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Abstract. We study the asymptotic behavior of solutions to fully nonlin-
ear second order parabolic equations including a generalized curvature flow
equation which was introduced by Mullins in 1957 as a model of evaporation-

condensation. We prove that, in the multi-dimensional half space, solutions of
the problem with prescribed contact angle asymptotically converge to a self-
similar solution of the associated problem under a suitable rescaling. Several
properties of the profile function of the self-similar solution are also investi-

gated. We show that the profile function has a corner and that the angles are
determined by points at which the equation is degenerate. We also study the
depth of the groove, which is represented by the value of the profile function
at the boundary. Among other results it turns out that, as the contact angle

tends to zero, the depth of the groove is well approximated by the linearized
problem.

1. Introduction

We are concerned with the asymptotic behavior of solutions to second order
parabolic equations with the Neumann boundary condition of the form

(NP)


∂tu(x, t) = F (∇u(x, t),∇2u(x, t)) in Ω× (0,∞), (1.1)

u(x, 0) = u0(x) on Ω, (1.2)

∂x1u(x, t)|x1=0 = β > 0 on ∂Ω× (0,∞), (1.3)

which we also denote by (NP;F, u0). Here Ω = {(x1, . . . , xn) ∈ Rn | x1 > 0} is the
half space, ∇u and ∇2u denote, respectively, the gradient and Hessian matrix of u
with respect to x, and the initial data u0 is bounded and uniformly continuous, i.e.,
u0 ∈ BUC (Ω). A given real-valued function F is continuous and degenerate elliptic.
Our goal in this paper is to prove that (viscosity) solutions of (NP) asymptotically
converge to a self-similar solution of the associated problem, and study properties
of a profile function of the self-similar solution.

Our study is motivated by evaporation-condensation model which was first pro-
posed by a material scientist Mullins in [43]. Consider the situation that there
are two crystal grain regions (solid phases) on the plane which consist of the same
matter and differ only in their relative crystalline orientation. Let the two region be
{(x, y) | x >= 0, y <= u(x, t)} and {(x, y) | x <= 0, y <= ũ(x, t)} at time t >= 0, where
we assume u(0, t) = ũ(0, t) so that a triple junction appears at the point (0, u(0, t));

2010 Mathematics Subject Classification. 35B40, 35C06, 35D40, 35K20.
Key words and phrases. Asymptotic behavior; Self-similar solution; Curvature flow equation;

Neumann boundary problem; Viscosity solution; Comparison principle.

1



2 NAO HAMAMUKI

see Figure 1. Moreover, we assume the symmetry, i.e., u(x, t) = ũ(−x, t) for x > 0.
The rest part on the plane is filled by gas. The intersection between the two crys-
tal regions, which is called a grain boundary, is assumed to be stable on the line
x = 0. We suppose that due to evaporation and condensation crystal atoms move
between solid phases and gas phase. This mechanism leads development of a sur-
face groove at the grain boundary, which we call a thermal groove, as in Figure 1.
In this setting we study evolution of interfaces between crystal grains and gas. By

O
x

O
xt = 0 t > 0gas

grain boundary (fixed) thermal groove

crystal

u(x, t)ũ Γt

Figure 1. The thermal groove develops due to evaporation-condensation.

symmetry we consider the interface only in the right region, which we represent as
Γt := {(x, u(x, t)) ∈ R2 | x >= 0}. According to Mullins’ theory in [43] the evolution
equation for Γt is given as

Vn = C0

(
1− e−C1k

)
on Γt, (1.4)

where Vn is the upward normal velocity of Γt, k is the upward (mean) curvature,
and C0, C1 are positive constants. Thus, taking C0 = C1 = 1 for simplicity, we
obtain the following partial differential equation for u:

ut√
1 + u2x

= 1− e−k (1.5)

in {x > 0} × {t > 0}, where (ut, ux, uxx) = (∂tu, ∂xu, ∂xxu). Here we have invoked

the formula Vn = ut/
√

1 + u2x, and also the curvature k is represented by k =

uxx/
√
1 + u2x

3
([22, Chapter 1.2, 1.4]). In this model a boundary condition on u at

x = 0 is given as

ux(0, t) ≡ β > 0, (1.6)

which is the prescribed angle condition and results from equilibrium of tensions
at the triple junction point (0, u(0, t)). Hence solving the Cauchy problem for
(1.5) under the Neumann boundary condition (1.6) gives the surface profile due
to evaporation-condensation. The problem (NP) is a generalized multidimensional
case of this model.

In [43] Mullins approached the equation (1.5) via two approximations. He first
applies the linear approximation of the exponential term, which is

1− e−k ≈ k. (1.7)

Then the original equation (1.5) simplifies to

vt =
vxx

1 + v2x
, (1.8)
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which is the usual mean curvature flow equation for graphs. To solve (1.8) Mullins
next applies the second approximation that

vx ≈ 0. (1.9)

This condition comes from physical assumption that slopes on the surface are suf-
ficiently small, which especially implies β ≪ 1. Applying (1.9) to (1.8) finally
yields

wt = wxx. (1.10)

Since this is the simple heat equation, its classical solution w with the initial-
boundary conditions w(x, 0) ≡ 0 and wx(0, t) ≡ β > 0 exists and has the explicit
form; see Example 2.3. In this way Mullins concludes that the groove profile due to
evaporation-condensation is given by the solution w. In particular, putting x = 0,
Mullins computes the depth of the developing thermal groove at the origin, which
is

−w(0, t) = 2β

√
t

π
≈ 1.13β

√
t. (1.11)

In this paper we aim at justifying these two approximations by Mullins. Namely,
we rigorously discuss a relation among the three solutions u, v and w. The point in
our study is that the solutions v of (1.8) and w of (1.10) are (forward) self-similar,
i.e., they are of the form

v(x, t) =
√
tV

(
x√
t

)
, w(x, t) =

√
tW

(
x√
t

)
.

The functions V and W are called profile functions of v and w, respectively. Then,
as a justification for the first approximation, we prove

1√
t
u(
√
tx, t) → V (x) as t→ ∞ (1.12)

in Theorem 3.4. This convergence result says that if we rescale the solution u of
(1.5) in the above way, then it converges to the profile function V of the approx-
imated equation. In other words, u itself is not necessarily self-similar, but it is
asymptotically self-similar in the above sense.

We prove such an asymptotic result for more general problems of the form (NP)
in Section 3. As a special structure of the equation (1.1) we direct our attention
to homogeneity of F . Here we say F (or (1.1)) is homogeneous if F is positively
homogeneous of degree 1 with respect to X, i.e., F (p,X) = λF (p,X/λ) for λ > 0.
Evidently, the equation (1.8) is homogeneous. It also turns out that solutions of the
homogeneous equations with the zero initial data are self-similar. Thus (1.8) can be
generalized to homogeneous equations. In order to explain how we generalize (1.5)
to the equation (1.1) with G : Rn ×Sn → Rn, we shall give an idea of the proof of
(1.12). Let u and v be, respectively, a solution of (NP;G, u0) and (NP;F, 0), where
F is homogeneous. We prove the result (1.12) by showing that rescale functions of
u converge to v; namely,

u(λ)(x, t) :=
1

λ
u(λx, λ2t) → v(x, t) as λ→ ∞. (1.13)

It is easy to see that this rescaled function u(λ) is a solution to the rescaled equation
(NP;Gλ, (u0)(λ)) with Gλ(p,X) = λG(p,X/λ) and (u0)(λ)(x) = u0(λx)/λ. Since
(u0)(λ) → 0 as λ → ∞, we can conclude that if Gλ converges to F , then the limit
of u(λ) solves (NP;F, 0). By uniqueness the limit should be v, and hence we obtain
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(1.13). Note that our convergence result (1.13) holds for a solution u of (NP;G, u0)
with an arbitrary initial data u0 ∈ BUC (Ω).

In this way we are led to introduce a notion that G is asymptotically homo-
geneous, which roughly means that G approximates some homogeneous function
in a suitable sense. To be more precise, we require that Gλ(p, x) := λG(p,X/λ)
converge to some homogeneous F as λ → ∞. By a simple calculation we see that
(1.5) is asymptotically homogeneous with the limit (1.8). Accordingly the asymp-
totic homogeneity is a generalized notion containing (1.5), and the Mullins’ first
approximation is then generalized to

G ≈ F.

To show the convergence of u(λ) to v rigorously we employ stability results of
viscosity solutions. Due to comparison principle for (NP), we see that the upper and
lower relaxed limit of u(λ), which are a sub- and supersolution respectively, should
agree with v provided that the relaxed limits exist. Thus the remaining problem,
which is our main difficulty, is to show the existence of the relaxed limits. This is
achieved by constructing suitable barriers which are of order O(

√
t) as t→ ∞; see

Lemma 3.5 and the proof of Theorem 3.4.
We turn to the second approximation by Mullins, to which we dedicate Section

5. Since the solution v of (1.8) and w of (1.10) are self-similar, we consider only
their profile functions. Our main interest is to examine adequateness of Mullins’
conclusion (1.11) concerning the depth of the thermal groove at the origin. For
this purpose we compare the depths of two profile functions at the origin; one is
the original depth −V (0)(= −v(0, 1)) which comes from (1.8) and the other is
the approximated depth −W (0)(= −w(0, 1)) corresponding to (1.10). Recall that
−W (0) has the explicit form that −W (0) = 2β/

√
π by (1.11). We prove among

other results that, in Mullins’ problem, −W (0) is the third order approximation of
−V (0), i.e.,

−V (0) = −W (0) +O(β3) as β → 0. (1.14)

In this paper we discuss such comparison of the two depths for more general equa-
tions. From results for the general case we deduce (1.14). To discuss the general
case let us consider (NP) with a homogeneous F . Since the problem (NP;F, 0)
does not include the variables x2, . . . , xn, its self-similar solution depends only on
x1 and t. Thus, in what follows we let the spatial dimension n be one so that the
profile function V is defined on R. Then it turns out that V satisfies the ordinary
differential equation of the form

V (ξ)− ξV ′(ξ) = a(V ′(ξ))V ′′(ξ) in (0,∞), (1.15)

where a is given by a(p) := −2F (p,−1). Note that a(p) = 2/(1 + p2) in Mullins’
case since F (p,X) = X/(1 + p2) for (1.8). Let us recall the Mullins’ second ap-
proximation which replaces the first derivative vx by zero. As its analogue, for the
general equation (1.15) we replace a(V ′(ξ)) in the right hand side by a(0), i.e., we
apply

a(V ′(ξ)) ≈ a(0).

This is a generalized Mullins’ second approximation. The resulting approximated
equation is

W (ξ)− ξW ′(ξ) = a(0)W ′′(ξ) in (0,∞), (1.16)
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which represents the heat equation if we return (1.16) to the parabolic problem.
Let V and W be, respectively, the unique viscosity solution of (1.15) and (1.16)
with the boundary conditions that V ′(0) = β and V (∞) = 0. A well-posedness of
these equations in the viscosity sense is a consequence of that of parabolic equations
(NP). We also remark thatW has the explicit form. In this general setting we prove
that the estimate

0 <=
V (0)−W (0)

β
<= C

(
a(0)−min

[0,β]
a

)
(1.17)

holds for some positive constant C independent of β. This result implies −V (0) =
−W (0) + o(β) as β → 0 for general equations and (1.14) for Mullins’ case where
a(p) = 2/(1 + p2). The main tool for the proof of (1.17) is comparison principle.
Namely, if we have a subsolution V1 and a supersolution V2, then we obtain an
inequality V1 <= V2 and in particular −V1(0) >= −V2(0). To this end we seek a
suitable sub- or supersolution of the ordinary differential equation. We also deduce
a couple of other estimates on the depth by the comparison method.

Our another interest is degenerate cases. We study (1.15) when a(p) is allowed
to be zero. Even in such degenerate cases the unique solution to (1.15) exists in the
viscosity sense. As an instructive example, we now let a(p) = 0 for p ∈ [q−, q+] and
a(p) > 0 otherwise. Then a simple observation indicates that the unique solution

O

V (ξ) ξ

O p

a(p)

β

q−q+

solution

q+q−

ξ0

Figure 2. The profile function V has a corner when the equation
is degenerate.

