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Abstract

In this paper we develop optimal control laws for traffic networks. A standard traffic flow model
is used to formulate the traffic control in terms of ”on-off” strategy for the traffic signals. It is
of the form of the optimal bilinear control problem with the binary constraints. We develop a
Lyapunov function based feedback law for minimizing traffic congestions and stabilizing the traffic
flow. Also, a novel binary optimization method is developed to obtain a real-time optimal control
law for the binary constrained optimal control problem. Both methods are tested and compared for
a large scale traffic network. Our tests demonstrate that the both method provides very effective
but efficient traffic control law.

1 Introduction

The rapid growth of motorization, due to the significant problems created in communities of mod-
ern cities, motivates intense research activities in the field of traffic flow ranging from empirical to
theoretical study. In a reflection of complexity and nonlinearity of traffic phenomena, there are vast
contributions to the study in many aspects covering mathematical modeling including numerical
methods, qualitative analysis using observed data and relevant simulations with the aim of com-
prehending the nature and significance of traffic flow and developing advanced road networks with
efficient movement of traffic and minimal traffic congestion problems. There exists vast literature
on the modeling of traffic flow, for example, [18] [17] [5] [22] [19] [6] [7] [20] [2], [23] [8] [4], [1] [21]
[16]. Nonetheless, as the phenomena related to traffic flow is highly complex, modeling has not
yet reached a satisfactory level so that further investigation may be necessary in order to fulfill the
standard demands in real world applications.

The purpose of this article is to develop two strategies (numerical methods) toward real time
optimal control for traffic control. A macroscopic model (a system of ODE) is introduced and is used
to describe these methods. The first strategy, which is proposed in section 3, is Lyapunov method:
we develop a traffic control in terms of ”on-off” strategy for the traffic signals. Our objective is
to make the volume of the traffic uniformly distributed, i.e. reducing traffic congestion. Based on
our traffic model we develop a Lyapunov function based control law that controls traffic flows in
real time and results in stabilizing regulating traffic flows optimally. A Lyapunov function method
is a feedback law for selecting the on-off signal laws based on the traffic conditions, i.e. the traffic
volume coming to the junction from each traffic link.

As for the second strategy for traffic control, a simple but efficient optimization method for binary
optimization problems is developed. Although several optimization methods have been developed
and used for the binary optimization problems, (to mention quite a few, [9, 10], [11], [2], [3]), there
has been few satisfactory optimization method available so far that can be applied to large scale
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network flow arising in real world, even with the advent of significant computer processing power.
Thus, there still exists a demand for new optimization methods allowing easy implementation for
solving mixed integer nonlinear programming of large-scale. We formulate a traffic control problem
as an optimal control problem of controlled Markov chain in which on-off nature of traffic signals
is the binary control constraint, and then apply the method to determination of the optimal traffic
signal control. Our method is based on the control theoretic formulation and optimization method.
The binary optimization method uses the derivative of our cost functional with respect to control
variables. Such derivative is calculated efficiently by the adjoin method using the adjoint equation.
The proposed binary optimization method is categorized into relaxation methods; it is a real variable
optimization in which the binary constraint is treated by the exact penalty method. We develop an
effective and efficient iterative method for solving the resulting optimization. Although the methods
are developed and described using a simple mathematical model, it can be widely applicable to other
models formulated as 0-1 integer optimal control problems.

This paper is organized as follows: In section 2, a traffic flow model is introduced. In section 3,
the Lyapunov method for the traffic model is developed to stabilized the traffic volume. In section
4, we develop a novel method for binary optimization problem for the traffic control problem. In
section 5, we test and demonstrate a feasibility and robustness of the proposed feedback law and
the binary optimization method for a small traffic grid (m = 2) and a large grid (m = 100).

2 A Traffic Model

Traffic networks are usually modeled by graphs. Crossings such as road intersections or junctions
are symbolized by nodes of the graph, and connections such as roads between nodes are represented
by edges. In this section, we describe a model for traffic flow in a large traffic network proposed by
Imura [12]. We consider the square grids (i, j), i, j = 0, . . . ,m for the traffic network (Fig. 1(a)).
At each node (junction) (i, j), we assign a traffic signal ui,j(t) that varies 0 or 1. If ui,j(t) = 1 then
the traffic flows ”East to West” and ”West to East”, and if ui,j(t) = 0 then the traffic flows ”South
to North” and ”North to South”. Throughout we assume that the signals ui,j(t) remain constant
(0 or 1) during the time interval ∆t > 0 which is a priori given, i.e.,

∀i, j, ui,j(t) = either 0 or 1 for t ∈ [k∆t, (k + 1)∆t], ∀k =∈ N ∪ {0}.

In other words,
ui,j(t) = u0

i,jχ[0,∆t] + u1
i,jχ[∆t,2∆t] + · · · , uk

i,j ∈ {0, 1}.

Let Ei,j , W i,j , N , and Si,j denote the traffic volume entering to the node (i, j) in the direction of
East, West, North and South, respectively (Fig. 1(b)). The labeling of the traffic volume is based
on the labeling of the traffic signal. The subindex i, j of E,W,S,N indicates that these traffics
move in the direction of the signal (i, j).

