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Abstract. The fictitious domain method with H1-penalty for elliptic

problems is considered. We propose a new way to derive the sharp error

estimates between the solutions of original elliptic problems and their
H1-penalty problems. We find our method of analysis is applicable to

parabolic problems while retaining the sharpness of the error estimates.
We also prove some regularity theorems for H1-penalty problems. The

P1 finite element approximation to H1-penalty problems is investigated.

We study error estimates between the solutions of H1-penalty problems
and discrete problems in H1 norm, as well as in L2 norm, which is not

currently found in the literature. Thanks to regularity theorems, we

can simplify the analysis of error estimates. Due to the integration on
a curved domain, the discrete problem is not suitable for computation

directly. Hence an approximation of the discrete problem is necessary.

We provide an approximation scheme for the discrete problem and derive
its error estimates. The validity of theoretical results is confirmed by

numerical examples.

1. Introduction

The principle of the fictitious domain method is to solve the problem in a
larger domain (the fictitious domain) containing the domain of interest with
a very simple shape. Then, the fictitious domain is discretized by a uniform
mesh, independent of the original boundary. The advantage of this approach
is that we can avoid the time-consuming construction of a boundary-fitted
mesh. One of these approaches is the penalty fictitious domain method which
is based on a reformulation of the original problem in the fictitious domain
by using a penalty parameter( see [2] for an introduction of other kinds of
fictitious domain methods). In this article, we consider only the fictitious
domain method with penalty. Obviously, the fictitious domain method is
of use for time-dependent moving-boundary problems. Although there ex-
ist some ways to derive the sharp error estimates for elliptic problems( cf.
[10, 15, 16]), it seems none of them has been applied to parabolic problem
such that the sharpness of the error estimates are maintained. Our motivation
lies in the study of the penalty fictitious domain method which can be ap-
plied to these time-dependent moving-boundary problems. This is of obvious
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importance, and it seems that little is known in this direction. The fictitious
domain method with penalty for parabolic problem firstly appeared in [8] to
prove the existence of the solution for parabolic problem in time-dependent
domain. Then, in [9], the convergence and finite difference approximation is
given, but without error estimates. The H1-penalty parabolic problem equals
to a special interface problem, and in [1] the error estimate for elliptic and
parabolic interface problem is studied. However, it is not so suitable to the
H1-penalty problem, and still, is only for time-independent domain when con-
sidering parabolic interface paroblem. As a primary step towards this final
end, herein we examine some new methods of error analysis for elliptic prob-
lems that can be easily applied to parabolic problems while maintaining the
sharpness of the error estimates. This is the purpose of this paper.

In order to illustrate our results, we consider the Dirichlet boundary value
problem for the Poisson equation. The weak form (Q) reads as

(1.1)

{
Find u ∈ H1

0 (Ω) such that

(∇u,∇v)Ω = (f, v)Ω, ∀v ∈ H1
0 (Ω),

where Ω ⊂ R2 denotes a smooth bounded domain, (·, ·)Ω is the inner product
of L2(Ω) and f ∈ L2(Ω). We can find a rectangular domain D ⊃ Ω, Ω1 =
D\Ω, and turn to solve the H1-penalty problem (Qε) with penalty coefficient
0 < ε� 1,

(1.2)


Find uε ∈ H1

0 (D) such that

(∇uε,∇v)Ω +
1

ε
(∇uε,∇v)Ω1

= (f̃ , v)D, ∀v ∈ H1
0 (D),

where f̃ is the zero extension of f into D.
Another example of applying the fictitious domain method with penalty to

(1.1) is,

(∇uε,∇v)Ω +
1

ε
(uε, v)Ω1

= (f̃ , v), ∀v ∈ H1
0 (D),

which we call the L2-penalty problem. This is of interest; however, the L2-
penalty problem is beyond the scope of this paper, in which we shall concen-
trate our attention to the H1-penalty problem.

The error ‖uε − u‖1,Ω( ‖ · ‖1,Ω = ‖ · ‖0,Ω + | · |1,Ω) has been analyzed by
many authors, where ‖ · ‖1,Ω is the H1(Ω) norm. In [9], it is bounded by
C
√
ε (C is some constant, so as in the following), and in [10, 15, 16] the sharp

estimate Cε is achieved. In this paper, we give a new way to derive the sharp
estimate. Moreover, we present some regularity analysis of uε, which is useful
for studying the H1 and L2 error between the solutions of H1 problem (Qε)
and its discrete problem, which is denoted as (Qε,h).