V has a corner whose angles are determined by q− and q+. Indeed, if we admit
that V is negative and increasing (these properties are shown in Proposition 4.3),
we notice by (1.15) that 0 > a(V ′(ξ))V ′′(ξ). This implies V ′(ξ) ̸∈ [q−, q+]; in other
words, the derivative of V jumps over the interval [q−, q+]. Rigorous statement
and its proof on the corner of the viscosity solution V are given in Theorem 4.10,
where we prove that there exists a unique ξ0 ∈ (0,∞) such that the left and right
derivatives of V at ξ0 are, respectively, q+ and q−; see Figure 2.

Since the solution V of (1.15) is a profile function of the (forward) self-similar
solution, it is natural to expect relation between V and the Wulff shape, which
minimizes the total surface energy among all sets with the same volume. Although
our interface Γt is now unbounded, we are able to relate the corner of the profile
function V to that of the associated Wulff shape in the following way. For a given
surface energy density γ : Sn−1 = {x ∈ Rn | |x| = 1} → (0,∞) we define a Wulff
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shape associated with γ by

Wulff(γ) =
∩

|q|=1

{x ∈ Rn | ⟨x, q⟩ <= γ(q)},

where ⟨·, ·⟩ is the standard inner product in Rn. Let us consider the evolution
equation of the form

Vn =M(n)kγ on Γt, (1.18)

where M : Sn−1 → (0,∞) is the mobility, n is the oriented normal vector on Γt,
and kγ is the anisotropic curvature with respect to the surface energy density γ.
See, e.g., [22, Chapter 1.3] for the definition of kγ . We now let n = 2 and assume
that Γt is represented by a graph, i.e., Γt = {(x, u(x, t)) ∈ R2}. Then, choosing n
as the upward normal vector and using the formula

kγ = (γ̃′′(argn) + γ̃(argn))k,

where argn is the argument of n and γ̃(θ) := γ(cos θ, sin θ), we see that (1.18) is
rewritten as

ut√
1 + u2x

=M

(
(−ux, 1)√
1 + u2x

)
(γ̃′′(arg(−ux, 1)) + γ̃(arg(−ux, 1)))

uxx√
1 + u2x

3 .

The profile function of the self-similar solution of this equation satisfies the ordinary
differential equation (1.15) with a of the form

a(p) = 2M

(
(−p, 1)√
1 + p2

)
(γ̃′′(arg(−p, 1)) + γ̃(arg(−p, 1))) 1√

1 + p2
3 .

Therefore we see that a(p) = 0 for all p ∈ [q−, q+] if and only if γ̃′′(θ)+ γ̃(θ) = 0 for
all θ ∈ [arg(−q−, 1), arg(−q+, 1)]. The latter condition on γ leads the corner point
of Wulff(γ) at which the slope of each tangent line is in [q−, q+]. This agrees with
the corner of our profile function shown in Figure 2.

Let us explain why the equation (1.5) (or (1.4)) and the boundary condition
(1.6) appear in Mullins’ model. The exponential term in (1.4) comes from the
Gibbs-Thompson formula in physics. This formula asserts that the vapor pressure
p in equilibrium with the surface is given as

log

(
p

p0

)
= −C1k, (1.19)

where p0 is the atmospheric pressure and C1 is a positive constant. Now, re-
call that the only mechanism operative in the transport of matter is evaporation-
condensation. Thereby the normal velocity Vn is determined by the difference
between the effect by condensation and that by evaporation. According to kinetic
theory their effects are in proportion to pressures p0 and p, respectively, and thus

Vn = C2(p0 − p) (1.20)

with C2 > 0. It is now clear that (1.19) and (1.20) lead the equation (1.4) by letting
C0 = C2p0. The prescribed angle condition (1.6) is a consequence of equilibrium
of tensions. More precisely, the resultant of the grain boundary tension (0,−γb) ∈
R2 and two surface tensions (±γs cos θ, γs sin θ) ∈ R2 is assumed to vanish at
(0, u(0, t)), where γb > 0 and γs > 0 are, respectively, the boundary free energy and
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the surface free energy per unit area and θ is the slope angle of u at x = 0. Thus
we have 2γs sin θ = γb, which implies (1.6).

In [43] Mullins proposes another mechanism for the development of surface
groove, which is surface diffusion. If we take the surface diffusion into account,
the resulting equation describing the surface profile becomes a fourth order non-
linear parabolic equation. In this paper, however, we do not discuss such effect by
surface diffusion so that only second order equations appear in our study. As a re-
sult, we are able to apply the viscosity solution theory ([16]) to study the problem.
Mullins gives a criterion for judging which mechanism dominates the development
of surface. According to [43] for magnesium under high pressure the profile is com-
pletely shaped by evaporation-condensation after a very short time while surface
diffusion plays a dominant role for a very long time for gold under low pressure.
See, e.g., [11, 32, 42, 58] for the studies of fourth order equations related to the
surface diffusion.

We next state previous work related to our study. Many authors investigate
asymptotic behaviors of solutions to curvature flow type equations. We first refer
the reader to [26], where surfaces evolving by the mean curvature over a domain
in Rn are studied under the zero Neumann boundary condition. It is shown that
the solution converges to a constant function as t → ∞. In [2] Altschuler and
Wu study Cauchy problems for quasilinear equations of the form ut = (a(ux))x on
{0 <= x <= d} × [0,∞). They prove that solutions of the problem asymptotically
converge to a solution which moves at a constant speed. The same authors obtain
in [3] a similar convergence result for surfaces over a convex domain in R2, but
they deal with only the curvature flow equation.

Asymptotic behaviors of graph solutions to free boundary problems are also
studied in the literature. The paper [13] treats a quasilinear parabolic equation
ut = (a(ux))x under a two point free boundary condition. (The same problem
restricted to the equation (1.8) can be found in [15].) In [13] two half-lines are given
radially from the origin and solutions are required to have intersections with them,
which are the free boundary points, at prescribed contact angles. A global existence
and uniqueness of solutions to the parabolic problem are established. A convergence
result to a self-similar solution is deduced together with its convergence rate in
the sense of the Hausdorff metric. The parabolic equation in [13] is not allowed
to be degenerate, but our results concerning a well-posedness and the asymptotic
behavior include degenerate cases. A similar setting to [13] is found in [39], where a
one-point free boundary problem is considered. The paper [13] deals with expanding
interfaces while the preserving case and the shrinking case for the same problem
are discussed in [24].

For graphs defined on a whole space, their convergence results to a self-similar
solution are obtained in [20, 31]. The paper [20] studies mean curvature evolutions
written as graphs over Rn. Under a suitable rescaling the convergence result is ob-
tained for initial data satisfying a linear growth condition and further assumptions.
Ishimura, the author of [31], considers the spatially one dimensional equation (1.8)
in R×(0,∞) with prescribed opening angle conditions; that is, vx → K1 as x→ ∞
and vx → −K2 as x→ −∞ for given constants K1,K2 > 0.

Curvature flow equations with constant driving force

vt√
1 + v2x

=
vxx√
1 + v2x

3 + c (1.21)
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and asymptotic convergences to traveling fronts are studied in several works. In
[17] the authors consider (1.21) for (x, t) ∈ (0,∞)× (0,∞) with the zero Neumann
condition at x = 0 and the opening angle condition at x = ∞. It is shown that
the solution v converges to a traveling wave solution as t → ∞ when c is positive,
while for a negative c convergence to a self-similar solution is proven in the sense
that t−1|v(x, t) − tQ(x/t)| → 0 as t → ∞, where tQ(x/t) is a solution of (1.21).
The explicit form of Q is also found in [17]. Note that the way of rescaling is
different from ours. The papers [48, 45] studies asymptotics of solutions to (1.21)
on R × (0,∞) when c is positive. Convergence results to a traveling V-shaped
solution are obtained for spatially decaying and non-decaying initial perturbations
in [48] and [45], respectively. For the explicit form of the V-shaped front, see [47].
The reader is also referred to [44] for convergence to a traveling line.

The paper [46] is related to the Mullins’ second approximation (1.9) and asymp-
totic stability of constant solutions. There it is shown that

sup
x∈R

|v(x, t)− w(x, t)| = O(1/
√
t) as t→ ∞, (1.22)

where v and w are, respectively, the solution of the Cauchy problem for (1.8)
and (1.10) in R × (0,∞) with the same initial data. Moreover, using the results,
the authors of [46] obtain a necessary and sufficient condition on initial data that
ensures u → 0 uniformly or pointwisely as t → ∞. In our Neumann problem on
the half space, however, a similar convergence result to (1.22) does not hold since

sup
x∈[0,∞)

|v(x, t)− w(x, t)| =
√
t sup
ξ∈[0,∞)

|V (ξ)−W (ξ)| → ∞ as t→ ∞

for two different self-similar solutions v(x, t) =
√
tV (x/

√
t) and w(x, t) =

√
tW (x/

√
t).

Asymptotic shapes of expanding interfaces represented by a level set function
are obtained in [29]. There the evolution equation Vn = −tr(E(n)Dn) + ν(n) on
Γt is considered, and it is shown that Γt/t→ ∂Wulff(ν) as t→ ∞ in the Hausdorff
metric. We remark that the limit is not the Wulff shape of the surface energy density
in this work. To prove this large time asymptotics the authors study the limit of
rescaled viscosity solutions of second order parabolic equations, and consider the
corresponding stationary equations which the limit function satisfies. The result
says that if u is a viscosity subsolution (resp. supersolution) of ∂tu+F1(∇u,∇2u)+
F2(∇u) = 0, then the (relaxed) limit of u(tx, t) as t→ ∞ is a viscosity subsolution
(resp. supersolution) of −⟨x,∇u⟩ + F2(∇u) = 0. Note that this limit equation is
first order while the second order equation (1.15), which V in (1.12) should satisfy,
appears in our study.

Motion by curvature with triple junctions such as the point (0, u(0, t)) in Mullins’
model is studied in [14]. There a planar domain surrounded by other phase domains
is considered, and at each junction point three intersection angles are assumed
to satisfy the Herring condition which is determined by interfacial energies. The
authors of [14] give conditions for existence of self-similar stationary, expanding
or shrinking solutions to the problem. Plane curves having the triple junction are
also treated in [57], where the authors study evolving three curves by curvature
forming 120 degree angles at their common start point. The authors of [57] derive
several properties of solutions to (1.15) with a(p) = 1/(1+p2) and prove the unique
existence of self-similar expanding solutions. As a study of expanding self-similar
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solutions we finally refer the reader to [21] for evolution by a crystalline curvature
flow.

A generalized Mullins’ model is proposed in [56, 49]. The author of [56] con-
siders the model including a strain energy. In [49] Ogasawara studies evaporation-
condensation model under a temperature gradient and proves an existence of sta-
tionary solutions to the resulting parabolic equation of the form ut = F (u, ux, uxx).
See also [50] for flattening properties of solutions to the generalized problem. Such
flattening properties are also studied in [33, 37, 34, 38] for equations of the type
(1.8) and in [35, 36] for those of the type (1.5).

Interestingly, an exact representation of the solution to (1.8) with vx(0, t) ≡ β
and v(x, 0) ≡ 0 is obtained by Broadbridge in [10]. However, we do not employ the
formula in the present paper since generalization of the problem is one of our aims
and the formula is rather complicated to handle. In [5] the authors obtain upper
and lower bounds on the solution to (1.15) of the Mullins’ case by solving two aux-
iliary problems which are relatively easily solvable and employing the comparison
principle. They conclude accurate estimates of the depth when β is large, but an
estimate allowing β to be small such as (1.17) is not stated in [5]. See Remark 5.3
for comparison with our results concerning the depth. The paper [52] gives exact
solutions to wider classes of nonlinear equations, but solutions to (1.8) constructed
there do not satisfy the prescribed angle condition (1.6). In [53, 12] exact solutions
of the separated form ϕ(x) + ψ(t) are investigated. We also refer [1] for solvablity
of the equation (1.8) on I × (0,∞), where I is a bounded interval. Under the zero
Dirichlet or Neumann boundary condition, the authors of [1] establish the existence
of weak, strong and classical solutions and asymptotic behaviors of the classical so-
lutions. The paper [40] shows the existence of classical solutions to more general
degenerate parabolic equations.

