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Abstract
In a late paper of J. Noguchi and J. Winkelmann [7] (J. Math. Soc. Jpn., Vol. 64 No.4

(2012), 1169-1180) they showed the condition of being Kähler or non-Kähler of the image
space to make a difference in the value distribution theory of meromorphic mappings into
compact complex manifolds. In this paper, we will investigate orders of meromorphic map-
pings to a Hopf surface which is more general than dealt with by Noguchi-Winkelmann, and
an Inoue surface. They are non-Kähler surfaces and belong to VII0-class. For a general Hopf
surface S, we prove that there exists a differentiably non-degenerate holomorphic mapping
f : C2 → S with order at most one. For any Inoue surface S′, we prove that every non-
constant meromorphic mapping f : Cn → S′ is holomorphic, differentiably degenerate and
its order satisfies ρf ≥ 2.

1 Main Results

In Nevanlinna theory, there are many studies on the value distribution of meromorphic map-

pings whose image spaces are Kähler, especially complex projective algebraic manifolds. On the

other hand, however, little are known for the non-Kähler case. J. Noguchi and J. Winkelmann

gave the first phenomena where Kähler or non-Kähler condition of the image space make dif-

ference in value distribution theory by focusing on orders of meromorphic mappings [7]. The

purpose of this paper is to investigate orders of meromorphic mappings into Hopf surfaces and

Inoue surfaces, both of which are non-Kähler surfaces. The two main theorems are as follows.

Main Theorem 1.1. Let Sa,b be a Hopf surface defined by the action,

n : (x, y) ∈ C2 \ {(0, 0)} 7→ (anx, bny) ∈ C2 \ {(0, 0)}, n ∈ Z,

where a, b are complex numbers with |a|, |b| > 1. Then there exists a differentiably non-degenerate

holomorphic mapping f : C2 → Sa,b with order at most one.

We are going to prove this theorem by branched covering argument and applying some esti-

mates introduced by J. Noguchi-J. Winkelmann [7] to prove the case of a = b.

N.B. In general, whether there exists a differentiably non-degenerate meromorphic mapping

with order less than two or not are big difference. Because if there is such a map, every global

contravariant holomorphic tensor on the manifold must vanish ([7]).
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Main Theorem 1.2. Let S be an Inoue surface. Let n be an arbitrary natural number. Then

every non-constant meromorphic mapping f : Cn → S is holomorphic, differentially degenerate

and its order satisfies ρf ≥ 2.

Acknowledgement. I would like to express my deep gratitude to my advisor Professor Junjiro

Noguchi for his great advice, helpful comments and warm encouragements. I would also thank

Dr. Yusaku Tiba for giving me a number of invaluable comments.

2 Preliminaries

2.1 Notation

We fix the following notaion.

• Let X be a compact complex manifold.

• Let f : Cn → X be a meromorphic mapping. We denote by I(f) the indeterminancy locus

of f .

• If the differential df is generically of maximal rank, f is said to be differentiably non-

degenerate.

• For z = (zj) ∈ Cn, we set

α = ddc∥z∥2,(2.1)

ζ = dc log ∥z∥2 ∧ (ddc log ∥z∥2)n−1,(2.2)

where dc = i
4π (∂̄ − ∂) and ∥z∥2 =

∑n
j=1 |zj |2.

• B(r) = {z ∈ Cn : ∥z∥ < r}, S(r) = {z ∈ Cn : ∥z∥ = r} (r > 0).

Definition 2.3. Let f : Cn → X be a meromorphic mapping and let ω be a Hermitian metric

form on X. We define a function

Tf (r, ω) =
∫ r

1

dt

t2n−1

∫
B(t)

f∗ω ∧ αn−1

which is called the characteristic function of f with respect to ω.

Definition 2.4. In above setting we define the order of f as follows,

(2.5) ρf = lim
r→∞

log Tf (r, ω)
log r

.

Since X is compact, ρf is independent of the choice of a metric form ω on X.

2



2.2 Relations between orders and one-dimensional image spaces

Possible values of orders are affected by image spaces. To get a better comprehension of our

results, we recall the following facts of one dimensional case.

Fact 2.6. Let X be a closed Riemann surface of genus g.

(i) Let g ≥ 2 and let f be a holomorphic mapping from C into X. Then f is constant.

(ii) Let g = 1 and let f be a non-constant holomorphic mapping from C into X. Then the

order satisfies ρf ≥ 2.

(iii) Let g = 0 and let s ≥ 0 be a given real number. Then there exists a non-constant holo-

morphic mapping f : C → X with order s. ([5],Theorem 7.5.9, p.241.)

Here it is noted that every meromorphic mapping from C into a compact complex manifold

is holomorphic since codim I(f) ≥ 2 (I(f) = ∅ in this case).

