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Abstract

Let ι : C2 ↪→ S be a compactification of the two dimensional complex space C2.
By making use of Nevanlinna theoretic methods and the classification of compact
complex surfaces K. Kodaira proved in 1971 ([2]) that S is a rational surface. Here
we deal with a more general meromorphic map f : Cn → X into a compact complex
manifold X of dimension n, whose differential df has generically rank n. Let ρf
denote the order of f . We will prove that if ρf < 2, then every global symmetric
holomorphic tensor must vanish; in particular, if dimX = 2 and X is kähler, then
X is a rational surface. Without the kähler condition there is no such conclusion,
as we will show by a counter-example using a Hopf surface. This may be the first
instance that the kähler or non-kähler condition makes a difference in the value
distribution theory.

2010 Mathematics Subject Classification. Primary 32H30; Secondary 14M20.
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1 Introduction and main results.

Let X be a compact hermitian manifold with metric form ω. Let f : Cn → X be a

meromorphic map (cf. [4] for this section in general). If the differential df is generically

of maximal rank, f is said to be differentiably non-degenerate. We set

(1.1) α = ddc∥z∥2

for z = (zj) ∈ Cn, where dc = i
4π

(∂̄ − ∂) and ∥z∥2 =
∑n

j=1 |zj|2. We use the notation:

B(r) = {z ∈ Cn : ∥z∥ < r}, S(r) = {z ∈ Cn : ∥z∥ = r} (r > 0).

∗Research supported in part by Grant-in-Aid for Scientific Research (A) 60218790 and SFB/TR 12
(DFG).

1



We define the order function of f with respect to ω by

(1.2) Tf (r;ω) =

∫ r

1

dt

t2n−1

∫
B(t)

f ∗ω ∧ αn−1.

Then the (upper) order is defined by

ρf = lim
r→∞

log Tf (r;ω)

log r
.

It is easy to see that ρf is independent of the choice of the metric (form ω) on X.

Example 1.3. (i) If X = Pn(C) and f is rational, then ρf = 0.

(ii) Let X be a compact torus. If f : Cn → X is non-constant, then ρf ≥ 2. If

λ : Cn → X (dimX = n) is the universal covering map, then ρλ = 2.

A compact complex manifold which is bimeromorphic to Pn(C) is called a rational

variety. A two-dimensional compact complex manifold is called a complex surface. If it

admits a kähler metric, it is called a kähler surface.

The main result of this paper is the following:

Main Theorem 1.4. Let X be a kähler surface. Assume that there is a differentiably

non-degenerate meromorphic map f : C2 → X. If ρf < 2, then X is rational.

The kähler condition is necessary by the following:

Theorem 1.5. There is a Hopf surface S for which there is a differentiably non-degenerate

holomorphic map f : C2 → S with ρf = 1.

Let Ωk
X denote the sheaf of holomorphic k-forms over a complex manifold X. We denote

by SlΩk
X its l-th symmetric tensor power. In particular, KX = Ωn

X (n = dimX) denotes

the canonical bundle over X.

The key tool for the proof of the Main Theorem 1.4 is:

Theorem 1.6. Let X be an n-dimensional compact complex manifold. Assume that

there exists a differentiably non-degenerate meromorphic map f : Cm → X (m ≥ n) with

ρf < 2. Then for arbitrary lk ≥ 0 with
∑n

k=1 lk > 0

H0(X,Sl1Ω1
X ⊗ · · · ⊗ SlnΩn

X) = {0}.

Remark 1.7. So far by our knowledge, the above theorems are the first instance that the

kähler or non-kähler condition makes a difference in the value distribution theory.
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2 Proof of the Main Theorem.

(1) Proof of Theorem 1.6. Assume the existence of an element

τ ∈ H0(X,Sl1Ω1
X ⊗ · · · ⊗ SlnΩn

X) \ {0}.

We take a hermitian metric h on X with the associated form ω. There are induced

hermitian metrics on the symmetric powers of the bundles Ωk and their tensor products

which by abuse of notation are again by denoted by h. Let ∥τ∥h denote the norm of τ

with respect to h. Then there is a constant c1 > 0 such that

(2.1) ∥τ∥h ≤ c1.

We denotes by ξλ the coefficient functions of f ∗τ with respect to the standard coordinate

system (z1, . . . , zm) on Cm. Since f is meromorphic, f ∗τ is obviously holomorphic outside

the indeterminacy set If . Because codim (If ) ≥ 2 and because f∗τ is a section in a

globally defined vector bundle, it extends holomorphically to If . Thus we may regard f ∗τ

as being holomorphic on Cn and the ξλ are holomorphic as well.

We set

(2.2) ∥f∗τ∥2
Cm =

m∑
λ=1

|ξλ|2 ̸≡ 0.