A well-posedness of the problem (NP) is established in the sense of viscosity so-
lutions in Section 2. We thus interpret the boundary condition (1.3) in the viscosity
sense, that is, we require solutions to satisfy either (1.1) or (1.3) on the boundary.
As a result, we observe that the unique solution may not satisfy (1.3) in the clas-
sical sense when the equation is degenerate (Proposition 4.6 (1)). Such generalized
boundary conditions, which naturally appear when we take the limit in the van-
ishing viscosity method, was first introduced by Lions in [41]; see also [51]. The
well-posedness is obtained in [41] for first order equations with Neumann or oblique
conditions involving applications to optimal control, differential games and ergodic
problems. After their works, uniqueness and existence results for oblique boundary
problems in the viscosity sense were established in [9] for first order cases and in
[28, 27, 6] for second order cases. In [18, 19] the authors approach oblique problems
on domains involving corners. All of these studies treat continuous equations while
equations with singularity in ∇u like the mean curvature flow equation for level sets
are discussed in [23, 54] under the zero Neumann boundary condition. As relatively
general results for second order singular equations with nonlinear boundary condi-
tions, we refer the reader to [7, 30]. Compared with [30], the paper [7] deals with
more general equations and boundary conditions, but domains are more restrictive.

Unfortunately, all the above results treat a bounded domain with respect to the
space variables. As far as the author know, [55] is the only paper which proves
a well-posedness of the Neumann type problems on an unbounded domain. In
[55] Sato established comparison and existence results for second order singular
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equations under the capillary boundary condition:

∂x1u = k|∇u| with − 1 < k < 1,

which does not cover our boundary condition (1.3). Although it might be possible to
extend the previous results for bounded domains to our problem (NP) by modifying
their proofs suitably, we give in the present paper complete proofs of comparison and
existence theorem for (NP) to make the paper self-contained. Neumann problems
in half-space type domains are also treated in [4, 8], where the authors studies
ergodic problems and homogenization.

This paper is organized as follows. In Section 2 we establish comparison and
existence results of viscosity solutions to (NP). Section 3 is devoted to the asymp-
totic profile. We prove (1.13), i.e., asymptotic self-similarity of the solution to the
equation of the type (1.5). In Section 4 we consider the ordinary differential equa-
tion (1.15) and its solution. We show the solution has a corner if the equation
is degenerate. Section 5 concerns the depth of the thermal groove at the origin.
Several estimates for the depth including (1.17) are obtained.

2. A well-posedness of Neumann problems

2.1. Definition of solutions. Throughout this paper we set Ω := {(x1, . . . , xn) ∈
Rn | x1 > 0}. We first introduce a notion of viscosity solutions for (NP). The
boundary condition (1.3) is interpreted in the (weak) viscosity sense. Our basic
assumption on F is

(F0) F : Rn × Sn → R is continuous and degenerate elliptic.

Here Sn denotes the space of real n×n symmetric matrices with the usual ordering,
i.e., X <= Y if ⟨Xξ, ξ⟩ <= ⟨Y ξ, ξ⟩ for all ξ ∈ Rn. We say F is degenerate elliptic if
F (p,X) <= F (p, Y ) for all p ∈ Rn and X,Y ∈ Sn with X <= Y .

Definition 2.1 (Viscosity solution). We say u : Ω × [0,∞) → R is a viscosity
subsolution (resp. supersolution) of (NP) if u is bounded from above (resp. below)
on Ω× [0, T ) for every T > 0, u∗(·, 0) <= u0 (resp. u∗(·, 0) >= u0) on Ω and

∂tϕ(x, t)− F (∇ϕ(x, t),∇2ϕ(x, t)) <= 0 (resp. >= 0) if x1 > 0,

∂tϕ(x, t)− F (∇ϕ(x, t),∇2ϕ(x, t)) <= 0 (resp. >= 0)

or β − ∂x1ϕ(x, t) <= 0 (resp. >= 0) if x1 = 0

(2.1)

whenever u∗ − ϕ (resp. u∗ − ϕ) attains its maximum (resp. minimum) at (x, t) for
ϕ ∈ C2,1(Ω × [0,∞)). If u is both a viscosity sub- and supersolution, u is said to
be a viscosity solution.

Here by a C2,1 function we mean that derivatives ∂tϕ, ∇ϕ and ∇2ϕ are con-
tinuous. If u∗ < ∞ (resp. u∗ > −∞) on Ω × [0,∞) and u satisfies (2.1), u is
said to be a viscosity subsolution (resp. supersolution) of (1.1) and (1.3). In the
definition above, u∗ and u∗ stand for an upper and lower semicontimuous envelope
of u respectively. Namely,

u∗(x, t) = lim
δ→0

sup{u(y, s) | (y, s) ∈ Ω× [0,∞), |x− y|+ |t− s| <= δ},

u∗(x, t) = lim
δ→0

inf{u(y, s) | (y, s) ∈ Ω× [0,∞), |x− y|+ |t− s| <= δ}.
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As a boundary condition we consider not ∂x1ϕ(x, t)−β = 0 but β−∂x1ϕ(x, t) = 0
so that consistency between a classical subsolution (resp. supersolution) and a
viscosity subsolution (resp. supersolution) holds.

Proposition 2.2 (Consistency). Assume (F0). Let u ∈ C2,1(Ω × (0,∞)) and
assume that {

∂tu(x, t) <= F (∇u(x, t),∇2u(x, t)) if x1 > 0, (2.2)

β − ∂x1u(x, t) <= 0 if x1 = 0. (2.3)

Then u is a viscosity subsolution of (1.1) and (1.3).

Proof. Take any ϕ ∈ C2,1(Ω × (0,∞)) such that u − ϕ attains its maximum
at (x, t) ∈ Ω × (0,∞). In the case where x1 > 0, the inequality ∂tϕ(x, t) <=
F (∇ϕ(x, t),∇2ϕ(x, t)) follows from (2.2) and the degenerate ellipticity of F . If x1 =
0, we see at once that ∂x1ϕ(x, t) >= ∂x1u(x, t), and consequently β − ∂x1ϕ(x, t) <= 0
by (2.3). �

It is known that for a general boundary condition B(x, u(x),∇u(x)) = 0 the
consistency holds if a map λ 7→ B(x, r, p−λν(x)) is nonincreasing on [0,∞), where
ν(x) is the unit outward normal vector at a boundary point x. We refer the reader
to [16, Proposition 7.2] or [22, Proposition 2.3.3] for more details.

Example 2.3. We consider the heat equation

∂tu(x, t) = A∆u(x, t), (2.4)

i.e., F (p,X) = A · tr(X) with A > 0, where tr(X) denotes the trace of X ∈ Sn.
Then the unique solution of (NP;F, 0), which is also given by Mullins in [43], is

u(x, t) = hβ,A(x1, t) := −2β
√
At · ierfc

(
x1

2
√
At

)
. (2.5)

Here ierfc(x) is the integral error function

ierfc(x) =

∫ ∞

x

erfc(z)dz,

and erfc(x) is the error function

erfc(x) =
2√
π

∫ ∞

x

e−z2

dz.

We now differentiate h = hβ,A to obtain

∂th(x1, t) = −β
√
A

t
· ierfc

(
x1

2
√
At

)
− βx1

2t
· erfc

(
x1

2
√
At

)
,

∂x1h(x1, t) = β · erfc
(

x1

2
√
At

)
, ∂x1x1h(x1, t) =

−β√
πAt

e−x2
1/(4At).

Employing the formula

ierfc(ξ) + ξ · erfc(ξ) = 1√
π
e−ξ2

with ξ = x1/(2
√
At), we observe that h indeed solves (2.4) in the classical sense.

Thus h is also a viscosity solution of (NP;F, 0) by Proposition 2.2. By the formula
(2.5) or the derivatives of h we notice that h(·, t) is negative, increasing and (strictly)
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concave on [0,∞). It turns out that these properties still hold for viscosity solutions
of more general equations; see Proposition 4.3.

Example 2.4. We seek viscosity sub- and supersolutions of (NP;F, 0) which have
the form of (2.5). Assume (F0) and

(F1) F (p,X) = λF (p,X/λ) for all (p,X) ∈ Rn × Sn and λ > 0.

We simply say F is homogeneous if F satisfies (F1). For γ >= 0 we set

m(γ) = min
0<=θ<=1

{−F (θγe1,−I1,1)}, M(γ) = max
0<=θ<=1

{−F (θγe1,−I1,1)}, (2.6)

where e1 = (1, 0, . . . , 0) and I1,1 denotes the matrix with 1 in the (1, 1) entry and
0 elsewhere. We then notice that m(γ) >= 0 since F is degenerate elliptic by (F0)
and satisfies F (p,O) = 0 for all p ∈ Rn by (F1), where O is the zero matrix. For
the function h = hγ,A given as (2.5) we observe

F (∇h,∇2h) = F (∂x1h · e1, ∂x1x1h · I1,1) = −∂x1x1h · F (∂x1h · e1,−I1,1){
<= m(γ) · ∂x1x1h = (m(γ)/A) · ∂th,
>=M(γ) · ∂x1x1h = (M(γ)/A) · ∂th.

Taking account of the boundary condition (1.3), we conclude that hγ,A is a vis-
cosity subsolution of (NP;F, 0) if γ >= β and A >= M(γ) while hγ,A is a viscosity
supersolution of (NP;F, 0) if 0 <= γ <= β and 0 < A <= m(γ).

2.2. Comparison principle. We show uniqueness of viscosity solutions to (NP)
via comparison principle. Define UT := Ω× Ω× [0, T ) for T > 0.

Theorem 2.5 (Comparison principle). Assume (F0). Let u and v be, respectively,
a viscosity subsolution and a viscosity supersolution of (NP). Then

K = K[u, v] := lim
θ→0

sup{u∗(x, t)− v∗(y, t) | (x, y, t) ∈ UT , |x− y| < θ} <= 0

for every T > 0. In particular, u∗ <= v∗ on Ω× [0,∞).

In the proof of Theorem 2.5 we use an auxiliary function F : UT → R ∪ {−∞}
of the form

F(x, y, t) = u∗(x, t)− v∗(y, t)−Ψ(x, y, t)

with

Ψ(x, y, t) =
|x− y|2

2ε
+ β(x1 − y1) + δ{ρ(x1) + ρ(y1)}+ γ(|x|2 + |y|2) + α

T − t
.

Here α, γ, δ, ε ∈ (0, 1) are constants and ρ is given by ρ(r) = (1 + r)−1. Note that
ρ′(0) = −1. It then follows from an elementary calculation that for all (x, y, t) ∈ UT

β − ∂x1Ψ(x, y, t) >= δ if x1 = 0, (2.7)

β + ∂y1Ψ(x, y, t) <= −δ if y1 = 0 (2.8)

and

lim
(γ,δ)→(0,0)

∇2
(x,y)Ψ(x, y, t) =

1

ε

(
I −I
−I I

)
, (2.9)

where I is the identity matrix with dimension n.

Lemma 2.6. Assume the same hypotheses of Theorem 2.5. Let T > 0 and suppose
K = K[u, v] > 0. Then,
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(1) F attains a maximum on UT at some (x̂, ŷ, t̂) with t̂ < T .
(2) There exists a constant η ∈ (0, 1] such that

max
UT

F > K ′ (2.10)

for all α, γ, δ ∈ (0, η), where K ′ := K/7.
(3) supγ,δ,ε∈(0,η) |x̂− ŷ| <∞ and limε→0 supγ,δ∈(0,η) |x̂− ŷ| = 0.

(4) lim(γ,δ)→(0,0)(γx̂, γŷ) = (0, 0) for all ε ∈ (0, η).

(5) There exists a constant η0 ∈ (0, η) such that t̂ > 0 for all γ, δ, ε ∈ (0, η0).

Proof. (1) This follows from an upper semicontinuity of F and the facts that
F(x, y, T ) = −∞ and F → −∞ as |x| → ∞ or |y| → ∞.