At the (i, j) junction, we assume that the turning rates bWi,j ≥ 0 (left turn) and cWi,j ≥ 0 (right
turn) for the traffic flow W i,j are known a priori. We also assume there is no U-tern, i.e., the rate
aWi,j for traffic W i,j going straight is given by aWi,j = 1 − bWi,j − c

W
i,j . See Fig. 1(c). We also define

aE, . . . , cN accordingly. Based on such assumptions, dynamic change in traffic volume Ei,j can be
represented as a balance law at the node (i, j):

d

dt
Ei,j = −λ

[

ui,jEi,j − (aEi,j+1ui,j+1Ei,j+1 + bSi,j+1(1− ui,j+1)Si,j+1 + cNi,j+1(1− ui,j+1)N i,j+1)
]

The first term −λui,jEi,j is the outflow from the junction (i, j), and the remaining terms represent
inflow through the junction (i + 1, j). Fig. 1(d) depicts the related traffic volume to the balance
law of Ei,j .

The evolution of W i,j , N , and Si,j are written in a similar manner. See Fig. 1(e), 1(f) and 1(g).
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d
dt
Ei,j = −λ

[

ui,jEi,j − (aEi,j+1ui,j+1Ei,j+1 + bSi,j+1(1− ui,j+1)Si,j+1 + cNi,j+1(1− ui,j+1)N i,j+1)
]

.

d
dt
W i,j = −λ

[

ui,jW i,j − (aWi,j−1ui,j−1W i,j−1 + bNi,j−1(1− ui,j−1)N i,j−1 + cSi,j−1(1− ui,j−1)Si,j−1)
]

,

d
dt
Si,j = −λ

[

(1− ui,j)Si,j − (aSi−1,j(1− ui−1,j)Si−1,j + bWi−1,jui−1,jW i−1,j + cEi−1,jui−1,jEi−1,j)
]

,

d
dt
N i,j = −λ

[

(1− ui,j)N i,j − (aNi+1,j(1− ui+1,j)N i+1,j + bEi+1,jui+1,jEi+1,j + cWi+1,jui+1,jW i+1,j)
]

,

,

(2.1)
for 1 ≤ i, j ≤ m. The quantities W i,0, Ei,m+1, Nm+1,i and S0,i (1 ≤ i ≤ m) represent inflows at
the boundary nodes, and are given a priori. We assume that at the boundary nodes the signal is
”on” for i = 0, m+ 1 and is ”off” for j = 0, m+ 1 and that the traffic flow is straight, and hence,
the equation for Ei,m, for example, is written by the equation

d

dt
Ei,m = −λ(ui,mEi,m − Ei,m+1).

The locations of the boundary inflows W i,0, Ei,m+1, Nm+1,i and S0,i are displayed in Fig. 1 for
the case in which there are four junctions (m = 2).

Let x(t) denote a 4m2 × 1 column vector for traffic volume:

x(t) = [ E1,1, E2,1, . . . , Em,1, . . . , E1,m, E2,m, . . . Em,m,

W 1,1,W 2,1, . . . ,Wm,1, . . . ,W 1,m,W 2,m, . . .Wm,m,

S1,1, S2,1, . . . , Sm,1, . . . , S1,m, S2,m, . . . Sm,m,

N1,1, N2,1, . . . , Nm,1, . . . , N1,m, N2,m, . . . Nm,m]⊤ .

Using matrix notations, the system (2.1) for the traffic volume can be expressed as a dynamical
system of x(t)

d

dt
x(t) = Ax(t) +

m
∑

i,j=1

ui,j(t)Bi,jx(t) + s(t), (2.2)

where the matrices A and Bi,j and the vector s(t) are defined as the following: Let aW denote a
m×m matrix whose component is aWi,j :

aW =











aW1,1 aW1,2 · · · aW1,m
aW2,1 aW2,2 · · · aW2,m

. . .

aWm,1 aWm,2 · · · aWm,m











.
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Figure 1: Inflow traffic at the boundary of the traffic network.
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The matrices bW , cW , aE , etc are defined analogously. Let U and L denote an upper shift matrix
and a lower shift matrix, respectively: the (i, j) component of U and L are

Ui,j = δi+1,j , Li,j = δi,j+1,

where δi,j is the Kronecker delta symbol. For example, the 3× 3 shift matrices are

U3 =





0 1 0
0 0 1
0 0 0



 , L3 =





0 0 0
1 0 0
0 1 0



 .

We define A and Bi,j by

A = λ









0 0 (U ⊗ I)bS (U ⊗ I)cN

0 0 (L⊗ I)cS (L⊗ I)bN

0 0 −I ⊗ I + (I ⊗ L)aS

0 0 −I ⊗ I + (I ⊗ U)aN









,

Bi,j = C(I4 ⊗ Ei,j)

where

C = λ









(U ⊗ I)aE − I ⊗ I 0 −(U ⊗ I)bS −(U ⊗ I)cN

0 (L⊗ I)aW − I ⊗ I −(L⊗ I)cS −(L⊗ I)bN

(I ⊗ L)cE (I ⊗ L)bW I ⊗ I − (I ⊗ L)aS 0
(I ⊗ U)bE (I ⊗ U)cW 0 I ⊗ I − (I ⊗ U)aN









,

and Ei,j is a m×m matrix whose component is 0 except that its (m(i−1)+ j,m(i−1)+ j) element
is 1, i.e.,

Ei,j [ℓ, ℓ
′] = δℓ1,m(i−1)+jδℓ′,m(i−1)+j , ∀ℓ, ℓ′ ∈ {1, 2, . . . ,m}.

Lastly, s(t) is defined by the sum of ”inflows”:

s(t) = λ











0
...
0
1











⊗











E1,m+1

E2,m+1

...
Em,m+1











+ λ











1
0
...
0











⊗











W 1,0

W 2,0

...
Wm,0











+ λ











S0,1

S0,2

...
S0,m











⊗











1
...
0
0











+ λ











Nm+1,1

Nm+1,2

...
Nm+1,m











⊗











0
...
0
1











.

