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Abstract

We consider the problem of deriving Brownian motions from classical me-
chanical systems in this paper. Precisely, we consider a system with one
massive particle coupling to an ideal random wave field, evolved according
to classical mechanical principles. We prove the almost sure existence and
uniqueness of the solution of the considered dynamics, prove the convergence
of the solution under a certain scaling limit, and give the precise expression
of the limiting process, a diffusion process.
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1 Introduction

We consider a system with massive particle(s) interacting with an ideal environment.
The dynamics is fully deterministic, Newtonian, as long as the initial condition is
given, which means that the only source of randomness is from the initial condition
of the environment. We are interested in the behavior of the massive particle(s)
in an appropriate limit such that the environment becomes more and more “fast”
(see below for the precise meaning of this description) in such a manner that the
variance of momentum transfer stays of order 1.

In this paper, we consider the mentioned problem in the framework of wave field
environment, we discuss the limit behavior of the massive particle when the speed of
propagation of the wave is very fast (see (1.3) below for the precise expression). We
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study here the simplest model which consists of only one massive particle interacting
with a scalar wave field, and the whole system is in dimension 1.

This paper is along the same line as [11]: we derive Brownian motion as a
Brownian limit of a classical mechanical system consists of massive particle(s) and
ideal environment. This type of model, called a mechanical model of Brownian
motion, was first introduced and studied by Holley [8], and extended by, e.g., Dürr-
Goldstein-Lebowitz [5], [6], [7], Calderoni-Dürr-Kusuoka [3], Kusuoka-Liang [11] and
others. In all these papers, the environment is given by an ideal gas, i.e., a system
consists of infinite “light” particles with its initial distribution given by Poisson point
process.

In the present paper, we consider the similar problem with ideal “wave” environ-
ment (see (1.1) or equivalently (1.2)). The same dynamics is also discussed, from
different aspect, by Komech-Kunze-Spohn [10]. This model, by [10], is also related
to hydrodynamics [12], homogenization in periodic and random environments [1] [4],
interface and vortex dynamics in GinGbureg-Landau theories [9], etc. See [10] and
the references therein for more related topics.

Let us now give the precise description of our model. Write the mass of the mas-
sive particle as M . We use q(t) and p(t) to denote the position and the momentum
of the massive particle at time t, respectively, and use (ϕ(x, t), u(x, t)) to describe
the state of the wave at position x and time t. We consider a Hamiltonian system
with its Hamiltonian functional given by

H(ϕ, u, q, p) = a2
4(1+

p2

a2
4M

)1/2+
1

2

∫
R
(a1|u(x)|2+a3|∇ϕ(x)|2)dx+a2

∫
R

dxϕ(x)ρ(x−q),

(1.1)
where a1, · · · , a4 are positive numbers. So our system is given by the following
standard differential equations:

d
dt

q(t) = 1
M

p(t)√
1+a−2

4 M−1p(t)2

d

dt
p(t) = a2

∫
R

ϕ(x, t)∇ρ(x − q(t))dx

d

dt
ϕ(x, t) = a1u(x, t)

d

dt
u(x, t) = a3∆ϕ(x, t) − a2ρ(x − q(t))

(q(0), p(0)) = (q0, p0)

(1.2)

Here ” ∇ ” and ” ∆ ” denote the first and the second partial derivatives with respect
to x (or derivatives if only one variable). The initial conditions ϕ(x, 0) and u(x, 0)
will be given later (see (1.3) below).

Notice that a4 stands for the velocity of light, and
√

a1a3 is the propagation
of the wave. Also, the integral

∫
R dxϕ(x)ρ(x − q) is a smoothen of ϕ(q), which is

introduced by [10], to keep energey bounded. The smoothing function ρ is called
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“charge distribution” in [10], as an anology to Maxwell-Lorentz equations. For the
sake of simplicity, we assume that ρ ∈ C∞

0 (R).

We next make some simple observation in order to give the initial conditions
ϕ(x, 0) and u(x, 0).

Notice that the corresponding Gibbs measure is given by e−βH(ϕ,u,q,p). Take

β = 1. The part e−
1
2
a1

∫
|u(x)|2dx in Gibbs measure suggests the following initial

condition with respect to u(x): u(x, 0) is a Gaussian white noise with mean 0 and
variance a−1

1 .
For the initial condition ϕ(x, 0) with respect to ϕ, first notice that∫

R
dxϕ(x)ρ(x − q)

=
∫
R

dx(ϕ(x) − ϕ(0))ρ(x − q) + ϕ(0)
∫
R

ρ(x − q)dx

=
∫ ∞

0
dy

( ∫ ∞

y
ρ(x − q)dx

)
∇ϕ(y) −

∫ 0

−∞
dy

( ∫ y

−∞
ρ(x − q)dx

)
∇ϕ(y) + ϕ(0)

∫
R

ρ(u)du.

Define

m(y) =

{ ∫ ∞
y ρ(x − q0)dx, y ≥ 0,
−

∫ y
−∞ ρ(x − q0)dx, y < 0.

If we assume that ϕ(0)(= ϕ(x, 0)) is a constant, the calculation above gives us that∫
R

dxϕ(x)ρ(x − q0) =
∫ ∞

−∞
∇ϕ(y)m(y)dy + constant.

Therefore, the part e−
1
2
a3

∫
|∇ϕ(x)|2dx−a2

∫
R

dxϕ(x)ρ(x−q0) in Gibbs measure is equal to

a constant multiple of e
− 1

2
a3

∫ (
∇ϕ(y)+a−1

3 a2m(y)

)2

dy
. When we take normalization,

the constant term disappears. Therefore, this calculation suggests that the initial
condition with respect to ϕ is: ∇ϕ(x) + a−1

3 a2m(x) is a Gaussian white noise with
mean 0 and variance a−1

3 .
In conclusion, we get the following initial condition with respect to the wave: u(x, 0) = a

−1/2
1 Ḃ1(x),

ϕ(x, 0) + a−1
3 a2

∫ x
0 m(y)dy = c + a

−1/2
3 B2(x),

(1.3)

where c is a constant, {B1(x); x ∈ R} and {B2(x); x ∈ R} are two independent
standard Brownian motions, and {Ḃ1(x)} means the white noise corresponding to
{B1(x)}.

We are interested in the following limit: assume that ai = ai(λ) ∈ [1,∞), i =
1, · · · , 4, are parameters with same index λ ∈ [1,∞). Our assumption that the
propagation of the wave goes to infinity implies that a1a3 → ∞ and as λ → ∞. See
Theorem 1.1 and the explanation following it for the other conditions. For a4, the
velocity of light, it can either be fixed or → ∞. In the present paper, we consider
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the solution of (1.2) + (1.3), with the rigorous meaning of it given in Section 2. In
particular, we are interested in its limit behavior when λ → ∞.

The main result of the present paper is the following.

THEOREM 1.1 1. For any fixed λ, (1.2) + (1.3) has a unique solution for
P -almost every initial condition.

2. Assume that a1, a2 and a3 satisfy the following:

(A1) a2 = a
1/4
1 a

3/4
3 ,

(A2) limλ→∞ a1a3 = ∞,

(A3) limλ→∞ a1 = ∞.

Then when λ → ∞, the distribution of {(q(t), p(t))}t≥0, the solution of (1.2)
+ (1.3), converges to the distribution of the diffusion process with generator

L =
1

2

( ∫
R

ρ(u)du
)2 ∂2

∂p2
− 1

2

( ∫
R

ρ(u)du
)2

p̃
∂

∂p
+

1

M
p̃

∂

∂q
, (1.4)

where p̃ = p√
1+a−1

4 M−1p2
if a4 is a constant and p̃ = p if limλ→∞ a4 = ∞. Here

the convergence means the weak convergence of the distributions on D([0,∞),R)
equipped with the Skorohod metric.

Let us explain a little bit about the condition of Theorem 1.1 (2). As claimed,√
a1a3 is the propagation of the wave, so (A2) corresponds to our setting that “the

propagation of the wave is very fast”. The other two conditions are chosen such that
our limit as λ → ∞ is meanful, i.e., the limit process exists and has its coefficients
of both ∂2

∂p2 and ∂
∂p

not 0. Indeed, we have by Section 6 that the drift term has order

a
−1/2
1 a2

2a
−3/2
3 , this suggests our condition (A1). Also, the coefficient of the diffusion

term caused by B2 has order a
−1/4
1 a2a

−3/4
3 , which is equal to 1 by (A1); and the

coefficient of the diffusion term caused by B1 has order a−1
1 · a−1/4

1 a2a
−3/4
3 , which is

the same as that of a−1
1 . The condition (A3) is to ensure that this does not diverge,

and in this case, the effect of B1 disappears in the limit. We could have also assumed
that a1 is a constant instead of a1 → ∞, and in this case, we will get a limit resulted
by both B2 and B1, by exactly the same method of the present paper. We focus on
the case a1 → ∞ for the sake of simplicity of the expressions.

There are certainly infinitely many concrete examples of (a1, a2, a3) that satisfy
our conditions (A1) ∼ (A3), for example, (a1, a2, a3) = (λ, λ, λ) or (a1, a2, a3) =
(λ3, 1, λ−1), etc.. Especially the latter case corresponds to the model that the inter-
action keeps order 1.

One of the main ideas of this paper is the induction of the two approxima-
tions (3.1) and (4.3). Both of them are essentially necessary in our proof: (3.1), a
translation of s, is used as a “measurable approximation”, such that many of our
calculations including the formula of integration by parts (e.g., (3.4)) are valid; (4.3)
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is an approximation that does not include s explicitly, this is essentially used, e.g.,
in (4.4).

The rest of this paper is orginazed as follows. In Section 2, we first give the
rigorous definition of the solution of (1.2) + (1.3), which is suggested natually by
the case with smooth initial conditions (Subsection 2.1), and then give the proof of
the first assertion of Theorem 1.1, the unique existence of the solution. In particular,
this gives us our basic decomposition for our proof (see (2.16)). The term I1(t) in
(2.16) gives us approximately the diffusion term of L (see Lemma 5.4), and the proof
of this fact is given in Sections 3 ∼ 5. In Section 6, we show that the term I2(t)
in (2.16) gives us approximately the drift term of L (see Lemma 6.1). The proof of
the second half of Theorem 1.1 is given in Section 7, with the help of “martingale
theory”.

2 Definition and unique existence of the solution

In this section, we give the rigorous definition of the solution of (1.2) + (1.3), and
prove the unique existence of it.

2.1 Observation for the case with smooth initial condition

This subsection is dedicated to the observation for the case with smooth initial
condition. This suggests our rigorous definition of the solution of (1.2) + (1.3),
which will be given in the next subsection.

Let h1, h2 ∈ C1(R), and we consider the standard differential equation (1.2)
combined with initial condition  u(x, 0) = h′

1(x),

ϕ(x, 0) = h2(x).
(2.1)

Lemma 2.1 The solution of (1.2) + (2.1) satisfies

d

dt
p(t) = a2

∫
R

ϕ(x, t)∇ρ(x − q(t))dx

+
1

2
a−1

3 a2
2

∫
R

dxρ(x − q(t))
∫ √

a1a3t

0
dr(

ρ(x + r − q(t − 1
√

a1a3

r)) − ρ(x − r − q(t − 1
√

a1a3

r))
)
, (2.2)

with ϕ(x, t) given by

ϕ(x, t) =
1

2
h2(x+

√
a1a3t)+

1

2
h2(x−

√
a1a3t)+

1

2
√

a1a3

h1(x+
√

a1a3t)−
1

2
√

a1a3

h1(x−
√

a1a3t).