2.3 Difference between Kähler and non-Kähler surfaces

J. Noguchi and J. Winkelmann proved the following theorems, giving the first phenomena

where Kähler or non-Kähler conditions of image spaces make difference in value distribution.

Theorem 2.7 (J. Noguchi-J. Winkelmann [7]). Let X be a compact Kähler surface. Assume

that there is a differentiably non-degenerate meromorphic mapping f : C2 → X. If ρf < 2, then

X is rational.

The Kähler condition is necessary by the following:

Theorem 2.8 (J. Noguchi-J. Winkelmann [7]). Let a be a complex number with |a| > 1. Let Sa,a

be a Hopf surface defined as the quotient of C2 \ {(0, 0)} by a Z-action n : (x, y) 7→ (anx, any).

Then there exists a differentiably non-degenerate holomorphic mapping f : C2 → Sa,a with order

at most one.

3 General Hopf surfaces : Proof of Main Theorem 1.1.

Our Main Theorem 1.1. asserts that Theorem 2.8 still holds for more general Hopf surfaces.

We are going to prove Main Theorem 1.1. in two steps.

Proof. We may assume 1 < |b| ≤ |a|. In the first step, we prove the holomorphic mapping

f : C2 → Sa,b induced by

f̃ : C2 → C2 \ {(0, 0)} (z, w) 7→ (z, 1 + zw)
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is diffetentiably non-degenerate and its order satisfies ρf ≤ 1, assuming that

(3.1) 1 < |b| ≤ |a| ≤ |b|
3
2 .

In the second step, we prove that the same result holds for all a, b ∈ C with |a|, |b| > 1 by

using a branched covering argument.

3.1 The first step with assumption (3.1)

Let α be as in (2.1). Setting γ = log |a|
log |b| − 1 and δ = 1 − log |b|

log |a| , we have 0 ≤ δ ≤ γ ≤ 1
2 by (3.1).

We define a continuous positive Hermitian form on C2 \ {(0, 0)} which is invariant under the

above Z-action as follows,

ω̃ =
i

2π
· dx ∧ dx̄ + (|y|2γ + |x|2δ)dy ∧ dȳ

|x|2 + (|y|2γ + |x|2δ)|y|2
.

It induces a continuous positive Hermitian form on the quotient space Sa,b which is denoted

by ω.

Since Sa,b is compact, the order ρf is independent of choices of smooth Hermitian metrics. In

addition to this, a continuous Hermitian metric is bounded from below by a positive constant

multiple of a smooth Hermitian metric by the compactness. Therefore it suffices to show

lim
r→∞

1
log r

log
∫ r

1

dt

t3

∫
B(t)

f∗ω ∧ α ≤ 1.

Note that

f∗ω ∧ α =
1 + (|z|2 + |w|2)(|1 + zw|2γ + |z|2δ)
|z|2 + |1 + zw|2(|1 + zw|2γ + |z|2δ)

α2.

We define

I ′r =
∫

S(r)

r2 + 1
|1+zw|2γ+|z|2δ

|z|2
|1+zw|2γ+|z|2δ + |1 + zw|2

dV, r = ∥(z, w)∥,

Ir =
∫

S(r)

r2

|z|2
|1+zw|2γ+|z|2δ + |1 + zw|2

dV, r = ∥(z, w)∥.

Here dV is the euclidean volume element on S(r). Then we have

(3.2) I ′r ≤ 2Ir.

Indeed,

• When |z| ≥ r−
1
δ , we have |1 + zw|2γ + |z|2δ ≥ |z|2δ ≥ r−2.

• When |z| ≤ r−
1
δ , we have |zw| ≤ r1− 1

δ ≤ r−1. This implies

|1 + zw|2γ + |z|2δ ≥ |1 + zw|2γ ≥ (1 − r1− 1
δ )2γ ≥ (1 − r1− 1

δ ) ≥ r−2

for all large r.
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In both cases, 1
|1+zw|2γ+|z|2δ ≤ r2 for all large r. Hence it is sufficient to show

(3.3) Ir = O(r2+ε), ∀ε > 0.

In fact, from this and (3.2), we obtain∫
B(r)

r2 + 1
|1+zw|2γ+|z|2δ

|z|2
|1+zw|2γ+|z|2δ + |1 + zw|2

α2 = O

(∫ r

I ′rdr

)
= O(r3+ε), ∀ε > 0,

which implies

Tf (r) =
∫ r

1

dt

t3

∫
B(t)

r2 + 1
|1+zw|2γ+|z|2δ

|z|2
|1+zw|2γ+|z|2δ + |1 + zw|2

α2 = O(r1+ε), ∀ε > 0.

Therefore we have

ρf = lim
r→∞

log Tf (r)
log r

≤ 1.

