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A remark on quadratic functional of Brownian motions

Shigeo KUSUOKA ∗and Yasufumi OSAJIMA †

1 Introduction and result

Let d = 1, T > 0, W0 = {w ∈ C([0, T ];Rd); w(0) = 0}, and B(W d
0 ) be a Borel algebra

over W d
0 . Let μ be the Wiener measure on (W

d
0 ,B(W d

0 )). Now let aki : [0, T ] → R,
bki : [0, T ]→ R, i = 1, . . . , N, k = 1, . . . , d, be continuous functions. Let X : W d

0 → R be
a random variable given by

X(w) =

NX
i=1

dX
k,`=1

Z T

0

(

Z t

0

b`i(s)dw
`(s))aki (t)dw

k(t).

Here stochastic integrals are Ito integrals. We assume that Eμ[exp(X)] <∞.
Our concern is to compute the following.

Eμ[exp(λ

dX
k=1

Z T

0

hk(t)dwk(t) +X)]

for h ∈ L2([0, T ];Rd, dt) and λ ∈ C.
Such a problem was considered by Ikeda-Kusuoka-Manabe [1] and [2] in special cases,

and they gave explicit formulae. In the present paper, we consider general case and show
that we can reduce this problem to a problem of a linear ordinary differential equation by
using ideas in [1] and [2].
Let αk : [0, T ]→ R2N , k = 1, . . . , d, be given by

αkj (t) =

½
akj (t), j = 1, . . . , N,

bkj−N (t), j = N + 1, . . . , 2N.

Let J : R2N → R2N be a linear operator given by

J((zi)
2N
i=1)j =

½
−zj+N , j = 1, . . . , N,
zj−N , j = N + 1, . . . , 2N.
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Let βk : [0, T ]→ R2N , k = 1, . . . , d, be given by βk(t) = Jαk(t). Then we have

βkj (t) =

½
−bkj (t), j = 1, . . . , N,
akj−N(t), j = N + 1, . . . , 2N.

Let ci,j : [0, T ]→ R, i, j = 1, . . . , 2N, be given by

ci,j(t) =

dX
k=1

αki (t)β
k
j (t)

Also, let ei1,i2 : [0, T ]→ R, i1, i2 = 1, . . . , 2N, be the solution to the following ODE

d

dt
ei1,i2(t) =

2NX
j=1

ci1,j(t)ej,i2(t) (1)

ei1,i2(0) = δi1,i2, i1, i2 = 1, . . . , 2N.

Let e be a 2N × 2N -matrix valued function defined in [0, T ] given by
e(t) = (ei,j(t))i,j=1,...,2N , and let ẽ be a N × N -matrix valued function defined in [0, T ]
given by ẽ(t) = (ei,j(t))i,j=1,...,N .
Let γk : [0, T ]→ R2N , k = 1, . . . , d, be continuous functions given by

γki (t) = −
2NX
j=1

eji(t)β
k
j (t), i = 1, . . . , 2N, t ∈ [0, T ].

Now let Ψ : L2([0, T ];Rd, dt)→ C([0, T ];R2N) be bounded linear operators given by

(Ψh)i(t) =

dX
k=1

Z t

0

γki (s)h
k(s)ds, t ∈ [0, T ].

for h ∈ L2([0, T ];Rd, dt).
The following is our main result.

Theorem 1 (1) The N ×N -matrix ẽ(T ) is invertible.
(2) Let ẽ(T )−1 = (ẽ−1i,j (T ))i,j=1,...,N be the inverse matrix of ẽ(T ). Let dij ∈ R, i, j =
1, . . . , N, be given by

dij =

NX
r=1

ẽ−1i,r (T )er,N+j(T ).

Then di,j = dj,i, i, j = 1, . . . , N.
(3) For any h ∈ L2([0, T ];Rd, dt) and λ ∈ C,

Eμ[exp(λ

dX
k=1

Z T

0

hk(t)dwk(t) +X)]

= det(ẽ(T ))−1/2 exp(−1
2

nX
i=1

dX
k=1

Z T

0

aki (t)b
k
i (t)dt+

λ2

2
A(h, h)),
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where
A(h, h)

= ||h||2H −
Z T

0

(
d

dt
(Ψh)(t), J(Ψh)(t))R2Ndt

+

NX
i=1

J(Ψh)(T )i(Ψh)(T )i +

NX
i,j=1

dij(Ψh)(T )
i(Ψh)(T )j.