The eigenvalues of A consists of 0 with the 2m multiplicity and -1 with the 2m multiplicity.

3 Lyapunov stabilization method.

Our objective here is to stabilize the volume of the traffic uniformly distributed. Based on our
traffic model in section 2 we develop a Lyapunov function based control law that controls traffic
flows in real time and results in stabilizing regulating traffic flows optimally. A Lyapunov function
method is a feedback law for selecting the on-off signal laws based on the traffic conditions, i.e. the
traffic volume coming to the junction from each traffic link. It has been used in a quantum control
[15] and it asymptotic property is analyzed in [15, 13].

Let us introduce a cost function

V (x(t)) = (Qx(t), x(t)),

where Q is a positive definite matrix of the size 4m× 4m. Then we have

d

dt
V (x(t)) = (Qx(t), ẋ(t)) = (Qx(t),Ax(t) +

∑

i,j

ui,j(t)Bi,jx(t) + s(t))

= (Qx(t),Ax(t) + s(t)) +
∑

i,j

ui,j(t)ci,j(t).
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where ci,j is given by
ci,j(t) = (Qx(t),Bi,jx(t)). (3.3)

We determine ”on” or ”off” of the signal ui,j(t + ∆t) at time t + ∆t by the (descent, dissipative)
feedback law:







ui,j(t+∆t) = 1, if ci,j(t) ≤ 0,

ui,j(t+∆t) = 0, otherwise.
(3.4)

Suppose s(t) = 0. If there exists ω > 0 such that

d

dt
V (x(t)) = (x(t),QAx(t)) +

∑

i,j

ui,j(Qx(t),Bi,jx(t)) ≤ −ω (x(t),Qx(t)) = −ωV (x(t)), (3.5)

for all x, then (Qx(t), x(t)) converges to 0 exponential with rate ω > 0. If (3.5) holds, we say that
(Qx,x) is a controlled Lyapunov function.

As a special case of the cost function, we consider a local cost for the traffic that flows into the
(i, j)-junction:

Vloc(xi,j(t)) := (Q0xi,j(t), xi,j(t))

Here Q0 is a 4× 4 symmetric matrix, and xi,j(t) is the traffic volume related to junction (i, j)

xi,j(t) =









Ei,j(t)
W i,j(t)
N i,j(t)
Si,j(t)









.

For example, if we use Q0 such that

Q0 =









3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3









, (3.6)

then the local cost is the quadratic energy of the difference xi,j :

Vloc(xi,j(t)) = (W i,j − Ei,j)
2 + (W i,j −N i,j)

2 + (W i,j − Si,j)
2

+ (Ei,j −N i,j)
2 + (Ei,j − Si,j)

2 + (N i,j − Si,j)
2.

And if we use identity matrix for Q0, then the local cost is a local energy of xi,j(t):

Vloc(xi,j(t)) = E2
i,j +W 2

i,j + S2
i,j +N2

i,j .

We define the total cost V (x(t)) as the sum of the local costs:

V (x(t)) =
∑

i,j

Vloc(xi,j(t)) =
∑

i,j

(Q0xi,j(t), xi,j(t)) =
1

2
(x(t),Qx(t)), Q = Q0 ⊗ Im2 . (3.7)

As is shown in (3.3), the quantity ci,j(t) can be computed using the matrices Q and Bi,j and it is
not necessary to compute the explicit representation. If V (x) is composed of a simple matrix as in
(3.7), we could give the explicit representation. For that purpose, we first write down the system
(2.1) for the local traffic flow xi,j in the following form.

λ−1ẋi,j =− ui,jdxi,j + ui,j+1d
1
i,j+1xi,j+1 + ui,j−1d

2
i,j−1xi,j−1 + ui−1,jd

3
i−1,jxi−1,j + ui+1,jd

4
i+1,jxi+1,j

− d̂xi,j + d̂1i,j+1xi,j+1 + d̂2i,j−1xi,j−1 + d̂3i−1,jxi−1,j + d̂4i+1,jxi+1,j

6



where

d =

[

1
1

−1
−1

]

, d̂ =

[

0
0

1
1

]

,

d1i,j =

[

aE
i,j 0 −bSi,j −cNi,j
0 0 0 0
0 0 0 0
0 0 0 0

]

, d2i,j =

[

0 0 0 0
0 aW

i,j −cSi,j −bNi,j
0 0 0 0
0 0 0 0

]

, d3i,j =

[

0 0 0 0
0 0 0 0

cEi,j bWi,j −aS
i,j 0

0 0 0 0

]

, d4i,j =

[

0 0 0 0
0 0 0 0
0 0 0 0

bEi,j cWi,j 0 −aN
i,j

]

,

d̂1i,j =

[

0 0 bSi,j cNi,j
0 0 0 0
0 0 0 0
0 0 0 0

]

, d̂2i,j =

[

0 0 0 0
0 0 cSi,j bNi,j
0 0 0 0
0 0 0 0

]

, d̂3i,j =

[

0 0 0 0
0 0 0 0
0 0 aS

i,j 0

0 0 0 0

]

, d̂4i,j =

[

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 aN

i,j

]

.

