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SHILOV BOUNDARIES OF THE PLURICOMPLEX GREEN
FUNCTION’S LEVEL SETS
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Abstract. In this paper, we study the relation between the Shilov boundaries of the
pluricomplex Green function’s level sets and the support of currents defined by the
pluricomplex Green function. We also study the set which intersects the support of
any non-zero closed positive current by applying our main result.

1. Introduction

Let Ω be a domain in Cn and let x ∈ Ω. Let Psh(Ω) denote the plurisubharmonic
functions on Ω. The (Klimek) pluricomplex Green function of Ω with logarithmic pole
at x is defined as

KΩ,x = sup{u(z);u ∈ Psh(Ω), u < 0, lim sup
z→x

u(z)− log ∥z − x∥ <∞}.

We denote by d = d′ + d′′ the usual decomposition of the exterior derivative in terms
of its (1, 0) and (0, 1) parts, and we set dc = (2

√
−1π)−1(d′ − d′′). We shall say that

a (bounded) pseudoconvex domain Ω ⊂ Cn is hyperconvex if there exists a continuous
plurisubharmonic function v : Ω → (−∞, 0) such that the set {z ∈ Ω; v(z) < c} is
a relatively compact subset of Ω for each c ∈ (−∞, 0). If Ω is a bounded hypercon-
vex domain, Demailly [4] showed that KΩ,x is the unique solution for the following
homogeneous Monge-Ampère equation:

u ∈ Psh(Ω) ∩ L∞
loc(Ω̄ \ {x}),

(ddcu)n ≡ 0 in Ω \ {x},
u(z)− log ∥z − x∥ = O(1) for z → x,

limz→p u(z) = 0 for all p ∈ ∂Ω.

In this paper, we study the relation between the Shilov boundaries of the pluricomplex
Green function’s level sets and the support of the measure dKΩ,x∧dcKΩ,x∧(ddcKΩ,x)

n−1

in Ω \ {x}. Note that dKΩ,x ∧ dcKΩ,x ∧ (ddcKΩ,x)
n−1 is well defined in Ω \ {x}. Let E

be a compact subset of Cn. We define the Shilov boundary of E by the smallest closed
subset ∂SE of E such that, for each function f which is holomorphic on a neighborhood
of E the equality maxE |f | = max∂SE |f | holds. Let φ be an upper semi-continuous
function on Ω. We define Sφ(r) = {z ∈ Ω;φ(z) = r}, Bφ(r) = {z ∈ Ω;φ(z) < r},
Bφ(r) = {z ∈ Ω;φ(z) ≤ r}. Our main theorem is the following:

Theorem 1. Let Ω ⊂ Cn be a bounded hyperconvex domain and x ∈ Ω. Let KΩ,x be
the pluricomplex Green function with logarithmic pole at x. The support of the measure
dKΩ,x ∧ dcKΩ,x ∧ (ddcKΩ,x)

n−1 in Ω \ {x} is equal to the closure of∪
−∞<r<0

∂SBKΩ,x
(r) in Ω \ {x}.
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Let δ : Cn → [0,∞) be a continuous function such that δ−1(0) = {0}, δ(ξz) = |ξ|h(z)
for all ξ ∈ C, z ∈ Cn. Let Ω = {z ∈ Cn;h(z) < 1}. The function δ is called a Minkowski
function of Ω and Ω is called a balanced domain. Assume that log δ ∈ Psh(Cn). Then
log δ is equal to the pluricomplex Green function on Ω with logarithmic pole at {0}. In
the case of a balanced domain, we can prove a more strong result (see the last section).
We also show that the support of any non-zero closed positive current of bidegree (1, 1)
intersects the closure of

∪
0≤r<1 ∂SBδ(r) (see Corollary 2).

Acknowledgment. The author would like to express his gratitude to Professor Katsu-
toshi Yamanoi and Doctor Yoshihiko Matsumoto for valuable conversations. The author
is supported by the Grant-in-Aid for Scientific Research (KAKENHI No. 25-902) and
the Grant-in-Aid for JSPS fellows.

2. Monge-Ampère operator and Integration

The Monge-Ampère operator is well defined on locally bounded plurisubharmonic
functions (see [1], [2]). In [2], the following convergence of currents is proved.