A Cartesian mesh can be introduced to the rectangular domain D to get a
uniformed triangulation Th, h is the maximum diameter of the triangles of Th.
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Vh(D) is the subspace of all piecewise linear continuous functions subordinate
to Th. Then (Qε,h) reads as:

(1.3)


Find uε,h ∈ Vh(D) such that

(∇uε,h,∇vh)Ω +
1

ε
(∇uε,h,∇vh)Ω1

= (f̃ , vh)D, ∀vh ∈ Vh(D).

In the literature, there are several works devoted to the study of the H1 error
between uε,h and uε in Ω. For example, in [16], it is proved that the H1 error

is bounded by C(ε+ ε
√
h+h

√
ε+
√
h). In our work, we prove a similar result

with the analysis with a much simpler method of the analysis. The analysis
of [16] is to consider the estimate of uε,h−u0−εu1 to derive the final estimate
of uε − uε,h, where u0 is the zero extension of u, and u1 is the solution of
problem:

−∆u1 = 0 in Ω1,
∂u1

∂n−
=
∂u0

∂n
, and u1 = 0 on ∂D.

Here, n is the unit outward normal to Γ viewed as a boundary of Ω, and n−

is opposite to n. We found the analysis in [16] to be complicated and not
directly. Our method for estimating of uε − uε,h is simpler, which is to find
some interpolation of uε, denoted as vh, and then estimate uε− vh by using a
regularity theorem of (Qε).

Moreover, we show the L2 error is bounded by C(ε+ h+
√
εh). A similar

result of H1 error for the elliptic problem in a specific domain is given in [10].
In discrete problem (Qε,h), we notice that we have to calculate the inner-

product in a curved domain, for example, (∇uε,h,∇vh)Ω. So the discrete
problem cannot be directly computed. We find that few prior works have
provided a sufficient discussion on this issue; however, it is necessary to give
an approximation scheme for solving (Qε,h) and the associated error estimates
when applying the finite element method to computation.

Herein, we present an approximation scheme, that is, instead of solving
(Qε,h) we solve some problem (Q̂ε,h) approximating to (Qε,h). (Q̂ε,h) reads
as:

(1.4)


Find ûε,h ∈ Vh(D) such that

(∇ûε,h,∇vh)Ω̂ +
1

ε
(∇ûε,h,∇vh)Ω̂1

= (fh, vh)D, ∀vh ∈ Vh(D),

where Ω̂ is a polygon approximating to Ω, with Ω̂ ⊂ Ω, fh is some interpolation
of f̃ . With assumptions that ‖fh − f‖0,D ≤ Ch, Ω̂ is convex and (Ω̂\Ω) ∪
(Ω\Ω̂) ⊂ Γδ, δ = O(h2), where Γδ = {x ∈ R2 | dist(x,Γ = ∂Ω) ≤ δ}, we find
that the error ûε,h − uε,h is bounded by Ch in H1 norm.

In above, we have restricted our attention to Dirichlet boundary problem.
For Neumann and mixed boundary problems we also consider the approxima-
tion of H1-penalty problems. Further, for Neumann boundary problem, the
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discrete problem is investigated. Although some results we obtain are similar
to those of [16], as we mentioned in the beginning, our work is focus on solving
parabolic problems with time-dependent domain, and all methods of analysis
are applicable to this class of problems.

The rest of this paper is organized as follows. The H1-penalty problems for
original problems with Dirichlet, Neumann, and mixed boundaries are given
in Section 2, as well as the analysis of error estimates between the solutions
of original problems and H1-penalty problems, in a different way from that
in [10, 15].

In Section 3, we present some regularity theorems for H1-penalty problems.
The H1-penalty problem is in a sense equivalent to a kind of interface problem.
The regularity theorem for the interface problem has been studied in [12].
However, we make several improvements in priori estimates and identify some
higher-order regularity for our problems. The theorems will be used in Section
4 to make the error estimate more simple than that of [16].