(2) By the definition of K there exists some θ0 > 0 such that for all θ ∈ (0, θ0]

u∗(xθ, tθ)− v∗(yθ, tθ) > 6K ′ (2.11)

holds for some (xθ, yθ, tθ) ∈ UT with |xθ − yθ| < θ. Take

θ = min
{
θ0,

√
2K ′ε, K ′/β

}
.

By this choice we have

|xθ − yθ|2

2ε
<= K ′, β(xθ1 − yθ1) <= K ′. (2.12)

We next choose η ∈ (0, 1] as

η = min
{
1, K ′/2, K ′(|xθ|2 + |yθ|2 + 1)−1, K ′(T − tθ)

}
,

and then for α, γ, δ ∈ (0, η)

δ{ρ(xθ1) + ρ(yθ2)} <= K ′, γ(|xθ|2 + |yθ|2) <= K ′,
α

T − tθ
<= K ′. (2.13)

Thus (2.11)–(2.13) yield (2.10).
(3) Take M > 0 so that u∗ − v∗ <=M on UT . By (2.10) we have

K ′ < u∗(x̂, t̂)− v∗(ŷ, t̂)−Ψ(x̂, ŷ, t̂) <=M − |x̂− ŷ|2

2ε
+ β|x̂− ŷ|.

Thus by an elementary calculation

|x̂− ŷ| <= εβ +
√
ε2β2 + 2εM,

which implies our assertions.
(4) By (2.10) again we see

K ′ <=M + β|x̂− ŷ| − γ(|x̂|2 + |ŷ|2).

Therefore supγ,δ∈(0,η) γ(|x̂|2 + |ŷ|2) <∞, and so

γ(|x̂|+ |ŷ|) <=
√
2γ
√
γ(|x̂|2 + |ŷ|2) → 0 as (γ, δ) → (0, 0).

(5) Suppose by contradiction that there were some sequence {(εj , δj , γj)}∞j=1

which satisfies limj→∞(εj , δj , γj) = (0, 0, 0) and t̂ = t̂(εj , δj , γj) = 0. Then

F(x̂, ŷ, t̂) = u∗(x̂, 0)− v∗(ŷ, 0)−Ψ(x̂, ŷ, 0) <= u0(x̂)− u0(ŷ)− β(x̂1 − ŷ1),

and the right hand side converges to 0 as j → ∞ by (3) and the uniform continuity
of u0. This is a contradiction to (2.10). �
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Proof of Theorem 2.5. By virtue of (3) in Lemma 2.6 we may assume

lim
(γ,δ)→(0,0)

(x̂− ŷ) = p̄

for some p̄ ∈ Rn by taking a subsequence if necessary. We now apply the Crandall-
Ishii lemma ([16, Theorem 8.3]) to F . Since (2.7) and (2.8) hold, there exists
(X,Y ) ∈ Sn × Sn such that

∂tΨ(x̂, ŷ, t̂) <= F (∇xΨ(x̂, ŷ, t̂), X)− F (−∇yΨ(x̂, ŷ, t̂),−Y ) (2.14)

and

−
(
1

ε
+ |A|

)
I <=

(
X O
O Y

)
<= A+ εA2. (2.15)

Here A := ∇2
(x,y)Ψ(x̂, ŷ, t̂) and |A| := sup{|⟨Aξ, ξ⟩| | ξ ∈ Rn, |ξ| = 1}. Note that

∇xΨ(x̂, ŷ, t̂) =
x̂− ŷ

ε
+ {β + δρ′(x̂1)}e1 + 2γx̂,

∇yΨ(x̂, ŷ, t̂) = − x̂− ŷ

ε
− {β − δρ′(ŷ1)}e1 + 2γŷ,

∂tΨ(x̂, ŷ, t̂) =
α

(T − t̂)2
.

In view of (2.9) and (2.15) we may assume that (X,Y ) converges to some (X̄, Ȳ ) ∈
Sn × Sn as (γ, δ) → (0, 0). Then the limit (X̄, Ȳ ) satisfies(

X̄ O
O Ȳ

)
<=

3

ε

(
I −I
−I I

)
,

and in particular X̄ + Ȳ <= O. Letting (γ, δ) → (0, 0) in (2.14), we have

α

T 2
<= F

( p̄
ε
+ βe1, X̄

)
− F

( p̄
ε
+ βe1,−Ȳ

)
.

This is a contradiction since F is degenerate elliptic. �
Corollary 2.7 (Uniqueness). Assume (F0). Then (NP) admits at most one vis-
cosity solution, and the solution is continuous on Ω× [0,∞).

Proof. If u and v are two viscosity solutions of (NP), we have u∗ <= v∗ and v∗ <= u∗
on Ω× [0,∞) by Theorem 2.5. These inequalities imply our assertions. �

Corollary 2.8 (Contraction property). Assume (F0). Let u01, u02 ∈ BUC (Ω).
Let u1 and u2 be, respectively, a viscosity solution of (NP;F, u01) and that of
(NP;F, u02). Then we have supΩ×[0,∞) |u1 − u2| <= supΩ |u01 − u02|.

Proof. Let d = supΩ |u01 − u02|. Then it is easily seen that u2 + d is a viscosity

solution of (NP;F, u02+d). Since u01 <= u02+d on Ω, Theorem 2.5 gives u1 <= u2+d
on Ω× [0,∞). In the same manner we obtain u2 <= u1 + d on Ω× [0,∞). �
2.3. Existence result. We prove the existence of viscosity solutions by Perron’s
method ([16, Section 4]). An important step is to construct a lower and upper
barrier, which are a viscosity sub- and supersolution of (NP) satisfying the given
initial data. We first prepare stability results for viscosity solutions. For the proofs
we refer the reader to [16, Lemma 4.2, Lemma 6.1] or [22, Lemma 2.4.1, Theorem
2.3.5].

Proposition 2.9 (Stability). Assume (F0).
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(1) Let S be a nonempty subset of

{v | v is a viscosity subsolution of (1.1) and (1.3)}.

Let u(x, t) := supv∈S v(x, t). If u∗ <∞ on Ω× [0,∞), then u is a viscosity
subsolution of (1.1) and (1.3)

(2) Assume that F ε satisfies (F0), and let uε be a a viscosity subsolution of
(1.1) with F = F ε and (1.3) for each ε > 0. If F >= lim sup∗ε→0 F

ε on
Rn × Sn and u := lim sup∗ε→0 u

ε < ∞ on Ω × [0,∞), then u is a viscosity
subsolution of (1.1) and (1.3).

To apply Perron’s method we need only (1) while (2) plays an important role
in Section 3, where we discuss a local uniform convergence of solutions. We recall
a notion of relaxed limits appearing in (2). For a subset L ⊂ RN and functions
hε : L → R with ε > 0 we define an upper relaxed limit h = lim sup∗ε↓0 h

ε (resp.

lower relaxed limit h = lim inf∗ε↓0 h
ε) : L→ R ∪ {±∞} as

h(z) := lim sup
(ε,y)→(0,z)

hε(y) = lim
δ↓0

sup{hε(y) | y ∈ L, |y − z| < δ, 0 < ε < δ}

(resp. h(z) := lim inf
(ε,y)→(0,z)

hε(y) = lim
δ↓0

inf{hε(y) | y ∈ L, |y − z| < δ, 0 < ε < δ}).

If h = h in L, then hε converges to h := h = h locally uniformly in L as ε→ 0.

Proposition 2.10 (Barriers). Assume (F0). Then (NP) has a viscosity subsolution
w− and a viscosity supersolution w+ such that w−(x, t) <= u0(x) <= w+(x, t) for all
(x, t) ∈ Ω× [0,∞) and u0(x) = w±(x, 0) = lim(z,t)→(x,0) w

±(z, t) for all x ∈ Ω.

Proof. We give the proof only for a subsolution since a similar argument applies
for a supersolution.

1. Let ω(r) = sup|x−y|<=r |u0(x) − u0(y)| and f(r) = r − arctan r. Then for

each ε > 0 there exists C0(ε) > 0 such that ω(r) <= ε + C0(ε)f(r) for all r >= 0.
Set C(ε) := max{4C0(ε), 4C0(ε)/β, 1} >= 1. Since f(r + s) <= 4{f(r) + f(s)} for
r, s >= 0, we see that

ω(|x− y|) <= ε+ βC(ε)f(|x1 − y1|) + C(ε)f(|x′ − y′|) (2.16)

for all x = (x1, x
′) ∈ Rn and y = (y1, y

′) ∈ Rn. We also remark that f ∈ C2(R),
f(0) = f ′(0) = f ′′(0) = 0, 0 <= f ′ <= 1 and 0 <= f ′′ <= 1/2 in R.

2. For ε ∈ (0, 1) and y ∈ Ω we define

vε,y(x, t) := u0(y)− ε− βC(ε)

f ′(y1)
f(|x1 − y1|)− C(ε)f(|x′ − y′|)−Mt,

where M = M(ε, y) > 0 is a large constant. Then vε,y ∈ C2,1(Ω × [0,∞)) and

vε,y(x, t) <= u0(x) on Ω× [0,∞) from (2.16). By the boundedness of f ′ and f ′′ we

see that |∇xvε,y| and |∇2
xvε,y| are also bounded on Ω× [0,∞). We thus have

−M <= F (∇xvε,y(x, t),∇2
xvε,y(x, t))

for sufficiently large M . We also compute

∂x1vε,y(x, t)|x1=0 = −βC(ε)
f ′(y1)

{−f ′(y1)} >= β,
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and therefore vε,y is a viscosity subsolution of (1.1) and (1.3) by Proposition 2.2.
Consequently Proposition 2.9 (2) ensures that the supremum of vε,y

w−(x, t) = sup{vε,y(x, t) | ε ∈ (0, 1), y ∈ Ω}
is also a viscosity subsolution of (1.1) and (1.3). By definition w− is lower semicon-
tinuous and satisfies w−(x, t) <= u0(x) on Ω× [0,∞). In particular w− is bounded
from above.

3. We next show w−(x, 0) >= u0(x) for all x ∈ Ω. We see w−(x, 0) >= vε,x(x, 0) =
u0(x)− ε if x ∈ Ω, and so w−(x, 0) >= u0(x) holds. Let x ∈ ∂Ω. Taking y = (y1, x

′),
we then have

w−(x, 0) >= vε,y(x, 0) >= u0(x)− ε− βC(ε)

f ′(y1)
f(y1).

Letting y1 → 0 first and then ε→ 0, we obtain w−(x, 0) >= u0(x).
4. Since w− is lower semicontinuous, for all x ∈ Ω

u0(x) = w−(x, 0) <= lim inf
(z,t)→(x,0)

w−(z, t) <= lim sup
(z,t)→(x,0)

w−(z, t)

<= lim sup
(z,t)→(x,0)

u0(z) = u0(x).

Hence lim(z,t)→(x,0) w
−(z, t) = u0(x). We thus conclude that w− satisfies the re-

quired properties. �

Remark 2.11. By the same way as in Step 3 we obtain a more general estimate that
w−(x, t) >= u0(x)−Mt for all (x, t) ∈ Ω× [0,∞). This implies that w− is bounded
from below on Ω× [0, T ) for every T > 0. Similarly, we are able to construct w+ in
Proposition 2.10 such that it is bounded from above on Ω× [0, T ) for every T > 0.

Theorem 2.12 (Existence by Perron’s method). Assume (F0). Then (NP) admits
at least one viscosity solution.

Proof. Let

S =

{
v

∣∣∣∣∣ v is a viscosity subsolution of (NP)
such that w− <= v <= w+ on Ω× [0,∞)

}
,

where w− and w+ are functions in Proposition 2.10. Since w− ∈ S, the set S
is nonempty. We demonstrate that u(x) := supv∈S v(x) is a viscosity solution of

(NP). By definition we have w− <= u <= w+ on Ω × [0,∞). We then notice that
u∗(·, 0) = u∗(·, 0) = u0 on Ω and that u is bounded on Ω × [0, T ) for all T > 0 by
Remark 2.11. Proposition 2.9 (1) ensures that u is a subsolution of (NP). We also
see that u is a viscosity supersolution of (NP) since u is a maximal subsolution in
the sense that u(x0, t0) < v(x0, t0) for some v ∈ S and (x0, t0) ∈ Ω × (0,∞) if u
were not a supersolution. See [22, Lemma 2.4.2] for more details. �

3. Asymptotic behavior

To study the asymptotic behavior self-similar solutions of (NP) play an impor-
tant role in our study.