To show (3.3), we set

η =
r2

|z|2
|1+zw|2γ+|z|2δ + |1 + zw|2

.

To estimate Ir =
∫
S(r) ηdV , we divide S(r) into eleven regions, A, B, C, D−2, D−1, D0, D1, E,

F , G, H which are defined later, and estimate the volume and the integrand on each region.

We introduce useful some geometric and arithmetic estimates used in [7].

Geometric estimates.

For (z, w) ∈ C2 with z ̸= 0 and w ̸= 0, set θ ∈ [0, 2π) by eiθ|zw| = zw. For K > 0,

−∞ < λ < 1 and µ ≥ 0, we set

ΩK,λ,µ = {(z, w) ∈ S(r)| z = 0 or (0 < |z| ≤ Krλ, | sin θ| ≤ r−µ)}.

We define a mapping Φ : C2 \ {z = 0 orw = 0} → C × R2 as follows,

Φ : (z, w) 7→ (z, r arg(zw), r)

where r = ||(z, w)|| =
√
|z|2 + |w|2. To show the Jacobian of Φ is identically −1 we set z =

x +
√
−1y, w = u +

√
−1v and write Φ with real coordinates as follows,

Φ : (x, y, u, v) 7→ (x, y, r(arg z + arg w), r) ∈ R4

with r =
√

x2 + y2 + u2 + v2. The Jacobian of Φ is

|JΦ| =

∣∣∣∣∣∣∣∣
1 0 0 0
0 1 0 0
∗ ∗ u

r (arg z + arg w) + r ∂
∂u arg w v

r (arg z + arg w) + r ∂
∂v arg w

∗ ∗ u
r

v
r

∣∣∣∣∣∣∣∣
=

∣∣∣∣r ∂
∂u arg w u

r

r ∂
∂v arg w v

r

∣∣∣∣
≡ −1
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Furthermore the gradient grad(r) is of length one and normal on the level set S(r).

Hence the euclidean volume of ΩK,λ,µ is the same as the euclidean volume of

{z ∈ C : |z| ≤ Krλ} × {θr : θ ∈ [0, 2π), | sin θ| ≤ r−µ} × {r}

becuase

vol(ΩK,λ,µ) = vol(ΩK,λ,µ \ {z = 0})

= vol(Φ(ΩK,λ,µ \ {z = 0}))

= vol({z ∈ C : 0 < |z| ≤ Krλ} × {θr : θ ∈ [0, 2π), | sin θ| ≤ r−µ} × {r})

= vol({z ∈ C : |z| ≤ Krλ} × {θr : θ ∈ [0, 2π), | sin θ| ≤ r−µ} × {r})

Using sin(θ) ≥ 2
πθ (θ ∈ [0, π

2 )), it follows that for r ≥ 1 the volume of ΩK,λ,µ is bounded from

above by

π
(
Krλ

)2
· 2r−µπr = 2K2π2r2λ+1−µ.

In particular,

(3.4) vol(ΩK,λ,µ) = O(r2λ+1−µ).

Arithmetic estimates.

Besides the Landau O-symbols we also use the notation &: If f, g are functions of a real

parameter r, then f(r) & g(r) indicates that

lim inf
r→+∞

f(r)
g(r)

≥ 1.

Similarly f ∼ g indicates

lim
r→+∞

f(r)
g(r)

= 1.

In the sequel, we will work with domains Ω ⊂ S(r) (i.e. for each r > 0 some subset Ω = Ωr ⊂
S(r) is chosen). In this context, given functions f , g on C2 we say f(z, w) & g(z, w) holds on Ω

if for every sequence (zn, wn) ∈ Ωr (r = ||(zn, wn)||) with

lim
n→∞

||(zn, wn)|| = +∞

and we have

lim inf
n→∞

f(zn, wn)
g(zn, wn)

≥ 1.

We show some estimates for η = r2

|z|2
|1+zw|2γ+|z|2δ +|1+zw|2

. Fix −∞ < λ < 1.
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(i) Suppose (z, w) ∈ S(r) and |z| ≤ 1
2r . Since |w| ≤ r, we have |zw| ≤ 1

2 , implying |1+zw| ≥ 1
2 .

Therefore η ≤ r2

|1+zw|2 ≤ 4r2.

(ii) Suppose |z| ≤ rλ. We have |w| ∼ r.

(iii) Suppose |z| ≥ 3
2r and |z| ≤ rλ. We have |1 + zw|2 & 1

9 |zw|2. Since |w| ∼ r, we have

|zw| & 3
2 (equivalently, 1 . 2

3 |zw|), implying |1 + zw| ≥ |zw| − 1 & 1
3 |zw|. Therefore

η ≤ cr2

|zw|2 . (Here c is a positive constant greater than nine)

(iv) For all z and w, |z|2
|1+zw|2γ+|z|2δ + |1 + zw|2 ≥ |Im(1 + zw)|2 = (|zw| sin θ)2.

