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Abstract

Let Ω ⊂ R2 be a bounded domain with ∂Ω ∈ C∞ and L be a positive number. For a
three dimensional cylindrical domain Q = Ω× (0, L), we obtain some uniqueness result
of determining a complex-valued potential for the Schrödinger equation from partial
Cauchy data when Dirichlet data vanish on a subboundary (∂Ω \ Γ̃) × [0, L] and the
corresponding Neumann data are observed on Γ̃× [0, L], where Γ̃ is an arbitrary fixed
open set of ∂Ω.

This article is concerned with the inverse boundary value problem of determination of a
complex-valued potential for the Schrödinger equation in a cylindrical domain from partial
boundary data. More precisely the problem is as follow. Let Q = Ω× (0, L), where Ω ⊂ R2

is a bounded domain with ∂Ω ∈ C∞. Let Γ̃ be an arbitrary, fixed subdomain of ∂Ω. Denote
Γ0 = Int(∂Ω \ Γ̃), Σ̃ = Γ̃× [0, L] and Σ0 = Γ0 × [0, L].

In Q, we consider the Schrödinger equation with some complex-valued potential q:

Lq(x,D)u = (∆ + q)u = 0 in Q. (1)

Consider the following Dirichlet-to-Neumann map Λq,Σ0

Λq,Σ0f =
∂u

∂ν
|∂Q\Σ0 , where Lq(x,D)u = 0 in Q, u|Σ0 = 0, u|∂Q\Σ0 = f (2)

with domain

D(Λq,Σ0) = {f ∈ H
1
2 (∂Q)|suppf ⊂ ∂Q \ Σ0, (f, g)L2(∂Q) = 0 ∀g ∈ N}

and

N = {g|Lq(x,D)u = 0 in Q, u|∂Q = 0,
∂u

∂ν
|∂Q = g}.

The problem (1) and (2) is the generalization of the inverse boundary value problem of
recovery of the conductivity, which is also known as Calderón’s problem (see [2]). It is
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related to many practical applications, for example, detecting oil or minerals by applying
voltage and measuring the fluxes on earth’s surface. See also Cheney, Issacson and Newell
[3] for applications to medical imaging of EIT.

In case when Q is a general domain in Rn with n ≥ 2, Σ0 = ∅ (i.e., the case of full
Dirichlet-to-Neumann map), the unique recovery of the conductivity was established in [14]
and [17] in two and three dimensional cases respectively. For reconstruction of the conduc-
tivity see [15]. The assumption Σ0 = ∅ means that one has to set up voltages and measure
the fluxes on the whole boundary. From the practical point of view this assumption is very
restrictive. In practice, this assumption does not often hold, for example because the do-
main Q is extremely large or we can not access to some part of ∂Q, e.g., the domain has
cavities located inside. For the inverse boundary value problem with such partial Dirichlet-
to-Neumann map, we refer to the following works. In [1] Bukhgeim and Uhlmann show that
if voltages are applied on the boundary ∂Q− and the corresponding fluxes are measured on
some part ∂Q+ which is approximately equal to ∂Q\∂Q−, then the potential can be uniquely
determined. This result and a recent improved result [10] still require the access to the whole
boundary ∂Q. In [9], Isakov solves the case where voltage applied and current measured on
the same set ∂Q− provided that subboundary ∂Q \ ∂Q− is a part of some sphere or some
plane. All the above mentioned papers treat the case where the spatial dimension more or
equal 3. As for related work in slabs, see Ikehata [5], Krupchyk, Lassas and Uhlmann [11],
Li and Uhlmann [13].

For general two dimensional domain, [6] proved the unique recovery of a potential for
the Schrödinger equation in the case when voltage applied and flux measured both on an
arbitrary open set of ∂Q. Thus [6] established the best possible uniqueness in the two
dimensional case with data Λq,Σ0 defined by (2). Also see [7] which deals with the same
inverse problem for more general second-order elliptic equations in the two dimensional case
and [8] improves the result of [6] in terms of regularity assumption of potential for the
Schrödinger equation. The conditional stability results for Calderon’s problem are obtained
by Novikov in [15], [16].

The purpose of this article is to establish the uniqueness with weak constraints on such
subboundary in the case of three dimensional cylindrical domain Q. Our proof is based on
the generalized Radon transform.

By our method we can obtain the uniqueness results for potentials in more general do-
mains (not only cylindrical one) but we do not discuss details here.

We introduce the subset O of domain Ω

O = Ω \ Ch(Γ̄0), Ch(Γ̄0) = {x|x = λx1 + (1− λ)x2, x1, x2 ∈ Γ0, λ ∈ (0, 1)}.