Theorem 2 ([2]). Let Ω be an open set in Cn and let u0, . . . , un ∈ Psh(Ω)∩L∞(Ω). Let
{uj0}j, . . . , {ujn}j are sequences of uniformly bounded plurisubharmonic functions such

that uji converges monotonically almost everywhere, either increasing or decreasing, to
ui (i = 0, . . . , n) when j goes to ∞. Then

(1) ddcuj1 ∧ · · · ∧ ddcujn → ddcu1 ∧ · · · ∧ ddcun
(2) uj0dd

cuj1 ∧ · · · ∧ ddcujn → u0dd
cu1 ∧ · · · ∧ ddcun

(3) duj0 ∧ dcu
j
1 ∧ ddcu

j
2 ∧ · · · ∧ ddcujn → du0 ∧ dcu1 ∧ ddcu2 ∧ · · · ∧ ddcun

in the weak topology on the space of currents.

Let φ ∈ Psh(Ω). For r ∈ R, we define φ≥r = max{φ, r}. We show the following
equation.

Proposition 1. Let Ω be an open set in Cn and let u ∈ Psh(Ω)∩L∞(Ω). Take a, b ∈ R,
a < b such that a < u < b in Ω. Let h be a smooth function which has a compact support
in Ω. Then we have∫ b

a

dr

∫
Ω

h(ddcu≥r)
n =

∫
Ω

hdu ∧ dcu ∧ (ddcu)n−1 +

∫
Ω

(u− a)h(ddcu)n.

Note that
∫
Ω
h(ddcu≥r)

n is a continuous function of r ∈ R by Theorem 2.

Proof. We first show that the equation is true when u is smooth. Let E ⊂ [a, b] be
the critical values of u. Assume that r ̸∈ E. Then Su(r) is a smooth oriented real
hypersurface and∫

Ω

h(ddcu≥r)
n =

∫
Su(r)

hdcu ∧ (ddcu)n−1 +

∫
Ω\Bu(r)

h(ddcu)n

(see Proposition 4.4 of [5]). By Sard’s theorem, E is measure zero set. Hence∫ b

a

dr

∫
Ω

h(ddcu≥r)
n =

∫
[a,b]\E

dr

(∫
Su(r)

hdcu ∧ (ddcu)n−1 +

∫
Ω\Bu(r)

h(ddcu)n
)
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Put σ = hdcu ∧ (ddcu)n−1. By Stokes’ theorem, Sard’s theorem and Fubini’s theorem,
We have that∫

[a,b]\E
dr

∫
Su(r)

σ =

∫
[a,b]\E

dr

∫
Bu(r)

dσ =

∫ b

a

dr

∫
Bu(r)

dσ

=

∫
Ω

(b− u)dσ =

∫
Ω

du ∧ σ =

∫
Ω

hdu ∧ dcu ∧ (ddcu)n−1

and ∫
[a,b]\E

dr

∫
Ω\Bu(r)

h(ddcu)n =

∫ b

a

dr

∫
Ω\Bu(r)

h(ddcu)n

=

∫
Ω

(u− a)h(ddcu)n.

Proposition 1 is thus proved when u is smooth. If u is not smooth, one can take a
decreasing sequence of smooth plurisubharmonic functions {ui} on a neighborhood of
the support of h such that ui converges to u (see Chapter 2 of [7]). By Theorem 2,∫

Ω

h(ddcu≥r)
n = lim

i→∞

∫
Ω

h{ddc(ui)≥r}n.

Note that |
∫
Ω
h{ddc(ui)≥r}n| is bounded above by (b − a)n(sup |h|)C(supph,Ω). Here

C(supph,Ω) is the relative Monge-Ampère capacity of the support of h (see [2] for the
definition of the relative Monge-Ampère capacity). By Lebesgue’s dominated conver-
gence theorem, Proposition 1 for a smooth plurisubharmonic function and Theorem 2,
it follows that∫ b

a

dr

∫
Ω

h(ddcu≥r)
n = lim

i→∞

∫ b

a

dr

∫
Ω

h{ddc(ui)≥r}n

= lim
i→∞

(∫
Ω

hdui ∧ dcui ∧ (ddcui)
n−1 +

∫
Ω

(ui − a)h(ddcui)
n

)
=

∫
Ω

hdu ∧ dcu ∧ (ddcu)n−1 +

∫
Ω

(u− a)h(ddcu)n.