Estimates on each regions.

We are going to prove the following claim

Ir = O(r2+ε), ∀ε > 0

by dividing S(r) into eleven regions A, B, C, D−2, D−1, D0, D1, E, F , G, H, each of which is

investigated separately.

• A = {(z, w) ∈ S(r)| |z| ≤ 1
2r}, i.e., A = Ω 1

2
,−1,0. By (3.4), we have vol(A) = O(r−1). Due

to (i), restriction of integrand η to A is η|A = O(r2). Thus∫
A

η dV ≤ vol(A) · sup
(z,w)∈A

η(z, w) ≤ O(r).

Hence the contribution of A to the integral Ir =
∫
S(r) η dV is bounded by O(r).

• B = {(z, w) ∈ S(r)| 1
2r ≤ |z| ≤ 3

2r and |sin θ| < 1
r}. Thus B ⊂ Ω3/2,−1,1. Due to (3.4), we

have vol(B) = O(r−2). Since |zw| ≤ 3
2 , the function |1+zw|2γ is bounded on B. Therefore

we obtain

η|B ≤ r2

|z|2
(|1 + zw|2γ + |z|2δ) = O(r4).

At the last estimate we used the inequality |z| ≥ 1
2r . Hence we have∫

B
η dV ≤ vol(B) · sup

(z,w)∈B
η(z, w) = O(r2),

which implies the contribution of B to the integral Ir is bounded by O(r2).

• C = {(z, w) ∈ S(r)| 1
2r ≤ |z| ≤ 3

2r and |sin θ| > 1
r}. Then its image by Φ is

Φ(C) =
{

z ∈ C
∣∣∣ 1

2r
≤ |z| ≤ 3

2r

}
×

{
θr

∣∣∣ θ ∈ [0, 2π), |sin θ| >
1
r

}
×

{
r
}

.
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For z ∈ C with 1
2r ≤ |z| ≤ 3

2r , we define

Jr(z) :=
∫

0<θ<2π, |sin θ|> 1
r

η(Φ−1(z, rθ, r)) rdθ.

Since |w| ∼ r, we obtain 1
2 . |zw| . 3

2 . Using arithmetic estimate (iv), we get

η ≤ r2

|1 + zw|2
≤ r2∣∣sin2 θ

∣∣ |zw|2
≤ c · r2∣∣sin2 θ

∣∣ .
Here c is a constant greater than four. Hence we obtain

Jr(z) ≤
∫

0<θ<2π, |sin θ|> 1
r

c · r2∣∣sin2 θ
∣∣rdθ = 4

∫ π
2

arcsin 1
r

c · r3∣∣sin2 θ
∣∣dθ = 4c · r4

√
1 − 1

r2
≤ 4c · r4.

Therefore it follows that

(3.5)
∫

C
η dV =

∫
1
2r

≤|z|≤ 3
2r

Jr

√
−1
2

dz ∧ dz̄ ≤ c′r2

where c′ is a positive constant. Thus the contribution of C to the integral Ir is bounded

by O(r2).

• For n ∈ {−2,−1, 0, 1}, set Dn = {(z, w) ∈ S(r)| |z| ≥ 3
2r , |z| ≤ r1−ε and r

n
2 ≤ |z| ≤ r

n+1
2 }.

For each n, the integrand η is bounded by O(r−n) on Dn due to (iii), and vol(Dn) =

O(r2+n) because Dn ⊂ Ω1, n+1
2

,0. Thus the contribution of Dn to the integral Ir is bounded

by O(r2).

• E = {(z, w) ∈ S(r)| |z| ≥ r1−ε, |w| ≥ r
1
2 }. Since |zw| ≥ r

3
2
−ε, we have

η|E ≤ r2

|1 + zw|2
≤ r2

(|zw| − 1)2
≤ r2

(r
3
2
−ε − 1)2

= O(r2ε−1).

Because vol(E) is bounded by the total volume of S(r), vol(E) = O(r3). Thus the contri-

bution of E to Ir is bounded by O(r2+2ε).

• F ={(z, w) ∈ S(r)| 1 ≤ |w| ≤ r
1
2 }. Since |z| =

√
r2 − |w|2 ≥

√
r2 − r > 1, we have

η|F ≤ r2

|1 + zw|2
≤ r2

(
√

r2 − r − 1)2
= O(1).

Because the volume of F agrees with the volume of {(z, w) ∈ S(r)| 1 ≤ |z| ≤ r
1
2 } ⊂ Ω1, 1

2
,0,

we obtain

vol(F ) ≤ vol(Ω1, 1
2
,0) = O(r2).