We define a function ζ on Cm by

f∗ω ∧ αm−1 = ζαm.

Since f is differentiably non-degenerate, f ∗τ ̸≡ 0. By (2.1) there are positive constants

c2 and c3 such that

(2.3) ζ ≥ c2∥f ∗τ∥2c3
Cm .

By (2.2) ∥f∗τ∥2c3
Cm is plurisubharmonic. Since f ∗τ ̸≡ 0 is holomorphic, it follows that∫

S(1)

∥f ∗τ∥2c3
Cmγ = c4 > 0,

where

(2.4) γ =
1

r2m−1
dc∥z∥2 ∧ αm−1,

induced on S(r) with r = 1. Since ∫
S(r)

∥f∗τ∥2c3
Cmγ
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is monotone increasing in r > 0, we see that∫
S(r)

∥f∗τ∥2c3
Cmdc∥z∥2 ∧ αm−1 ≥ c4r

2m−1, r > 1.

Therefore ∫
B(r)

∥f ∗τ∥2c3
Cmαm ≥ c4

2m
(r2m − 1), r > 1.

We deduce from this that

Tf (r, ω) =

∫ r

1

dt

t2m−1

∫
B(t)

ζαm ≥ c2

∫ r

1

dt

t2m−1

∫
B(t)

∥f ∗τ∥2c3
Cmαm

≥ c2c4
2m

∫ r

1

(
t− 1

t2m−1

)
dt =

c2c4
4m

r2 + Cm(r),

where C1(r) = O(log r) and Cm(r) = O(1) for m ≥ 2. Thus,

ρf = lim
r→∞

log Tf (r, ω)

log r
≥ 2.

This is a contradiction. Q.E.D.

Corollary 2.5. If X in Theorem 1.6 is 1-dimensional, then X is biholomorphic to P1(C).

(2) Proof of the Main Theorem 1.4. There is a fine classification theory of complex

surfaces (cf. Kodaira [2], Barth-Peters-Van de Ven [1]). According to it we know the

following fact, where b1(X) = dimH1(X,R) denotes the first Betti number of X.

Theorem 2.6. (Kodaira [68] Theorem 54) If a complex surface X satisfies b1(X) = 0

and H0(X,K l
X) = {0} for all l > 0, then X is rational.

This enables us to prove Theorem 1.4 as follows. By Theorem 1.6 dimH0(X,Ω1
X) =

0. Due to the kähler assumption we have b1(X) = 2 dimH0(X,Ω1
X) = 0. Moreover,

H0(X,K l
X) = {0} for all l > 0 again by Theorem 1.6. It follows from Theorem 2.6 that

X is rational. Q.E.D.

3 Proof of Theorem 1.5.

Let λ ∈ C with |λ| > 1. Then a Hopf surface S is defined as the quotient of C2 \ {(0, 0)}
under the Z-action given by n : (x, y) 7→ (λnx, λny). Such a surface S is known to be

diffeomorphic to S1 × S3. As a consequence b1(S) = 1 and S is not kähler.

Now

ω =
i

2π
· dx ∧ dx̄+ dy ∧ dȳ

|x|2 + |y|2
=
ddc||(x, y)||2

||(x, y)||2
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is a positive (1, 1)-form on C2 \{(0, 0)} which is invariant under the above given Z-action.

Therefore it induces a positive (1, 1)-form on the quotient surface S which by abuse of

notation is again denoted by ω.

Let α and γ be as in (1.1) and (2.4), respectively. We claim that the holomorphic map

f : C2 → S induced by

(z, w) 7→ (z, 1 + zw)

is of order 1. By definition this means

ρf = lim
r→∞

log Tf (r, ω)

log r
= 1,

i.e.,

lim
r→∞

1

log r
log

∫ r

1

dt

t3

∫
B(t)

f∗ω ∧ α = 1.

Note that

f ∗ω ∧ α =
1 + |z|2 + |w|2

2(|z|2 + |1 + zw|2)
α2.

We define

Ir =

∫
S(r)

r2

|z|2 + |1 + zw|2
dV, r = ∥(z, w)∥.

Here dV is the euclidean volume element on S(r), and therefore a constant multiple of

r3γ. It is sufficient to show

(3.1) Ir = O(r2+ε), ∀ε > 0, and r2 = O(Ir).

Indeed, assume that this holds. Because of limr→∞
1+r2

r2
= 1, (3.1) is equivalent to the

assertion

I ′r = O(r1+ε), and r2 = O(I ′r).

with

I ′r =

∫
S(r)

1 + r2

|z|2 + |1 + zw|2
dV.