Definition 3.1. Let u : Ω× [0,∞) → R.

(1) We define a rescaled function u(λ) of u as u(λ)(x, t) := u(λx, λ2t)/λ for
λ > 0.
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(2) We say u is self-similar if u = u(λ) for all λ > 0, or equivalently u(x, t) =√
tU(x/

√
t) for some U : [0,∞) → R. We call U a profile function of u.

Note that, if u is self-similar, the profile function U of u is represented by U(x) =
u(x, 1). We next introduce a notion of asymptotic homogeneity. We consider
G : Rn ×Sn → R such that G is not necessarily homogeneous but it approximates
some homogeneous F in a suitable sense. To state the rigorous meaning of the
approximation we define

Gλ(p,X) := λG

(
p,
X

λ

)
for λ > 0. We say G is asymptotically homogeneous if G satisfies the following:

(F2) Gλ converges to some F : Rn × Sn → R as λ → ∞ locally uniformly in
Rn × Sn.

We call F in (F2) the limit of G. We also remark that the limit F satisfies (F0)
and (F1) whenever G satisfies (F0) and (F2). Thus the limit F is always homo-

geneous. The function G(p,X) =
√
1 + p2(1 − e−k) with k = X/

√
1 + p2

3
, which

represents (1.5) in Mullins’ case, is indeed asymptotically homogeneous with the
limit F (p,X) = X/(1 + p2) corresponding to (1.8). This follows from the fact that
fλ(z) := λ(1− e−z/λ)− z converges to 0 as λ→ ∞ locally uniformly in R.

Remark 3.2. If u is a viscosity solution of (NP;G, u0), then the rescaled function
u(λ) is a viscosity solution of (NP;Gλ, (u0)(λ)), where

(u0)(λ)(x) =
1

λ
u0(λx).

Indeed, noting that

∂tu(λ)(x, t) = λ∂tu(λx, λ
2t),

∇u(λ)(x, t) = ∇u(λx, λ2t), ∇2u(λ)(x, t) = λ∇2u(λx, λ2t),

we compute

∂tu(λ)(x, t) = λG(∇u(λx, λ2t),∇2u(λx, λ2t)) = λG

(
∇u(λ)(x, t),

1

λ
∇2u(λ)(x, t)

)
and

∂x1u(λ)(x, t) = ∂x1u(λx, λ
2t) = β

if u is a classical solution. In the case where u is not smooth, taking elements of
semijets, we see that u(λ) solves (NP;Gλ, (u0)(λ)) in the viscosity sense. We also
remark that if G is homogeneous, then u(λ) solves (NP;G, (u0)(λ)).

We prove that the unique solution of the homogeneous equation with the zero
initial data is always self-similar. Several properties of the self-similar solution are
also discussed.

Proposition 3.3 (Self-similar solution). Assume (F0) and (F1). Let u be the
unique viscosity solution of (NP;F, 0). Then

(1) u is self-similar.
(2) u <= 0 on Ω× [0,∞). If F (0,−I1,1) < 0, then u < 0 on Ω× [0,∞).

(3) u(x, t) = u(x1, 0, . . . , 0, t) for all (x, t) ∈ Ω× [0,∞).
(4) limx1→∞ u(x, t) = 0 for all t >= 0.
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Proof. By Remark 3.2 we see that u(λ) is a viscosity solution of (NP;F, 0) for every
λ > 0. Applying Theorem 2.5, we obtain u = u(λ). This implies (1). Combining

Example 2.4 with Theorem 2.5, we observe that hβ,M(β) <= u <= hβ,m(β) on Ω ×
[0,∞), where h is the function in (2.5) and m(β), M(β) are defined as (2.6). Thus
the first assertion in (2) and (4) hold. If F (0,−I1,1) < 0, then we have m(γ) < 0 for

sufficiently small γ ∈ (0, β]. Then a supersolution hγ,m(γ) is negative on Ω× [0,∞),

so that u is also negative. We finally prove (3). For a ∈ Rn−1 we set wa(x, t) :=
u(x1, x

′ − a, t), where x′ = (x2, . . . , xn). Then it is easy to see that wa is also
a viscosity solution of (NP;F, 0) since F and the initial-boundary conditions do
not depend on x′. By the uniqueness we obtain u = wa. In particular, for fixed
(x, t) ∈ Ω× [0,∞) we have u(x, t) = wx′(x, t) = u(x1, 0, . . . , 0, t). �

Our main result on asymptotic convergence is

Theorem 3.4 (Asymptotic behavior). Assume that G satisfies (F0) and (F2) with
the limit F . Let u and v be, respectively, the unique viscosity solution of (NP;G, u0)
and that of (NP;F, 0). Then u(λ) converges to v as λ → ∞ locally uniformly on

Ω× [0,∞).

By Theorem 3.4 we see that u(
√
t)(x, 1) converges to v(x, 1) as t→ ∞ uniformly

on every compact subset of Ω. This implies that (1.12) holds locally uniformly with
respect to x ∈ Ω.

As is pointed out in Remark 3.2, the rescaled function u(λ) is a solution of
(NP;Gλ, (u0)(λ)). Since the local uniform convergence of Gλ to F is assumed, in
view of Proposition 2.9 (2) the relaxed limits u and u of u(λ) becomes a sub- and
supersolution of (NP;F, 0), respectively, provided that the limits exist. To guaran-
tee the existence of the relaxed limits we construct suitable barriers of (NP;G, u0)
whose rescaled families are locally uniformly bounded. Recalling Remark 2.11,
we have rough estimates for u that u0(x) − Mt <= u(x, t) <= u0(x) + Mt. Then
u0(λx)/λ −Mλt <= u(λ)(x, t) <= u0(λx)/λ +Mλt, but this does not yields that u

and u are real-valued. We construct the barriers so that they have the order O(
√
t)

as t→ ∞.

Lemma 3.5. (1) Assume that g : [0,∞) → R satisfies

|g(t)| <=M(
√
t+ 1) on [0,∞) (3.1)

for some M > 0. Set g(λ)(t) := g(λ2t)/λ, g := lim inf∗λ→∞ g(λ) and g :=

lim sup∗λ→∞ g(λ). Then we have −M
√
t <= g(t) <= g(t) <=M

√
t on [0,∞).

(2) Assume that G satisfies (F0) and (F2). Then there exists M0 > 0 such that

ρ(t) := sup
|θ|,|σ|<=1

∣∣∣∣G(θβe1, σI1,1√
t

)∣∣∣∣ <= M0√
t

(3.2)

for all t >= 1. Moreover

g(t) :=

{
0 (0 <= t <= 1),∫ t

1
ρ(s)ds (t > 1)

(3.3)

satisfies (3.1) with M = 2M0.

Obviously, the estimate (3.2) holds if G is homogeneous. For a general G, roughly
speaking, (3.2) still holds since G is approximately homogeneous.
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Proof. (1) Fix t0 >= 0. Let δ > 0 and take t >= 0, λ > 0 such that |t − t0| <= δ,
λ >= 1/δ. We then observe

|g(λ)(t)| =
1

λ
|g(λ2t)| <=

1

λ
M(

√
λ2t+ 1) =M

(√
t+

1

λ

)
<=M(

√
t0 + δ + δ).

Thus, sending δ → 0 gives −M
√
t0 <= g(t0) <= g(t0) <=M

√
t0.

(2) The second assertion is obvious if (3.2) holds. For t >= 1 we observe

√
tρ(t) <= sup

|θ|,|σ|<=1

∣∣∣∣√tG(θβe1, σI1,1√
t

)
− F (θβe1, σI1,1)

∣∣∣∣+ sup
|θ|,|σ|<=1

|F (θβe1, σI1,1)|.

The first term of the right hand side converges to 0 as t→ ∞ by assumption while
the second term is a constant independent of t. Therefore (3.2) follows. �

Proof of Theorem 3.4. Let w− and w+ be barriers constructed in the proof of
Proposition 2.10. Then there exists C > 0 such that −C <= w− <= w+ <= C on
Ω× [0, 2] by Remark 2.11. Define Φ : Ω× [0,∞) → R as

Φ(x, t) := −C + h(x1, t)− g(t).

Here h and g are the functions given by (2.5) and (3.3), respectively. We choose
A = β2/π in (2.5) so that 0 <= ∂x1h <= β and −1/

√
t <= ∂x1x1h <= 0 in Ω × (0,∞).

By the definition of g, we then find that Φ and −Φ are, respectively, a viscosity
subsolution and a viscosity supersolution of

∂tu(x, t) = G(∇u(x, t),∇2u(x, t)) (3.4)

in Ω × (1,∞) and (1.3). Indeed, the boundary condition is easy to check, and for
(x, t) ∈ Ω× (1,∞) we compute

∂tΦ(x, t) <= −g′(t) = − sup
|θ|,|σ|<=1

∣∣∣∣G(θβe1, σI1,1√
t

)∣∣∣∣ <= G(∇Φ(x, t),∇2Φ(x, t)).

Here we have used the facts that ∂th <= 0, 0 <= ∂x1h <= β and −1/
√
t <= ∂x1x1h <= 0.

A similar argument yields that −Φ is a supersolution. Since Φ <= w− <= w+ <=
−Φ on Ω × [0, 2], we see that w̃− := max{w−, Φ} and w̃+ := min{w+, −Φ}
are, respectively, a viscosity subsolution and a viscosity supersolution of (3.4) in
Ω× (0,∞) and (1.3). Noting that (w̃−)∗(x, 0) = u0(x) = (w̃+)∗(x, 0) on Ω, we see
by Theorem 2.5 that (w̃−)∗ <= u <= (w̃+)∗ in Ω × [0,∞). In particular, we have
Φ(λ) <= u(λ) <= −Φ(λ). Taking lim inf∗λ→∞ and lim sup∗λ→∞, we obtain

h(x1, t)− g(t) <= u(x, t) <= u(x, t) <= −h(x1, t) + g(t) in Ω× [0,∞),

where u := lim inf∗λ→∞ u(λ) and (u, g) := lim sup∗λ→∞(u(λ), g(λ)). Therefore Lemma

3.5 implies that u and u are bounded on Ω × [0, T ) for every T > 0 and that
u(x, 0) = u(x, 0) = 0 on Ω.

Now, since u(λ) is a viscosity solution of (NP;Gλ, (u0)(λ)) for every λ > 0, Propo-
sition 2.9 (2) and (F2) imply that u and u are, respectively, a viscosity subsolution
and a viscosity supersolution of (NP;F, 0). By Theorem 2.5 we have u <= u in
Ω× [0,∞), and therefore u ≡ u ≡ v since v is now the unique solution of (NP;F, 0).
As a result, u(λ) converges to v locally uniformly in Ω× [0,∞). �
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Remark 3.6. IfG is homogeneous in Theorem 3.4, i.e., G ≡ F , then u(λ) converges to

v uniformly on Ω×[0,∞). Indeed, since u(λ) solves (NP;F, (u0)(λ)), the contraction
property (Corollary 2.8) ensures

sup
Ω×[0,∞)

|u(λ) − v| <= sup
Ω

|(u0)(λ) − 0| = 1

λ
sup
Ω

|u0|.

We thus obtain the uniform convergence of u(λ) together with its convergence rate.

Remark 3.7. We derive a sufficient condition for (F2). Let G : Rn × Sn → R and
consider a linear approximation of G such as (1.7). Suppose that G is of the form
G(p,X) = H(p, f(p,X)) with some continuous and homogeneous f . We expand H
as H(p, z) = z · ∂zH(p, 0) + z · r(p, z), where we have assumed H(p, 0) = 0. Then

λG

(
p,
X

λ

)
= λH

(
p,

1

λ
f(p,X)

)
= f(p,X) ·∂zH(p, 0)+f(p,X) ·r

(
p,

1

λ
f(p,X)

)
.

Thus G satisfies (F2) with the limit F (p,X) = f(p,X) · ∂zH(p, 0) if the reminder
term r(p, z/λ) converges to zero as λ → ∞ locally uniformly with respect to
(p, z). This setting includes Mullins’ problem, which corresponds to the case where

H(p,X) =
√
1 + p2(1− e−z) and f(p,X) = X/

√
1 + p2

3
.