We have

Theorem 1 Let q1, q2 be Lipschitz functions. If Λq1,Σ0 = Λq2,Σ0 and D(Λq1,Σ0) ⊂ D(Λq2,Σ0),
then q1 = q2 in O × [0, L].

From theorem 1 we obtain immediately

Corollary 2 Let Ω be concave near Γ0 and potentials q1, q2 be Lipschitz functions such that
Λq1,Σ0 = Λq2,Σ0 and D(Λq1,Σ0) ⊂ D(Λq2,Σ0). Then q1 = q2 in Q.
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First we formulate the following Carleman estimate with the linear weight function φ = x3
for the Schrödinger operator (1). Denote ∥ · ∥H1,τ (Q) = ∥ · ∥H1(Q) + |τ |∥ · ∥L2(Q). In [1] the
following theorem is proved:

Theorem 3 Let q ∈ L∞(Q). There exist τ0 and a constant C independent of τ such that for
all τ ≥ τ0

∥ueτφ∥H1,τ (Q) ≤ C(∥(Lq(x,D)u)eτφ∥L2(Q) +
√
τ∥(∂u

∂ν
eτφ)(·, L)∥L2(Ω)) ∀u ∈ H1

0 (Q). (3)

Next we formulate some known results on the generalized Radon transform:

(Rµf)(ω, p) =

∫
<ω,x>=p

f(x)eµ<ω⊥,x>ds, (ω, p) ∈ S1 × R, ω⊥ = (ω2,−ω1).

The following theorem is proved in [12]

Theorem 4 Let f be a Lipschitz function with compact support. If (Rµf)(ω, p) = 0 for all
p > r then supp f ⊂ {x ∈ R2||x| ≤ r}.

Similar to Corollary 2.8 of [4] p. 14 we prove

Corollary 5 Let f be a Lipschitz function in R2 with compact support and E be a bounded
convex set in R2. If (Rµf)(ω, p) = 0 for all lines < ω, x̃ >= p which do not intersect E then

f(x) = 0 ∀x /∈ E.

Proof of Theorem 1. Let point x̂ = (x̂1, x̂2, x̂3) ∈ O × (0, L). Since Ch(Γ̄0) is the convex
closed set the point (x̂1, x̂2) can be separated from it by some line ℓ. Then the line which is
parallel to ℓ and passes through (x̂1, x̂2) does not intersect Ch(Γ̄0). After possible rotation
and translation we may assume that x̂1 = 0, x̂2 > 0 and axis x2 does not intersect Ch(Γ̄0).
Therefore it suffices to prove that

q1 = q2 on Q ∩ {x|x3 ∈ [0, L], x1 = 0}.

Without loss of generality we may assume that Ω ⊂ R1
+. Let m be a smooth function defined

on R1 such that |m′| < 1. Denote ∇′ = (∂x1 , ∂x2). Consider the eiconal equation

|∇′Ψ| = 1 in Ω, Ψ|x2=0 = m. (4)

This equation can be integrated by the method of characteristics. The solutions, as long as
they exist, have the following form

Ψ(x0 + tα(x0)e⃗1 + tβ(x0)e⃗2) = m(x0) + t ∀x0 ∈ {x′|x2 = 0}, t > 0, (5)

where α(x0) = m′(x0), β(x0) =
√
1− α2(x0).

Next construct the function Ψ more explicitly using the implicit function theorem. Con-
sider the following mapping:

F (y) = y2α(y1)e⃗1 + y2β(y1)e⃗2 +

(
y1
0

)
, y = (y1, y2).
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Assume that
α(0) = m′(0) = 0. (6)

Then
F (0, t) = (0, t) (7)

and

F ′(y) = (y2(α
′(y1)e⃗1 + β′(y1)e⃗2) +

(
1
0

)
, α(y1)e⃗1 + β(y1)e⃗2) =

(
y2α

′ + 1 α
y2β

′ β

)
.

In particular

F ′(0, y2) =

(
1 + y2α

′(0) 0
0 1

)
.

As long as the function 1 + y2α
′(0) is positive, there exists the inverse matrix

(F ′)−1(0, y2) =

( 1
1+y2α′(0)

0

0 1

)
. (8)

Let K be a positive number such that

Ω ∩ {x′|x1 = 0} ⊂ {x′|x1 = 0, 0 < x2 < K}.

By (8) there exists ϵ(K) such that for any α ∈ X = {ϕ ∈ C2
0(−1, 1)|ϕ(0) = 0} satisfying

∥α∥C2[−1,1] ≤ ϵ(K) there exists δ̃ > 0 such that on the set [−δ̃, δ̃]× [0, 2K] the matrix (F ′)−1

is correctly defined

(F ′)−1(y) =
1

detF ′(y)
×
(

β −α
−y2β′ y2α

′ + 1

)
.