(2.3)
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We prove Lemma 2.1 in the rest of this subsection. Let ϕ(x, t) be the solution
of the following heat equation:

d2

dt2
ϕ(x, t) = a1a3∆ϕ(x, t)

ϕ(x, 0) = h2(x)

d
dt

ϕ(x, 0) = h′
1(x),

(2.4)

and let
y(x, t) = ϕ(x, t) − ϕ(x, t).

Then by the definition of ϕ(x, t), we get that y(x, t) satisfies
d2

dt2
y(x, t) = a1a3∆y(x, t) − a1a2ρ(x − q(t))

y(x, 0) = 0

d
dt

y(x, 0) = 0.

(2.5)

We first have the following result with respect to ϕ(x, t).

Lemma 2.2 The solution ϕ(x, t) of (2.4) is given by (2.3).

Proof. By general result of heat equation, there exist functions f and g such
that

ϕ(x, t) = f(x −
√

a1a3t) + g(x +
√

a1a3t). (2.6)

This combined with our initial conditions gives us our assertion.
We next deal with y(x, t). We first prepare the following general result.

Lemma 2.3 For any function f(x, t), if y(x, t) satisfies

d2

dt2
y(x, t) = a1a3∆y(x, t) + a1a2f(x, t), (2.7)

and the initial condition y(x, 0) = yt(x, 0) = 0, then

y(x, t) = a1a2

∫ t

0
dr

∫ r

0
dsf(x −

√
a1a3t + 2

√
a1a3r −

√
a1a3s, s). (2.8)

Proof. We have by (2.7) and a simple calculation that

d2

dt2

(
y(x +

√
a1a3t, t)

)
= a1a3yxx(x +

√
a1a3t, t) + 2

√
a1a3yxt(x +

√
a1a3t, t) + ytt(x +

√
a1a3t, t)

= a1a3yxx(x +
√

a1a3t, t) + 2
√

a1a3yxt(x +
√

a1a3t, t)

+a1a3yxx(x +
√

a1a3t, t) + a1a2f(x +
√

a1a3t, t)

= 2
√

a1a3
d

dx

( d

dt

(
y(x +

√
a1a3t, t)

))
+ a1a2f(x +

√
a1a3t, t).
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Therefore, with z(x, t) = d
dt

(
y(x+

√
a1a3t, t)

)
we have d

dt
z(x, t) = 2

√
a1a3

d
dx

z(x, t)+

a1a2f(x +
√

a1a3t, t), hence

d

dt

(
z(x − 2

√
a1a3t, t)

)
= a1a2f(x −

√
a1a3t, t).

So

z(x − 2
√

a1a3t, t) = z(x, 0) + a1a2

∫ t

0
f(x −

√
a1a3s, s)ds.

This is true for any x ∈ R and t ≥ 0. Therefore,

d

dt

(
y(x +

√
a1a3t, t)

)
= z(x, t)

= z(x + 2
√

a1a3t, 0) + a1a2

∫ t

0
f(x + 2

√
a1a3t −

√
a1a3s, s)ds.

So

y(x+
√

a1a3t, t) = y(x, 0)+
∫ t

0
dr

(
z(x+2

√
a1a3r, 0)+a1a2

∫ r

0
f(x+2

√
a1a3r−

√
a1a3s, s)ds

)
for any x ∈ R and t ≥ 0. Substituting x by x−√

a1a3t in the equation above, with
the help of the initial condition, we get our assertion.

Lemma 2.4 If y(x, t) satisfies (2.5), then

a2

∫
R

y(x, t)∇ρ(x − q(t))dx

=
1

2
a−1

3 a2
2

∫
R

dxρ(x − q(t))
∫ √

a1a3t

0
dr(

ρ(x + r − q(t − 1
√

a1a3

r)) − ρ(x − r − q(t − 1
√

a1a3

r))
)
.

Proof. Since ρ ∈ C∞
0 , we have∫

R
y(x, t)∇ρ(x − q(t))dx = −

∫
R
∇y(x, t)ρ(x − q(t))dx. (2.9)

By Lemma 2.3 applied to f(x, t) = −ρ(x − q(t)), we get

y(x, t) = −a1a2

∫ t

0
dr

∫ r

0
dsρ(x −

√
a1a3t + 2

√
a1a3r −

√
a1a3s − q(s)).

So

∇y(x, t)

= −a1a2

∫ t

0
dr

∫ r

0
ds∇ρ(x −

√
a1a3t + 2

√
a1a3r −

√
a1a3s − q(s))
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= −a−1
3 a2

∫ √
a1a3t

0
ds

∫ √
a1a3t

s
dr∇ρ(x −

√
a1a3t + 2r − s − q(

√
a1a3

−1
s))

= −1

2
a−1

3 a2

∫ √
a1a3t

0
ds

(
ρ(x +

√
a1a3t − s − q(

√
a1a3

−1
s))

−ρ(x −
√

a1a3t + s − q(
√

a1a3
−1

s))
)

= −1

2
a−1

3 a2

∫ √
a1a3t

0
dr

(
ρ(x + r − q(t −

√
a1a3

−1
r)) − ρ(x − r − q(t −

√
a1a3

−1
r))

)
,

where in the last equality, we used change of variable r =
√

a1a3t − s.
Combining this with (2.9), we get our assertion.
Lemma 2.1 is an easy result of (1.2) and Lemmas 2.2, 2.4.

2.2 Case with non-smooth initial condition

Lemma 2.1 suggests the following.

DEFINITION 2.5 We say that (p(t), q(t)) is a (weak) solution of (1.2) + (1.3),
if it satisfies

d

dt
p(t) = a2

∫
R

ϕ̃(x, t)∇ρ(x − q(t))dx

+
1

2
a−1

3 a2
2

∫
R

dxρ(x − q(t))
∫ √

a1a3t

0
dr(

ρ(x + r − q(t − 1
√

a1a3

r)) − ρ(x − r − q(t − 1
√

a1a3

r))
)
,(2.10)

with ϕ̃(x, t) given by

ϕ̃(x, t) =
1

2
a
−1/2
3 B2(x +

√
a1a3t) +

1

2
a
−1/2
3 B2(x −

√
a1a3t)

+
1

2
a−1

1 a
−1/2
3 B1(x +

√
a1a3t) −

1

2
a−1

1 a
−1/2
3 B1(x −

√
a1a3t)

−1

2
a−1

3 a2

∫ x+
√

a1a3t

0
m(y)dy − 1

2
a−1

3 a2

∫ x−√
a1a3t

0
m(y)dy + c.(2.11)

Before going further, we first notice that in order to prove Theorem 1.1, it
suffices to prove the unique existence and the convergence of the distribution of
{(q(t), p(t))}t∈[0,T ] for any given T > 0. Choose an arbitrary T > 0 and fix it
throughout this paper. Notice that in this section, we are considering the existence
for every fixed λ, so a4 is also fixed and finite. Since

∣∣∣ 1
M

p(t)√
1+a−2

4 M−1p(t)2

∣∣∣ ≤ a4√
M

, it is

clear that |q(t)| ≤ |q0| + a4√
M

T for any t ∈ [0, T ]. Also, by assumption, there exists

a constant rρ such that ρ(x) = 0 for any |x| ≥ rρ. Let R0 = rρ + |q0| + a4√
M

T .
In the rest of this section, we show the unique existence of the solution as defined

by Definition 2.5, for any fixed a1, a2, a3, a4 > 0 and P -almost every ω ∈ Ω.
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The proof is based on the routine Picard iteration approximating method, so we
give only the sketch. We prove the existence here. The uniqueness of the solution
can be gotten in exactly the same way, and we omit it here.

Let q0(t) = q0, p0(t) = p0, and for any n ≥ 0, let

qn+1(t) = q0 +
∫ t

0

pn+1(s)

M
√

1 + pn+1(s)2

a2
4M

ds, pn+1(t) = p0 +
∫ t

0
ṗn+1(s)ds,

with ṗn+1(s) given by

ṗn+1(s) = a2

∫
R

ϕ̃(x, s)∇ρ(x − qn(s))dx

+
1

2
a−1

3 a2
2

∫
R

dxρ(x − qn(s))
∫ √

a1a3s

0
dr(

ρ(x + r − qn(s − 1
√

a1a3

r)) − ρ(x − r − qn(s − 1
√

a1a3

r))
)
,

where ϕ̃(x, s) is as given by (2.11).
Let A1 = a2∥∇2ρ∥∞ and A2 = 8a−1

3 a2
2R

2
0∥∇ρ∥∞∥ρ∥∞. Then by definition and a

simple calculation,

|ṗn+1(u) − ṗn(u)|

≤ a2

∫
|x|≤R0

|ϕ̃(x, u)|∥∇2ρ∥∞|qn(u) − qn−1(u)|dx

+
1

2
a−1

3 a2
2

∫
|x|≤R0

dx
(
∥∇ρ∥∞|qn(u) − qn−1(u)|2∥ρ∥∞2R0

+2∥ρ∥∞
∫ (

√
a1a3u)∧(2R0)

0
∥∇ρ∥∞|qn(u − r

√
a1a3

) − qn−1(u − r
√

a1a3

)|dr
)

≤ sup
θ∈[0,u]

|qn(θ) − qn−1(θ)|
(
A1

∫
|x|≤R0

|ϕ̃(x, u)|dx + A2

)
.

So

|pn+1(s) − pn(s)|

≤
∫ s

0
|ṗn+1(u) − ṗn(u)|du

≤ sup
θ∈[0,s]

|qn(θ) − qn−1(θ)| × s(A12R0 sup
|x|≤R0,u∈[0,s]

|ϕ̃(x, u)| + A2),

hence

|qn+1(t) − qn(t)|

≤
∫ t

0
(

1

M
|pn+1(s) − pn(s)| ∧ 2a4√

M
)ds

≤
∫ t

0

1

M
sup

θ∈[0,s]
|qn(θ) − qn−1(θ)|ds × t

(
A12R0 sup

|x|≤R0,u∈[0,t]
|ϕ̃(x, u)| + A2

)
.(2.12)
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Let
bn(t) = sup

0≤η≤t
|qn+1(η) − qn(η)|.

Then b0(t) = sup0≤η≤t |q1(η) − q0(η)| ≤ a4√
M

t ≤ a4√
M

T. By induction, this combined

with (2.12) gives us that

bn(t) ≤ a4

Mn+ 1
2 n!

T 2n+1
(
A12R0 sup

|x|≤R0,|u|≤T
|ϕ̃(x, u)| + A2

)n

for any n ≥ 1 and t ∈ [0, T ]. By the definition of ϕ̃ and property of Brownian
motion, we have that sup|x|≤R0,|u|≤T |ϕ̃(x, u)| is P -almost surely finite. Therefore,∑∞

n=0 bn(T ) < ∞, P -almost surely, hence qn(t) converges P -almost surely as n → ∞,
uniformly with respect to t ∈ [0, T ].

Write the limit as q(t), t ∈ [0, T ], and let p(t) = p0 +
∫ t
0 ṗ(s)ds with d

dt
p(s) given

by (2.10).
By a calculation similar to the one we just used in the construction of q(t)

and p(t), we have that the defined q(t) and p(t) satisfy q̇(t) = p(t)

M
√

1+a−2
4 M−1p(t)2

, or

equivalently,

q(t) − q0 =
∫ t

0

p(s)

M
√

1 + a−2
4 M−1p(s)2

ds. (2.13)

This completes the proof of the existence.