Then one has

d

dt
V (x(t)) =

∑

i,j

(Q0xi,j(t), ẋi,j(t))

=λ
∑

i,j

(Q0xi,j(t),−ui,jdxi,j + ui,j+1d
1
i,j+1xi,j+1 + ui,j−1d

2
i,j−1xi,j−1 + ui−1,jd

3
i−1,jxi−1,j + ui+1,jd

4
i+1,jxi+1,j)

+ λ
∑

i,j

(Q0xi,j(t),−d̂xi,j + d̂1i,j+1xi,j+1 + d̂2i,j−1xi,j−1 + d̂3i−1,jxi−1,j + d̂4i+1,jxi+1,j),

By definition ci,j(t) is given as the coefficient of ui,j(t), and one obtains

ci,j(t) = λ
[

(Q0xi,j ,−dxi,j) + (Q0xi,j−1, d
1
i,jxi,j) + (Q0xi,j+1, d

2
i,jxi,j) + (Q0xi+1,j , d

3
i,jxi,j) + (Q0xi−1,j , d

4
i,jxi,j)

]

.
(3.8)

After some works, we find that ci,j(t) is given by the quadratic form of xi,j(t),xi,j+1(t),xi,j−1(t),xi+1,j(t)
and xi−1,j(t). The explicit representations of ci,j(t) for Q0 in (3.6) and for Q0 = I4 are given in
Appendix.

4 Binary Optimization method.

In this section, we consider the optimization problem for traffic flow:

min
u∈{0,1}Nm2

F (x), (4.9)

subject to
dx(t)

dt
= Ax(t) +

∑m

i,j
ui,j(t)Bi,jx(t) + s(t), 0 ≤ t ≤ T,

x(0) = x0,

(4.10)

where

F (x) :=

∫ T

0

V (x(t))dt =

∫ T

0

(Qx(t), x(t)) dt

and ui,j(t) models a signal at (i, j) junction and takes the values either 0 or 1, i.e,

ui,j(t) = u0
i,jχ[0,∆t](t) + u1

i,jχ[∆t,2∆t](t) + · · ·+ uN−1
i,j χ[(N−1)∆t,N∆t](t), uk

i,j ∈ {0, 1}.

with a given ∆t > 0. The optimization problem can be seen as a binary constrained optimization
problem for the signals vector

u := [u0
1,1, u

0
2,1, . . . , u

0
m,m, u

1
1,1, u

1
2,1, . . . , u

2
m,m, . . . , u

N−1
1,1 , uN−1

2,1 , . . . , uN−1
m,m ]⊤ ∈ {0, 1}Nm2

.
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4.1 Regularization of the binary constrained problem

We reformulate the problem into an unconstrained optimization problem: Find the control se-

quence u ∈ R
Nm2

that minimizes the cost function

min F (x) + ψ(u),

subject to

{

ẋ(t) = Ax(t) +
∑m

i,j
ui,j(t)Bi,jx(t) + s(t), 0 ≤ t ≤ T,

x(0) = x0.

where F is a const functional for the state with a positive definite matrix;

F (x) =
1

2

∫ T

0

(Qx(t), x(t))dt, (4.11)

and ψ(u) is the sum of sharp double well potentials W with a weight c > 0:

ψ(u) = c

N−1
∑

k=0

m
∑

i,j=1

W (uk
i,j).

Here the cost functional has been chosen so that the traffic congestion is minimized. The sharp
double well function W is for the penalty formulation of the binary constraint uk

i,j ∈ {0, 1}. That
is,

W (s) =























−s s ≤ 0

(1− s)s s ∈ [0, 1]

s− 1 s ≥ 1,

and ∂W (s) =







































−1 s < 0

1− 2s s ∈ (0, 1)

1 s > 1

[−1, 1] s = 0, 1.

Here ∂W (s) denotes the subgradient ofW (s) at s. Note that the subgradient becomes set if s = 0, 1.

For a given signal sequence u ∈ R
Nm2

, let x = Φ(u) denote the solution of the state equation
(4.10), let us define F̂ (u) by

F̂ (u) := F (Φ(u)).

Then the optimization problem is expressed in terms of this as the minimization problem

min
u∈RNm2

F̂ (u) + ψ(u).

The necessary optimality condition is give by the inclusion

F̂ ′(u) + ∂ψ(u) ∋ 0,

where the gradient F̂ ′(u) is identified with a row vector

F̂ ′(u) =

[

∂

∂u0
1,1

F̂ ′(u), . . . ,
∂

∂uN−1
m,m

F̂ ′(u)

]

∈ R
1,Nm2

There are two problems, concerning the inclusion, that must be overcome for numerical treatment.

1. The subdifferential ∂ψ(u) at uk
i,j = 0 and 1 can not be determined uniquely, and it makes

infeasible to handle the derivative numerically. In order to circumvent the ambiguity, we will
introduce a regularized potential in the next section.

2. The computation of the gradient F̂ ′(u) will be costly due to the following reason.
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The partial derivative ∂

∂uk
i,j

F̂ ′(u) at u for 1 ≤ i, j ≤ m and 0 ≤ k ≤ N − 1, can be calculated by

using the chain rule

∂

∂uk
i,j

F̂ ′(u) = F ′(Φ(u))Φ′(eki,j)

where eki,j is Nm2 × 1 column vector with entries 0 except m2k +m(j − 1) + i component. As can
be easily verified, y := Φ′(eki,j) is the solution of the system

d

dt
y(t) = Ay(t) + eki,jχ[k∆t,(k+1)∆t](t)Bi,jy(t) + s(t), y(0) = 0.

We must solve Nm2 equations to obtain the gradient F̂ ′(u), which makes the computation quite
costly for large scale problem (N ≫ 1, m ≫ 1) that arises in practice. We shall adopt the adjoint
method, whose benefit is that the total work of computing F̂ ′(u) is approximately equivalent to
integrating only one ODE (the adjoint equation). We will give a brief description of the adjoint
method in section 4.3.