2 Preliminary Facts

Let H̃ be the Cameron Martin space of the Wiener space (W0,μ), i.e.,

H̃ = {k ∈ W0; k(t) is absolutely continuous in t,

Z T

0

|dk
dt
(t)|2dt <∞},

(k1, k2)H̃ =

Z T

0

dk1
dt
(t) · dk2

dt
(t)dt.

Let H = L2([0, T ];Rd, dt). Then the map Ψ : H̃ → H corresponding k to
dk

dt
is an

isomorphism.
Let E : H ×H → R be a symmetric bilinear form given by

E(h1, h2)

=

NX
i=1

dX
k,`=1

Z T

0

Z T

0

1{t>s}a
k
i (t)b

`
i(s)h

k
1(t)h

`
2(s)dtds

+
NX
i=1

dX
k,`=1

Z T

0

Z T

0

1{t>s}a
k
i (t)b

`
i(s)h

`
1(s)h

k
2(t)dtds

for h1, h2 ∈ H.
The associated symmetric bounded linear operator E : H → H to E is given by

(Eh)k(t)

=

NX
i=1

dX
`=1

Z T

0

1{t>s}a
k
i (t)b

`
i(s)h

`(s)ds+

NX
i=1

dX
`=1

Z T

0

1{s>t}a
`
i(s)b

k
i (t)h

`(s)ds

=

NX
i=1

dX
`=1

aki (t)

Z t

0

b`i(s)h
`(s)ds−

NX
i=1

dX
`=1

bki (t)

Z t

0

a`i(s)h
`(s)ds

+

NX
i=1

dX
`=1

bki (t)

Z T

0

a`i(s)h
`(s)ds, t ∈ [0, T ], k = 1, . . . , d

for h ∈ H.
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Since Eμ[exp(X)] <∞, we see that IH−E : H → H is invertible and positive-definite
and we have

Eμ[exp(λ

dX
k=1

Z T

0

hk(t)dwk(t) +X)]

= det2(IH − E)−1/2 exp(
λ2

2
(h, (IH − E)−1h)H), h ∈ H. (2)

Let V01 : H → H, and Ar : H → RN , r = 0, 1, be given by

(V01h)
k(t)

=
NX
i=1

dX
`=1

aki (t)

Z t

0

b`i(s)h
`(s)ds−

NX
i=1

dX
`=1

bki (t)

Z t

0

a`i(s)h
`(s)ds,

=
2NX
i=1

dX
`=1

βki (t)

Z t

0

α`i(s)h
`(s)ds, k = 1, . . . , d,

(A0h)i =

dX
`=1

Z T

0

a`i(s)h
`(s)ds, h ∈ H, i = 1, . . . , N,

and

(A1h)i =

dX
`=1

Z T

0

b`i(s)h
`(s)ds, h ∈ H, i = 1, . . . , N.

Then we see that
E = V01 + A

∗
1A0.

Note that V01 is a Voltera type operator.

Proposition 2 (1) det2(IH − E)

= det(IN − A0(IH − V01)−1A∗1) exp(traceA0A∗1),

where IN is the identity map in R
N .

In particular, the N ×N -matrix IN − A0(IH − V01)−1A∗1 is invertible .
(2) (IH − E)−1

= (IH − V01)−1 + (IH − V01)−1A∗1(IN − A0(IH − V01)−1A∗1)−1A0(IH − V01)−1.

Proof. Let z ∈ C for which |z| is sufficiently small. Then we have

det2(IH − zE)

= det2((IH − zV01)(IH − z(IH − zV01)−1A∗1A0)).
Since V01 is a Voltera type operator, we have det2(IH − zV01) = 1. So we have

det2(IH − zE)

= det2(IH̃ − zV01)det2(IH̃ − z(IH − zV01)−1A∗1A0) exp(−trace(z2V01(IH − zV01)−1A∗1A0))
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= exp(−
∞X
k=2

1

k
trace((z(IH − zV01)−1A∗1A0)k)) exp(−trace(zA0((IH − zV01)−1 − IH)A∗1))

= exp(−
∞X
k=1

1

k
trace((zA0(IH − zV01)−1A∗1)k)) exp(trace(zA0A∗1))

= det(IN − zA0(IH − zV01)−1A∗1) exp(z trace(A0A∗1)).
Also, we have

(IH − zE)−1 = {(IH − zV01)(IH − z(IH − zV01)−1A∗1A0)}−1

= (

∞X
k=0

(z(IH − zV01)−1A∗1A0)k)(IH − zV01)−1

= {IH +
∞X
k=0

z(IH − zV01)−1A∗1(zA0(IH − zV01)−1A∗1)kA0}(IH − zV01)−1

= (IH − zV01)−1 + z(IH − zV01)−1A∗1(IN − zA0(IH − zV01)−1A∗1)−1A0(IH − zV01)−1.
Since det2(IH − zE) and (IH − zE)−1 are holomorphic in C except a countable set which
has no cluster point and are holomorphic around z = 1, we have our assertion.