In the following sections, we will take λ → ∞, so a4 might not be fixed, which
means that the velocity of the massive particle might be very fast. To solve this
problem, we define τn = inf{t > 0;

∣∣∣ 1
M

p(t)√
1+a−2

4 M−1p(t)2

∣∣∣ ≥ n} for any n ∈ N. (This

is essential in the case that a4 → ∞. In the case that a4 does not depend on λ,
we have τn = ∞ for any n > a4M

−1/2). Notice that in order to prove Theorem 1.1
(2), it suffices to prove the assertion for t ∈ [0, T ∧ τn] for any n ∈ N. Choose any
n ∈ N and fix it from now on. We have that |q(t)| ≤ |q0|+nt for any t ∈ [0, T ∧ τn].
Let R1 = |q0|+ nT + rρ, where rρ is the constant chosen such that ρ(x) = 0 for any
|x| ≥ rρ.

Let Ft = σ{B1(u), B2(u); |u| ≤ t} for any t ≥ 0. Then the following is an easy
consequence of (2.10) and (2.11).

Lemma 2.6 (q(t ∧ τn), p(t ∧ τn)) is F√
a1a3t+R1-measurable for any t ∈ [0, T ].

Let I1(t) and I2(t) denote the integrals of the first and the second term on the
right hand side of (2.10), respectively, i.e., we let

I1(t) = a2

∫ t

0
ds

∫
R
∇ρ(x − q(s))ϕ̃(x, s)dx, (2.14)

I2(t) =
1

2
a−1

3 a2
2

∫ t

0
ds

∫
R

dxρ(x − q(s))
∫ √

a1a3s

0
dr(

ρ(x + r − q(s − 1
√

a1a3

r)) − ρ(x − r − q(s − 1
√

a1a3

r))
)
.(2.15)
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Notice that the constant c in (2.11) disappears after taking integral, since
∫
R ∇ρ(x−

q(s))dx = 0.
Then we have the following basic decomposition of p(t):

p(t) = p0 + I1(t) + I2(t). (2.16)

In Sections 3 ∼ 7, we will show that, after taking limit λ → ∞, I1(t) gives us
the diffusion term of L (Lemma 5.4), and I2(t) gives us the drift term (Lemma 6.1).

3 First approximation of the term I1(t)

In this and the following two sections, we show that the term I1(t) in (2.14) gives
us approximately the diffusion term of our generator L in (1.4) (see Lemma 5.4 for
the precise statement).

We define

s̃ =
((
|s| − 2R1√

a1a3

)
∨ 0

)
∧ T ∧ τn, s ∈ R. (3.1)

This is one of the two important approximations of s we induce in the present paper.
(The other one is sz, which will be given in (4.3)). We have the following as a result
of Lemma 2.6.

Lemma 3.1 For any s ∈ [−T, T ], we have that (q(s̃), p(s̃)) is F|y|-measurable for
any y ∈ R satisfying |y −√

a1a3s| ≤ R1.

Proof. If s ≤ 2R1√
a1a3

, then s̃ = 0, hence q(s̃) and p(s̃) are constant. If |s| ≥ 2R1√
a1a3

,

by Lemma 2.6, we have that q(s̃) is F√
a1a3|s|−R1-measurable. Our assertion is now

trivial since |y −√
a1a3s| ≤ R1 implies |y| ≥ √

a1a3|s| − R1.
The following decomposition is easy:

I1(t ∧ τn) = I11(t) + I12(t) + · · · + I18(t),

where

I11(t) =
1

2
a2a

−1/2
3

∫ t∧τn

0
1

[
2R1√
a1a3

,∞)
(s)ds

∫
R
∇ρ(x − q(s̃))B2(x +

√
a1a3s)dx,

I12(t) =
1

2
a2a

−1/2
3

∫ t∧τn

0
1

[
2R1√
a1a3

,∞)
(s)ds

∫
R
∇ρ(x − q(s̃))B2(x −

√
a1a3s)dx,

I13(t) =
1

2
a2a

−1/2
3

∫ t∧τn

0
ds

∫
R

(
∇ρ(x − q(s)) −∇ρ(x − q(s̃)

)
×

×
(
B2(x +

√
a1a3s) + B2(x −

√
a1a3s)

)
dx,

I14(t) =
1

2
a2a

−1
1 a

−1/2
3

∫ t∧τn

0
ds

∫
R

(
∇ρ(x − q(s)) −∇ρ(x − q(s̃)

)
×

×
(
B1(x +

√
a1a3s) − B1(x −

√
a1a3s)

)
dx,
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I15(t) =
1

2
a2a

−1/2
3

∫ t∧τn

0
1

[0,
2R1√
a1a3

)
(s)ds

∫
R
∇ρ(x − q(s̃)) ×

×
(
B2(x +

√
a1a3s) + B2(x −

√
a1a3s)

)
dx,

I16(t) =
1

2
a2a

−1
1 a

−1/2
3

∫ t∧τn

0
1

[0,
2R1√
a1a3

)
(s)ds

∫
R
∇ρ(x − q(s̃)) ×

×
(
B1(x +

√
a1a3s) − B1(x −

√
a1a3s)

)
dx,

I17(t) = −1

2
a2

2a
−1
3

∫ t∧τn

0
ds

∫
R

( ∫ x+
√

a1a3s

0
m(y)dy +

∫ x−√
a1a3s

0
m(y)dy

)
∇ρ(x − q(s))dx,

I18(t) =
1

2
a2a

−1
1 a

−1/2
3

∫ t∧τn

0
1

[
2R1√
a1a3

,∞)
(s)ds

∫
R
∇ρ(x − q(s̃)) ×

×
(
B1(x +

√
a1a3s) − B1(x −

√
a1a3s)

)
dx.

In the rest of this section, we show that I13 ∼ I18 are negligible when λ → ∞
(see Lemma 3.6).

Lemma 3.2 We have limλ→∞ E
[
sup0≤t≤T |I1i(t)|

]
= 0 for i = 3, 4.

Proof. We prove the assertion for i = 3 here. The one for i = 4 can be gotten
in exactly the same way with the help of (A3).

First make the decomposition

I13(t) = I131(t) + I132(t)

with

I131(t) =
1

2
a2a

−1/2
3

∫ t∧τn

0
ds

∫
R

[
∇ρ(x − q(s)) −∇ρ(x − q(s̃)) + ∇2ρ(x − q(s̃))(q(s) − q(s̃))

]
×

(
B2(x +

√
a1a3s) + B2(x −

√
a1a3s)

)
dx, (3.2)

I132(t) = −1

2
a2a

−1/2
3

∫ t∧τn

0
ds

∫
R
∇2ρ(x − q(s̃))(q(s) − q(s̃))

×
(
B2(x +

√
a1a3s) + B2(x −

√
a1a3s)

)
dx. (3.3)

For any s ∈ [0, t ∧ τn], we have |q(s) − q(s̃)| ≤ n|s − s̃| ≤ 2R1n√
a1a3

, so∣∣∣∇ρ(x − q(s)) −∇ρ(x − q(s̃)) + ∇2ρ(x − q(s̃))(q(s) − q(s̃))
∣∣∣

≤ ∥∇3ρ∥∞|q(s) − q(s̃)|2

≤ ∥∇3ρ∥∞
( 2R1n√

a1a3

)2
.

Also, the integrand in (3.2) is equal to 0 if |x| ≥ R1, so the integral domain {x ∈ R}
in (3.2) can be converted to {|x| ≤ R1}, and in this domain, we have for any
s ∈ [0, T ],

E[|B2(x ±
√

a1a3s)|] ≤ E[|B2(x ±
√

a1a3s)|2]1/2 ≤ (R1 +
√

a1a3T )1/2

≤ R
1/2
1 + (a1a3)

1/4T 1/2 ≤ (1 + (a1a3)
1/4)(R

1/2
1 + T 1/2).
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Therefore, with C1 := 8n2TR3
1∥∇3ρ∥∞(R

1/2
1 + T 1/2), we have

E
[

sup
0≤t≤T

|I131(t)|
]

≤ 1

2
a2a

−1/2
3

∫ T

0
ds

∫
|x|≤R1

∥∇3ρ∥∞
( 2R1n√

a1a3

)2
E

[
|B2(x +

√
a1a3s)| + |B2(x −

√
a1a3s)|

]
dx

≤ 1

2
a2a

−1/2
3 T2R1∥∇3ρ∥∞

( 2R1n√
a1a3

)2
2(1 + (a1a3)

1/4)(R
1/2
1 + T 1/2)

= C1a2a
−1/2
3

1

a1a3

(1 + (a1a3)
1/4),

which converges to 0 as λ → ∞ by (A1) and (A2).
For the term I132(t), we have by Lemma 3.1 that∫
R
∇2ρ(x − q(s̃))B2(x +

√
a1a3s)dx =

∫
R
∇2ρ(y −

√
a1a3s − q(s̃))B2(y)dy

= −
∫
R
∇ρ(y −

√
a1a3s − q(s̃))dB2(y).(3.4)

Similarly,∫
R
∇2ρ(x − q(s̃))B2(x −

√
a1a3s)dx = −

∫
R
∇ρ(y +

√
a1a3s − q(s̃))dB2(y).

So

I132(t) =
1

2
a2a

−1/2
3

∫ t∧τn

0
ds(q(s) − q(s̃))

×
( ∫

R
∇ρ(y −

√
a1a3s − q(s̃))dB2(y) +

∫
R
∇ρ(y +

√
a1a3s − q(s̃))dB2(y)

)
.

We have |q(s) − q(s̃)| ≤ 2R1n√
a1a3

. Also,

E
[∣∣∣ ∫

R
∇ρ(y −

√
a1a3s − q(s̃))dB2(y)

∣∣∣]
≤ E

[∣∣∣ ∫
|y−√

a1a3s|≤R1

∇ρ(y −
√

a1a3s − q(s̃))dB2(y)
∣∣∣2]1/2

≤
( ∫

|y−√
a1a3s|≤R1

∥∇ρ∥2
∞dy

)1/2

= ∥∇ρ∥∞
√

2R1,

and similarly,

E
[∣∣∣ ∫

R
∇ρ(y +

√
a1a3s − q(s̃))dB2(y)

∣∣∣] ≤ ∥∇ρ∥∞
√

2R1.
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So with C2 := 2nTR1∥∇ρ∥∞
√

2R1, we have

E
[

sup
0≤t≤T

|I132(t)|
]

≤ 1

2
a2a

−1/2
3

∫ T

0
ds

2R1n√
a1a3

(
E

[∣∣∣ ∫
|y−√

a1a3s|≤R1

∇ρ(y −
√

a1a3s − q(s̃))dB2(y)
∣∣∣]

+E
[∣∣∣ ∫

|y+
√

a1a3s|≤R1

∇ρ(y +
√

a1a3s − q(s̃))dB2(y)
∣∣∣])

≤ 1

2
a2a

−1/2
3 T

2R1n√
a1a3

2∥∇ρ∥∞
√

2R1

= C2a2a
−1/2
3 · 1

√
a1a3

,

which converges to 0 as λ → ∞ by (A1) and (A2).
Combining the above, we get our assertion for I13.

Lemma 3.3 We have limλ→∞ E
[
sup0≤t≤T |I1i(t)|

]
= 0 for i = 5, 6.

Proof. For any x ∈ R with |x| ≤ R1 and any s ∈ [0, 2R1√
a1a3

), we have

E[|B2(x ±
√

a1a3s)|] ≤ E[|B2(x ±
√

a1a3s)|2]1/2 ≤ (|x| +
√

a1a3s)
1/2 ≤

√
3R1.