From this we first obtain∫
B(r)

1 + r2

|z|2 + |1 + zw|2
α2 = O

(∫ r

I ′rdr

)
= O(r3+ε), ∀ε > 0,

implying

Tf (r) =
1

2

∫ r

1

dt

t3

∫
B(r)

1 + r2

|z|2 + |1 + zw|2
α2 = O(r1+ε), ∀ε > 0,

and

ρf = lim
r→infty

log Tf (r)

log r
≤ 1.
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In the same way from the second estimate of (3.1) we get the opposite estimate ρf ≥ 1,

and therefore ρf = 1. Hence it suffices to show (3.1).

We define

η =
r2

|z|2 + |1 + zw|2
.

Thus we have to show

Ir =

∫
S(r)

ηdV = O(r2+ε).

We set

η =
r2

ϕ(z, w)
, ϕ(z, w) = |z|2 + |1 + zw|2.

3.1 Geometric estimates.

For (z, w) ∈ S(r) let θ ∈ [0, 2π) such that eiθ|zw| = zw. Let K > 0, −∞ < λ < 1 and

µ ≥ 0. We set

ΩK,λ,µ = {(z, w) ∈ S(r) : |z| ≤ Krλ, | sin θ| ≤ r−µ}.

We need some volume estimates.

First we note that (sin θ)/θ ≥ 2/π for all θ ∈ [0, π/2], because sin is concave on [0, π/2].

It follows that for every C ∈]0, 1] we have the following bound for the Lebesgue measure:

(3.2) vol ({θ ∈ [0, 2π] : | sin θ| ≤ C}) ≤ 4(Cπ/2) = 2Cπ.

Second we define a map ζ : C2 → C × R2 as follows:

ζ : (z, w) 7→ (z, r arg(zw), r),

where r = ||(z, w)|| =
√
|z|2 + |w|2.

An explicit calculation shows that the Jacobian of this map (where defined) is constant

with value “−1”. Furthermore the gradient grad(r) is of length one and normal on the

level set S(r). Correspondingly the map ζ is volume preserving and S(r) has the same

volume as its image

(3.3) ζ(S(r)) = {z ∈ C : |z| ≤ r} × [0, 2πr) × {r},

namely 2π2r3.

Similarly the euclidean volume of ΩK,λ,µ agrees with the euclidean volume of

ζ(ΩK,λ,µ) = {z ∈ C : |z| ≤ Krλ} × {θr : θ ∈ [0, 2π), | sin θ| ≤ r−µ} × {r}
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Using (3.2) it follows that for r ≥ 1 the volume of ΩK,λ,µ is bounded by

π
(
Krλ

)2 · 2r−µπr = 2K2π2r2λ+1−µ.

In particular,

(3.4) vol(ΩK,λ,µ) = O(r2λ+1−µ).

3.2 Arithmetic estimates.

Besides the Landau O-symbols we also use the notation “&”: If f, g are functions of a

real parameter r, then f(r) & g(r) indicates that

lim inf
r→+∞

f(r)

g(r)
≥ 1.

Similarly f ∼ g indicates

lim
r→+∞

f(r)

g(r)
= 1.

In the sequel, we will work with domains Ω ⊂ S(r) (i.e. for each r > 0 some subset

Ω = Ωr ⊂ S(r) is chosen). In this context, given functions f , g on C2 we say “f(z, w) &
g(z, w) holds on Ω” if for every sequence (zn, wn) ∈ C2 with lim ||(zn, wn)|| = +∞ and

(zn, wn) ∈ Ωr (r = ||(zn, wn)||) we have

lim inf
n→∞

f(zn, wn)

g(zn, wn)
≥ 1.

We develop some estimates for ϕ(z, w) = |z|2 + |1 + zw|2. Fix µ > 0, −∞ < λ < 1.

(i ) For all z, w: ϕ ≥ |z|2.

(ii ) If (z, w) ∈ S(r) and |z| ≤ 1
2r

, then

|w| ≤ r =⇒ |zw| ≤ 1

2
=⇒ |1 + zw| ≥ 1

2

and therefore ϕ ≥ 1
4
.

(iii ) For |z| ≤ rλ we have |w| ∼ r, i.e., for fixed λ, µ and any choice of (zr, wr) ∈ S(r)

with |zr| ≤ rλ we have limr→∞ |wr|/r = 1.

(iv ) For |z| ≥ 3
2r

and |z| ≤ rλ we have that ϕ & 1
9
|zw|2, because |w| ∼ r and |zw| & 3

2

(equivalently, 1 . 2
3
|zw|), implying |1 + zw| ≥ |zw| − 1 & 1

3
|zw|.

(v ) For all z, w, ϕ ≥ |ℑ(1 + zw)|2 = (|zw| sin θ)2.
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3.3 Putting things together.

We are going to prove first the claim

“I(r) = O(r2+ε), ∀ε > 0′′

by dividing S(r) into regions A, B, C, D−2, D−1, D0, D1, E, F , each of which is investi-

gated separately.