This completes the proof of Proposition 1. □
An immediate consequence of Proposition 1 is the following:

Theorem 3. Let Ω be an open set in Cn and let u ∈ Psh(Ω)∩L∞(Ω). Then (ddcu≥r)
n ≡

0 for all r ∈ R if and only if (ddcu)n ≡ 0 and du ∧ dcu ∧ (ddcu)n−1 ≡ 0.

3. Pluricomplex Green Functions and Relative Extremal Functions

Let Ω ⊂ Cn be an open subset and let E be a subset of Ω. We consider the extremal
function associated to E in Ω. We define

u∗E,Ω(z) = lim sup
ζ→z

uE,Ω(ζ)

where
uE,Ω(z) = sup{v(z); v ∈ Psh(Ω), v|E ≤ −1, v < 0} (z ∈ Ω).

Then u∗E,Ω is plurisubharmonic function on Ω and −1 ≤ u∗E,Ω ≤ 0. The following
theorem is proved in [3].



SHILOV BOUNDARIES OF THE PLURICOMPLEX GREEN FUNCTION’S LEVEL SETS 4

Theorem 4 (Theorem 7.1 of [3]). Let Ω ⊂ Cn be a bounded strictly pseudoconvex
domain and let E ⊂ Ω be a compact subset. Let A(E) denote the subalgebra of the
Banach algebra of continuous functions on E which is the closure of the holomorphic
functions on Ω. We define E0 as the closure of

{z ∈ E;u∗E,Ω = −1}.
Then the Shilov boundary of E0 for A(E) is equal to the support of the measure (ddcu∗E,Ω)

n.

Remark 1. One can check that Theorem 4 is also true when Ω ⊂ Cn is a bounded
hyperconvex domain by the same argument as that used on the proof of Theorem 7.1
of [3].

We have the following lemma.

Lemma 1. Let Ω ⊂ Cn be a bounded hyperconvex domain and let x ∈ Ω. For the
simplicity of notation, we just write BKΩ,x

(r) as B(r). Then

1

|r|
(KΩ,x)≥r = u∗

B(r),Ω
for any r < 0

and the support of the measure {ddc(KΩ,x)≥r}n is equal to ∂SB(r).

Proof. Note that B(r) is compact sinceKΩ,x is continuous (See [4]). Let v be a plurisub-
harmonic function on Ω such that v < 0 in Ω and v ≤ −1 in B(r). We show that
|r|−1(KΩ,x)≥r ≥ v. Let ψ : Ω → (−∞, 0) be a continuous plurisubharmonic func-
tion such that the set {z ∈ Ω;ψ(z) < c} is a relatively compact subset of Ω for any
c ∈ (−∞, 0) and ψ ≤ −1 on B(r). By replacing v by max{v, ψ}, we may assume that
limz→p v(z) = 0 for all p ∈ ∂Ω. Since U := {z ∈ Ω; |r|−1(KΩ,x)≥r < v(z)} is contained
in Ω \B(r), it follows that

∫
U
{ddc|r|−1(KΩ,x)≥r}n = 0. Then |r|−1(KΩ,x)≥r ≥ v in Ω by

the domination principle (see [2]). Since |r|−1(KΩ,x)≥r < 0 in Ω and |r|−1(KΩ,x)≥r ≤ −1
in B(r), we have that |r|−1(KΩ,x)≥r = u∗

B(r),Ω
. Let A(B(r)) be the Banach subalgebra

of continuous functions on B(r) which is the closure of the holomorphic functions on Ω.
Since holomorphically convex hull of B(r) is equal to B(r) itself, A(B(r)) is equal to
the Banach subalgebra of continuous functions on B(r) which is the closure of functions
which are holomorphic on a neighborhood of B(r) (see Theorem 4.3.2 of [7]). Therefore
the support of the measure {ddc(KΩ,x)≥r}n is equal to ∂SB(r). □
We have a corollary of Lemma 1

Corollary 1. Let Ω ⊂ Cn be a bounded hyperconvex domain and let x ∈ Ω. The relative
Monge-Ampère capacity C(BKΩ,x

(r),Ω) is |r|−n.

Proof. By Proposition 6.5 of [2], we have that

C(BKΩ,x
(r),Ω) =

∫
Ω

(ddcu∗
B(r),Ω

)n.