Therefore, with C3 := 4R2
1∥∇ρ∥∞

√
3R1, we have

E
[

sup
0≤t≤T

|I15(t)|
]

≤ 1

2
a2a

−1/2
3

∫ T

0
1

[0,
2R1√
a1a3

)
(s)ds

×
∫
|x|≤R1

∥∇ρ∥∞
(
E[|B2(x +

√
a1a3s)|] + E[|B2(x −

√
a1a3s)|]

)
dx

≤ 1

2
a2a

−1/2
3

2R1√
a1a3

2R1∥∇ρ∥∞2
√

3R1

= C3a2a
−1/2
3 · 1

√
a1a3

,

which converges to 0 as λ → ∞ by (A1) and (A2).
The assertion for I16(t) can be gotten in exactly the same way by (A3).

Lemma 3.4 supω∈Ω,t∈[0,T ] |I17(t)| → 0 as λ → ∞.

Proof. By using change of variables and the formula of integration by parts,
we have

I17 = −1

2
a2

2a
−1
3

∫ t∧τn

0
ds

∫
R

( ∫ x

0
m(y)dy

)
×

×
(
∇ρ(x −

√
a1a3s − q(s)) + ∇ρ(x +

√
a1a3s − q(s))

)
dx

=
1

2
a2

2a
−1
3

∫ t∧τn

0
ds

∫
R

(
ρ(x −

√
a1a3s − q(s)) + ρ(x +

√
a1a3s − q(s))

)
m(x)dx.
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So we can rewrite
I17(t) = I171(t) + I172(t) + I173(t)

with

I171(t) =
1

2
a2

2a
−1
3

∫ t∧τn

0
ds

∫
R

(
ρ(x −

√
a1a3s − q(s)) − ρ(x −

√
a1a3s − q0)

)
m(x)dx

+
1

2
a2

2a
−1
3

∫ t∧τn

0
ds

∫
R

(
ρ(x +

√
a1a3s − q(s)) − ρ(x +

√
a1a3s − q0)

)
m(x)dx

I172(t) =
1

2
a2

2a
−1
3

∫ t∧τn

0
ds

∫
R

ρ(x −
√

a1a3s − q0)m(x)dx

I173(t) =
1

2
a2

2a
−1
3

∫ t∧τn

0
ds

∫
R

ρ(x +
√

a1a3s − q0)m(x)dx.

Notice that by definition and assumption, m(x) = 0 if |x| ≥ R1. So in all of the
integrals above, the integral domains {x ∈ R} can be rewritten as {|x| ≤ R1}, hence
the integral domain {s ∈ [0, t∧τn]} can be rewritten as {s ∈ [0, t∧τn]}∩{|s| ≤ 2R1√

a1a3
}.

Therefore, with C4 := 2nR2
1∥∇ρ∥∞

∫
{|x|≤R1} |m(x)|dx, we have

|I171(t)| ≤ 1

2
a2

2a
−1
3

∫
{|x|≤R1}

|m(x)|dx
∫
{0≤s≤ 2R1√

a1a3
}
∥∇ρ∥∞snds × 2

= C4a
2
2a

−1
3

( 1
√

a1a3

)2
.

The last expression does not depend on ω ∈ Ω or t ∈ [0, T ], and converges to 0 as
λ → ∞ by (A1) and (A2).

For I172(t) + I173(t), notice that in general,∫
R

f ′(x − c0)f(x)dx = −
∫
R

f(x − c0)f
′(x)dx = −

∫
R

f(x)f ′(x + c0)dx

for any f ∈ C1
0 and c0 ∈ R. Therefore, since m′(x) = −ρ(x − q0) by definition, we

have

I172(t) = −1

2
a2

2a
−1
3

∫ t∧τn

0
ds

∫
R

m′(x −
√

a1a3s)m(x)dx

=
1

2
a2

2a
−1
3

∫ t∧τn

0
ds

∫
R

m′(x +
√

a1a3s)m(x)dx

= −1

2
a2

2a
−1
3

∫ t∧τn

0
ds

∫
R

ρ(x +
√

a1a3s − q0)m(x)dx

= −I173(t),

hence
I172(t) + I173(t) = 0.

This completes our proof.

Lemma 3.5 E
[
sup0≤t≤T |I18(t)|

]
→ 0 as λ → ∞.
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Proof. By exactly the same method as in Lemma 4.2 below, we get that
supλ∈[1,∞) E

[
sup0≤t≤T a1|I18(t)|

]
< ∞. Since a1 → ∞ by (A3), this implies our

assertion.
By Lemmas 3.2 ∼ 3.5, we have that I13(t) ∼ I18(t) are negligible, hence I1(t) is

approximately equal to I11(t) + I12(t). Precisely, we have the following.

Lemma 3.6 limλ→∞ E[ sup0≤t≤T |I1(t) − I11(t) − I12(t)|] = 0.

The discussion with respect to I11(t) and I12(t) will be given in the next two
sections.

4 Tightness of I11(t) and I12(t)

We deal with the terms I11(t) and I12(t) in this and the next section. The discussion
is divided into two steps. First in this section, we give their decompositions and
show that {the distribution of {I1i(t)}0≤t≤T ; λ ≥ 1} is tight for i = 1, 2; and in the
next section, with the help of the result of this section, we find the expressions of
their limits as λ → ∞.

As in Kusuoka-Liang [11], we are considering the problem in space D given by

D = D[0, T ]

=
{
w : [0, T ] → R; w(t) = w(t+) := lim

s↓t
w(s), t ∈ [0, T ),

and w(t−) := lim
s↑t

w(s) exists, t ∈ (0, T ]
}
,

with Skorohod metric which is given as follows. Let

Λ =
{
λ : [0, T ] → [0, T ]; continuous, non-decreasing, λ(0) = 0, λ(T ) = T

}
.

For any λ ∈ Λ, we define

∥λ∥0 = sup
0≤s<t≤T

∣∣∣ log
λ(t) − λ(s)

t − s

∣∣∣.
Also, for any w, w̃ ∈ D, we define

d0(w, w̃) = inf
λ∈Λ

{
∥λ∥0 ∨ ∥w − w̃ ◦ λ∥∞

}
,

where ∥w∥∞ = sup0≤t≤T |w(t)|. Finally, let P(D) denote the set of probability
measures on D. (See Billingsley [2] for more details about the space D and the
tightness of the probability measures on it).

The main result of this section is the following.

Lemma 4.1 {The distribution of {I1i(t)}t∈[0,T ]; λ ≥ 1} is tight in P(D) for i = 1, 2.
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We prove Lemma 4.1 in the rest of this section. Since the proofs are exactly the
same, we give here the proof for i = 1 only.

First, by Lemma 3.1, we can rewrite I11(t) as I11(t) = I11(t∧τn) with I11(·) given
by

I11(t) = −1

2
a2a

−1/2
3

∫
R

dB2(y)
∫ t

0
1

[
2R1√
a1a3

,∞)
(s)ρ(y −

√
a1a3s − q(s̃))ds. (4.1)

It suffices to prove the tightness for I11(t). By [11, Theorem 5.1.7], this is a result
of Lemmas 4.2, 4.3 and 4.4.

Lemma 4.2 supλ≥1 E[ sup0≤t≤T |I11(t)|2] < ∞. In particular, supλ≥1 E[ sup0≤t≤T |I11(t)|] <
∞.

Lemma 4.3 There exists a contant C > 0 such that

E[|I11(t2) − I11(t1)|2 · |I11(t3) − I11(t2)|2] ≤ C(t3 − t1)
2

for any 0 ≤ t1 ≤ t2 ≤ t3 ≤ T .

Lemma 4.4 There exists a contant C > 0 such that

E[|I11(t2) − I11(t1)|] ≤ C(t2 − t1)
1/2

for any 0 ≤ t1 ≤ t2 ≤ T .

We give a decomposition of I11 before proving Lemma 4.2. This decomposition
is also used in Section 5.

Notice that by definition, I11(t) = 0 if t ≤ 2R1√
a1a3

. Also, for any t > 2R1√
a1a3

, if

y < 0, then
∫ t
0 1

[
2R1√
a1a3

,∞)
(s)ρ(y −√

a1a3s− q(s̃))ds = 0; and if 0 < y <
√

a1a3t−R1,

then ρ(y −√
a1a3s − q(s̃)) = 0 for any s ∈ (−∞,− R1√

a1a3
] ∪ [t,∞), hence∫ t

0
1

[
2R1√
a1a3

,∞)
(s)ρ(y −

√
a1a3s − q(s̃))ds −

∫ ∞

−∞
ρ(y −

√
a1a3s − q(s̃))ds

= −
∫ 2R1√

a1a3

− R1√
a1a3

ρ(y −
√

a1a3s − q(s̃))ds, t ∈ [
2R1√
a1a3

, T ]. (4.2)

Now, we induce a new approximation of |s|, given as follows: Let

sz =
( |z| − R1√

a1a3

∧ T ∧ τn

)
∨ 0, z ∈ R. (4.3)

We say that this is an approximation of |s| because of the following: For any |s| ≤
T ∧τn, whenever ρ(y−√

a1a3s−q(sy)) ̸= 0 or ρ(y−√
a1a3s−q(s̃)) ̸= 0, we have that

|sy−|s|| ≤ 2R1√
a1a3

. Indeed, we get by assumption |y−√
a1a3s| ≤ R1. Since |s| ≤ T∧τn,

this implies that sy = |y|−R1√
a1a3

∨0. If |y| ≤ R1, then |sy−|s|| = |s| ≤ 2R1√
a1a3

; if |y| ≥ R1,

then |sy − |s|| = | |y|−R1√
a1a3

− |s|| ≤ | |y|√
a1a3

− |s|| + R1√
a1a3

≤ 2R1√
a1a3

. This completes the

proof.
Also, similarly to the case for s̃, we have the following.

17



Lemma 4.5 For any y ∈ R, we have that (q(sy), p(sy)) is F|y|-measurable.

Notice that ∫ ∞

−∞
ρ(y −

√
a1a3s − q(sy))ds =

1
√

a1a3

∫ ∞

−∞
ρ(u)du (4.4)

for any y ∈ R. This combined with (4.2) and the paragraph prior to it gives us the
following decomposition of I11(t) for t ≥ 2R1√

a1a3
.

I11(t) = K1(t) + K2(t) + · · · + K5(t), t ∈ [
2R1√
a1a3

, T ],

with

K1(t) = −1

2
a2a

−1/2
3

1
√

a1a3

( ∫ ∞

−∞
ρ(u)du

)
B2(

√
a1a3t), (4.5)

K2(t) = −1

2
a2a

−1/2
3

1
√

a1a3

( ∫ ∞

−∞
ρ(u)du

)(
B2(

√
a1a3t − R1) − B2(

√
a1a3t)

)
,

K3(t) = −1

2
a2a

−1/2
3

∫
0<y<

√
a1a3t−R1

dB2(y)
∫ ∞

−∞{
ρ(y −

√
a1a3s − q(s̃)) − ρ(y −

√
a1a3s − q(sy))

}
ds,

K4(t) =
1

2
a2a

−1/2
3

∫
0<y<

√
a1a3t−R1

dB2(y)
∫ 2R1√

a1a3

− R1√
a1a3

ρ(y −
√

a1a3s − q(s̃))ds,

K5(t) = −1

2
a2a

−1/2
3

∫
y>

√
a1a3t−R1

dB2(y)
∫ t

0
1

[
2R1√
a1a3

,∞)
(s)ρ(y −

√
a1a3s − q(s̃))ds.

By (A1), the term K1(t) is nothing but a constant multiple of Brownian motion,
so we have the following.

Lemma 4.6 supλ≥1 E[sup 2R1√
a1a3

≤t≤T
|K1(t)|2] < ∞.