3 Basic Computation

Let c be a 2N × 2N matrix-valued continuous function defined in [0, T ] given by c(t)
= (ci,j(t))i,j=1,...,2N , and e

−1(t) is the inverse matrix of e(t), t ∈ [0, T ]. Then we have
d

dt
e(t) = c(t)e(t),

d

dt
e−1(t) = −e−1(t)c(t).

Note that

(Jc(t))i,j =

dX
k=1

βki (t)β
k
j (t), i, j = 1, . . . , N,

and so
c(t)∗ = −(JJc(t))∗ = Jc(t)J.

Therefore we have

d

dt
(Je(t)∗J) = J(c(t)e(t))∗J = −Je(t)∗Jc(t).

Since −Je(0)J = I2N , we have by the uniqueness of a solution to ODE
e−1(t) = −Je(t)∗J.

So we see that

Jγk(t) = −Je(t)∗Jαk(t) = e−1(t)αk(t) k = 1, . . . , d.

Then we see that

J(Ψh)(t) =
dX
k=1

Z t

0

e(s)−1αk(s)hk(s)ds, (3)

In this section, we prove the following.
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Proposition 3 (1) IN − A0(IH − V01)−1A∗1 = ẽ(T ),
and

det(IN − A0(IH − V01)−1A∗1) = det(ẽ(T )).
(2) For h ∈ H,

(A0(IH − V01)−1h)i =
2NX
j=1

ei,j(T )(J(Ψh)(T ))j, i = 1, . . . , N.

(3) For h ∈ H and v ∈ RN ,

(h, (IH − V01)−1A∗1v)H =
NX
i=1

vi(Ψh)i(T ), k = 1, . . . , d, t ∈ [0, T ].

(4) For any h ∈ H,

((IH − V01)−1h)k(t) = hk(t)−
2NX
j=1

γkj (t)(J(Ψh)(t))j, k = 1, . . . , d, t ∈ [0, T ].

In particular,

(h1, (IH − V01)−1h2)H = (h1, h2)H −
Z T

0

(
d

dt
(Ψh1)(t), J(Ψh2)(t))R2Ndt

for h1, h2 ∈ H.

Proof. Let f ∈ C∞0 ((0, T );Rd) ⊂ H and let ξ = (IH − V01)−1f. Then we have

ξ = f + V01ξ

Let

ηi(t) =

dX
k=1

Z t

0

αki (s)ξ
k(s)ds, i = 1, . . . , 2N.

Then we have
(A0(IH − V01)−1f)i = ηi(T ), i = 1, . . . , N. (4)

Also we have

ξk(t) = fk(t) +

2NX
i=1

βki (t)ηi(t), k = 1, . . . , d,

and so we have
d

dt
ηi(t) =

dX
k=1

αki (t)ξ
k(t)

=
dX
k=1

αki (t)f
k(t) +

2NX
j=1

cij(t)ηj(t), i = 1, . . . , 2N.
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Note that ηi(0) = 0, i = 1, . . . , 2N. So we see that

ηi(t) =

2NX
j1,j2=1

dX
`=1

ei,j1(t)

Z t

0

e−1j1,j2(s)α
`
j2
(s)f `(s)ds

=

2NX
j=1

ei,j(t)(J(Ψf)(t))j, i = 1, . . . , 2N, t ∈ [0, T ].

This and Equation (4) imply the assertion (2), since C∞0 ((0, T );R
d) is dense in H.