Then, by Stokes’ theorem and Lemma 1, it follows that

C(BKΩ,x
(r),Ω) =

1

|r|n

∫
Ω

{ddc(KΩ,x)≥r}n

=
1

|r|n

∫
Ω

(ddcKΩ,x)
n =

1

|r|n
.
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The last equality holds by Theorem 4.3 of [4]. □
Now we prove Theorem 1.

Proof of Theorem 1. Let E be the closure of
∪

−∞≤r<0 ∂SBKΩ,x
(r) in Ω \ {x}. Let z ∈

Ω \ {x}. Then z ̸∈ E if and only if {ddc(KΩ,x)≥r}n ≡ 0 for any r < 0 in a neighborhood
of z by Lemma 1. We have that {ddc(KΩ,x)≥r}n ≡ 0 for any r < 0 in a neighborhood of
z if and only if dKΩ,x∧dcKΩ,x∧(ddcKΩ,x)

n−1 ≡ 0 in a neighborhood of z by Theorem 3.
This completes the proof. □

4. The case of a Balanced domain

Proposition 2. Let δ : Cn → [0,∞) be a continuous function such that δ−1(0) = {0},
δ(ξz) = |ξ|δ(z) for all ξ ∈ C, z ∈ Cn and log δ ∈ Psh(Cn). Let Ω = {z ∈ Cn; δ(z) < 1}.
Then the support of the current (ddc log δ)n−1 in Ω is equal to the closure of∪

0≤r<1

∂SBδ(r).

Proof. Note that log δ is equal to the pluricomplex Green function on Ω with loga-
rithmic pole at {0} (see Lemma 6.1.3 of [8]) and (ddc log δ)n−1 is well defined on Ω.
By Theorem 1, it is enough to show that the support of the current (ddc log δ)n−1

is equal to the support of the current d log δ ∧ dc log δ ∧ (ddc log δ)n−1 in Ω \ {0}.
Let z0 = (z01 , . . . , z

0
n) ∈ Ω \ {0}. Without loss of generality, we may assume that

z01 ̸= 0. Let ϕ : Cn → Cn be a holomorphic map such that ϕ((γ, w2, . . . , wn)) =
((1 + γ)z01 , (1 + γ)(w2 + z02), . . . , (1 + γ)(wn + z0n)) for (γ, w2, . . . , wn) ∈ Cn. Then
ϕ(0) = z0 and the restriction of ϕ to a small neighborhood of {0} ∈ Cn is a biholomor-
phic map. We have that

log δ ◦ ϕ((γ, w′)) = log |1 + γ|+ log δ ◦ ϕ((0, w′))

where w′ = (w2, . . . , wn) ∈ Cn−1. We put h(w′) = log δ ◦ ϕ((0, w′)). Let {ρε} be a
family of smoothing kernels. It follows that

(log δ ◦ ϕ) ∗ ρε((γ, w′)) = log |1 + γ|+ h ∗ ρε(w′)

since log |1 + γ| is a harmonic function in a neighborhood of {0} ∈ Cn. Then

d{(log δ ◦ ϕ) ∗ ρε} ∧ dc{(log δ ◦ ϕ) ∗ ρε} =

√
−1

π
d′{(log δ ◦ ϕ) ∗ ρε} ∧ d′′{(log δ ◦ ϕ) ∗ ρε}

=

√
−1

4π

dγ ∧ dγ̄
|1 + γ|2

+ η

where η is a smooth (1, 1)-form which does not contain a term of dγ ∧ dγ̄. Since
ddc{(log δ ◦ ϕ) ∗ ρε} = ddch ∗ ρε depends only on w′, it follows that

d{(log δ ◦ ϕ) ∗ ρε} ∧ dc{(log δ ◦ ϕ) ∗ ρε} ∧ [ddc{(log δ ◦ ϕ) ∗ ρε}]n−1

=

√
−1

4π

dγ ∧ dγ̄
|1 + γ|2

∧ [ddc{(log δ ◦ ϕ) ∗ ρε}]n−1.