• Region A consists of those points with |z| ≤ 1
2r

, i.e., A = Ω 1
2
,−1,0. The volume vol(A)

is thus of order O(r−1) Due to (ii) the integrand η is bounded by η|A = O(r2). It

follows that ∫
A

η dV ≤ vol(A) · sup
(z,w)∈A

η(z, w) = O(r).

Hence the contribution of A to the integral Ir =
∫
S(r)

η dV is bounded by O(r).

• Region B consists of those points with 1
2r

≤ |z| ≤ 3
2r

and | sin θ| < 1
r
. Thus

B ⊂ Ω3/2,−1,1. Due to (3.4) this implies vol(B) = O(r−2). For the integrand η|B we

have the bound η|B = O(r4) (using (i) and |z| ≥ 1
2r

). Hence∫
B

η dV ≤ vol(B) · sup
(z,w)∈B

η(z, w) = O(r2);

i.e., the contribution of B to the integral Ir is bounded by O(r2).

• Region C consists of those points with 1
2r

≤ |z| ≤ 3
2r

and | sin θ| > 1
r
. Since |w| ∼ r,

1
2

. |zw| . 3
2

We take the volume-compatible parameter ψ = rθ due to (3.3). Then
1
r
<

∣∣sin ψ
r

∣∣ < ψ
r
, and so ψ > 1. Therefore

Jr :=

∫
1<ψ<2πr, |sin ψ

r |> 1
r

η dψ =

∫
1<ψ<2πr, |sin ψ

r |> 1
r

2r2(
sin ψ

r

)2dψ = O(r4).

Here in fact we have that there is a constant c > 1 such that

r4

c
≤ Jr ≤ cr4.

Therefore it follows that

(3.5)
r2

c′
≤

∫
C

η dV =

∫
1
2r

≤|z|≤ 3
2r

Jr
i

2
dz ∧ dz̄ ≤ c′r2,

where c′ is a positive constant. Thus the contribution of C to the integral Ir is

bounded by O(r2).
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• For γ ∈ {−2,−1, 0, 1} letDγ denote the set of those points where |z| ≥ 3
2r

, |z| ≤ r1−ε

and r
γ
2 ≤ |z| ≤ r

γ+1
2 . For each γ the integrand η is bounded on Dγ by O(r−γ) (due

to (iv)), and the volume vol(Dγ) is bounded by O(r2+γ), because Dγ ⊂ Ω1, γ+1
2
,0.

Thus the contribution of Dγ to the integral Ir is bounded by O(r2).

• Let E denote the region where |z| ≥ r1−ε, |w| ≥ r
1
2 . For the integrand we have that

η|E = O(r2ε−1) (using (iv)). The volume of E is bounded by the total volume of

S(r), i.e., vol(E) = O(r3). Together this shows that the contribution of E to Ir is

bounded by O(r2+2ε).

• Let F denote the region where |w| ≤ r
1
2 . In analogy to (iii) we have |z| ∼ r. With

(i) it follows that sup(z,w)∈F η(z, w) = O(1). On the other hand the volume of F

agrees with the volume of {(z, w) ∈ S(r) : |z| ≤ r
1
2} which according to (3.4) is

bounded by O(r2). Together this yields that the contribution of F to Ir is bounded

by O(r2).

Thus we have a collection of nine regions (A, B, C, D−2, D−1, D0, D1, E, F ) covering

the sphere S(r). For each such region Ω we have verified∫
Ω

η dV = O(r2+ε), ε > 0.

This establishes our claim

Ir = O(r2+ε), ε > 0.

Furthermore, it follows from (3.5) that

r2 = O(Ir).

As a consequence, the holomorphic map f : C2 → S induced by f : (z, w) 7→ (z, 1 + zw)

is of order ρf = 1. Q.E.D.

4 Problems.

Because of the results presented above it may be interesting to recall some problems

(conjectures) from [3], §1.4. An n-dimensional compact complex manifold X is said to

be unirational if there is a surjective meromorphic map ϕ : Pn(C) → X; in this case, if

g : Cn → Pn(C) is a differentiably non-degenerate meromorphic map with order ρg < 2,

then ϕ ◦ g : Cn → X is differentiably non-degenerate and has order less than two.

Therefore, the rationality and the unirationality of X cannot be distinguished by the

existence of a differentiably non-degenerate meromorphic map f : Cn → X with ρf < 2.
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Problem 4.1. Let X be a compact kähler manifold of dimension n. If there is a differen-

tiably non-degenerate meromorphic map f : Cn → X with order ρf < 2, is X unirational?

At least this is true for dimX ≤ 2 by Corollary 2.5 and the Main Theorem 1.4.

Problem 4.2. Let f : C → X be a non-constant entire curve into a projective (or kähler)

manifold X. If ρf < 2, then does X contain a rational curve?
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