The fact that K3(t) and K4(t) are negligible is easy:

Lemma 4.7 We have limλ→∞ E[sup 2R1√
a1a3

≤t≤T
|Ki(t)|2] = 0 for i = 3, 4.

Proof. For i = 3, notice that

|ρ(y −
√

a1a3s − q(s̃)) − ρ(y −
√

a1a3s − q(sy))| ≤ ∥∇ρ∥∞|s̃ − sy|1{|y−√
a1a3s|≤R1}

≤ ∥∇ρ∥∞
4R1n√
a1a3

1{|y−√
a1a3s|≤R1},
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so by Lemma 3.1 and Lemma 4.5, with C6 := (8nR2
1∥∇ρ∥∞)2T , we have

E[ sup
2R1√
a1a3

≤t≤T

|K3(t)|2]

≤
(
− 1

2
a2a

−1/2
3

)2
4

∫
0<y<

√
a1a3T−R1

dy

×E
[( ∫ ∞

−∞

{
ρ(y −

√
a1a3s − q(s̃)) − ρ(y −

√
a1a3s − q(sy))

}
ds

)2]
≤

(
− 1

2
a2a

−1/2
3

)2
4(
√

a1a3T − R1)
( 2R1√

a1a3

· ∥∇ρ∥∞
4R1n√
a1a3

)2

≤ (8nR2
1∥∇ρ∥∞)2T

(
a2a

−1/2
3

)2( 1
√

a1a3

)3
= C6

(
a2a

−1/2
3

)2( 1
√

a1a3

)3
,

which converges to 0 as λ → ∞ by (A1) and (A2).
The proof for i = 4 is similar. Since

∣∣∣ ∫ 2R1√
a1a3

− R1√
a1a3

ρ(y −
√

a1a3s − q(s̃))ds
∣∣∣ ≤ 3R1√

a1a3

∥ρ∥∞1{y≤3R1},

with C7 := (3R1)
3∥ρ∥2

∞, we have

E[ sup
2R1√
a1a3

≤t≤T

|K4(t)|2] ≤ 4E[|K4(T )|2]

=
(1

2
a2a

−1/2
3

)2
4

∫
0<y<

√
a1a3T−R1

dyE
[( ∫ 2R1√

a1a3

− R1√
a1a3

ρ(y −
√

a1a3s − q(s̃))ds
)2]

≤
(1

2
a2a

−1/2
3

)2
4 · 3R1 ·

( 3R1√
a1a3

∥ρ∥∞
)2

= C7(a2a
−1/2
3 )2 1

a1a3

,

which converges to 0 as λ → ∞ by (A1) and (A2).
The discussion with respect to K2(t) and K5(t) is more complicated. We show

in the present section that they are L2 bounded (see Lemma 4.8), which is enough
for the proof of Lemma 4.2. The fact that they are also negligible will be proved in
the next section.

Lemma 4.8 We have supλ≥1 E[sup 2R1√
a1a3

≤t≤T
|Ki(t)|2] < ∞ for i = 2, 5.

Proof. The assertion for i = 2 is a result of (A1), (A2) and the following
calculation.

E
[

sup
2R1√
a1a3

≤t≤T

|B2(
√

a1a3t − R1) − B2(
√

a1a3t)|2
]

≤ 2E
[

sup
2R1√
a1a3

≤t≤T

|B2(
√

a1a3t − R1)|2
]
+ 2E

[
sup

2R1√
a1a3

≤t≤T

|B2(
√

a1a3t)|2
]

≤ 16
√

a1a3T.
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For i = 5, first notice that by the formula of integration by parts,

K5(t) = −1

2
a2a

−1/2
3

∫ t

0
1

[
2R1√
a1a3

,∞)
(s)ds(

−
∫
√

a1a3t−R1<y<
√

a1a3t+R1

B2(y)∇ρ(y −
√

a1a3s − q(s̃))dy

−B2(
√

a1a3t − R1)ρ(
√

a1a3t − R1 −
√

a1a3s − q(s̃))
)
.

Since ∣∣∣ − ∫
√

a1a3t−R1<y<
√

a1a3t+R1

B2(y)∇ρ(y −
√

a1a3s − q(s̃))dy

−B2(
√

a1a3t − R1)ρ(
√

a1a3t − R1 −
√

a1a3s − q(s̃))
∣∣∣

≤ sup
u∈[

√
a1a3t−R1,

√
a1a3t+R1]

|B2(u)|(2R1∥∇ρ∥∞ + ∥ρ∥∞)1{s>t− 2R1√
a1a3

},

we get

|K5(t)| ≤
1

2
a2a

−1/2
3

2R1√
a1a3

(2R1∥∇ρ∥∞ + ∥ρ∥∞) sup
0≤u≤√

a1a3T+R1

|B2(u)|.

We have

E
[

sup
0≤u≤√

a1a3T+R1

|B2(u)|2
]

≤ 4E
[
|B2(

√
a1a3T + R1)|2

]
= 4 (

√
a1a3T + R1) ≤ 4(

√
a1a3 + 1)(T + R1).

Therefore, with C8 := R2
1(2R1∥∇ρ∥∞ + ∥ρ∥∞)24(T + R1), we have

E[ sup
2R1√
a1a3

≤t≤T

|K5(t)|2]

≤
(1

2
a2a

−1/2
3

2R1√
a1a3

(2R1∥∇ρ∥∞ + ∥ρ∥∞)
)2

E
[

sup
0≤u≤√

a1a3T
|B2(u)|2

]
≤

(1

2
a2a

−1/2
3

2R1√
a1a3

(2R1∥∇ρ∥∞ + ∥ρ∥∞)
)2

4(
√

a1a3 + 1)(T + R1)

= C8

(
a2a

−1/2
3

1
√

a1a3

)2
(
√

a1a3 + 1),

which is bounded for λ ≥ 1 by (A1) and (A2).
Proof of Lemma 4.2. It is just a combination of Lemmas 4.6, 4.7 and 4.8.
Proof of Lemma 4.3. For any 0 ≤ t1 ≤ t2 ≤ t3 ≤ T , we have by (4.1) that

I11(t2) − I11(t1)

= −1

2
a2a

−1/2
3

∫
R

dB2(y)
∫ t2

t1
1

[
2R1√
a1a3

,∞)
(s)ρ(y −

√
a1a3s − q(s̃))ds

= −1

2
a2a

−1/2
3

∫
(
√

a1a3t1−R1,
√

a1a3t2+R1)
dB2(y)

∫ t2

t1
1

[
2R1√
a1a3

,∞)
(s)ρ(y −

√
a1a3s − q(s̃))ds,
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In the same way, the similar re-expression for I11(t3) − I11(t2) holds, too.
Rewrite the integral domains of y as (

√
a1a3t1 −R1,

√
a1a3t2 −R1)∪ (

√
a1a3t2 −

R1,
√

a1a3t2 +R1) and (
√

a1a3t2−R1,
√

a1a3t2 +R1)∪ (
√

a1a3t2 +R1,
√

a1a3t3 +R1).
Since

(a + b)2(c + d)2 ≤ 2a2(c + d)2 + 4b2c2 + 4b2d2, for all a, b, c, d ∈ R,

in order to show Lemma 4.3, it sufficient to show the estimates for the four corre-
sponding terms.

First, taking conditional expectation with respect to F√
a1a3t2−R1 , we get

(1

2
a2a

−1/2
3

)4

E
[( ∫

(
√

a1a3t1−R1,
√

a1a3t2−R1)
dB2(y1)

∫ t2

t1
ds1

[
2R1√
a1a3

,∞)
(s)ρ(y1 −

√
a1a3s − q(s̃))

)2
×

×
( ∫

(
√

a1a3t2−R1,
√

a1a3t3+R1)
dB2(y2)

∫ t3

t2
ds1

[
2R1√
a1a3

,∞)
(s)ρ(y2 −

√
a1a3s − q(s̃))

)2]
=

(1

2
a2a

−1/2
3

)4

E
[( ∫

(
√

a1a3t1−R1,
√

a1a3t2−R1)
dB2(y1)

∫ t2

t1
ds1

[
2R1√
a1a3

,∞)
(s)ρ(y1 −

√
a1a3s − q(s̃))

)2
×

×E
[( ∫

(
√

a1a3t2−R1,
√

a1a3t3+R1)
dB2(y2)

∫ t3

t2
ds1

[
2R1√
a1a3

,∞)
(s)ρ(y2 −

√
a1a3s − q(s̃))

)2

∣∣∣F√
a1a3t2−R1

]]
. (4.6)

For the conditional expectation above, notice that {B2(y2); y2 ∈ (
√

a1a3t2 −
R1,

√
a1a3t3 + R1)} is independent to F√

a1a3t2−R1 , so

E
[( ∫

(
√

a1a3t2−R1,
√

a1a3t3+R1)
dB2(y2)∫ t3

t2
ds1

[
2R1√
a1a3

,∞)
(s)ρ(y2 −

√
a1a3s − q(s̃))

)2∣∣∣F√
a1a3t2−R1

]
=

∫
(
√

a1a3t2−R1,
√

a1a3t3+R1)
dy2E

[( ∫ t3

t2
ds1

[
2R1√
a1a3

,∞)
(s)ρ(y2 −

√
a1a3s − q(s̃))

)2∣∣∣F√
a1a3t2−R1

]
≤

(√
a1a3(t3 − t2) + 2R1

)(2R1∥ρ∥∞√
a1a3

∧ (t3 − t2)∥ρ∥∞
)2

,

where when passing to the last line, we used the obvious fact∣∣∣ ∫ t3

t2
ds1

[
2R1√
a1a3

,∞)
(s)ρ(y2 −

√
a1a3s − q(s̃))

∣∣∣ ≤ 2R1∥ρ∥∞√
a1a3

∧
(
(t3 − t2)∥ρ∥∞

)
. (4.7)

In the same way, we have

E
[( ∫

(
√

a1a3t1−R1,
√

a1a3t2−R1)
dB2(y1)

∫ t2

t1
ds1

[
2R1√
a1a3

,∞)
(s)ρ(y1 −

√
a1a3s − q(s̃))

)2]
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=
∫
(
√

a1a3t1−R1,
√

a1a3t2−R1)
dy1E

[( ∫ t2

t1
ds1

[
2R1√
a1a3

,∞)
(s)ρ(y1 −

√
a1a3s − q(s̃))

)2]
≤

√
a1a3(t2 − t1)

(2R1∥ρ∥∞√
a1a3

)2
. (4.8)

So with C9 := 2R4
1∥ρ∥4

∞, we have

(4.6)

≤
(1

2
a2a

−1/2
3

)4
·
√

a1a3(t2 − t1)
(2R1∥ρ∥∞√

a1a3

)2
×

×
(√

a1a3(t3 − t2) + 2R1

)(2R1∥ρ∥∞√
a1a3

∧
(
(t3 − t2)∥ρ∥∞

))2

≤
(1

2
a2a

−1/2
3

)4
·
√

a1a3(t2 − t1)
(2R1∥ρ∥∞√

a1a3

)2
×

×
(√

a1a3(t3 − t2)
(2R1∥ρ∥∞√

a1a3

)2
+ 2R1

(2R1∥ρ∥∞√
a1a3

)
(t3 − t2)∥ρ∥∞

)
= C9

(
a2a

−1/2
3

)4 1

a1a3

(t3 − t2)(t2 − t1)

= C9(t3 − t2)(t2 − t1)

by (A1).
Similarly, by (A1), there exists a constant C10 > 0 such that(1

2
a2a

−1/2
3

)4

E
[( ∫

(
√

a1a3t2−R1,
√

a1a3t2+R1)
dB2(y1)

∫ t2

t1
ds1

[
2R1√
a1a3

,∞)
(s)ρ(y1 −

√
a1a3s − q(s̃))

)2
×

×
( ∫

(
√

a1a3t2+R1,
√

a1a3t3+R1)
dB2(y2)

∫ t3

t2
ds1

[
2R1√
a1a3

,∞)
(s)ρ(y2 −

√
a1a3s − q(s̃))

)2]
≤ C10(t3 − t2)(t2 − t1).