4.2 Regularized problem and the algorithm

As mentioned earlier, the subdifferential ∂ψ(u) at uk
i,j = 0 and 1 can not be determined uniquely.

In order to avoid the non uniqueness of ∂ψ, we introduce a regularized potential ψǫ(u) and consider
the regularized problem:

min
u∈RNm2

F̂ (u) + ψǫ(u). (4.12)

We define the regularized potential ψǫ(u) as the sum of a regularized double well potentialWǫ(s)
with weight c > 0:

ψǫ(u) = c

N−1
∑

k=0

m
∑

i,j=1

Wǫ(u
k
i,j).

The regularized double well potential Wǫ(s) and its derivative W ′
ǫ(s) are defined by

Wǫ(s) =















































































































−Ls s ≤ −ǫ

L
s2

2ǫ
+ c2 s ∈ [−ǫ, 0]

(3− 4s)s2

6ǫ
+ c3 s ∈ [0, ǫ]

(1− s)s+ c4 s ∈ [ǫ, 1− ǫ]

−
s(6− 9s+ 4s2)

6ǫ
+ c5 s ∈ [1− ǫ, 1]

L
(s− 2)s

2ǫ
+ c6 s ∈ [1, 1 + ǫ]

L(s− 1) s ≥ 1 + ǫ

and W ′
ǫ(s) =











































































































−L s ≤ −ǫ

L
s

ǫ
s ∈ [−ǫ, 0]

(1− 2s)s

ǫ
s ∈ [0, ǫ]

1− 2s s ∈ [ǫ, 1− ǫ]

−
(1− 2s)(s− 1)

ǫ
s ∈ [1− ǫ, 1]

L
(s− 1)

ǫ
s ∈ [1, 1 + ǫ]

L s ≥ 1 + ǫ

where c2, . . . , c6 are constants defined so that Wǫ(s) is continuous; and L > 0 is a slope for the W
well potential; and ǫ > 0 is a small parameter, which is usually chosen within a range ǫ ∈ [10−6, 10−3]
in numerical computation.
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The following representation of the derivative is crucial to develop our numerical algorithm.
That is, we define Φ

(1)
ǫ (s) and Φ

(2)
ǫ (s) as Let us introduce two notations:

Φ(1)
ǫ (s) =































































L
1

max{|s|, ǫ}
s ≤ 0

1− 2s

max{|s|, ǫ}
s ∈ [0, 1

2
]

2s− 1

max{|s− 1|, ǫ}
s ∈ [ 1

2
, 1]

L
1

max{|s − 1|, ǫ}
s ≥ 1

, Φ(2)
ǫ (s) =



















































0 s ≤ 0

0 s ∈ [0, 1
2
]

2s− 1

max{|s − 1|, ǫ}
s ∈ [ 1

2
, 1]

L
1

max{|s − 1|, ǫ}
s ≥ 1

Then it is easy to see that
W ′

ǫ(s) = Φ(1)
ǫ (s)s− Φ(2)

ǫ (s),

Let us denote the diagonal matrix and the vector depending on a vector u by Au and bu respectively,
i.e.,

A(u) := c diag [Φ(1)
ǫ (u0

1,1), . . . ,Φ
(1)
ǫ (uN−1

m,m)],

b(u) := c [Φ(2)
ǫ (u0

1,1), . . . ,Φ
(2)
ǫ (uN−1

m,m)]⊤.

Then ψ′
ǫ(u) is written in terms of A and b

ψ′
ǫ(u) = A(u)u− b(u).

In view of this, the necessary optimality condition for (4.12) can be written as

F̂ ′(u) + A(u)u− b(u) = 0.

It is not feasible to solve the optimality system directly due to the nonlinearity in A(u)u. We
propose an iterative method that circumvents the difficulty.

(1) Initialize : u0

(2) Do until converge

un+1 − un

∆τ
+ F̂ ′(un)⊤ + A(un)un+1 − b(un) = 0.

Here ∆τ is a time stepping width. The algorithm includes the user defined parameters c, ∆τ , ǫ and
L.

4.3 Computation of the gradient F̂
′(u) by the adjoint method

The adjoint method is explained. For a given control u ∈ R
Nm2

, let us integrate the state equation

d

dt
x(t) =

(

A+

m
∑

i,j

ui,j(t)Bi,j

)

x(t) + s(t), x(0) = x0. (4.13)

to obtain x = Φ(u), and then solve the adjoint equation

−
d

dt
p(t) =

(

A+
m
∑

i,j

ui,j(t)Bi,j

)⊤

p(t) +Qx(t), p(T ) = 0 (4.14)
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Then, from the Lagrange calculus (e.g., see the next section) we can compute the partial derivative
by

∂F (u)

∂uk
i,j

=

∫ (k+1)∆t

k∆t

(p(t),Bi,jx(t)) dt. (4.15)

5 Numerical tests

Numerical tests are carried out to demonstrate the effectiveness and robustness of our proposed
methods.

Test 1 Lyapunov stability (Large scale )

Test 2 Optimality of the binary optimization (small scale)

Test 3 Applicability of BO and Lyapunov feed back law in Large scale

We denote the solution of (4.13) at time t = k∆t by xk ∈ R
m2

, and the i th component of xk by
xk
i ∈ R.

Test 1
In this test, we use a large traffic network with long horizon N , i.e., m = 100 and N = 1000. The
cost function V k := V (k∆t) = 1

2
(Qxk, xk) is used with Q defined as (3.7) with Q0 in (3.6). The

initial condition for the system (2.2) used in this test was

x0 = x(0) =
1

4
(1, 2, . . . , 16).