Then by (7) and the implicit function theorem there exists δ > 0 such that the mapping
x′ → y(x′) is correctly defined on D = [−δ, δ]× [0, K] and the derivative of this mapping is
given by formula:

∂y

∂x′
= (F ′)−1(y(x′)). (9)

Differentiating the first columns on both sides of the matrix equation (9) with respect to x1
and using (6) we have(

∂2y1
∂x2

1
∂2y2
∂x2

1

)
(0, x2) = − y2α

′′(0)

(1 + y2α′(0))3

(
1
0

)
+

1

(1 + y2α′(0))2

(
0

−y2(α′(0))2

)
. (10)

Then the function Ψ can be determined by formula

Ψ(x′) = m0(y1(x
′)) + y2(x

′).
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The short computations and (8), (10) imply

∆Ψ(0, x2) = m′′
0(0)(∂x1y1)

2(0, x2) +m′
0(0)(∂

2
x1
y1)(0, x2) + ∂2x1

y2(0, x2) =
m′′

0(0)

(1 + y2α′(0))2

+
y2(α

′(0))2

(1 + y2α′(0))2
=

α′(0)

(1 + y2α′(0))2
+

y2(α
′(0))2

(1 + y2α′(0))2
=

α′(0)

(1 + y2α′(0))
. (11)

Let a0(x
′) be a function such that

2(∇′Ψ,∇′a0) + ∆x′Ψa0 = 0 in O, (12)

and a(x′) be a smooth function such that

(∇′Ψ,∇′a) = 0 in O. (13)

Next we construct the functions a0 and a.
In order to construct the function a(x′) we take a smooth function r

r ∈ C∞
0 (−ϵ, ϵ), (14)

where ϵ is a small parameter and we set:

a(x′) = r(x0) on the line {x′ ∈ R2|x′ =
(
x0
0

)
+ tα(x0)e⃗1 + tβ(x0)e⃗2, t > 0}. (15)

We claim that for the function a defined by these formula we have (13). Set v⃗1 = α(x0)e⃗1 +
β(x0)e⃗2, v⃗2 = α(x0)e⃗1 − β(x0)e⃗2. Then by (5) |∂v⃗1Ψ| = 1. Since |∇′Ψ| = 1 we have that the
vector v⃗1 is parallel to ∇′Ψ. Hence vectors v⃗j are orthogonal. Then

∂v⃗2Ψ = 0.

Therefore
∂∇′Ψa = |∇′Ψ|∂ ∇′Ψ

|∇′Ψ|
a = |∇′Ψ|∂v⃗1a = 0.

Hence the formula (13) is proved.
We integrate equation (12) by the characteristic method. In particular using (11) we

have

a0(0, x2) = e
− 1

2

∫ x2
0

α′(0)
(1+y2α

′(0))dy2 = e−
1
2
ln(1+x2α′(0)) =

1√
1 + x2α′(0)

. (16)

Next we construct the complex geometric optics solution u1(x, τ) for the Schrödinger
operator with the potential q1. For the principal term of complex geometric optics solution
we set

U = e(τ+N)(x3+iΨ(x′))aa0. (17)

The set O is closed and the axis x2 does not intersect this set. So there exists a neighborhood
of the set {x′|x2 ∈ [0, K]} such that it does not intersectO. Thanks to (14) and (15), choosing
a positive parameter ϵ sufficiently small, we obtain

U |Σ0 = 0. (18)
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The simple computations imply

Lq1(x,D)U = (τ +N)2(∇(x3 + iΨ),∇(x3 + iΨ))U

+(τ +N)(2(∇′Ψ,∇′a0) + ∆x′Ψa0)ae
(τ+N)(x3+iΨ(x′))

+e(τ+N)(x3+iΨ(x′))∆x′(a0a) + q1U = e(τ+N)(x3+iΨ(x′))∆x′(a0a) + q1U. (19)

Observe that the functions (e(τ+N)(x3+iΨ(x′))∆x′(a0a) + q1U)e
−τx3 are uniformly bounded

in τ in norm of the space L2(Q). Consequently using the results of [1] we construct the last
term in complex geometric optics solution- the function ucor(·, τ) such that

Lq1(x,D)(eτφucor) = −Lq1(x,D)U in Q, ucor|Σ1 = 0 (20)

and

∥ucor∥L2(Q) = O(
1

τ
) as τ → +∞. (21)

Hence, by (18), (20) and (21) we have the representation

u1 = U + eτx3OL2(Q)(
1

τ
) as τ → +∞, u1|Σ0 = 0. (22)

(By OL2(Q) we mean any function f(·, τ) such that ∥f(·, τ)∥L2(Q) = O(1) as τ → +∞. )
Similarly we set

V = e−τ(x3+iΨ(x′))a0, V |Σ0 = 0. (23)

We multiply any smooth function a0 satisfying (12) with a solution of equation (13) which
is supported around the ray {x|x2 > 0, x1 = 0} and is equal to 1 on this ray. Hence we can
assume that the support of function a0 is concentrated around this ray and (16) holds true.