Thus the contribution of F to Ir is bounded by O(r2).
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• G = {(z, w) ∈ S(r)| r−1 ≤ |w| ≤ 1}. Since |z| ≤ r, we have |zw| ≤ r. This implies

|1 + zw|2γ ≤ (r2 + 2r + 1)γ . Hence we obtain

η|G ≤ r2

|z|2
(|1 + zw|2γ + |z|2δ) ≤ O(r2γ) ≤ O(r).

Here we used |z| ∼ r and 0 ≤ δ ≤ γ ≤ 1
2 . Because vol(G) ≤ vol(Ω1,0,0) = O(r), the

contribution of G to Ir is bounded by O(r2).

• H = {(z, w) ∈ S(r)| 0 ≤ |w| ≤ r−1}. Since |w| ≤ r−1, we have |z| ∼ r and |zw| ≤ 1. Hence

we obtain

η|H ≤ r2

|z|2
(|1 + zw|2γ + |z|2δ) ≤ O(r2δ) ≤ O(r).

Because vol(H) ≤ O(r−1), the contribution of H to the integral Ir is bounded by O(1).

Eleven regions A, B, C, D−2, D−1, D0, D1, E, F , G, H cover the sphere S(r). On each such

region Ω we have verified ∫
Ω

η dV = O(r2+ε), ε > 0.

Therefore those establish our claim

Ir = O(r2+ε), ε > 0.

As a consequence, the holomorphic mapping f : C2 → Sa,b induced by f̃ : (z, w) 7→ (z, 1 + zw)

is of order at most one.

3.2 The second step: To remove assumption (3.1)

We show by branched covering argument that for every a, b ∈ C with 1 < |b| ≤ |a|, there exists

a differentiably non-degenerate meromorphic mapping from C2 into Hopf surface Sa,b with order

at most one.

Take a, b ∈ C with 1 < |b| ≤ |a|. Then there exist p, q ∈ N such that |b|q ≤ |a|p ≤ |b|
3
2
q. Let

Πa,b be the universal covering of Sa,b, and Πap,bq be the one of Sap,bq . We define a holomorphic

mapping Ψ̃ as follows,

Ψ̃ : C2 \ {(0, 0)} → C2 \ {(0, 0)}, (x, y) 7→ (xq, yp).

Then Ψ̃ induces a branched covering Ψ,

C2 \ {(0, 0)} Ψ̃−−−−→ C2 \ {(0, 0)}

Πap,bq

y Πa,b

y
Sap,bq −−−−→

Ψ
Sa,b

.
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Note that ap and bq satisfy (3.1). By the first step, there exists a differentiably non-degenerate

holomorphic mapping g : C2 → Sap,bq with order at most one. Then Ψ◦ g is also a differentiably

non-degenrate holomorphic mapping from C2 into Sa,b with order at most one since dΨ is

generically rank 2.

4 Inoue Surfaces : Proof of the Main Theorem 1.2.

M. Inoue constructed in [2], three type of surfaces SM , S
(+)
N,p,q,r;t and S

(−)
N,p,q,r, which are called

Inoue surfaces. It is known that a VII0 surface with second betti number zero is either an Inoue

surface or a Hopf surface, and that an Inoue surface contains no closed curve. In this section

we recall the definition of SM , S
(+)
N,p,q,r;t, S

(−)
N,p,q,r and prove the Main Theorem 1.2. as S = SM ,

S
(+)
N,p,q,r;t, S

(−)
N,p,q,r respectively.

The case of S = SM : Let H = {x ∈ C | Imx > 0} be the upper half plane. Let M = (mij) ∈
SL(3, Z) be a unimodular matrix with one real eigenvalue λ1 > 1 and two complex conjugate

eigenvalues λ2 ̸= λ̄2. Note that λ1 |λ2|2 = 1 and that real number λ1 is necessarily irrational. Let

(a1, a2, a3) be a real eigenvector with eigenvalue λ1 and let (b1, b2, b3) be an eigen vector with

eigen value λ2. Since (a1, a2, a3), (b1, b2, b3), (b̄1, b̄2, b̄3) are C-linearly independent, it follows

that (a1, b1), (a2, b2), and (a3, b3) are R-linearly independent. Let GM be the group of analytic

automorphisms of H × C generated by

g0(x, y) =(λ1x, λ2y),

gj(x, y) =(x + aj , y + bj), 1 ≤ j ≤ 3.