4. Profile functions

In this section we study the profile function of the unique self-similar solution
to (NP;F, 0) with a homogeneous F . Our main interest is the configuration of its
graph, especially the corner of the graph when F (p,X) is allowed to be 0 even if
X ̸= 0.

We first derive the ordinary differential equation which the profile function should
solve. Assume (F0) and (F1). Let v be a viscosity solution of (NP;F, 0). According
to Proposition 3.3 (3), v(x, t) is independent of (x2, . . . , xn). Thus we hereafter
assume n = 1 so that u and F are, respectively, defined on R× [0,∞) and R×R.
We let V : [0,∞) → R be the profile function of v, i.e.,

V (x) = v(x, 1). (4.1)

Since v is self-similar, we have

v(x, t) =
√
tv

(
x√
t
, 1

)
=

√
tV

(
x√
t

)
. (4.2)

We now differentiate v to find

∂tv(x, t) =
1

2
√
t
V

(
x√
t

)
− x

2t
V ′
(
x√
t

)
,

∂xv(x, t) = V ′
(
x√
t

)
, ∂xxv(x, t) =

1√
t
V ′′
(
x√
t

)
provided that v is smooth. Substituting these derivatives for (1.1), we have

1

2
√
t

{
V

(
x√
t

)
− x√

t
V ′
(
x√
t

)}
= F

(
V ′
(
x√
t

)
,
1√
t
V ′′
(
x√
t

))
.

Multiplying the both sides by 2
√
t and letting ξ = x/

√
t, we are led to

V (ξ)− ξV ′(ξ) = 2F (V ′(ξ), V ′′(ξ)).
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Here we have used (F1). We consider this equation with the boundary condition
at ξ = 0 and ξ = ∞:

(FODE)


V (ξ)− ξV ′(ξ) = 2F (V ′(ξ), V ′′(ξ)) in (0,∞), (4.3)

V ′(0) = β > 0, (4.4)

lim
ξ→∞

V (ξ) = 0. (4.5)

To impose (4.5) is natural in terms of Proposition 3.3 (4). Since F is now defined
on R×R and satisfies (F1), we notice that F is written as

F (p,X) =

{
F (p, 1)X if X >= 0,

−F (p,−1)X if X <= 0.

Thus the right hand side of (4.3) is linear with respect to V ′′(ξ) as long as the sign
of V ′′(ξ) does not change. By (F0) we also find that F (p, 1) and −F (p,−1) are
nonnegative continuous functions of p.

We say a function V : [0,∞) → R is a classical solution of (FODE) if V ∈
C2(0,∞) ∩ C1[0,∞) and V satisfies (4.3)–(4.5). Here we define V ′(0) as the right
derivative:

V ′(0) := lim
ξ↓0

V (ξ)− V (0)

ξ
.

A viscosity subsolution of (FODE) is a function V : [0,∞) → R such that V is
bounded from above on [0,∞), V ∗ satisfies (4.5) and{

V ∗(ξ)− ξp <= 2F (p,X) if ξ > 0,

V ∗(0) <= 2F (p,X) or β − p <= 0 if ξ = 0

for all (p,X) ∈ J2,+V ∗(ξ) with ξ >= 0. The definitions of a viscosity supersolution
and a viscosity solution of (FODE) are similar so are omitted. The set of all
second order superjets and subjets of V at ξ on [0,∞) are denoted by J2,+V (ξ)
and J2,−V (ξ), respectively. Namely,

J2,+V (ξ) = {(ϕ′(ξ), ϕ′′(ξ)) | ϕ ∈ C2[0,∞) and V − ϕ attains its maximum at ξ},
J2,−V (ξ) = {(ϕ′(ξ), ϕ′′(ξ)) | ϕ ∈ C2[0,∞) and V − ϕ attains its minimum at ξ}.

Remark 4.1. Assume (F0) and (F1). Although (4.3) was derived under the assump-
tion that v is smooth, the consistency between (NP;F, 0) and (FODE) holds in the
viscosity sense as well.

• (Consistency) If V is a viscosity subsolution of (FODE), then v given as
(4.2) is a viscosity subsolution of (NP;F, 0). Conversely, if v is a viscosity
subsolution of (NP;F, 0), then V given as (4.1) is a viscosity subsolution of
(FODE). Similar statements hold for supersolutions.

Due to this consistency we have the comparison and existence of viscosity solutions
to (FODE). These assertions follow from the results for the time-dependent case in
Section 2.

• (Comparison principle) If U and V are, respectively, a viscosity subsolution
and supersolution of (FODE), then U∗ <= V∗ on [0,∞).

• (Existence) There exists a continuous viscosity solution of (FODE).
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Example 4.2. Let us consider the linearized equation

(LODE)

{
V (ξ)− ξV ′(ξ) = BV ′′(ξ) in (0,∞), (4.6)

(4.4), (4.5)

with B > 0. This equation corresponds to the case that 2F (p, 1) = −2F (p,−1) = B
for all p ∈ R in (FODE). Choosing A = B/2 in (2.5), we see that the unique classical
solution of (LODE) is

Hβ,B(ξ) := −β
√
2B · ierfc

(
ξ√
2B

)
. (4.7)

Note that the derivatives of Hβ,B up to the second order are

H ′
β,B(ξ) = β · erfc

(
ξ√
2B

)
, H ′′

β,B(ξ) = −β
√

2

πB
· e−ξ2/2B . (4.8)

In the rest of this section we consider the problem of the form

(ODE) = (ODE; a, β)

{
V (ξ)− ξV ′(ξ) = a(V ′(ξ))V ′′(ξ) in (0,∞), (4.9)

(4.4), (4.5)

with nonnegative a ∈ C(R). Although (ODE) is a special case of (FODE), it turns
out that the both problems are equivalent; see Remark 4.8. Our basic assumption
on a is

(A1) a ∈ C(R), a >= 0 in R and a(0) > 0.

Recall that Mullins’ equation (1.8) corresponds to (ODE) with a(p) = 2/(1 + p2).
We list fundamental properties of a viscosity solution to (ODE).

Proposition 4.3. Assume (A1). Let V be the unique viscosity solution of (ODE).
Let (p,X) ∈ J2,−V (ξ0) with ξ0 > 0. Then

(1) V < 0 on [0,∞).
(2) V is increasing on [0,∞), i.e, V (ξ1) < V (ξ2) if 0 <= ξ1 < ξ2.
(3) p > 0 and X < 0.
(4) V is strictly concave on [0,∞), i.e., V ((1 − λ)ξ1 + λξ2) > (1 − λ)V (ξ1) +

λV (ξ2) for all λ ∈ (0, 1) and ξ1, ξ2 ∈ [0,∞) with ξ1 < ξ2.
(5) a(p) > 0.

Proof. (1) This is a consequence of the second assertion of Proposition 3.3 (2).
(2) We suppose that 0 > V (ξ1) >= V (ξ2) with ξ1 < ξ2. In view of (4.5) we then

have min[ξ1,∞) V = V (η) < 0 for some η ∈ (ξ1,∞). Thus (0, 0) ∈ J2,−V (η), so that
V (η)− η · 0 >= a(0) · 0 = 0 since V is a supersolution. However, this is contract to
(1).

(3) (5) The monotonicity of V yields that p >= 0. We then notice that a(p) must
be positive and that X must be negative since 0 > V (ξ) − ξp >= a(p)X. We show
that p > 0 after the proof of (4).

(4) We suppose that V ((1−λ)ξ1+λξ2) <= (1−λ)V (ξ1)+λV (ξ2) for some λ ∈ (0, 1)
and ξ1, ξ2 ∈ [0,∞) with ξ1 < ξ2. We now take the parabola ϕ ∈ C2(R) which passes
through three points (ξ1, V (ξ1)),((1−λ)ξ1+λξ2, V ((1−λ)ξ1+λξ2)) and (ξ2, V (ξ2)).
Then ϕ′′ is a nonnegative constant c and min[ξ1,ξ2](V − ϕ) = (V − ϕ)(η) for some

η ∈ (ξ1, ξ2). Thus (ϕ
′(η), c) ∈ J2,−V (η), which contradicts (3) since c >= 0.
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(3) Let ξ1, ξ2 > 0 with ξ1 < ξ0 < ξ2. Since V is concave and increasing, we
observe that

V (ξ0)− V (ξ1)

ξ0 − ξ1
>=
V (ξ2)− V (ξ0)

ξ2 − ξ0
> 0.

We next take ϕ ∈ C2(0,∞) such that min(0,∞)(V − ϕ) = (V − ϕ)(ξ0) and (p,X) =
(ϕ′(ξ0), ϕ

′′(ξ0)). Then

ϕ(ξ0)− ϕ(ξ1)

ξ0 − ξ1
>=
V (ξ0)− V (ξ1)

ξ0 − ξ1
.

Combining the two inequalities above and letting ξ1 ↑ ξ0, we obtain p > 0. �

Remark 4.4. Since V is concave on [0,∞), we see by Aleksandrov’s theorem ([16,
Theorem A.2]) that V is twice differentiable almost everywhere on [0,∞). Namely,
J2,+V (ξ) ∩ J2,−V (ξ) is nonempty a.e. ξ ∈ [0,∞). Accordingly, V solves (4.9)
almost everywhere in the classical sense.

Remark 4.5. Although the viscosity solution V in Proposition 4.3 may not be differ-
entiable, we are able to deduce several properties of its one-side derivatives mainly
from the strict concavity of V . We define the right derivative V ′

r of V and the left
derivative V ′

l of V as follows:

V ′
r (ξ0) := lim

ξ↓ξ0

V (ξ)− V (ξ0)

ξ − ξ0
for ξ0 ∈ [0,∞),

V ′
l (ξ0) := lim

ξ↑ξ0

V (ξ)− V (ξ0)

ξ − ξ0
for ξ0 ∈ (0,∞).

Under the same hypotheses of Proposition 4.3 these limits indeed exist and enjoy
the following properties.

(a) (One-side continuity) V ′
r (ξ0) = limξ↓ξ0 V

′
r (ξ) for all ξ0 ∈ [0,∞) and V ′

l (ξ0) =
limξ↑ξ0 V

′
r (ξ) for all ξ0 ∈ (0,∞).

(b) (Monotonicity) β >= V ′
r (ξ1) > V ′

l (ξ2) >= V ′
r (ξ2) > V ′

l (ξ3) > 0 if 0 <= ξ1 <
ξ2 < ξ3.

(c) (Limit as ξ → ∞) limξ→∞ V ′
r (ξ) = limξ→∞ V ′

l (ξ) = 0. (If the limit were
positive, V (ξ) would not converge to zero as ξ → ∞.)

If V is a classical solution, it is obvious that the range of V ′ on [0,∞) is (0, β]. In
Corollary 4.12 we will determine the range of V ′

r and V ′
l when V is not necessarily

a classical solution.

We discuss the angle V ′(0) at the origin for a viscosity solution V of (ODE).

Proposition 4.6 (Angle at the origin). Assume (A1). Let V be the unique viscosity
solution of (ODE).

(1) We have

V ′(0) = q− :=

{
β if a(β) > 0,

inf{q ∈ (0, β] | a = 0 on [q, β]} if a(β) = 0.

(2) Let β1 > β and V1 be the unique viscosity solution of (ODE; a, β1). If a = 0
on [β, β1], then V = V1 on [0,∞).
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Proof. (1) 1. We first prove that V ′(0) exists and 0 < V ′(0) <= β. Since V is
strictly concave, we see that (V (ξ) − V (0))/ξ is increasing as ξ ↓ 0. Thus V ′(0)
exists and V ′(0) ∈ (0,∞] by the monotonicity of V . Suppose V ′(0) > β. Then
(p, 0) ∈ J2,−V (0) for every p ∈ (β, V ′(0)); however, V (0) − 0 · p < a(p) · 0 and
β − p < 0. This is a contradiction.