Since the Dirichlet-to-Neumann maps of the Schrödinger equations with potentials q1, q2
are the same there exists a solution to the following boundary value problem

Lq2(x,D)u2 = 0 in Q, u1 = u2 on ∂Q, and
∂u1
∂ν

=
∂u2
∂ν

on ∂Q \ Σ0. (24)

Setting u = u1 − u2 and using (24) we have

Lq2(x,D)u = (q1 − q2)u1 in Q, u|∂Q =
∂u

∂ν
|∂Q\Σ0 = 0. (25)

Applying to equation (25) the Carleman estimate (3) we have that there exist constants
C and τ0 independent of τ such that

∥ue−τφ∥H1,τ (Q) ≤ C ∀τ ≥ τ0. (26)

Then taking the scalar product in L2(Q) of equation (24) with V , and using (26), (23),
(22) we have ∫

Q

(q1 − q2)u1V dx =

∫
Ω

uLq2(x,D)V dx = O(
1

τ
) as τ → +∞.

6



This equality and (21) imply∫
Q

(q1 − q2)e
N(x3+iΨ(x′))aa20dx = O(

1

τ
) as τ → +∞.

Therefore ∫
Q

(q1 − q2)e
N(x3+iΨ(x′))aa20dx = 0. (27)

Setting pN(x
′) =

∫ L

0
(q1 − q2)e

Nx3dx3 and using (16) we obtain from (27)∫ K

0

pNe
iNx2dx2 = 0. (28)

Indeed, let r = rh be a function such that it is equal to 1/2h on the segment [−h, h] and
zero otherwise. Denote the solution to equation (13) given by (15) with the initial condition
rh as a(h). By (15) the function a0(h) is given by formula

a(h) =

{
1
2h

x′ ∈ Πh

0 x′ /∈ Πh,

where Πh = {x′ ∈ R2
+|x2 ∈ [0, K] −h+ α(−h)

β(−h)
x2 ≤ x1 ≤ h+ α(h)

β(h)
x2}. Therefore for any fixed

x2 from the segment [0, K] the function a(h) equals 1
2h

on the segment [−h + α(−h)
β(−h)

x2, h +
α(h)
β(h)

x2]. By (6) the length of this segment is 2h+ 2α′(0)x2h+ o(h). We rewrite (27) as

0 =

∫
Q

(q1−q2)eN(x3+iΨ(x′))a(h)a20dx =
1

2h

∫
Πh

pNe
iNΨ(x′)a20dx

′ =

∫ K

0

∫ h+
α(h)
β(h)

x2

−h+
α(−h)
β(−h)

x2

pNe
iNΨ(x′)a20
2h

dx1dx2.

Applying (16) and using the assumption on regularity of potentials qj we have

0 =

∫ K

0

∫ h+α′(0)hx2

−h−α′(0)hx2

pNa
2
0e

iNΨ(x′)

2h
dx1dx2+o(1) =

∫ K

0

∫ h+α′(0)hx2

−h−α′(0)hx2

pN(0, x2)e
iNx2 + o(1)

2h(1 + α′(0)x2)
dx1dx2+o(1).

This proves (28).
Next we claim ∫ K

0

pNe
−iNx2dx2 = 0. (29)

The proof of (29) is exactly the same as the proof of equality (28). The only difference
is that instead of the function Ψ one has to use the function Ψ̃ defined by

|∇′Ψ̃| = 1 in Ω, Ψ̃|x2=0 = m, (30)

Ψ̃(x0 − tα(x0)e⃗1 + tβ(x0)e⃗2) = m(x0)− t ∀x0 ∈ {x′|x2 = 0} and ∀t > 0, (31)

where α(x0) = m′(x0), β(x0) =
√
1− α2(x0).
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From (28) and (29) setting N = −iγ where γ is the real parameter we have

Rγ(p−iγ)(ω, p) = 0 ∀(ω, p) ∈ S1 × R1 such that {x| < ω, x >= p} ∩ Ch(Ω \ O) = ∅.

Applying corollary 5 we have that

p−iγ(x
′) = 0 ∀x′ ∈ O and ∀γ ∈ R1.

Therefore for any fixed x′ ∈ O and any γ∫ T

0

(q1 − q2)(x
′, x3)e

iγx3dx3 = 0.

This equality implies immediately that the function x3 → (q1 − q2)(x
′, x3) on the segment

[0, L] is orthogonal to any polynomials. Therefore (q1 − q2)(x)|O×[0,L] = 0. The proof of the
theorem is complete.
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