s2 < · · · )
denote the set of the critical points of u(s, γ). Since λn(γ) = s2n,

(vi) holds. Corollary 7.14 says that λ1(γ) → ∞ (γ ↓ 0). Since

λ1(γ) < λ2(γ) < · · · , (iv) holds.
We prove (1.10). Let (λ0, U0) ∈ S, and let m := Z[0,1][U( · ) − 1].

Proposition 3.1 says that there is a one-parameter family of solutions

C := (λ(γ), U(γ)) such that (λ(0), U(0)) = (λ0, U0). This branch C
can be extended to γ = 1, because of Lemmas 3.3 and 3.5. Note

that Z[0,1][U( · , γ) − 1] = m if (λ, U) ∈ C and U ̸≡ 1. It follows

from the uniqueness of the branch near (λ̄m, 1) that C ⊂ Cm. Thus,

(λ0, U0) ∈ C ⊂ Cm, and the (1.10) holds. The proof is complete. □
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Proof of Corollary 1.3. Let λ := infγ∈R+ λ1(γ) > 0. Because of (ii) and

(iv), λ > 0. For each n ≥ 2, λn(γ) > λ1(γ)(≥ λ). This implies that the

first assertion holds. The other assertion follows from the boundedness

of {λ1(γ)}γ>1. □

Proof of Corollary 1.4. The statement clearly follows from (ii), (iii),

and (iv) of Theorem B. □
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[28] S. Pohožaev, On the eigenfunctions of the equation ∆u + λf(u) = 0, Dokl.
Akad. Nauk SSSR 165 (1965) 36–39.

[29] J. Wei, On the boundary spike layer solutions to a singularly perturbed Neu-
mann problem, J. Differential Equations 134 (1997), 104–133.

[30] J. Wei, On the interior spike layer solutions to a singularly perturbed Neumann
problem, Tohoku Math. J. 50 (1998), 159–178.

[31] J. Wei, On single interior spike solutions of the Gierer-Meinhardt system:
uniqueness and spectrum estimates, European J. Appl. Math. 10 (1999), 353–
378.

Graduate School of Mathematical Sciences, The University of Tokyo,
3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan
E-mail address: miyamoto@ms.u-tokyo.ac.jp



Preprint Series, Graduate School of Mathematical Sciences, The University of Tokyo

UTMS

2012–13 H. Kawakami, A. Nakamura, and H. Sakai: Degeneration scheme of 4-
dimensional Painlevé-type equations.

2012–14 Yusaku Tiba: The second main theorem for entire curves into Hilbert modular
surfaces.

2012–15 O. Yu. Imanuvilov and M. Yamamoto: Inverse boundary value problem for
Schrödinger equation in cylindrical domain by partial boundary data.

2012–16 Nao Hamamuki: A discrete isoperimetric inequality on lattices.

2012–17 Nao Hamamuki: Asymptotically self-similar solutions to curvature flow equa-
tions with prescribed contact angle and their applications to groove profiles due
to evaporation-condensation.

2012–18 Guanyu Zhou: Analysis of the fictitious domain method with L2-penalty for
elliptic and parabolic problems.

2013–1 Yasuko Hasegawa: The critical values of exterior square L-functions on GL(2).

2013–2 Toshio Oshima: An elementary approach to the Gauss hypergeometric function.

2013–3 Kazuki Okamura: Large deviations for simple random walk on percolations with
long-range correlations .

2013–4 Kiyoomi Kataoka and Nobuko Takeuchi: A system of fifth-order PDE’s describ-
ing surfaces containing 2 families of circular arcs and the reduction to a system
of fifth-order ODE’s .

2013–5 Takushi Amemiya: Orders of meromorphic mappings into Hopf and Inoue sur-
faces.

2013–6 Yasuhito Miyamoto: Structure of the positive radial solutions for the supercrit-
ical Neumann problem ε2∆u− u+ up = 0 in a ball.

The Graduate School of Mathematical Sciences was established in the University of
Tokyo in April, 1992. Formerly there were two departments of mathematics in the Uni-
versity of Tokyo: one in the Faculty of Science and the other in the College of Arts and
Sciences. All faculty members of these two departments have moved to the new gradu-
ate school, as well as several members of the Department of Pure and Applied Sciences
in the College of Arts and Sciences. In January, 1993, the preprint series of the former
two departments of mathematics were unified as the Preprint Series of the Graduate
School of Mathematical Sciences, The University of Tokyo. For the information about
the preprint series, please write to the preprint series office.

ADDRESS:
Graduate School of Mathematical Sciences, The University of Tokyo
3–8–1 Komaba Meguro-ku, Tokyo 153, JAPAN
TEL +81-3-5465-7001 FAX +81-3-5465-7012