Then GM acts on H × C properly discontinuously without fixed points. Hence

SM = (H × C)/GM

is a complex surface. Furthermore by the definition of the action, SM becomes a compact

complex surface, which is diffeomorphic to a 3-torus bundle over a circle. Relations between the

generators g0, g1, g2, g3 of GM are as follows:

gigj = gjgi for i, j = 1, 2, 3,

g0gig0
−1 = g1

mi1g2
mi2g3

mi3 for i = 1, 2, 3.

It follows that

H1(SM , Z) ∼= π1(SM )/[π1(SM ), π1(SM )] ∼= GM/[GM , GM ] = Z ⊕ Ze1 ⊕ Ze2 ⊕ Ze3 ,

where e1, e2, e3 ̸= 0 are the elementary divisors of M − I. Hence b1(SM ) = 1. Thus we deduce

b2(SM ) = 0, since Euler characteristic of SM is zero.
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Proof. We first prove that meromorphic mapping f : Cn → S is holomorphic. Let p : H×C → S

be the universal covering mapping. Since codim I(f) ≥ 2, Cn \ I(f) is simply connected. Then

we get a holomorphic lift
˜fCn\I(f) : Cn \ I(f) → H × C

of

f |Cn\I(f) : Cn \ I(f) → S.

Since codim I(f) ≥ 2, the holomorphic mapping ˜fCn\I(f) : Cn \ I(f) → H × C extends to a

holomorphic mapping f̃ : Cn → H × C. Because f = p ◦ f̃ , we deduce that f is holomorphic.

We now calculate the order of f . Since SM is compact, the order is independent of the choice

of Hermitian metric forms on SM . We define a Hermitian metric form on H×C which is invariant

under the action of GM as follows

ω̃ =
√
−1
2π

( 1
(Imx)2

dx ∧ dx̄ + (Imx) dy ∧ dȳ
)
.

Note that λ1 |λ2|2 = 1. Let f̃ = (f1, f2) : Cn → H × C be a holomorphic lift of f . Then f1 is

constant. Set Imf1 = c. Since

f̃∗ω̃ =
√
−1
2π

(
1
c2

df1 ∧ df̄1 + c df2 ∧ df̄2) =
√
−1
2π

(c df2 ∧ df̄2) =
√
−1
2π

(c ∂f2 ∧ ∂̄f̄2),

we obtain

f̃∗ω̃ ∧ αn−1 = c ddc |f2|2 ∧ αn−1.

Therefore we have

Tf (r, ω) =
∫ r

1

dt

t2n−1

∫
B(t)

f∗ω ∧ αn−1 =
∫ r

1

dt

t2n−1

∫
B(t)

c ddc|f2|2 ∧ αn−1.

From Jensen’s formula we obtain∫ r

1

dt

t2n−1

∫
B(t)

c ddc|f2|2 ∧ αn−1 =
c

2

∫
S(r)

|f2|2 ζ − c

2

∫
S(1)

|f2|2ζ.

Let f2(z) =
∑

k≥0 Pk(z1, ..., zn) be the expansion with homogeneous polynomials Pk of degree

k. Since f2 is not constant, there exists k0 ≥ 1 such that Pk0 ̸= 0. Hence we obtain

c

2

∫
S(r)

|f2|2ζ =
c

2

∑
k≥0

r2k

∫
S(1)

|Pk|2 ζ ≥ c · r2k0

2

∫
S(1)

|Pk0 |
2 ζ ≥ c · r2

2

∫
S(1)

|Pk0 |
2 .

Therefore we deduce the order of f satisfies ρf ≥ 2, since c ̸= 0 and
∫
S(1) |Pk0 |

2 ̸= 0.
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The case of S = S
(+)
N,p,q,r;t : Here we study Inoue surface S

(+)
N,p,q,r;t. Let N = (nij) ∈ SL(2, Z)

be a matrix with two real eigenvalues λ > 1 and 1
λ . Let (a1, a2) and (b1, b2) be two real eigen

vectors of N corresponding to λ and 1
λ respectively (λ is necessarily irrational).

Fix integers p, q, r with r ̸= 0 and a complex number t. Set real numbers (c1, c2) as the

solution of the following linear equation

(c1, c2) = (c1, c2) ·t N + (e1, e2) +
b1a2 − b2a1

r
(p, q),

where

ei =
1
2
ni1(ni1 − 1)a1b1 +

1
2
ni2(ni2 − 1)a2b2 + ni1ni2b1a2, i = 1, 2.

Let G
(+)
N,p,q,r,t be the group of analytic automorphisms of H × C generated by

g0(x, y) = (λx, y + t),

gj(x, y) = (x + aj , y + bjx + cj), j = 1, 2,

g3(x, y) =
(

x, y +
b1a2 − b2a1

r

)
.

They satisfy the following relations:

g3gi = gig3 for i = 0, 1, 2,

g1g2 = g2g1g
r
3,

g0g1g0
−1 = gn11

1 gn12
2 gp

3 ,

g0g2g0
−1 = gn21

1 gn22
2 gq

3.