Finally, let us deal with the ”crossing term”. We fisrt confirm the following
general fact, which is not difficult to be gotten by a careful calculation with respect
to Gaussion distribution:

Claim. For any non-random bounded functions f1 and f2, we have

E
[( ∫

(u1,u2)
dB2(y)f1(y)

)2( ∫
(u1,u2)

dB2(y)f2(y)
)2]

=
( ∫

(u1,u2)
f1(y)2dy

)( ∫
(u1,u2)

f2(y)2dy
)

+ 2
( ∫

(u1,u2)
f1(y)f2(y)dy

)2
. (4.9)

Proof of the Claim. For any α, β > 0, we have that

E
[
exp

(
α

∫
f1(y)dB2(y) + β

∫
f2(y)dB2(y) − 1

2

∫
(αf1(y) + βf2(y))2dy

)]
= 1,

22



so

E
[
eα

∫
f1(y)dB2(y)eβ

∫
f2(y)dB2(y)

]
= exp

(1

2

∫
(αf1(y) + βf2(y))2dy

)
.

This is true for any α, β > 0, so the coefficients of the term α2β2 on the both
sides are equal to each other. The coefficient of α2β2 of the left hand side is

E
[

1
2

( ∫
f1(y)dB1(y)

)2
1
2

( ∫
f2(y)dB1(y)

)2]
. The coefficient of α2β2 of the right hand

side is that of 1
8

(
α2

∫
f1(y)2dy +β2

∫
f2(y)2dy +2αβ

∫
f1(y)f2(y)dy

)2
, which is equal

to 1
4

( ∫
f1(y)2dy

)( ∫
f2(y)2dy

)
+ 1

2

( ∫
f1(y)f2(y)dy

)2
. This gives us (4.9).

Now, since q(s̃) is F√
a1a3t2−R1-measurable for any s ∈ [t1, t2], and {B2(y); y ∈

(
√

a1a3t2 −R1,
√

a1a3t2 + R1)} is independent to F√
a1a3t2−R1 , by taking conditional

expectation with respect to F√
a1a3t2−R1 , we get the first equality of the following

formula by (4.9). So with C11 := 3R4
1∥ρ∥4

∞, we have

(1

2
a2a

−1/2
3

)4

E
[( ∫

(
√

a1a3t2−R1,
√

a1a3t2+R1)
dB2(y1)

∫ t2

t1
ds1

[
2R1√
a1a3

,∞)
(s)ρ(y1 −

√
a1a3s − q(s̃))

)2
×

×
( ∫

(
√

a1a3t2−R1,
√

a1a3t2+R1)
dB2(y2)

∫ t3

t2
ds1

[
2R1√
a1a3

,∞)
(s)ρ(y2 −

√
a1a3s − q(s̃))

)2]
=

(1

2
a2a

−1/2
3

)4

E
[{ ∫

(
√

a1a3t2−R1,
√

a1a3t2+R1)
dy1

( ∫ t2

t1
ds1

[
2R1√
a1a3

,∞)
(s)ρ(y1 −

√
a1a3s − q(s̃))

)2}
×

×
{ ∫

(
√

a1a3t2−R1,
√

a1a3t2+R1)
dy2

( ∫ t3

t2
ds1

[
2R1√
a1a3

,∞)
(s)ρ(y2 −

√
a1a3s − q(s̃))

)2}
+2

{ ∫
(
√

a1a3t2−R1,
√

a1a3t2+R1)
dy

( ∫ t2

t1
ds1

[
2R1√
a1a3

,∞)
(s)ρ(y −

√
a1a3s − q(s̃))

)
×

( ∫ t3

t2
ds1

[
2R1√
a1a3

,∞)
(s)ρ(y −

√
a1a3s − q(s̃))

)}2]
≤

(1

2
a2a

−1/2
3

)4[{
2R1 · (t2 − t1)∥ρ∥∞ · 2R1∥ρ∥∞√

a1a3

}
×

{
2R1 · (t3 − t2)∥ρ∥∞ · 2R1∥ρ∥∞√

a1a3

}
+2

(
2R1 · (t2 − t1)∥ρ∥∞ · (t3 − t2)∥ρ∥∞

)(
2R1 ·

(2R1∥ρ∥∞√
a1a3

)2)]
= C11

(
a2a

−1/2
3

)4 1

a1a3

(t2 − t1)(t3 − t2)

= C11(t2 − t1)(t3 − t2)

by (A1). Here when passing the first inequality, we used (4.7) and the similar one
with t2 and t3 substituted by t1 and t2, respectively.

Combinging the above, we get our assertion.
Proof of Lemma 4.4. The calculation is similar to the one in (4.8).
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Let C12 := 2R2
1∥ρ∥2

∞, then we have

E[|I11(t2) − I11(t1)|2]

=
(1

2
a2a

−1/2
3

)2
E

[∣∣∣ ∫
(
√

a1a3t1−R1,
√

a1a3t2+R1)
dB2(y)

∫ t2

t1
ds1

[
2R1√
a1a3

,∞)
(s)ρ(y −

√
a1a3s − q(s̃))

∣∣∣2]
=

(1

2
a2a

−1/2
3

)2
∫
(
√

a1a3t1−R1,
√

a1a3t2+R1)
dyE

[( ∫ t2

t1
ds1

[
2R1√
a1a3

,∞)
(s)ρ(y −

√
a1a3s − q(s̃))

)2]
≤

(1

2
a2a

−1/2
3

)2(√
a1a3(t2 − t1) + 2R1

)(2R1∥ρ∥∞√
a1a3

∧
(
(t2 − t1)∥ρ∥∞

))2

≤
(1

2
a2a

−1/2
3

)2(√
a1a3(t2 − t1) ·

2R1∥ρ∥∞√
a1a3

+ 2R1(t2 − t1)∥ρ∥∞
)
×

(2R1∥ρ∥∞√
a1a3

)
= C12

(
a2a

−1/2
3

)2 1
√

a1a3

(t2 − t1)

= C12(t2 − t1)

by (A1).
This completes the proof of Lemma 4.1.

5 The limits for I11(t) and I12(t)

We showed in Section 4 that {the distribution of {I1i(t); t ∈ [0, T ]}; λ ≥ 1} is tight
in P(D) for i = 1, 2 (Lemma 4.1). In this section, we find their limits when λ → ∞.
This combined with Lemma 3.6 gives us the limit distribution of I1(t) as λ → ∞
(see Lemma 5.4).

Again, since the methods are exactly the same, we give here the proof for I11(t)
only. Use the same notations as in Section 4. It suffices to consider I11. We first
notice the following.

Lemma 5.1 For any t ∈ [ 2R1√
a1a3

, T ], we have that limλ→∞ E[|Ki(t)|2] = 0 for i =
2, 5.

Proof.

E[|K2(t)|2]

=
(
− 1

2
a2a

−1/2
3

1
√

a1a3

∫ ∞

−∞
ρ(u)du

)2
E

[∣∣∣B2(
√

a1a3t − R1) − B2(
√

a1a3t)
∣∣∣2]

=
(
− 1

2
a2a

−1/2
3

1
√

a1a3

∫ ∞

−∞
ρ(u)du

)2
R1,

which converges to 0 as λ → ∞ by (A1) and (A2).
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For i = 5, since
∣∣∣ ∫ t

0 1
[

2R1√
a1a3

,∞)
(s)ρ(y −√

a1a3s − q(s̃))ds
∣∣∣ ≤ ∥ρ∥∞ 2R1√

a1a3
, we have

E[|K5(t)|2]

=
(
− 1

2
a2a

−1/2
3

)2
∫
√

a1a3t−R1<y<
√

a1a3t+R1

dyE
[( ∫ t

0
1

[
2R1√
a1a3

,∞)
(s)ρ(y −

√
a1a3s − q(s̃))ds

)2]
≤

(
− 1

2
a2a

−1/2
3

)2
2R1

(
∥ρ∥∞

2R1√
a1a3

)2
,

which converges to 0 as λ → ∞ by (A1) and (A2).

Lemma 5.2 There exists a process K̃2(t) such that

I11(t) = K1(t) + K̃2(t), t ∈ [0, T ], (5.1)

with K1(t) as defined in (4.5), and K̃2(t) satisfies

lim
λ→∞

E[|K̃2(t)|2] = 0 for any t > 0,

sup
λ≥1

E[ sup
0≤t≤T

|K̃2(t)|2] < ∞.

Proof. Just define

K̃2(t) = −1{0≤t<
2R1√
a1a3

}K1(t) + 1{t≥ 2R1√
a1a3

}

5∑
i=2

Ki(t).

Now our assertion is a result of Lemmas 4.6, 4.7, 4.8 and 5.1 combined with the
following calculation.

E[ sup
0≤t≤ 2R1√

a1a3

|K1(t)|2]

=
(
− 1

2
a2a

−1/2
3

1
√

a1a3

∫ ∞

−∞
ρ(u)du

)2
E[ sup

0≤t≤ 2R1√
a1a3

|B2(
√

a1a3t)|2]

≤ 4
(
− 1

2
a2a

−1/2
3

1
√

a1a3

∫ ∞

−∞
ρ(u)du

)2
2R1,

which converges to 0 as λ → ∞ by (A1) and (A2).
We are now ready to show that K̃2(t) is negligible.

Lemma 5.3 limλ→∞ E[supt∈[0,T ] |K̃2(t)|] = 0.

Proof. Since the distribution of {K1(t); t ∈ [0, T ]} does not depend on λ ≥ 1,
and by Lemma 4.1, the distribution of {I11(t); t ∈ [0, T ]} is tight for λ ≥ 1, we get
that the distribution of {K̃2(t) = I11(t) − K1(t); t ∈ [0, T ]} is also tight for λ ≥ 1.
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Let Q be any cluster point of it as λ → ∞, and let {w(t)}t∈[0,T ] be the canonical
process under it. For any t ∈ [0, T ] and any r > 0, we have by Lemma 5.2 that

P
({

|K̃2(t)| > r
})

≤ 1

r2
E

[
|K̃2(t)|2

]
→ 0, as λ → ∞.

On the other hand, the left hand side above converges to Q
({

|ω(t)| > r
})

as λ → ∞.
So

Q
({

|ω(t)| > r
})

= 0

for any r > 0. Hence
Q

({
|ω(t)| = 0

})
= 1.

Since K̃2(t) = I11(t) − K1(t) is continuous with respect to t (for any fixed λ), we
have that the canonical process of Q is also continuous with respect to t. Therefore,

Q
({

|ω(t)| = 0, for all t ∈ [0, T ]
})

= 1. (5.2)

Now we are ready to prove our lemma. We have for any ε > 0 that

E[ sup
t∈[0,T ]

|K̃2(t)|]

≤ E[ sup
t∈[0,T ]

|K̃2(t)|, sup
t∈[0,T ]

|K̃2(t)| > ε] + ε

≤ E[ sup
t∈[0,T ]

|K̃2(t)|2]1/2P ( sup
t∈[0,T ]

|K̃2(t)| > ε)1/2 + ε.