Also, we see that

ξk(t) = fk(t) +

2NX
j1,j2=1

βkj1(t)ej1,j2(t)(J(Ψf)(t))j2 ,

for k = 1, . . . , d, t ∈ [0, T ]. This implies the assertion (4).
Let v ∈ RN . Then we have

(J(ΨA∗1v)(t))i =
NX
r=1

2NX
j=1

dX
`=1

vr

Z t

0

e−1i,j (s)α
`
j(s)b

`
r(s)ds

= −
NX
r=1

2NX
j=1

dX
`=1

vr

Z t

0

e−1i,j (s)cj,r(s)ds =
NX
r=1

vr

Z t

0

d

ds
e−1i,r (s)ds =

NX
r=1

vre
−1
i,r (t)− vi

Therefore
(h, (IH − V01)−1A∗1v)

= (h,A∗1v) +
2NX

j1,j2=1

NX
i=1

vi

Z T

0

βkj1(t)ej1,j2(t)e
−1
j2,i
(t)hk(t)dt

−
2NX
j=1

NX
i=1

vi

Z T

0

βkj (t)ej,i(t)h
k(t)dt

=
NX
i=1

vi

Z T

0

γki (t)h
k(t)dt =

NX
i=1

vi(Ψh)i(T ).

This implies the assertion (3).
So we have

((IN − A0(IH − V01)−1A∗1)v)i

= vi +

dX
k=1

2NX
j0=1

NX
j1=1

vj1

Z T

0

aki (t)β
k
j0
(t)ej0,j1(t)dt

= vi +

2NX
j0=1

NX
j1=1

vj1

Z T

0

ci,j0(t)ej0,j1(t)dt

= vi +

NX
j=1

vj(ei,j(T )− δij) =

NX
j=1

ei,j(T )vj.

This implies the assertion (1).
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4 Proof of Theorem

Proposition 4 (1) di,j = dj,i, for all i, j = 1, . . . N.
(2) For any h1, h2 ∈ H,

(h1, (I − E)−1h2)H

= (h1, h2)H +

NX
i=1

J(Ψh2)(T )
i(Ψh1)(T )

i −
Z T

0

(
d

dt
(Ψh1)(t), J(Ψh2)(t))R2Ndt

+
NX

i,j=1

dij(Ψh2)(T ))
i(Ψh1)(T )

j.

Proof. Note that e(t)Je(t)∗ = J. This implies that for i, j = 1, . . . , N, and

0 = (e(t)Je(t)∗)i,j = −
NX
r=1

ei,r(t)ej,N+r(t) +
NX
r=1

ei,N+r(t)ej,r(t)

Let fi,j : [0, T ]→ R, i, j = 1, . . . , N, be given by

fi,j(t) =

NX
r=1

ei,r(t)ej,N+r(t),

and let F (t) be an N × N -matrix given by F (t) = (fi,j(t))i,j=1,...,N . Then we have F (t)∗
= F (t). Since we have

(di,j)i,j=1,...,N = ẽ
−1(T )(ẽ−1(T )F (T ))∗ = ẽ−1(T )F (T )(ẽ−1(T ))∗,

we have the assertion (1).
By Propositions 2 and 3, we have for h1, h2 ∈ H,

(h1, ((IH − E)−1h2)H

= (h1, (IH−V01)−1h2)H+(h1, (IH−V01)−1A∗1(IN−A0(IH−V01)−1A∗1)−1A0(IH−V01)−1h2)H

= (h1, h2)H −
Z T

0

(
d

dt
(Ψh1)(t), J(Ψh2)(t))R2Ndt

+
NX

i,j=1

2NX
`=1

ẽ−1ij (T )ej,`(T )J(Ψh2)(T )
`(Ψh1)(T )

i

= (h1, h2)H −
Z T

0

(
d

dt
(Ψh1)(t), J(Ψh2)(t))R2Ndt+

NX
i=1

J(Ψh2)(T )
i(Ψh1)(T )

i

+

NX
i,j=1

dij(Ψh2)(T )
i(Ψh1)(T )

j

So we have the assertion (2).
Now Theorem 1 is an easy consequence of Propositions 2, 3, 4 and Equation (2).
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5 A Remark

Let us define N × d-matrix valued functions by a(t) = (akj (t))j=1,...,N k=1,...,d, b(t) =
(bkj (t))j=1,...,N k=1,...,d, t ∈ [0, T ]. Also, let us define 2N × d-matrix valued functions α(t) =
(αkj (t))j=1,...,2N k=1,...,d, β(t) = (β

k
j (t))j=1,...,2N k=1,...,d, t ∈ [0, T ].

Then we see that
c(t) = α(t)β(t)∗, t ∈ [0, T ].