(4.1)

Then S+
N,p,q,r;t = (H × C)/G

(+)
N,p,q,r,t is an Inoue surface. Since the action is properly discon-

tinuously with no fixed points, S
(+)
N,p,q,r;t becomes a complex surface. Moreover it is a compact

complex surface. It is known that S
(+)
N,p,q,r;t is diffeomorphic to a fiber bundle over a circle

whose fiber is a circle bundle over a two torus ([2]). It is known that b1(S+
N,p,q,r;t) = 1 and

b2(S+
N,p,q,r;t) = 0.

Proof. Let p : H × C → S
(+)
N,p,q,r;t be the universal covering. As in the case of SM , every

meromorphic mapping f : Cn → S
(+)
N,p,q,r;t is holomorphic. We construct an Hermitian metric on

H×C which is invariant under the the action of G
(+)
N,p,q,r,t and which makes it easier to calculate

the order of f . Take an arbitrary Hermitian metric form ω on S
(+)
N,p,q,r,t. Let ω̃ be the pull-back

p∗ω. Then ω̃ is invariant under the action. Write ω̃ in coordinates,

ω̃ =
√
−1
2π

(h11dx ∧ dx̄ + h12dx ∧ dȳ + h21dy ∧ dx̄ + h22dy ∧ dȳ).

Then h22 ̸= 0 since ω̃ is a positive Hermitian metric form. Therefore we can define a Hermitian

metric form σ̃ = ω̃
h22

. Note that the coefficient of dy ∧ dȳ of σ̃ is one. Since g∗i ω̃ = ω̃, we obtain

12



h22(gi(x, y)) = h22(x, y) for i = 0, 1, 2, 3. This implies

g∗i σ̃ = g∗i (
ω̃

h22
) =

ω̃

h22
= σ̃.

Let f̃ = (f1, f2) : Cn → H × C be a holomorphic lift of f : Cn → S
(+)
N,p,q,r;t. We calculate the

order of f̃ with respect to σ̃. Since f1 is constant, we have

f̃∗σ̃ =
√
−1
2π

(
h11

h22
(f̃)df1 ∧ df̄1 +

h12

h22
(f̃)df1 ∧ df̄2 +

h21

h22
(f̃)df2 ∧ df̄1 +

h22

h22
(f̃)df2 ∧ df̄2)

=
√
−1
2π

(df2 ∧ df̄2).

Hence we obtain

(4.2) Tf̃ (r; σ̃) =
∫ r

1

dt

t2n−1

∫
B(t)

f̃∗σ̃ ∧ αn−1 =
∫ r

1

dt

t2n−1

∫
B(t)

ddc|f2|2 ∧ αn−1.

Note that f2 is not constant. As in the case of SM or in the case of complex torus, we deduce

from (4.2) that the order of f satisfies ρf ≥ 2.

The case of S = S
(−)
N,p,q,r : We define an Inoue surface S

(−)
N,p,q,r as follows. Let N = (nij) ∈

GL(2, Z) be a matrix with detN = −1 and with two real eigenvalues λ and − 1
λ . Let (a1, a2)

and (b1, b2) be two real eigenvectors for N with eigenvalues λ and − 1
λ respectively. Fix integers

p, q, r, with r ̸= 0. Define two real numbers (c1, c2) as the solution of the following linear equation

−(c1, c2) = (c1, c2) tN + (e1, e2) +
b1a2 − b2a1

r
(p, q),

where ei are the same as for the surface S
(+)
N,p,q,r;t. Let G

(−)
N,p,q,r be a group of analytic automor-

phisms of H × C generated by

g0(x, y) = (λx,−y),

gj(x, y) = (x + aj , y + bjx + cj), j = 1, 2,

g3(x, y) =
(

x, y +
b1a2 − b2a1

r

)
.

Then S
(−)
N,p,q,r = (H × C)/G

(−)
N,p,q,r is an Inoue surface.

Proof. As we have seen in other Inoue surfaces, the meromorphic mapping f is holomorphic. As

in the case of S
(+)
N,p,q,r;t, we can construct a Hermitian metric form σ̃ on H×C which is invariant

under the action of G
(−)
(N,p,q,r) and is written in coordinates as follows,

σ̃ =
√
−1
2π

(h11dx ∧ dx̄ + h12dx ∧ dȳ + h21dy ∧ dx̄ + dy ∧ dȳ).

Note that the coefficient of dy ∧ dȳ is one. This implies that the order of a non-constant

holomorphic mapping f : Cn → S
(−)
N,p,q,r satisfies ρf ≥ 2.
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5 Inoue surfaces : Restriction of the universal covering to a leaf

We now prove that the restriction of the universal covering mapping to a leaf {x0} × C
(∀x0 ∈ H) is of order two.