2. We next show that V ′(0) >= q−. Suppose 0 < V ′(0) < q−. Then, by
the definition of q− there exists some p ∈ (V ′(0), β) such that a(p) > 0. We let
ϕ(ξ) = −cξ2 + pξ + V (0) for c > 0. Since ϕ(0) = V (0) and ϕ′(0) = p, it follows
that (p,−2c) ∈ J2,+V (0). We thus have V (0) − 0 · p <= a(p) · (−2c), which is a
contradiction for large c > 0.

3. If q− = β, the proof has already been completed. Let q− < β and suppose
that q− < V ′(0) <= β. Since V ′

r (ξ) → V ′(0) as ξ ↓ 0, we see that q− < V ′
r
<= β

on [0, ε] for some small ε > 0. We now take (p,X) ∈ J2,+V (ξ0) ∩ J2,−V (ξ0) with
ξ0 ∈ (0, ε); see Remark 4.4 for the existence of such ξ0. Then p = V ′

r (ξ0). However,
we reach a contradiction that 0 > V (ξ0)− ξ0 · p >= a(p)X = 0 since q− < p <= β.

(2) If we prove that V is a viscosity solution of (ODE; a, β1), the conclusion
follows. We only need to consider the boundary condition. Evidently, V is a
supersolution of (ODE; a, β1) since β1−p >= β−p >= 0 whenever (p,X) ∈ J2,−V (0);
see Remark 4.7. We next take (p,X) ∈ J2,+V (0) and let p < β1; otherwise β1−p <=
0 holds. In (1) we have shown V ′(0) = inf{q ∈ (0, β] | a = 0 on [q, β]}. Since
V ′(0) <= p < β1, we now have a(p) = 0 and therefore V (0)− 0 · p <= 0 = a(p)X. �

Remark 4.7. Since 0 < V ′(0) <= β by (1) above, we always have β − p >= 0 if
(p,X) ∈ J2,−V (0) for a viscosity solution V . Indeed, if V − ϕ has its minimum at
the origin, then ϕ′(0) <= V ′(0) <= β.

Remark 4.8. Let F : R × R → R satisfy (F0), (F1) and F (0,−1) < 0. It is not
difficult to see that, if we replace a(p) by −2F (p,−1), the assertions in Proposition
4.3 and 4.6 still hold for a viscosity solution of the general problem (FODE). We
thus find that (FODE) and (ODE) are equivalent in the following sense.

(i) If V is a viscosity solution of (FODE) with F satisfying (F0), (F1) and
F (0,−1) < 0, then V is also a viscosity solution of (ODE) with a(p) =
−2F (p,−1).

(ii) If V is a viscosity solution of (ODE) with a satisfying (A1), then V is also
a viscosity solution of (FODE) with F (p,X) = a(p)X/2 if X <= 0, and
F (p,X) = b(p)X for some nonnegative b ∈ C(R) if X >= 0.

Indeed, when V is concave, we have 2F (p,X) = a(p)X for (p,X) ∈ J2,−V (ξ) with
ξ > 0. We next let (p,X) ∈ J2,+V (ξ) with ξ >= 0. IfX <= 0, then 2F (p,X) = a(p)X.
If X > 0, we see (p, 0) ∈ J2,+V (ξ) by concavity. Since a(p) · 0 <= a(p)X and
2F (p, 0) <= 2F (p,X), we finally conclude (i) and (ii). (It is easy to check the
boundary condition by virtue of Remark 4.7.) Also, similar assertions to (i) and
(ii) hold for classical solutions.

We next establish a unique existence result of classical solutions to (ODE). Re-
calling the property (5) in Proposition 4.3, we see that there is no classical solution
of (ODE) if a(β0) = 0 for some β0 ∈ (0, β). We thus need the positivity of a for the
existence. Conversely, it turns out that a viscosity solution of (ODE), for which we
have already known the unique existence, is actually a classical solution of (ODE)
if a is positive.
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Proposition 4.9 (C2-regularity of viscosity solutions). Assume (A1). Let V be
the unique viscosity solution of (ODE). If a > 0 on [0, β], then V is a classical
solution of (ODE).

Proof. 1. By virtue of Proposition 4.6 (1) the boundary condition (4.4) is now
fulfilled. Since Vr is right continuous, the condition V ∈ C1[0,∞) is satisfied if we
prove V ∈ C1(0,∞). In the rest of the proof we show V ∈ C2(0, l) for every l > 0.

2. Let

ψ(r) :=


V (0) if r <= V (0),

r if V (0) <= r <= β,

β if β <= r

and

b(p) := max{a(p), mβ} with mβ = min
q∈[0,β]

a(q).

Then we observe that V also satisfies

ψ(W (ξ))− ξψ(W ′(ξ)) = b(W ′(ξ))W ′′(ξ) in (0, l) (4.10)

in the viscosity sense because V (0) <= V <= 0 and 0 <= p <= β for every p ∈ J2,+V (ξ)∪
J2,−V (ξ) with ξ ∈ (0, l); recall Proposition 4.3 (1), (2) and Remark 4.5 (b). We
now solve the ordinary differential equation (4.10) with the boundary condition

W (0) = V (0) and W (l) = V (l). (4.11)

According to [25, Theorem XII.4.2] there exists U ∈ C2(0, l)∩C[0, l] which satisfies
(4.10) and (4.11) in the classical sense. The reason why we introduced (4.10) is to
guarantee that

f(ξ, r, p) :=
ψ(r)− ξψ(p)

b(p)

is continuous and bounded on [0, l]× (−∞,∞)× (−∞,∞), which is assumed in [25,
Theorem XII.4.2].

3. We assert that V (0) <= U <= 0 on [0, l]. If U(η) > 0 at a maximum point
η ∈ (0, l) of U , noting that U ′(η) = 0 and U ′′(η) <= 0, we would reach a contradiction
that

ψ(U(η))− ηψ(U ′(η)) > 0 >= b(U ′(η))U ′′(η).

Thus U <= 0. A similar argument yields V (0) <= U .
4. By Step 3 we find that U satisfies

W (ξ)− ξψ(W ′(ξ)) = b(W ′(ξ))W ′′(ξ) in (0,∞) (4.12)

in the classical sense, and therefore in the viscosity sense. We now apply the
comparison principle for a viscosity subsolution and a viscosity supersolution of
(4.12). Such a comparison is ensured by [16, Theorem 3.3]; indeed, if we set
G(ξ, r, p,X) = r − ξψ(p) − b(p)X, we have G(ξ, r, p,X) − G(ξ, s, p,X) >= r − s
for r >= s and G(η, r, α(ξ − η), Y )−G(ξ, r, α(ξ − η), X) <= α|ξ − η|2 for X <= Y . We
thus obtain V = U on [0, l], which implies V ∈ C2(0, l). �

Approximating a viscosity solution by classical solutions, we prove that its de-
rivative takes the value p if a(p) > 0 and that the value of the derivative jumps
over p if a(p) = 0. In other words, the solution has a corner when the equation is
degenerate.
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Theorem 4.10 (Corner of profile functions). Assume (A1). Let V be the unique
viscosity solution of (ODE). Let p ∈ (0, β).

(1) Assume that a(p) > 0. Then there exists a unique ξp ∈ (0,∞) such that
V ∈ C2(I) and V ′(ξp) = p for some open interval I with ξp ∈ I ⊂ (0,∞).

(2) Assume that a(p) = 0. Let

q+ := sup{q ∈ [p, β] | a = 0 on [p, q]},
q− := inf{q ∈ (0, p] | a = 0 on [q, p]}.

If q+ < β, then there exists a unique ξp ∈ (0,∞) such that V ′
l (ξp) = q+

and V ′
r (ξp) = q−. If q+ = β, then we have V ′(0) = q−.

Remark 4.11. If q− = q+ = p in (2), then V is differentiable at ξp but not twice
differentiable at ξp since a(p) = 0. See Proposition 4.3 (5).

Proof. The uniqueness assertions in (1) and (2) follow from the monotonicities of
V ′
r and V ′

l , which are ensured by Remark 4.5 (b). If a > 0 on [0, β], the assertion
in (1) is obvious since V ′ is bijection from [0,∞) to (0, β]; recall Remark 4.5 (b),
(c) and Proposition 4.6 (1). Also, when q+ = β in (2), we have already proved
V ′(0) = q− in Proposition 4.6 (1).

(1) 1. Set aδ(q) = max{a(q), δ} for δ ∈ (0, a(0)]. Owing to the positivity of aδ
the unique solution Vδ of (ODE; aδ, β) is smooth. Since aδ converges to a uniformly,
we see that Vδ converges to V as δ → 0 locally uniformly on [0,∞) by stability
(Proposition 2.9 (2)).

2. Take ε > 0 small so that [p−ε, p+ε] ⊂ (0, β) and a > 0 on [p−ε, p+ε]. Since
Vδ is a classical solution of (ODE; aδ, β) with a positive aδ, there exist ξ−δ , ηδ, ξ

+
δ ∈

(0,∞) such that ξ−δ < ηδ < ξ+δ and (V ′
δ (ξ

−
δ ), V ′

δ (ηδ), V
′
δ (ξ

+
δ )) = (p + ε, p, p − ε) for

each δ > 0. Then we observe

(p− ε)ξ+δ <=

∫ ξ+δ

0

V ′
δ (ξ)dξ = Vδ(ξ

+
δ )− Vδ(0) <= −Vδ(0).

Since Va(0)(0) <= Vδ(0) by the comparison principle, we obtain ξ+δ <= −Va(0)(0)/(p−
ε). Therefore we may assume that (ξ−δ , ηδ, ξ

+
δ ) → (ξ̄−, η̄, ξ̄+) as δ → 0 by taking a

subsequence if necessary.
3. We show that −M <= V ′′

δ
<= 0 on [ξ−δ , ξ

+
δ ] for some M > 0 independent of δ.

Take c > 0 such that c <= a on [p− ε, p+ ε]. Then, for ξ ∈ [ξ−δ , ξ
+
δ ] we have

V ′′
δ (ξ) =

Vδ(ξ)− ξV ′
δ (ξ)

a(V ′
δ (ξ))

>=
Va(0)(0)− ξ+δ (p+ ε)

c
.

Since {ξ+δ }δ is bounded by Step 2, we conclude that V ′′
δ
>= −M for some M > 0.

4. We next claim that ξ̄− < η̄ < ξ̄+. In fact, we compute

−ε = V ′
δ (ηδ)− V ′

δ (ξ
−
δ ) =

∫ ηδ

ξ−δ

V ′′
δ (ξ)dξ >= −M(η−δ − ξ−δ ),

which implies that ξ̄− < η̄. The same argument yields that η̄ < ξ̄+.
5. Choose θ > 0 small so that J := [η̄ − θ, η̄ + θ] ⊂ (ξ̄−, ξ̄+). We then have

−M <= V ′′
δ
<= 0 on J for sufficiently small δ. Thus the Ascoli-Arzelà theorem

ensures that V ′
δ converges to some U ∈ C(J) as δ → 0 uniformly on J by taking a

subsequence. In particular, we have U(η̄) = limδ→0 V
′
δ (ηδ) = p. Since V δ converges
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to V pointwise, we learn that V ∈ C1(η̄ − θ, η̄ + θ) and V ′ = U . Consequently
V ′(η̄) = p.

6. We are able to show the C2-regularity of V in the same way as in the proof
of Proposition 4.9. Let I = (a, b) := (η̄− θ/2, η̄+ θ/2). Since V ∈ C1(η̄− θ, η̄+ θ),
for every ξ ∈ I and (p,X) ∈ J2,+V (ξ) ∪ J2,−V (ξ) we have V ′(a) >= p >= V ′(b) and
a(p) >= m for some m > 0. Thus V solves

ψ(W (ξ))− ξψ(W ′(ξ)) = b(W ′(ξ))W ′′(ξ) in I (4.13)

in the viscosity sense. Here ψ(r) and b(p) are suitable modification of functions
r and a(p) respectively; see the proof of Proposition 4.9. Then V must agree
with a classical solution of (4.13) with the boundary condition W (a) = V (a) and
W (b) = V (b). Hence V ∈ C2(I).