We have that

lim
ε→0

d{(log δ ◦ ϕ) ∗ ρε} ∧ dc{(log δ ◦ ϕ) ∗ ρε} ∧ [ddc{(log δ ◦ ϕ) ∗ ρε}]n−1

= d(log δ ◦ ϕ) ∧ dc(log δ ◦ ϕ) ∧ {ddc(log δ ◦ ϕ)}n−1



SHILOV BOUNDARIES OF THE PLURICOMPLEX GREEN FUNCTION’S LEVEL SETS 6

and

lim
ε→0

[ddc{(log δ ◦ ϕ) ∗ ρε}]n−1 = {ddc(log δ ◦ ϕ)}n−1

in the weak topology on the space of currents by Theorem 2 and Theorem 2.1 of [2].
Hence we have that

d(log δ ◦ ϕ) ∧ dc(log δ ◦ ϕ) ∧ {ddc(log δ ◦ ϕ)}n−1 =

√
−1

4π

dγ ∧ dγ̄
|1 + w|2

∧ {ddc(log δ ◦ ϕ)}n−1.

Therefore the support of the current d log δ ∧ dc log δ ∧ (ddc(log δ)n−1 is equal to the
support of the current (ddc log δ)n−1 in Ω \ {0}. □

For a balanced domain Ω, there exists a S1 action on the boundary ∂Ω = {z ∈
C; δ(z) = 1} such that (e

√
−1θ, z) 7→ e

√
−1θz for θ ∈ (0, 2π] and z ∈ ∂Ω. The Shilov

boundary ∂SΩ is invariant by this action and the quotient space ∂Ω/S1 with quotient
topology is a compact Hausdorff space. Let i : ∂Ω → ∂Ω/S1 be the canonical map and
let τ : Ω \ {0} → ∂Ω/S1 be a continuous function such that τ(z) = i((δ(z))−1z). Then
τ : Ω \ {0} → ∂Ω/S1 is a fiber space whose fiber is isomorphic to D∗ = {z ∈ C; 0 <
|z| < 1}.

Theorem 5. There exists a unique measure µ in ∂Ω/S1 whose support is ∂SΩ/S
1 such

that

(ddc log δ)n−1 = 1Ω\{0}

∫
∂Ω/S1

[τ−1(t)]dµ(t).

Here
∫
∂Ω/S1 [τ

−1(t)]dµ(t) is a current on Ω \ {0} such that

⟨
∫
∂Ω/S1

[τ−1(t)]dµ(t), u⟩ =
∫
∂Ω/S1

(∫
τ−1(t)

u

)
dµ(t)

for all smooth (1, 1)-form u which has a compact support in Ω \ {0} and

1Ω\{0}

∫
∂Ω/S1

[τ−1(t)]dµ(t)

is a trivial extension of the current
∫
∂Ω/S1 [τ

−1(t)]dµ(t) on Ω \ {0} to the current of Ω.

Proof. To prove the uniqueness of µ, it is enough to prove the uniqueness of µ locally.
Hence we may assume that τ : Ω → ∂Ω/S1 is a trivial D∗-fiber bundle and it is easy
to prove the uniqueness of µ in this case. Now let us prove the existence of µ. We use
the same notation as in the proof of Proposition 2. In a neighborhood of z0 ∈ Ω \ {0},
we have that {ddc(log δ ◦ ϕ)}n−1 = limε→0{ddc(log δ ◦ ϕ) ∗ ρε}n−1 depend only on w′

(see the proof of Proposition 2). Therefore, in a neighborhood U of τ(z0) ∈ ∂Ω,
there exists a measure µU such that (ddc log δ)n−1|τ−1(U) =

∫
U
[τ−1(t)]dµU(t). By gluing

measures {µU}, we obtain the measure µ in ∂Ω and such that (ddc log δ)n−1|Ω\{0} =∫
∂Ω/S1 [τ

−1(t)]dµ(t). Note that 1Ω\{0}
∫
∂Ω/S1 [τ

−1t]dµ(t) is a closed current on Ω by El

Mir’s extension theorem(see [5]) and the support of the closed current (ddc log δ)n−1 −
1Ω\{0}

∫
∂Ω/S1 [τ

−1t]dµ(t) is contained in {0} ∈ Ω. Then the current is zero by the First

theorem of support (see [6]). By Proposition 2, the support of µ is equal to ∂SΩ/S
1

and this completes the proof.
□



SHILOV BOUNDARIES OF THE PLURICOMPLEX GREEN FUNCTION’S LEVEL SETS 7

We need the following lemma to apply our results to an intersection theory of the
supports of currents.

Lemma 2. Let Ω ⊂ Cn be a bounded hyperconvex domain and let φ ∈ Psh(Ω) such
that limz→p φ(z) = 0 for all p ∈ ∂Ω and Bφ(r) is relatively compact for all r < 0. Let
T be a closed positive current of bidegree (k, k) (1 ≤ k < n) on Ω. Assume that∫

Ω

(ddcφ)n−k ∧ T = 0.