Proposition 5.1. Let S be an Inoue surface and let p : H × C → S be the universal covering

mapping. Fix an arbitrary x0 ∈ H. Let f̃ be a holomorphic mapping w ∈ C 7→ (x0, w) ∈ H × C.

Then p ◦ f̃ has order two.

Proof. The case of S = SM . Take the following Hermitian metric form on H × C

ω̃ =
√
−1
2π

(
1

(Imx)2
dx ∧ dx̄ + (Imx) dy ∧ dȳ

)
.

Let ω be the induced Hermitian metric form on S by ω̃. We calculate the characteristic function

of p ◦ f̃ with respect to ω. Since f̃∗ω̃ = (Imx0)α,

Tp◦f̃ (r, ω) = Tf̃ (r, ω̃) =
∫ r

1

dt

t

∫
B(t)

f̃∗ω̃ =
1
2
(Imx0)r2 − 1

2
(Imx0).

Hence we obtain ρp◦f̃ = 2.

The case of S = S
(+)
N,p,q,r;t, S

(−)
N,p,q,r. Take the following Hermitian metric form on H × C

σ̃ =
√
−1
2π

(h11dx ∧ dx̄ + h12dx ∧ dȳ + h21dy ∧ dx̄ + dy ∧ dȳ).

Let σ be the induced Hermitian metric form on S. We calculate the characteristic function of

p ◦ f̃ with respect to σ. Since f̃∗σ̃ = α, we have

Tp◦f̃ (r, σ) = Tf̃ (r, σ̃) =
∫ r

1

dt

t

∫
B(t)

f̃∗σ̃ =
1
2
r2 − 1

2
.

Hence we deduce ρp◦f̃ = 2.

Remark 5.2. By similar calculations, we get the order of the holomorphic mapping from Cn to

an Inoue surface S induced by (z1, · · · , zn−1, w) ∈ Cn 7→ (x0, w
d) ∈ H × C is 2d.

Remark 5.3. Let S be an Inoue surface. Let p : H×C → S be the universal covering mapping.

Fix an arbitrary x0 ∈ H. Then its image p({x0} × C) ⊂ S is Zariski dense, but not dense with

respect to the differential topology, for there is no closed curves on an Inoue surface (see [8]).

The differential structure of an Inoue surface S is as follows:

If S = SM , S is diffeomorphic to a real 3-torus bundle over a circle parametrized by the

imaginary part Imx of x ∈ H.

If S = S
(+)
N,p,q,r;t , S is diffeomorphic to a fiber bundle over a circle parametrized by Imx, whose

fiber is a real three dimensional compact manifold. According to [2], this three dimensional

compact manifold is a circle bundle over a real 2-torus.
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If S = S
(−)
N,p,q,r , S is diffeomorphic to a fiber bundle over a circle parametrized by Imx, whose

fiber is a real three dimensional compact manifold.

6 Problems

Finally we pose some interesting questions related to characteristic functions of meromorphic

mappings from C2 into Hopf surfaces.

Problem 6.1. Let Sa,b be a Hopf surface defined in Main Theorem 1.1. We define a non-negative

number ρ(Sa,b) as follows,

ρ(Sa,b) = inf{ρf | f : C2 → Sa,b differentiably non-degenerate meromorphic mapping}.

Which number is ρ(Sa,b)? Since there exists a holomorphic mapping from C2 into Sa,b with

order at most one, we have at least ρ(Sa,b) ≤ 1.

Problem 6.2. Let Sa,a be a Hopf surface defined in theorem 2.8. Let f : C2 → Sa,a be a holo-

morphic mapping, and let f̃ = (f1, f2) : C2 → C2\{(0, 0)} be its lift. Let ω̃ =
√
−1
2π

dx∧dx̄+dy∧dȳ
|x|2+|y|2 be

a Hermitian metric form on C2\{(0, 0)} and let ω be the induced Hermitian metric form on Sa,a.

Let ω0 be Fubini-Study metric form on P1(C) and let π : C2 \ {(0, 0)} → P1(C), (x, y) 7→ [x : y]

be the Hopf mapping. Set F = π ◦ f̃ . Then we found the following decomposition of the

characteristic function of f with respect to ω,

Tf (r, ω) = TF (r, ω0) +
∫ r

1

dt

t3

∫
B(t)

d log(|f1|2 + |f2|2) ∧ dc log(|f1|2 + |f2|2) ∧ α.

Let Rf (r) denote the second term of the above formula. It is interesting to compare the growths

of TF (r, ω0) and Rf (r) as r → ∞ or the growths of TF (r, ω0) and Tf (r, ω) as r → ∞.
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