(2) 1. Let q+ < β. By the definitions of q− and q+ there exist sequences {q−n }n
and {q+n }n such that 0 < q−n < q− <= q+ < q+n < β, a(q−n ) > 0, a(q+n ) > 0, q−n ↑ q−
as n → ∞ and q+n ↓ q+ as n → ∞. Then we see by (1) that (V ′(ξ−n ), V ′(ξ+n )) =
(q−n , q

+
n ) for some ξ−n , ξ

+
n ∈ (0,∞) such that 0 < ξ+n <= ξ+n+1

<= ξ−n+1
<= ξ−n . By this

monotonicity we let limn→∞(ξ−n , ξ
+
n ) = (ξ̄−, ξ̄+), and then we have

V ′
l (ξ̄

+) = lim
ξ↑ξ̄+

V ′
l (ξ) = lim

n→∞
V ′
l (ξ

+
n ) = q+,

V ′
r (ξ̄

−) = lim
ξ↓ξ̄−

V ′
r (ξ) = lim

n→∞
V ′
r (ξ

−
n ) = q−.

2. It remains to prove that ξ̄+ = ξ̄−. Suppose that ξ̄+ < ξ̄−. We take (p0, X) ∈
J2,−V (η0) with η0 ∈ (ξ̄+, ξ̄−); recall Remark 4.4. We then have

p0 <= V ′
r (η0) <= V ′

r (ξ
+
n ) = q+n and p0 >= V ′

l (η0) >= V ′
l (ξ

−
n ) = q−n .

Sending n → ∞ yields that q− <= p0 <= q+, and hence a(p0) = 0. This is contrary
to Proposition 4.3 (5). �

We are now in a position to determine the range of V ′
r and V ′

l . Define R(V ′
r ) :=

{V ′
r (ξ) | ξ >= 0}, R(V ′

l ) := {V ′
l (ξ) | ξ > 0} and

{a > 0}
r
:=

{
p ∈ (0, β]

∣∣∣∣∣ there exists {qn}∞n=1 ⊂ (0, p] such that
a(qn) > 0 and qn → p as n→ ∞

}
,

{a > 0}
l
:=

{
p ∈ (0, β)

∣∣∣∣∣ there exists {qn}∞n=1 ⊂ [p, β) such that
a(qn) > 0 and qn → p as n→ ∞

}
.

Corollary 4.12 (Range of derivatives). Assume (A1). Let V be the unique viscosity

solution of (ODE). Then we have R(V ′
r ) = {a > 0}

r
and R(V ′

l ) = {a > 0}
l
.

Proof. The inclusion R(V ′
r ) ⊃ {a > 0}

r
follows immediately from Theorem 4.10 (1)

and (2). Let p ∈ R(V ′
r ), that is p = V ′

r (ξ) for some ξ >= 0. Evidently, we have

p ∈ {a > 0}
r
if a(p) > 0. We let a(p) = 0. When β = q+ := sup{q ∈ [p, β] | a =

0 on [p, q]}, Proposition 4.6 implies V ′(0) = q− := inf{q ∈ (0, p] | a = 0 on [q, p]}.
By definition q− <= p. Since we also have q− >= V ′

r on [0,∞) by monotonicity, it

follows that p = q− ∈ {a > 0}
r
. In the case where β > q+, by Theorem 4.10 (2) we

have V ′
l (ξp) = q+ and V ′

r (ξp) = q− for some ξp > 0. Since V ′
r (ξp) = q− <= p = V ′

r (ξ),
we see ξp >= ξ. If ξp > ξ, we would reach a contradiction that V ′

r (ξ) > V ′
l (ξp) =

q+ >= p = V ′
r (ξ). Thus ξ = ξp and then p = q−. This means p ∈ {a > 0}

r
. We have

thus proved R(V ′
r ) = {a > 0}

r
. A similar argument yields R(V ′

l ) = {a > 0}
l
. �
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5. Depth of the thermal groove

We investigate the depth of the thermal groove. For a viscosity solution V of
(ODE) we define

d(β) := −V (0). (5.1)

This is the depth of the corresponding self-similar solution v in (4.2) at the origin
when t = 1. Similarly, for the classical solution W of the linearized equation
(LODE) with B = a(0) > 0 we define

L(β) := −W (0) = β

√
2a(0)

π
, (5.2)

where the second equality is due to (4.7) since W = Hβ,a(0).

Theorem 5.1 (Depth of the groove). Assume (A1). Assume furthermore that
a(p) <= a(0) for all p > 0. Let V and W be, respectively, the unique viscosity
solution of (ODE) and that of (LODE) with B = a(0). Define d and L as in (5.1)
and (5.2). Then

(1) 0 < d <= L in (0,∞).
(2) d is nondecreasing in (0,∞).
(3) e1(β) := β

√
(2min[0,β] a)/π <= d(β) for all β > 0.

(4)

0 <=
L(β)− d(β)

β
<= C

(
a(0)−min

[0,β]
a

)
with C =

√
2/(πa(0)) for all β > 0. In particular, limβ↓0(L(β)−d(β))/β =

0.
(5) If a is nonincreasing on [0,∞), then λd(β) <= d(λβ) for all λ ∈ [0, 1] and

β > 0.

(6) e2(β) :=
√∫ β

0
a(p)pdp <= d(β) for all β > 0.

(7) If a(p) >= c/(1+p2) on [M,∞) for some c,M > 0, then limβ→∞ d(β) = ∞.

O

Depth

β

ր +∞
(1) (2) (7)

(4) o(β)

(5) star shaped

d(β)

L(β)

Figure 3. The assertions in Theorem 5.1 on the depth d(β).

The estimate in (4) yields (1.14), which asserts that the depth of the linearized
problem is the third order approximation in Mullins’ case, i.e, a(p) = 2/(1 + p2).
The main tool for the proof of (1)–(5) is the comparison principle while we calculate
integrals to show (6) and (7).
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Proof. (1) Fix β > 0. By Proposition 4.3 (1) the depth d(β) is positive. We next
observe thatW −ξW ′ = a(0)W ′′ <= a(W ′)W ′′ on (0,∞) sinceW ′ >= 0 andW ′′ <= 0.
This inequality means that W is a subsolution of (ODE). We thus find by the
comparison principle that W <= V on [0,∞), and hence d(β) <= L(β).

(2) Take β1, β2 > 0 with β1 < β2. Let V1 and V2 be, respectively, the unique
viscosity solution of (ODE; a, β1) and that of (ODE; a, β2). It is then easily seen that
V1 is a supersolution of (ODE; a, β2), and so V2 <= V1 on [0,∞) by the comparison
principle. As a result we see that d(β1) <= d(β2).

(3) Fix β > 0 and take β0 > 0 such that min[0,β] a = a(β0). Clearly the claim
holds if a(β0) = 0. In the case where a(β0) > 0 we consider the linearized equation
(LODE) with B = a(β0). Then the unique classical solution is

U(ξ) := Hβ,a(β0)(ξ) = −β
√
2a(β0) · ierfc

(
ξ√

2a(β0)

)
.

Since 0 <= U ′ <= β and U ′′ <= 0, we observe that U − ξU ′ = a(β0)U
′′ >= a(U ′)U ′′ on

(0,∞). Thus U is a supersolution of (ODE; a, β). We now apply the comparison
principle to obtain V <= U on [0,∞). In particular, we have

d(β) >= −U(0) = β

√
2a(β0)

π
= e1(β).

(4) It follows from (3) that

0 <= L(β)− d(β) <= β

√
2a(0)

π
− β

√
2min[0,β] a

π
<= Cβ

(
a(0)−min

[0,β]
a

)
.

The second assertion in (4) is now obvious.
(5) Fix β > 0 and λ ∈ (0, 1). Let Vλ be the unique viscosity solution of

(ODE; a, λβ). Set Ṽ = λV . We now claim that Ṽ is a supersolution of (ODE; a, λβ).

Let (p,X) ∈ J2,−Ṽ (ξ), i.e., (p/λ,X/λ) ∈ J2,−V (ξ). If ξ = 0, we derive β− (p/λ) >=
0 from Remark 4.7. This means λβ − p >= 0. If ξ > 0, noting that p >= 0, X <= 0

and V (ξ)− ξ · (p/λ) >= a(p/λ)X/λ, we have Ṽ (ξ)− ξp >= a(p/λ)X >= a(p)X since a

is monotone. We thus conclude that Ṽ is a supersolution of (ODE; a, λβ). Hence

Vλ <= Ṽ on [0,∞), and so d(λβ) >= λd(β).
(6) 1. We first let a > 0 on [0,∞). Then V is a classical solution of (ODE) by

Proposition 4.9. We multiply the both sides of (4.9) by V ′(ξ) and integrate over
[0, η]. We then have

I1 :=

∫ η

0

{V (ξ)− ξV ′(ξ)}V ′(ξ)dξ =
[
{V (ξ)− ξV ′(ξ)}V (ξ)

]η
0
+

∫ η

0

ξV ′′(ξ)V (ξ)dξ

= {V (η)}2 − ηV ′(η)V (η)− {V (0)}2 +
∫ η

0

ξV ′′(ξ)V (ξ)dξ

from the left hand side while the right hand side becomes

I2 :=

∫ η

0

a(V ′(ξ))V ′′(ξ)V ′(ξ)dξ =

∫ V ′(η)

β

a(p)pdp = −
∫ β

V ′(η)

a(p)pdp,

where we have used the change of variables that p = V ′(ξ). Since V <= 0, V ′ >= 0
and V ′′ <= 0, we see that I1 >= −{V (0)}2 = −{d(β)}2. Thus

{d(β)}2 >= −I1 = −I2 =

∫ β

V ′(η)

a(p)pdp.
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Letting η → ∞ and recalling Remark 4.5 (c), we obtain the estimate in (6).
2. If a is not necessarily positive, we set aδ(p) := max{a(p), δ} for δ > 0. Then

Step 1 yields
∫ β

0
aδ(p)pdp <= {Vδ(0)}2, where Vδ is the unique classical solution of

(ODE; aδ, β). Letting δ → 0 gives the desired conclusion since Vδ(0) → V (0) by
the stability; recall the argument in Step1 in the proof of Theorem 4.10 (1).

(7) For β >=M we observe that

{e2(β)}2 =

∫ β

0

a(p)pdp >=

∫ β

M

cp

1 + p2
dp =

c

2
log

1 + β2

1 +M2
.

Thus (6) yields the claim. �

Remark 5.2. (1) We have actually derived several estimates not only at the
origin but also on the whole [0,∞). In particular, by the proof of (1) and
(3) we notice

0 <= V (ξ)−W (ξ)

<= β

{√
2a(0) · ierfc

(
ξ√
2a(0)

)
−
√
2a(β0) · ierfc

(
ξ√

2a(β0)

)}
for all ξ ∈ [0,∞), where β0 > 0 is chosen so that a(β0) = min[0,β] a.

(2) By virtue of Proposition 4.6 (2) we see that limβ→∞ d(β) ̸= ∞ if a = 0
on [M,∞) for some M > 0. Namely, the depth does not necessarily go to
infinity.

Remark 5.3. In [5] the authors gives upper and lower bounds on the solution V of
(ODE) with a(p) = 1/2(1+p2). There two auxiliary (ODE) with a1(p) = 1/(1+p)2

and a2(p) = 1/2(1 + p)2 are considered, and the exact solution V1 of (ODE; a1, β)
and V2 of (ODE; a2, β) are given in the implicit forms. Since a1 >= a >= a2, employing
the comparison theorem, the authors conclude V1 <= V <= V2, and in particular they
derive the estimate at the origin of the form√

2 log

(
β√
π

)
>= d(β) >=

√
log

(
β

2
√
π

)
+

1

4
− 1

2
=: l1(β).

The both sides of the above inequality are of order O(
√
log β) as β → ∞. Our

result (6) also gives a lower bound on d(β), which is

d(β) >=

√∫ β

0

p

2(1 + p2)
dp =

√
1

4
log(1 + β2) =: l2(β).

The right hand side l2(β) is of order O(
√
log β), the same order as in [5]; however,

by a direct calculation we see limβ→∞(l1(β) − l2(β)) = ∞. Thus our estimate (6)
in Theorem 5.1 is rough in this sense, but it is shown more simply and directly by
integration and is enough to prove d(β) → ∞ as β → ∞ in the Mullins’ example.
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