So we have

e(t) = I2N +

Z t

0

c(s)e(s)ds

= I2N +

∞X
k=1

Z t

0

ds1

Z s1

0

ds2 · · ·
Z sk−1

0

dsk c(s1) · · · c(sk)

= I2N +
∞X
k=1

Z
0<sk<···<s1<t

α(s1)β(s1)
∗α(s2)β(s2)

∗ · · ·α(sk)β(sk)∗ds1ds2 · · · dsk

= I2N+

Z t

0

α(s)β(s)∗ds+
∞X
k=1

Z
0<sk<···<s1<t

α(s1)K(s1, s2) · · ·K(sk−1, sk)β(sk)∗ds1ds2 · · · dsk,

where K(t, s) is a d× d-matrix valued function given by

K(t, s) = β(t)∗α(s) = a(t)∗b(s)− b(t)∗a(s), 0 5 s 5 t 5 T.

So

Kij(t, s) =

NX
k=1

(aik(t)b
j
k(s)− bik(t)ajk(s)), i.j = 1, . . . , d, 0 5 s 5 t 5 T.

Let
E(t, r)

= K(t, r) +

∞X
k=1

Z
r<sk<···<s1<t

K(t, s1)K(s1, s2) · · ·K(sk−1, sk)K(sk, r)ds1ds2 · · · dsk,

0 5 r 5 t 5 T. Then we see that

E(t, r) = K(t, r) +

Z t

0

K(t, s)E(s, r)ds 0 5 r 5 t 5 T,

e(t) = I2N +

Z t

0

α(s)β(s)∗ds+

Z
0<r<s<t

α(s)E(s, r)β(r)∗dsdr,

and

ê(t) = IN −
Z t

0

a(s)b(s)∗ds−
Z
0<r<s<t

a(s)E(s, r)b(r)∗dsdr,

γ(t)∗ = β(t)∗e(t) = β(t)∗ +

Z t

0

E(t, s)β(s)∗ds.
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6 Special Case

Let K be a 2N × 2N matrix and α̃k ∈ R2N , k = 1, . . . , d. We assume that the matrix K
satisfies

JKJ = K∗.

Note that the matrix K satisfies this condition, if and only if

K22 = −K∗11, K∗12 = K12 and K
∗
21 = K21,

where Kij, i, j = 1, 2 are N ×N matrix such that

K =

µ
K11 K12

K21 K22

¶
.

Now let αk : [0, T ]→ RN , k = 1, . . . , d be given by

αk(t) = exp(tK)α̃k, t ∈ [0, T ], k = 1, . . . , d.

Let aki : [0, T ]→ R and bki : [0, T ]→ R, i = 1, . . . , N, k = 1, . . . , d, be given by

aki (t) = αki (t), bki (t) = αkN+i(t), t ∈ [0, T ].

Let

X(w) =

NX
i=1

dX
k,`=1

Z T

0

(

Z t

0

b`i(s)dw
`(s))aki (t)dw

k(t).

We assume that if Eμ[exp(X)] <∞. Then, for any h ∈ L2([0, T ];Rd, dt) and λ ∈ C,

Eμ[exp(λ

dX
k=1

Z T

0

hk(t)dwk(t) +X)]

is computable by Theorem 1. In this section, we show that we can reduce all computation
to linear ordinary differential equations with constant coefficients.
Note that

J exp(tK) =
∞X
n=0

(−t)n
n!

J(KJ2)n =
∞X
n=0

(−t)n
n!

(JKJ)nJ = exp(−tK∗)J,

and so we have
βk(t) = Jαk(t) = J exp(tK)α̃k = exp(−tK∗)Jα̃k.

Then we see that

c(t) =
dX
k=1

αk(t)βk(t)∗ = exp(tK)L exp(−tK),

where

L =

dX
k=1

α̃k(Jα̃k)∗ = −
dX
k=1

α̃kα̃k∗J.
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Note that the matrix L also satisfies JLJ = L∗. Since we have

d

dt
(exp(tK) exp(t(L−K)) = exp(tK)L exp(t(L−K))

= c(t) exp(tK) exp(t(L−K)),
the uniqueness of the solution to the ordinary equation (1) implies that

e(t) = exp(tK) exp(t(L−K)), t ∈ [0, T ].

Then we have

γk(t) = −e(t)∗βk(t) = − exp(t(L−K)∗))Jα̃k, t ∈ [0, T ], k = 1, . . . , d,

and

(Ψh)(t) =

dX
k=1

Z t

0

γk(s)hk(s)ds

= −
Z t

0

exp(s(L−K)∗)(
dX
k=1

Jα̃khk(s))ds, t ∈ [0, T ],

for h ∈ L2([0, T ];Rd, dt).