We used the flowing parameters in the model; ∆t = 0.8, and the turning rates

aEi,j = aWi,j = aSi,j = aNi,j = 0.8, bEi,j = bWi,j = bSi,j = bNi,j = 0.1, cEi,j = cWi,j = cSi,j = cNi,j = 0.1.

for all 1 ≤ i, j ≤ 2. The inflow sk = 0 for all t. The purpose of this test is to confirm that V k is a
controlled Lyapunov function and to see the Lyapunov feedback law (3.4) can stabilize the traffic
volume. The behavior of V k is shown in Fig. 2(a). We see that V k converges asymptotically to 0.
We also computed the mean and the maximum of xk with respect to the junction (i, j), i.e.,
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0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

k

V
k

(a) Test 1. V k
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(b) Test 1. xk
mean and xk

max

xk
mean :=

∑4m2

i=1 x
k
i

4m2
, xk

max := max
1≤i≤4m2

(xk
i ), (5.16)

11



which are depicted in Fig. 2(b). From the figure, we find that xk
mean decreases in time and

asymptotically converges to 0. We can observe that xk
max also converges to 0 and does not diverge,

which indicates that the Lyapunov feed back law stabilizes the traffic volumes.
Test 2
In this test, we take a small traffic network with short horizon N , i.e., m = 2 and N = 5. Thus,
the unknown signal vector to be determined has 20 unknowns:

u = (u0
1,1, u

0
1,2, u

0
2,1, u

0
2,2, u

1
1,1, u

1
1,2, u

1
2,1, u

1
2,2, u

2
1,1, u

2
1,2, u

2
2,1, u

2
2,2, u

3
1,1, u

3
1,2, u

3
2,1, u

3
2,2, u

4
1,1, u

4
1,2, u

4
2,1, u

4
2,2)

∈ R
20.

We used Q define by Q0 in (3.6) for the cost functional: We consider the optimization problem
(4.9) with T = 5∆t. The purpose of this test is to show the performance of the binary optimization
method. Since the total number of unknowns are small, we can carry out the exhaustive search
among 220 ∼ 106 combinatorics of the switching patterns to find the optimal solution, and we can
compare it to the result obtained by the binary optimization method.

The turning rates we used are

aEi,j = aWi,j = aSi,j = aNi,j = 0.8, bEi,j = bWi,j = bSi,j = bNi,j = 0.1, cEi,j = cWi,j = cSi,j = cNi,j = 0.1.

for all 1 ≤ i, j ≤ 2. Inflow traffic at the boundary of the traffic network we used are the following:

E1,3(t) = E2,3(t) = 5, W 1,0(t) =W 2,0(t) = 1, S0,1(t) = S0,2(t) = 3, N3,1(t) = N3,2(t) = 2,

for all t. See Fig. 1 for the location of the inflows. The initial condition was

x0 =
1

4m2
(1, 2, . . . , 4m2)⊤.

A period of time ∆t during which signal do not change was set to be ∆t = 0.8. We first run
our binary optimization method to find the signal switching pattern. The parameters used in the
method were set to be ∆τ = 1, ǫ = 10−5 and L = 108. The weight c in ψǫ was adaptively chosen
in time marching algorithm, i.e., c = 10−3 was used for the first 50 iterations and was updated as
c← 1.2c for every 50 iterations. The parameter choice strategy we adopted in this test is incomplete
and there is room for improvement, which will be investigated in future work.

Table 1 shows the signal pattern obtained by the method. The total cost J = 1
2

∫ T

0
(Qx(t), x(t))dt

was J = 340.3737, and the computation time was 8 seconds.
Next we carried out the exhaustive search to find the optimal signal switching pattern. The

total computation time was 13 minutes. We found that the signal pattern was exactly the same
as that obtained by the binary optimization method. This means that the binary optimization
method found the optimal solution among 210 signal patterns with much less computation time.

For comparison, we tested the Lyapunov method proposed in section 3. The total cost was
J = 489.2647 and the computation time was 0.003s. The signal pattern obtained is shown in Table
2. Although the cost was not optimal, the computed traffic volumes showed the similar trend as
those computed using the optimal signal pattern.

Binary optimization method
0 ∆t 2∆t 3∆t 4∆t

u1,1(t) 0 0 1 0 1
u1,2(t) 0 0 1 0 1
u2,1(t) 0 1 1 0 1
u2,2(t) 0 1 1 0 1

Table 1: Test 2. The signal pattern obtained
by the binary optimization method.

Lyapunov feedback law
0 ∆t 2∆t 3∆t 4∆t

u1,1(t) 0 0 1 0 1
u1,2(t) 0 1 0 1 0
u2,1(t) 0 1 0 1 0
u2,2(t) 0 1 1 0 1

Table 2: Test 2. The signal pattern u obtained
by the binary optimization method.
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Test 3-1
The numerical test was done for large scale problem m = 100, N = 20. The initial condition and
inflows at boundary we used are;

Ei,j(0) =W i,j(0) = Si,j(0) = N i,j(0) = exp(−10((j/m − .5)2 + (i/m − .5)2),

s(t) = 0, ∀t.

The cost function in this test was

J =

∫ T

0

|x(t)|2dt =

∫ T

0

|Ei,j(t)|
2 + |W i,j(t)|

2 + |Si,j(t)|
2 + |N i,j(t)|

2dt.