E[supt∈[0,T ] |K̃2(t)|2]1/2 is bounded for λ ≥ 1 by Lemma 5.2. Therefore, in order to

show that E[supt∈[0,T ] |K̃2(t)|] → 0 as λ → ∞, it suffices to show that for any ε > 0,

P (supt∈[0,T ] |K̃2(t)| > ε) → 0 as λ → ∞. We show it in the following.
For any a > 0, let

A = { sup
t∈[0,T ]

|ω(t)| > 2a}, B = { sup
t∈[0,T ]

|ω(t)| > a}.

Then it is easy to see that for any ω0 ∈ A and ω with d0(ω, ω0) < a, we have ω ∈ B.
So A ⊂ A ⊂ Bo ⊂ B. Therefore, since A is closed, we have

lim sup
λ→∞

(P ◦ K̃2

−1
)(A) ≤ lim sup

λ→∞
(P ◦ K̃2

−1
)(A) ≤ Q(A) ≤ Q(B),

which is equal to 0 by (5.2). Therefore,

lim
λ→∞

P ( sup
t∈[0,T ]

|K̃2(t)| > ε) = 0.

Repeating the argument from Section 4 up to now with {I11(t); 0 ≤ t ≤ T}
substituted by {I12(t); 0 ≤ t ≤ T}, we get that under (A1) and (A2), I12(t) can also

be decomposed as 1
2
a2a

−1/2
3

1√
a1a3

∫ ∞
−∞ ρ(u)duB2(−

√
a1a3(t ∧ τn)) plus a remainder,

which satisfies limλ→∞ E[ sup0≤t≤T | · (t)|] = 0. Combining it with (5.1), Lemma
5.3 and Lemma 3.6, we get the following.
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Lemma 5.4 Let

M(t) = −1

2
a2a

−1/2
3 · 1

√
a1a3

( ∫ ∞

−∞
ρ(u)du

)(
B2(

√
a1a3t) − B2(−

√
a1a3t)

)
. (5.3)

Then {M(t)}t has the same distribution as { 1√
2

( ∫ ∞
−∞ ρ(u)du

)
B(t)}t, where {B(t)}

is a standard Brownian motion, and we have

I1(t ∧ τn) = M(t ∧ τn) + η1(t),

with η1(t) satisfying
lim

λ→∞
E[ sup

0≤t≤T
|η1(t)|] = 0.

6 The term I2(t)

We deal with the term I2(t) in this section, and show that it gives us the drift term
in L after taking λ → ∞. This is done in two steps: We first show that it is tight for
λ ≥ 1, which is, after combined with Lemma 5.4, expressed as Lemma 6.4. We then
use it to find the limit as λ → ∞. Our main result of this section is the following,
which is also our key lemma to prove Theorem 1.1.

Lemma 6.1 There exists a process η(t) such that

p(t ∧ τn) = p0 + M(t ∧ τn) − 1

2

( ∫
R

ρ(u)du
)2

∫ t∧τn

0

p(s)

M
√

1 + a−2
4 M−1p(s)2

ds + η(t),

where M(t) is as defined in (5.3), and

lim
λ→∞

E[ sup
0≤t≤T

|η(t)|] → 0.

We show Lemma 6.1 in the rest of this section. We first have

I2(t ∧ τn)

=
1

2
a−1

3 a2
2

∫ t∧τn

0
ds

∫
R

dxρ(x − q(s))
∫ √

a1a3s

0
dr(

ρ(x + r − q(s − 1
√

a1a3

r)) − ρ(x − r − q(s − 1
√

a1a3

r))
)

=
1

2
a−1

3 a2
2

∫ t∧τn

0
ds

∫ √
a1a3s

0
dr

∫
R

dxρ(x − q(s))ρ(x + r − q(s − 1
√

a1a3

r))

−1

2
a−1

3 a2
2

∫ t∧τn

0
ds

∫ √
a1a3s

0
dr

∫
R

dxρ(x − q(s))ρ(x − r − q(s − 1
√

a1a3

r))

=
1

2
a−1

3 a2
2

∫ t∧τn

0
ds

∫ (
√

a1a3s)∧(2R1)

0
dr

∫
|x|≤R1

dx ×
[
ρ(x − q(s))ρ(x + r − q(s − 1

√
a1a3

r)) − ρ(x + r − q(s))ρ(x − q(s − 1
√

a1a3

r))
]
,
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where in the last equality, we used the change of variable x − r → x for the second
integral. Also, we were able to rewrite the integral domains for r and x because
ρ(x − q(s)) and ρ(x − q(s − 1√

a1a3
r)) are not 0 only if |x| ≤ R1, and in this case,

ρ(x + r − q(s − 1√
a1a3

r)) and ρ(x + r − q(s)) are not 0 only if |r| ≤ 2R1.

We can decompose the integrand in the last expression as

ρ(x − q(s))ρ(x + r − q(s − 1
√

a1a3

r)) − ρ(x + r − q(s))ρ(x − q(s − 1
√

a1a3

r))

= J1 + J2 + J3 + J4,

with

J1 = ρ(x − q(s))
{
ρ(x + r − q(s − 1

√
a1a3

r)) − ρ(x + r − q(s))

+∇ρ(x + r − q(s))
(
q(s − 1

√
a1a3

r) − q(s)
)}

,

J2 = −ρ(x + r − q(s))
{
ρ(x − q(s − 1

√
a1a3

r)) − ρ(x − q(s))

+∇ρ(x − q(s))
(
q(s − 1

√
a1a3

r) − q(s)
)}

,

J3 = −ρ(x − q(s))∇ρ(x + r − q(s))
(
q(s − 1

√
a1a3

r) − q(s)
))

,

J4 = ρ(x + r − q(s))∇ρ(x − q(s))
(
q(s − 1

√
a1a3

r) − q(s)
))

.

Let

I2i(t) =
1

2
a−1

3 a2
2

∫ t∧τn

0
ds

∫ (
√

a1a3s)∧(2R1)

0
dr

∫
|x|≤R1

dxJi, i = 1, · · · , 4.

Then
I2(t ∧ τn) = I21(t) + I22(t) + I23(t) + I24(t). (6.1)

Lemma 6.2 For i = 1, 2, we have limλ→∞ supω∈Ω supt∈[0,T ] |I2i(t)| = 0.

Proof. Since the proofs for i = 1, 2 are similar, we give the one for i = 1 only.
For any r ∈ [0, (

√
a1a3s) ∧ (2R1)], we have∣∣∣ρ(x + r − q(s − 1

√
a1a3

r)) − ρ(x + r − q(s))

+∇ρ(x + r − q(s))
(
q(s − 1

√
a1a3

r) − q(s)
)∣∣∣

≤ ∥∇2ρ∥∞
(
q(s − 1

√
a1a3

r) − q(s)
)2

≤ ∥∇2ρ∥∞
( n
√

a1a3

r
)2

≤ ∥∇2ρ∥∞
( n
√

a1a3

2R1

)2
, s ∈ [0, T ∧ τn].
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So with C13 := 8n2TR4
1∥ρ∥∞∥∇2ρ∥∞, we have for any t ∈ [0, T ],

|I21(t)| ≤ 1

2
a−1

3 a2
2

∫ t∧τn

0
ds

∫ (
√

a1a3s)∧(2R1)

0
dr

∫
|x|≤R1

dx|ρ(x − q(s))| ×

×
∣∣∣ρ(x + r − q(s − 1

√
a1a3

r)) − ρ(x + r − q(s))

+∇ρ(x + r − q(s))
(
q(s − 1

√
a1a3

r) − q(s)
)∣∣∣

≤ 1

2
a−1

3 a2
2T2R1 · 2R1 · ∥ρ∥∞∥∇2ρ∥∞

( n
√

a1a3

2R1

)2

= C13a
−1
3 a2

2

( 1
√

a1a3

)2
,

which converges to 0 as λ → ∞ by (A1) and (A2).

Lemma 6.3 For i = 3, 4, we have that supλ≥1 E
[
sup0≤t≤T

∣∣∣ d
dt

I2i(t)
∣∣∣2] < ∞, in

particular, {the distribution of {I2i(t)}t∈[0,T ]}λ≥1 is tight in P(D).

Proof. As in Kusuoka-Liang [11], the second half of the lemma is a simple
result of the first half.

We proof the first half for i = 3 in the following. The assertion for i = 4 is done
in the same way, and we omit it here. By definition,

I23(t) = −1

2
a−1

3 a2
2

∫ t∧τn

0
ds

∫ (
√

a1a3s)∧(2R1)

0
dr

×
∫
|x|≤R1

ρ(x − q(s))∇ρ(x + r − q(s))
(
q(s − 1

√
a1a3

r) − q(s)
)
dx.

Notice that for any 0 ≤ r ≤ (
√

a1a3t) ∧ (2R1) and t ∈ [0, T ∧ τn], we have
∣∣∣q(t −

1√
a1a3

r) − q(t)
∣∣∣ ≤ n√

a1a3
r ≤ 2R1n√

a1a3
. So with C14 :=

(
4nR3

1∥ρ∥∞∥∇ρ∥∞
)2

, we have

E
[

sup
0≤t≤T

∣∣∣ d

dt
I23(t)

∣∣∣2]
≤

(1

2
a−1

3 a2
2

)2
E

[
sup

0≤t≤T∧τn

∣∣∣ ∫ (
√

a1a3t)∧(2R1)

0
dr

∫
|x|≤R1

ρ(x − q(t))∇ρ(x + r − q(t))
(
q(t − 1

√
a1a3

r) − q(t)
)
dx

∣∣∣2]
≤

(1

2
a−1

3 a2
2

)2(
2R12R1∥ρ∥∞∥∇ρ∥∞

2R1n√
a1a3

)2
= C14

by (A1).
Combining (2.16), Lemma 5.4, (6.1), Lemma 6.2 and Lemma 6.3, we get the

following.
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Lemma 6.4 Let M(t) be as given in Lemma 5.4, and let u(t) = I23(t) + I24(t).
Then there exists a process η2(t) such that

p(t ∧ τn) = p0 + M(t ∧ τn) + u(t) + η2(t),

and u(t) is differentible with respect to t, with

A3 := sup
λ≥1

E
[

sup
0≤t≤T

∣∣∣ d

dt
u(t)

∣∣∣2] < ∞,

A4(λ) := E[ sup
0≤t≤T

|η2(t)|] → 0, as λ → ∞.

Proof. Just let
η(t) = η1(t) + I21(t) + I22(t),

where η1(t) is as given by Lemma 5.4, and we get our assertion.
In order to get Lemma 6.1, we need to study u(t) in more detail.
Notice that in the expressions of I23 and I24, the integral domain {|x| ≤ R1} can

be converted to {x ∈ R}, so by using change of variable x − q(s) → x, we get that

u(t) = −1

2
a−1

3 a2
2

∫ t∧τn

0
ds

∫ (
√

a1a3s)∧(2R1)

0
dr

×
∫
R

ρ(x)∇ρ(x + r)
(
q(s − 1

√
a1a3

r) − q(s)
)
dx

+
1

2
a−1

3 a2
2

∫ t∧τn

0
ds

∫ (
√

a1a3s)∧(2R1)

0
dr

×
∫
R

ρ(x + r)∇ρ(x)
(
q(s − 1

√
a1a3

r) − q(s)
)
dx.