7 Examples 1

In this section, we shall see some examples that Theorem 1 is applicable. First example
is known as harmonic oscillator.

Proposition 5 For κ > 0 and λ ∈ C, we have

E

∙
exp
¡
λw(T )− κ

Z T

0

w(t)2dt
¢¸
=

1q
cosh(

√
2κT )

exp
¡λ2
2

tanh(
√
2κT )√
2κ

¢
.

Proof. We define the quadratic Wiener functional given by

X̃(w) = −κ
Z T

0

w(t)2dt.

Then we see that X̃ = −κT 2

2
+X, where

X(w) =

Z T

0

2κ(t− T )
Z t

0

dw(s)dw(t).

We apply the computation of previous section for N = 1, d = 1,

K =

µ
0 2κ
0 0

¶
, and α̃ =

µ
−2κT
1

¶
.

11



Then we see that a1(t) = 2κ(t− T ) and b1(t) = 1. Also, we have

Jα̃ =

µ
−1
−2κT

¶
L = J α̃α̃∗ =

µ
2κT −1
4κ2T 2 −2κT

¶
.

Then we have
e(t) =Ã

cosh(
√
2κt)−

√
2κ(t− T ) sinh(

√
2κt) 2κt cosh(

√
2κt)−

√
2κ
¡
1 + 2κT (t− T )

¢
sinh(

√
2κt)

− 1√
2κ
sinh(

√
2κt) cosh(

√
2κt)−

√
2κT sinh(

√
2κt)

!
.

Then γ1 and γ2 are given as

γ1(t) = cosh(
√
2κt), γ2(t) = 2κT cosh(

√
2κt)−

√
2κ sinh(

√
2κt).

Now we have

ẽ(t) = cosh(
√
2κt)−

√
2κ(t− T ) sinh(

√
2κt),

d11 = 2κT −
√
2κ tanh(

√
2κT ),

and

A(h, h) = 1√
κ
tanh(

√
κT ).

for h = 1. From Theorem 1, we can easily show Proposition 5.

Corollary 6 For κ > 0 and x ∈ R, we have

E

∙
exp(−κ

Z T

0

w(t)2dt)δx(w(T ))

¸
=

1√
2πT

s √
2κT

sinh(
√
2κT )

exp
³
−1
2

√
2κ

tanh(
√
2κT )

x2
´
,

where δx(w(T )) is the pull-back of the Dirac delta function at x ∈ R by the Wiener
functional w(T ).

Proof. Applying Fourier transform for the Dirac delta function, we have the following;

E

∙
exp(−κ

Z T

0

w(t)2dt)δx(w(T ))

¸
=
1

2π

Z ∞
−∞
E

∙
exp(−κ

Z T

0

w(t)2dt) exp(−iξ(w(T )− x))
¸
dξ

=
1

2π

Z ∞
−∞

1q
cosh(

√
2κT )

exp
³
−ξ

2

2

tanh(
√
2κT )√
2κ

+ iξx
´
dξ

=
1√
2πT

s √
2κT

sinh(
√
2κT )

exp
³
−1
2

√
2κ

tanh(
√
2κT )

x2
´
.

We applied Proposition 5 in the middle.
We shall see the next example. This is known as Levy’s stochastic area.

12



Proposition 7 For κ > 0 and λ1,λ2 ∈ C, we have

E

∙
exp

µ
λ1w1(T ) + λ2w2(T ) + κ

¡Z T

0

w2(t)dw1(t)−
Z T

0

w1(t)dw2(t)
¢¶¸

=
1

cos(κT )
exp
¡λ21 + λ22

2κ
tan(κT )

¢
.

Proof. It is enough to show the formula for κ = 1. We define the quadratic Wiener
functional given by

S(w) =

Z T

0

w2(t)dw1(t)−
Z T

0

w1(t)dw2(t).

Then we can apply Theorem 1 for N = 2, d = 2 and

a(t) =

µ
a11 a21
a12 a22

¶
=

µ
0 1
−1 0

¶
, b(t) =

µ
b11 b21
b12 b22

¶
=

µ
1 0
0 1

¶
.