The other parameters were the same of those used in Test 2. The total cost of the Lyapunov
feedback law was J = 57761 whereas the one of the binary optimization method was J = 57440,
only slight difference was observed in the cost. The mean and the maximum traffic volumes (5.16)
were computed and are shown in Fig. 2(d) and Fig. 2(c) respectively. One can observe that the
both methods stabilize the traffic volume. The trend of the mean volume in time by both methods
are almost identical, and the overall performance of the methods were satisfactory. However, this
implies that the binary optimization method did not work perfectly for the problem with long
horizon N . This might be due to the fact that the there were too many unknown variables to be
determined, 1002 × 20, and the possibly poorly chosen parameters in the algorithm, all of which
should be selected adaptively. In this test c was the only parameter adaptively selected. So far,
we do not have any guideline for the choice of those parameters, and this will be postponed to the
future works.

To improve the performance of the binary optimization method we solved the receding horizon
optimization problem sequentially [13]; Suppose xkM = x(kM∆t) is given. We solve the opti-
mization problem to obtain the signal pattern UkM := [ukM , ukM+1, . . . , u(k+1)M−1] on the horizon
[kM∆t, ((k + 1)M − 1)∆t];

UkM = argmin F (x) + ψ(u),

subject to

{

ẋ(t) = Ax(t) +
∑m

i,j
ui,j(t)Bi,jx(t) + s(t), kM∆t ≤ t ≤ (k + 1)M∆t,

x(kM∆t) = xkM .

where

F (x) =
1

2

∫ (k+1)M∆t

kM∆t

(Qx(t), x(t))dt,

We have tested the receding horizon method with M = 1, 2, 3, 4 using the binary optimization
algorithm. It is best when m = 1, i.e., instantaneous synthesis for our tests. Thus, we obtain the
signal patter for N = 20, u = [u0, u1, . . . , u19]. The mean and the maximum of xk are shown in
Fig. 2(f) and Fig. 2(e) respectively. The total cost was reduced to J = 52819, and as can be clearly
observed in Fig. 2(f), the significance improvement was obtained in the maximum xk

max.
Test 3-2
We carried out the numerical test with much larger scale, m = 100, N = 200. The sequential
binary optimization method as in test 3-1 was adopted. The total costs were J = 4.0431 × 105 for
Lyapunov method and J = 3.7833×105 for the sequential binary optimization method respectively.
For comparison, we generated a set of 104 random 0-1 sequences of length Nm2 each, and computed
the total costs. We selected the 0-1 sequence among them that gave the minimum cost, which was
J = 6.1307×105 . The mean and the maximum traffic volumes (5.16) were computed and are shown
in Fig. 2(h) and Fig. 2(g) respectively. One can observe that, comparing with the result obtained
by random search, the both Lyapunov and the sequential binary optimization methods stabilize the
traffic volume throughout and the overall performance of the methods are satisfactory.
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6 Hamilton Jacobi method

Consider the control problem

min

∫ T

s

Q(x(t))dt

subject to
d

dt
x(t) = f(x(t), u(t)), x(s) = x, u(t) ∈ U

where U is the constrained set (e.g, Binary). Define the value function

V (s, x) = inf
u∈U

∫ T

s

Q(x(t)) dt.

It can be proved that V is the viscosity solution to

∂V

∂s
+min

u∈U
{f(x, u) ·

∂V

∂x
}+Q(x) = 0, V (T, x) = 0.

If we consider the infinite time horizon (T =∞) the value function V satisfies

min
u∈U

(f(x, u),
∂V

∂x
) +Q(x) = 0.
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Thus,
d

dt
V (x(t)) = −Q(x(t))

if we use

u(t) = argminv∈U (f(x(t), v),
∂V

∂x
).

That is, it is a Hamilton-Jacobi equation based Lyapunov method.
For a sufficiently large T > 0 we use

u = argminu∈U (f(x, u),
∂V (0, x)

∂x
) (6.17)

to construct a feedback law but it is not feasible for a large dimension case. But, we use the following
relationship between the Hamilton Jacobi solution and the corresponding two point boundary value
problem to perform (6.17). If for a given initial condition, the triple (x(t), p(t), u(t)) satisfies the
two point boundary value problem;

d
dt
x(t) = f(x, u), x(0) = x

− d
dt
p(t) = fx(x(t), u(t))

tp(t) +Q′(x(t)), p(T ) = 0

u(t) = argminv∈U (f(x(t), v), p(t))

(6.18)

then
∂

∂t
(0, x) = p(0), which is a function of the initial condition x. Note that

d

dt
V (0, x(t)) = f(x(t), u(t)) ·

∂

∂t
V (0, x(t))

Thus, our feedback law is given by

u(t) = argminv∈U (f(x(t), v),
∂

∂t
V (0, x(t))).

where
∂

∂t
V (0, x) = p(0) and p(0) is the solution to the two point boundary problem (6.18) given

the initial condition x.
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7 Conclusion

We developed a traffic network model for urban area and based on the model we developed real
time optimal control laws for the signal control problems to minimize the traffic congestion. Our
proposed method are based on the control theoretic formulation for bilinear control problems with
binary control constraints. A Lyapunov function based feedback law is developed and analyzed and
it provides very effective control law even for a large traffic network. The binary optimal control
problem is also solved using an innovative optimization algorithm for binary optimization problems.
The method can construct a nearly optimal solution even for a large-sale traffic network and a large
control time-horizon problem. We demonstrated the applicability and effectiveness of our proposed
control laws and can be applied a realistic traffic network with a large traffic links.

Our traffic control laws use the traffic volumes on traffic links and parameters at each junction
(the straight and left and right turn rates). So, we will develop real-time state and parameter
estimation method for determining traffic volumes and the junction parameters.