Decompose it as
u(t) = u1(t) + u2(t) + u3(t) (6.2)

with

u1(t) = −1

2
a−1

3 a2
2

∫ t∧τn

0
ds

∫ (
√

a1a3s)∧(2R1)

0
dr

∫
R

dx

×ρ(x)∇ρ(x + r)
(
q(s − 1

√
a1a3

r) − q(s) +
p(s)

M
√

1 + a−2
4 M−1p(s)2

1
√

a1a3

r
)

u2(t) =
1

2
a−1

3 a2
2

∫ t∧τn

0
ds

∫ (
√

a1a3s)∧(2R1)

0
dr

∫
R

dx

×ρ(x + r)∇ρ(x)
(
q(s − 1

√
a1a3

r) − q(s) +
p(s)

M
√

1 + a−2
4 M−1p(s)2

1
√

a1a3

r
)

u3(t) =
1

2
a−1

3 a2
2

∫ t∧τn

0
ds

∫ (
√

a1a3s)∧(2R1)

0
dr

×
∫
R

ρ(x)∇ρ(x + r)
p(s)

M
√

1 + a−2
4 M−1p(s)2

1
√

a1a3

rdx
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−1

2
a−1

3 a2
2

∫ t∧τn

0
ds

∫ (
√

a1a3s)∧(2R1)

0
dr

×
∫
R

ρ(x + r)∇ρ(x)
p(s)

M
√

1 + a−2
4 M−1p(s)2

1
√

a1a3

rdx.

Lemma 6.5 For i = 1, 2, we have E
[
sup0≤t≤T |ui(t)|

]
→ 0 as λ → ∞.

Proof. Use the same notations as in Lemma 6.4. Let A5 := 1√
2

∫ ∞
−∞ ρ(u)du.

Then for any 0 < t1 < t2 ≤ T , we have

E
[
|M(t2)−M(t1)|

]
= A5E

[
|B(t2)−B(t1)|

]
≤ A5E

[
|B(t2)−B(t1)|2

]1/2
= A5(t2−t1)

1/2.

By Lemma 6.4,

p(t2∧ τn)−p(t1∧ τn) = (M(t2∧ τn)−M(t1∧ τn))+(u(t2)−u(t1))+(η2(t2)−η2(t1)),

so

E
[
|p(t2 ∧ τn) − p(t1 ∧ τn)|

]
≤ E

[
|M(t2 ∧ τn) − M(t1 ∧ τn)|

]
+ E

[
|u(t2) − u(t1)|

]
+ E

[
|η2(t2) − η2(t1)|

]
≤ A5(t2 − t1)

1/2 + A
1/2
3 (t2 − t1) + 2A4(λ). (6.3)

For any s, u ∈ [0, T ∧ τn] with |s − u| ≤ 2R1√
a1a3

, we have by (6.3) that

E
[∣∣∣ p(s ∧ τn)

M
√

1 + a−2
4 M−1p(s ∧ τn)2

− p(u ∧ τn)

M
√

1 + a−2
4 M−1p(u ∧ τn)2

∣∣∣]

≤ 1

M
E

[∣∣∣p(s ∧ τn) − p(u ∧ τn)
∣∣∣]

≤ 1

M

{
A5

( 2R1√
a1a3

)1/2
+ A

1/2
3

( 2R1√
a1a3

)
+ 2A4(λ)

}
.

Notice that

u1(t ∧ τn) = −1

2
a−1

3 a2
2

∫ t

0
ds

∫ (
√

a1a3s)∧(2R1)

0
dr

∫
|x|≤R1

dxρ(x)∇ρ(x + r)

×
∫ s

s− 1√
a1a3

r

( p(s ∧ τn)

M
√

1 + a−2
4 M−1p(s ∧ τn)2

− p(u ∧ τn)

M
√

1 + a−2
4 M−1p(u ∧ τn)2

)
du.

So

E
[

sup
0≤t≤T

|u1(t)|
]

≤ 1

2
a−1

3 a2
2E

[ ∫ T∧τn

0
ds

∣∣∣ ∫ (
√

a1a3s)∧(2R1)

0
dr

∫
|x|≤R1

dxρ(x)∇ρ(x + r)

×
∫ s

s− 1√
a1a3

r

( p(s ∧ τn)

M
√

1 + a−2
4 M−1p(s ∧ τn)2

− p(u ∧ τn)

M
√

1 + a−2
4 M−1p(u ∧ τn)2

)
du

∣∣∣]

≤ 1

2
a−1

3 a2
2T2R1 · 2R1∥ρ∥∞∥∇ρ∥∞

2R1√
a1a3

1

M

(
A5

( 2R1√
a1a3

)1/2
+ A

1/2
3

( 2R1√
a1a3

)
+ 2A4(λ)

)
,
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which converges to 0 as λ → ∞ by (A1) and (A2), since A4(λ) → 0.
The assertion for i = 2 is proved in exactly the same way, and we omit it here.
Finally, for the term u3(·), we have the following.

Lemma 6.6 limλ→∞ supω∈Ω,0≤t≤T

∣∣∣u3(t)+
1

2M

( ∫
R ρ(u)du

)2 ∫ t∧τn
0

p(s)√
1+a−2

4 M−1p(s)2
ds

∣∣∣ =

0.

Proof. The first term of u3(t) is, by changing of variable x + r → x, equal to

1

2
a−1

3 a2
2

∫ t∧τn

0
ds

∫ (
√

a1a3s)∧(2R1)

0
dr

∫
R

ρ(x − r)∇ρ(x)
p(s)

M
√

1 + a−2
4 M−1p(s)2

1
√

a1a3

rdx

= −1

2
a−1

3 a2
2

1
√

a1a3

∫ t∧τn

0
ds

p(s)

M
√

1 + a−2
4 M−1p(s)2

∫ 0

−((
√

a1a3s)∧(2R1))
rdr

∫
R

ρ(x + r)∇ρ(x)dx.

So

u3(t) = −1

2
a−1

3 a2
2

1
√

a1a3

∫ t∧τn

0
ds

p(s)

M
√

1 + a−2
4 M−1p(s)2

∫ (
√

a1a3s)∧(2R1)

−((
√

a1a3s)∧(2R1))
rdr

∫
R

ρ(x+r)∇ρ(x)dx.

Notice that if s > 2R1√
a1a3

, then the integral
∫ (

√
a1a3s)∧(2R1)

−((
√

a1a3s)∧(2R1))
above is equal to∫ 2R1

−2R1
, which is in turn equal to

∫ ∞
−∞. Therefore,

u3(t) = u31(t) + u32(t),

with

u31(t) = −1

2
a−1

3 a2
2

1
√

a1a3

∫ t∧τn

0
ds

p(s)

M
√

1 + a−2
4 M−1p(s)2

∫ ∞

−∞
rdr

∫
R

ρ(x + r)∇ρ(x)dx,

u32(t) =
1

2
a−1

3 a2
2

1
√

a1a3

∫ t∧τn

0
1

[0,
2R1√
a1a3

)
(s)ds

p(s)

M
√

1 + a−2
4 M−1p(s)2

×
∫
[−2R1,2R1]\[−√

a1a3s,
√

a1a3s]
rdr

∫
R

ρ(x + r)∇ρ(x)dx.

Notice that s ≤ τn implies
∣∣∣ p(s)

M
√

1+a−2
4 M−1p(s)2

∣∣∣ ≤ n, so for any t ∈ [0, T ] and

ω ∈ Ω, we have that

|u32(t)| ≤
1

2
a−1

3 a2
2

1
√

a1a3

· 2R1√
a1a3

· n(2R1)
2 · 2R1∥ρ∥∞∥∇ρ∥∞,

which converges to 0 as λ → ∞ by (A1) and (A2).
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For the term u31(t), notice that∫ ∞

−∞
rdr

∫
R

ρ(x + r)∇ρ(x)dx =
∫
R

rdr
∫
R

ρ(x)∇ρ(x − r)dx

=
∫
R

ρ(x)dx
∫
R

r∇ρ(x − r)dr =
∫
R

ρ(x)dx
∫
R

ρ(x − r)dr

=
( ∫

R
ρ(u)du

)2
.

So by (A1),

u31(t) = −1

2

( ∫
R

ρ(u)du
)2

∫ t∧τn

0

p(s)

M
√

1 + a−2
4 M−1p(s)2

ds.

Proof of Lemma 6.1 This is just a combination of Lemma 6.4, (6.2), Lemma
6.5 and Lemma 6.6.

7 Proof of the main result

Now, we are ready to prove Theorem 1.1.
Use the same notations as in Section 6. Let

Y (t) := p(t∧τn)−η(t) = p0+M(t∧τn)−1

2

( ∫
R

ρ(u)du
)2

∫ t∧τn

0

p(s)

M
√

1 + a−2
4 M−1p(s)2

ds.

Then for any g ∈ C∞
0 (R2), since

|g(q(t ∧ τn), p(t ∧ τn)) − g(q(t ∧ τn), Y (t))| ≤ ∥gp∥∞|η(t)|,

we have by Lemma 6.1 that when λ → ∞, {g(q(t ∧ τn), p(t ∧ τn)); t ∈ [0, T ]} and
{g(q(t ∧ τn), Y (t)); t ∈ [0, T ]} have the same limit.

Also, as in Theorem 1.1 (2), we define p̃(·) as follows:

p̃(t) =

 p(t), if limλ→∞ a4 = ∞,
p(t)√

1+a−2
4 M−1p(t)2

, if a4 is a constant .

This is the limit of p(t)√
1+a−2

4 M−1p(t)2
when λ → ∞.

By definition, we have for any f ∈ C∞
0 (R2),

f(q(t ∧ τn), Y (t)) − f(q0, Y (0))

=
∫ t∧τn

0
fq(q(s), Y (s)) · p(s)

M
√

1 + a−2
4 M−1p(s)2

ds +
∫ t∧τn

0
fp(q(s), Y (s))dM(s)

−
∫ t∧τn

0
fp(q(s), Y (s)) · 1

2

( ∫
R

ρ(u)du
)2 p(s)

M
√

1 + a−2
4 M−1p(s)2

ds

+
1

2

∫ t∧τn

0
fpp(q(s), Y (s))d[M,M ]s.
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Since
∫ t∧τn
0 fp(q(s), Y (s))dM(s) is a martingale, and

d[M, M ]s =
1

2

( ∫
R

ρ(u)du
)2

ds,

this gives us that

f(q(t ∧ τn), Y (t)) − f(q0, Y (0)) −
∫ t∧τn

0
fq(q(s), Y (s)) · p(s)

M
√

1 + a−2
4 M−1p(s)2

ds

+
∫ t∧τn

0
fp(q(s), Y (s)) · 1

2

( ∫
R

ρ(u)du
)2 p(s)

M
√

1 + a−2
4 M−1p(s)2

ds

−1

4

( ∫
R

ρ(u)du
)2

∫ t∧τn

0
fpp(q(s), Y (s))ds

is a martingale for any f ∈ C∞
0 (R2). When λ → ∞, since f(q(t ∧ τn), Y (t)),

fq(q(s ∧ τn), Y (s)), fp(q(s ∧ τn), Y (s)) and fpp(q(s ∧ τn), Y (s)) have the same limits
as f(q(t∧ τn), p(t∧ τn)), fq(q(s∧ τn), p(s∧ τn)), fp(q(s∧ τn), p(s∧ τn)) and fpp(q(s∧
τn), p(s ∧ τn)), respectively, and p(s)

M
√

1+a−2
4 M−1p(s)2

converges to 1
M

p̃(s), this implies

that the limit of the distributions of {(q(t∧ τn), p(t∧ τn)); t ∈ [0, T ]} is a solution of
the martingale problem L stopped at τn.
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[3] P. Calderoni, D. Dürr, and S. Kusuoka, A mechanical model of Brownian motion
in half-space, J. Statist. Phys. 55 (1989), no. 3-4, 649–693

[4] A. De Masi, P. A. Ferrari, S. Goldstein, W. D. Wick, An invariance principle
for reversible Markov processes, Application to random environments, J. Stat.
Phys. 55 (1989), 787–855
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