Then T = 0.

Note that the measure (ddcφ)n−k ∧ T is well defined by Proposition 2.1 of [5].

Proof. Let R be a positive number such that Ω is relatively compact in B∥z∥(R) = {z ∈
Cn; ∥z∥ = |z1|2 + · · ·+ |zn|2 < R}. For r < 0, take a small positive number ε such that
ε(∥z∥2 −R2) > φ on Bφ(r). By Stokes’ theorem, we have that

0 =

∫
Ω

(ddcφ)n−k ∧ T =

∫
Ω

(ddc max{φ, ε(∥z∥2 −R2)})n−k ∧ T

≥
∫
Bφ(r)

(ddcmax{φ, ε(∥z∥2 −R2)})n−k ∧ T =

∫
Bφ(r)

{ddcε(∥z∥2 −R2)}n−k ∧ T.

Hence (ddc∥z∥2)n−k ∧T = 0 on Bφ(r) for any r < 0. This implies that T = 0 on Ω. □
By Proposition 2 and Lemma 2, the following corollary holds.

Corollary 2. Let δ : Cn → [0,∞) be a continuous function such that δ−1(0) = {0},
δ(ξz) = |ξ|δ(z) for all ξ ∈ C, z ∈ Cn and log δ ∈ Psh(Cn). Let Ω = {z ∈ Cn; δ(z) < 1}.
Then the support of a non-zero closed positive current of bidegree (1, 1) on Ω intersects
the closure of ∪

0≤r<1

∂SBδ(r).

In particular, any plurisubharmonic function on Ω which is pluriharmonic on a neigh-
borhood of the closure of

∪
0≤r<1 ∂SBδ(r) is pluriharmonic on Ω.

Example 1. Let δ = logmax{|z1|, . . . , |zn|} and let P (1) = {z ∈ Cn; |z1| < 1, . . . , |zn| <
1}. Then the support of the current (ddc log δ)n−1 in P (1) is X = {z ∈ P (1); |z1| =
· · · = |zn|}. The support of any non-zero closed positive current of bidegree (1, 1)
intersects X and X is the minimal set which satisfies this property, that is:

Let T be a closed positive current of bidegree (n− 1, n− 1). We denote the support of
T by suppT . Assume that suppT ⊂ X and the support of any non-zero closed positive
current of bidegree (1, 1) intersects suppT . Then suppT = X.

Proof. Let τ : P (1)\{0} → ∂P (1)/S1 be the continuous map as in Theorem 5. It is easy
to check that X \ {0} is a CR submanifold whose CR dimension is one. By the Second
theorem of support (see [6]), there exists a unique measure ν on ∂SP (1)/S

1 = {z ∈
Cn; |z1| = · · · = |zn| = 1}/S1 such that T |P (1)\{0} =

∫
∂SP (1)/S1 [τ

−1(t)]dν(t). Assume

that suppT |P (1)\{0} ̸= X \ {0}. Without loss of generality, we may assume that the
support of ν does not contain i((1, · · · , 1)) ∈ ∂SP (1)/S

1. Here i : ∂P (1) → ∂P (1)/S1

is the canonical map. Then there exists a small ε > 0 such that suppT does not
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intersect Y = {(z1, e
√
−1θ2z1, . . . , e

√
−1θnz1) ∈ P (1); |z1| < 1, |θ2| ≤ ε, . . . , |θn| ≤ ε}. Let

Q(z1, . . . , zn) = z1 + z2 − |1 + e
√
−1ε|. Then Q(0) ̸= 0 and

Q(w, . . . , w) = 2w − |1 + e
√
−1ε| = 0

has a solution in |w| < 1. Hence the hypersurface defined by Q = 0 in Cn intersects
P (1) \ {0} and intersects suppT |P (1)\{0}. However,

Q(w, e
√
−1θ2w, . . . , e

√
−1θnw) = (1 + e

√
−1θ2)w − |1 + e

√
−1ε| = 0

does not have a solution in |w| < 1 if |θ2| > ε. Hence suppT does not intersect the
hypersurface defined by Q = 0. This is a contradiction. Hence suppT |P (1)\{0} = X\{0}.
Since suppT is closed, we have that suppT = X □
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