Then αk : [0, T ]→ R4, βk : [0, T ]→ R4, k = 1, 2 and C ∈M4(R) are given by

α1(t) =

⎛⎜⎜⎝
0
−1
1
0

⎞⎟⎟⎠ , α2(t) =
⎛⎜⎜⎝
1
0
0
1

⎞⎟⎟⎠ , β1(t) =
⎛⎜⎜⎝
−1
0
0
−1

⎞⎟⎟⎠ , β2(t) =
⎛⎜⎜⎝
0
−1
1
0

⎞⎟⎟⎠ , C =
⎛⎜⎜⎝
0 −1 1 0
1 0 0 1
−1 0 0 −1
0 −1 1 0

⎞⎟⎟⎠ .
Here e : [0, T ]→M4(R) satisfies the ODE

d

dt
e(t) = Ce(t), e(0) = I4,

and the solution is given as

e(t) =

µ
E11(t) E12(t)
−E12(t) E11(t)

¶
,

where

E11(t) =
1

2
(1 + cos(2t))I2 +

1

2
sin(2t)J2, E12(t) =

1

2
(1− cos(2t))J2 +

1

2
sin(2t)I2.

Therefore we have

ẽ(t) = E11(t), det(ẽ(t)) =
1

2
+
1

2
cos(2t),µ

d11 d12
d21 d22

¶
= E−111 (T )E12(T ) =

µ
tan t 0
0 tan t

¶
.

Also we can easily show that

A(h, h) = (λ21 + λ22) tan(T ),

where h1 = λ1, h2 = λ2. Now Proposition 7 is an easy consequence of Theorem 1.

Corollary 8 For κ > 0 and x ∈ R, we have

E

∙
exp
¡
κ
¡Z T

0

w2(t)dw1(t)−
Z T

0

w1(t)dw2(t))
¢
δx(w(t))

¸
=

1

2πT

κT

sin(κT )
exp

µ
− |x|

2

2T

κT

tan(κT )

¶
.

Proof. We can prove this formula as in the same way as Corollary 6 using Proposition 7.
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8 Examples 2

We think of some examples using results in Section 5. Let N = 1, d = 2, and Kk`,
k, ` = 1, 2, be N ×N -matrices given by

(K12)ij =

½
−1, if i = j + 1, j = 1, . . . , N − 1,
0, otherwise,

(K21)ij = −(K12)ji, i, j = 1, . . . , N, and K12 = K21 = 0. Let K be 2N × 2N -matrices
given by

K =

µ
K11 K12

K21 K22

¶
.

Also, let α̃k ∈ R2N , k = 1, 2, be given by

α̃1i =

½
1, i = 1,
0, i 6= 1,

and

α̃2i =

½
1, i = 2N,
0, i 6= 2N.

Then we see that

a1i (t) =
(−t)i−1
(i− 1)! , b2i (t) =

tN−i

(N − i)! , i = 1, . . . , N,

and a2(t) = b1(t) = 0. So

X =
NX
i=1

Z T

0

(

Z t

0

sN−i

(N − i)!dw
2(s))

(−t)i−1
(i− 1)!dw

1(t)

=
(−1)N−1
N !

Z T

0

(

Z t

0

(t− s)N−1dw2(s))dw1(t).

We also have

(Jα̃1)i =

½
−1, i = N + 1,
0, i 6= N + 1,

and

(Jα̃2)i =

½
1, i = 2N,
0, i 6= 2N.

Let τ : {1, 2, . . . , 2N}→ {1, 2, . . . , 2N} be a permutation given by

τ(1) = N+1, τ(i) = i−1, i = 2, . . . , N, τ(i) = i+1, i = N+1, . . . , 2N−1, τ(2N) = N.

Then it is easy to see that

(L−K)ij =

⎧⎨⎩
1, if i = 1, . . . , N, and j = τ(i),
−1, if i = N + 1, . . . , 2N, and j = τ(i),
0, otherwise.
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Note that τn(i) 6= i, n = 1, . . . , 2N − 1, and τ 2N (i) = i, for any i = 1, . . . , 2N. So it is
easy to see that (L−K)2N = (−1)NI2N .
For M = 1, let

ϕ
(k)
M (z) =

∞X
n=0

znM+k

(nM + k)!
, z ∈ C, k = 0, . . . ,M − 1.

Then we see that if N is even,

exp(t(L−K)) =
2N−1X
k=0

ϕ
(k)
2N(t)(L−K)k,

and if N is odd,

exp(t(L−K)) =
4N−1X
k=0

ϕ
(k)
4N(t)(L−K)k =

2N−1X
k=0

(ϕ
(k)
4N(t)− ϕ

(2N+k)
4N (t))(L−K)k.