8 Appendix

8.1 The explicit representation of ci,j(t)

Let us define a vector Xi,j(t) by

Xi,j(t) = [Ei,j , Ei,j+1, Ei,j−1, Ei+1,j , Ei−1,j ,W i,j , . . . ,W i−1,j , Si,j , . . . , Si−1,j , N i,j , . . . , N i−1,j ]
⊤.

ci,j(t) in (3.8) is a quadratic form for Xi,j(t):

ci,j(t) = X⊤
i,j(t)HXi,j(t),

where H is the 20× 20 matrix depending on (i, j). The matrix H for Q0 in (3.6) is given by

H =











































































−303aEi,j−c
E
i,j−b

E
i,j 2 0 −aEi,j−c

E
i,j−b

E
i,j 0 0 −aEi,j 3cEi,j −b

E
i,j 0 0 −aEi,j−c

E
i,j 3bEi,j

0 0 0 0 0 −aWi,j 0 0 0 0 cSi,j 0 0 0 0 bNi,j 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −3bSi,j 0 0 0 0 −3cNi,j 0 0 0 0
0 0 0 0 0 −bWi,j 0 0 0 0 aSi,j 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −cWi,j 0 0 0 0 0 0 0 0 0 aNi,j 0 0 0 0

0 0 0 0 0 −3 3aWi,j 0 −bWi,j−c
W
i,j 0 −aWi,j 0 3bWi,j −c

W
i,j 0 −aWi,j 0 −bWi,j 3cWi,j

0 0 0 0 0 0 0 0 0 0 −3cSi,j 0 0 0 0 −3bNi,j 0 0 0 0
0 0 0 0 0 0 0 0 0 0 bSi,j 0 0 0 0 cNi,j 0 0 0 0

0 0 0 0 0 0 0 0 0 0 aSi,j 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 aNi,j 0 0 0 0

0 0 0 0 0 0 0 0 0 0 3 cSi,j bSi,j −3a
S
i,j 0 −2 cSi,j bSi,j aSi,j 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 bNi,j 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 cNi,j 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 aNi,j 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 bNi,j cNi,j 0 −3aNi,j
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0











































































,
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and H for Q0 being identity is given by

H =











































































−1 0 aEi,j 0 0 0 0 0 0 0 0 0 0 cEi,j 0 0 0 0 0 bEi,j
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 −bSi,j 0 0 0 0 −cNi,j 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 −1 aWi,j 0 0 0 0 0 0 bWi,j 0 0 0 0 0 cWi,j
0 0 0 0 0 0 0 0 0 0 −cSi,j 0 0 0 0 −bNi,j 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 −aSi,j 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −aNi,j
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0











































































8.2 The adjoint method.

Consider the constrained minimization

min J(x, u) = F (x) +H(u) subject to E(x, u) = 0. (8.19)

We use the implicit function theory for developing algorithms for (8.19).

Implicit Function Theory Let E : X ×U → X is C1. Suppose a pair (x̄, ū) satisfies E(x, u) = 0
and Ex(x̄, ū) is bounded invertible. Then the exists a δ > 0 such that for |u − ū| < δ equation
E(x, u) = 0 has a locally defined unique solution x = Φ(u). Moreover, Φ : U → X is continuously
differentiable at ū and ẋ = Φ′(x̄)(d) satisfies

Ex(x̄, ū)ẋ+ Eu(x̄, ū)d = 0.

Theorem (Lagrange Calculus) Assume that E(x, u) = 0 and Ex(x, u) is bounded invertible.
Let λ ∈ Y be the solution of the equation

Ex(x, u)
∗λ+ F ′(x) = 0. (8.20)

Then, for J(u) = J(Φ(u), u)

(J ′(u), d) = (H ′(u), d) + (Eu(x, u)d, λ) (8.21)

Proof: From the chain rule and the implicit function theorem

(J ′, d) = (F ′(x), ẋ) + (H ′(u), d),

and
Ex(x, u)ẋ+ Eu(x, u)d = 0.

Thus, the claim follows from

(F ′(x), ẋ) = −(E∗
xλ, ẋ) = −(λ,Exẋ) = (λ,Eud).�

In our example, the constraint E(x, u) is defined by (4.10). and F is defined by (4.11) and
H(u) = ψǫ(u). The adjoint equation for λ (8.20) is (4.14) for p = λ. The derivative (8.21) gives
(4.15). The theorem holds for a weaker assumption, e.g., see[14].
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2012–6 Inwon C. Kim and Norbert Požár: Nonlinear elliptic-parabolic problems.

2012–7 Kazuki Okamura: Some regularity results for a certain class of de Rham’s
functional equations and stationary measures.

2012–8 K. Aihara, K. Ito, J. Nakagawa and T. Takeuchi: Optimal control laws for
traffic control.

The Graduate School of Mathematical Sciences was established in the University of
Tokyo in April, 1992. Formerly there were two departments of mathematics in the Uni-
versity of Tokyo: one in the Faculty of Science and the other in the College of Arts and
Sciences. All faculty members of these two departments have moved to the new gradu-
ate school, as well as several members of the Department of Pure and Applied Sciences
in the College of Arts and Sciences. In January, 1993, the preprint series of the former
two departments of mathematics were unified as the Preprint Series of the Graduate
School of Mathematical Sciences, The University of Tokyo. For the information about
the preprint series, please write to the preprint series office.

ADDRESS:
Graduate School of Mathematical Sciences, The University of Tokyo
3–8–1 Komaba Meguro-ku, Tokyo 153-8914, JAPAN
TEL +81-3-5465-7001 FAX +81-3-5465-7012