Proposition 9 For any M = 2,

ϕ
(k)
M (z) =

1

M

M−1X
j=0

ω
j(M−k)
M exp(ωjMz), z ∈ C, k = 0, . . . ,M − 1.

Here

ωM = exp(
2π
√
−1

M
).

Proof. Note that
M−1X
j=0

exp(ωjMz) =

∞X
k=0

(
zk

k!

M−1X
j=0

ωkjM)

It is easy to see that
PM−1

j=0 ωkjM = 0, if k is not divisible by M, and that
PM−1

j=0 ωkjM =M,
if k is divisible by M. So we see that

M−1X
j=0

exp(ωjMz) =M

∞X
n=0

znM

(nM)!
=Mϕ

(0)
M (z).

Also, it is easy to see that

ϕ
(k)
M (z) =

dM−k

dzM−k
ϕM(z), k = 1, . . . ,M − 1.

So we have our assertion.
It is easy to see that for i, j = 1, . . . , N, and n = 0, 1, . . . , 2N − 1,

((L−K)n)ij =

⎧⎨⎩
1, if j = i− n,

(−1)N , if j = i− n+ 2N,
0, otherwise.
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Now we give a concrete computation in the case that N is even. In this case we have

−γ1(t)∗ = (Jα̃1)∗ exp(t(L−K))

= (ϕ
(2N−1)
2N (t),ϕ

(2N−2)
2N (t), . . . ,ϕ

(N)
2N (t),ϕ

(0)
2N(t),−ϕ

(1)
2N (t),ϕ

(2)
2N(t),−ϕ

(3)
2N(t), . . . ,ϕ

(N−2)
2N (t),−ϕ(N−1)2N (t)),

and
γ2(t)∗ = −(Jα̃1)∗ exp(t(L−K))

= (ϕ
(N−1)
2N (t),ϕ

(N−2)
2N (t), . . . ,ϕ

(0)
2N(t),

ϕ
(N)
2N (t),−ϕ(N+1)2N (t),ϕ

(N+2)
2N (t),−ϕ(N+3)2N (t), . . . ,ϕ

(2N−2)
2N (t),−ϕ(2N−1)2N (t)).

Also we have
(eij(t))i=1,...,N j=1,...,2N =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕ
(0)
2N (t) ϕ

(2N−1)
2N (t) ϕ

(2N−2)
2N (t) · · · ϕ

(N+1)
2N (t) ϕ

(1)
2N (t) ϕ

(2)
2N(t) · · · ϕ

(N)
2N (t)

ϕ
(1)
2N (t) ϕ

(0)
2N (t) ϕ

(2N−1)
2N (t) · · · ϕ

(N+2)
2N (t) ϕ

(2)
2N (t) ϕ

(3)
2N(t) · · · ϕ

(N−1)
2N (t)

ϕ
(2)
2N (t) ϕ

(1)
2N (t) ϕ

(0)
2N(t) · · · ϕ

(N+3)
2N (t) ϕ

(3)
2N (t) ϕ

(4)
2N(t) · · · ϕ

(N−2)
2N (t)

· · · · · · · · ·
· · · · · · · · ·
· · · · · · · · ·

ϕ
(N−1)
2N (t) ϕ

(N−2)
2N (t) ϕ

(N−3)
2N (t) · · · ϕ

(0)
2N(t) ϕ

(N)
2N (t) ϕ

(N+1)
2N (t) · · · ϕ

(2N−1)
2N (t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Since det exp(tK11) = 0, we have

det ẽ(t) = det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕ
(0)
2N(t) ϕ

(2N−1)
2N (t) ϕ

(2N−2)
2N (t) · · · ϕ

(N+1)
2N (t)

ϕ
(1)
2N(t) ϕ

(0)
2N(t) ϕ

(2N−1)
2N (t) · · · ϕ

(N+2)
2N (t)

ϕ
(2)
2N(t) ϕ

(1)
2N(t) ϕ

(0)
2N(t) · · · ϕ

(N+3)
2N (t)

· · · · ·
· · · · ·
· · · · ·

ϕ
(N−1)
2N (t) ϕ

(N−2)
2N (t) ϕ

(N−3)
2N (t) · · · ϕ

(0)
2N (t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Then we can compute

Eμ[exp(λ
2X
k=1

Z T

0

hk(t)dwk(t) +
(−1)N−1
N !

Z T

0

(

Z t

0

(t− s)N−1dw2(s))dw1(t)))].

We can also handle the case that N is odd, though formulae become much complicated.
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