The Section 4 is devoted to discrete problems. Finite element approxima-
tions are investigated. Using the same separation method of the triangulated
domain as in [16], regularity theorems in Section 3 and some lemmas from
[3, 13], we obtain the error estimates in H1 norm with the same order as in
[10, 16]. Moreover, we give the higher-order L2 norm error estimates.

We consider a scheme approximating to the discrete problem in Section 5.
We introduce a new discrete problem (Q̂ε,h) to approximate to the discrete
problem (Qε,h). Of necessity, due to insufficient prior reported works on this
issue in the literature, we derive some error estimates of the scheme to make
the numerical analysis of the fictitious domain method with H1-penalty more
complete.

Finally, we give some numerical experiments to verify our theoretical results
in Section 6.

2. H1-penalty problems of fictitious domain method for elliptic
problems

Following the notation given in the previous section, we state the H1-
penalty problem for the original elliptic problem with homogeneous Dirichlet,
Neumann and mixed boundary conditions. In addition, we write Γ = ∂Ω.

2.1. Dirichlet boundary value problem. First, we consider the Dirichlet
boundary value problem (1.1) and its H1-penalty problem (1.2).

Theorem 2.1. There exist unique solutions u and uε for (1.1) and (1.2),
respectively, and we have the following estimates:

(2.1) ‖uε − u‖1,Ω ≤ Cε,

(2.2) ‖uε‖1,Ω1
≤ Cε.
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Those error estimates themselves are not new: they have been stated in
[10] and [15]. The main process to prove those estimates in [10] and [15]
are different( see Remark 3 below). We shall give a somewhat new proof
which will be used for parabolic problems. Before stating that, we recall the
well-known extension and trace theorems that we frequently use.

Lemma 2.2. (Theorem 8.1 of Chapter 1 in [7]) Let ω ⊂ R2 be a bounded
domain with the smooth boundary ∂ω. Then, for any integer k > 0, there
exists an operator Ek(ω) : Hk(ω)→ Hk(R2) with the properties

Ek(ω)u = u a.e. on ω (u ∈ Hk(ω)),

‖Ek(ω)u‖Hk(R2) ≤ Ck‖u‖Hk(ω) (u ∈ Hk(ω)),

with a domain constant Ck > 0.

The following lemma is a readily obtainable consequence of Theorem 8.3
of Chapter 1 in [7].

Lemma 2.3. Let ω ⊂ R2 be a bounded domain. Assume that the boundary ∂ω
consists of two disjoint and smooth components ∂ω1 and ∂ω2; ∂ω = ∂ω1∪∂ω2.
Then, the mapping u 7→ u|∂ω1

of C∞(ω)→ C∞(∂ω1) is extended by continuity
to a continuous linear mapping, which is called the trace operator and denoted
by γ(ω, ∂ω1), of H1(ω) → H

1
2 (∂ω1). This mapping is surjective and there

exists a continuous linear right inverse, which is called the lifting operator,
g 7→ γ(ω, ∂ω1)−1g of H

1
2 (∂ω1) → H1(ω) such that γ(ω, ∂ω1)γ(ω, ∂ω1)−1g =

g.

Remark 1. In view of Lemma 2.2, there exists an operator E1,0(Ω) : H1(Ω)→
H1

0 (D) with properties:

E1,0(Ω)u = u a.e. in Ω (u ∈ H1(Ω)),

‖E1,0(Ω)u‖H1(D) ≤ C‖u‖H1(Ω) (u ∈ H1(Ω)).

In fact, taking φ ∈ C∞0 (D) with 0 ≤ φ ≤ 1 and φ = 1 in Ω′, where Ω ⊂ Ω′ ⊂ D,
then the desired operator is defined as E1,0(Ω)u = φ ·E1(Ω)u for u ∈ H1(Ω).

Now, we can state the following proof.

Proof of Theorem 2.1. Firstly, by the Lax-Milgram Theorem, the unique ex-
istence of u and uε is obvious. And we can obtain the estimate for the solution
of the H1-penalty problem (1.2),

‖uε‖1,D ≤ C‖f‖0inf(1,
1

ε
).

Without loss of generality, we assume 0 < ε ≤ 1 in what follows. Substituting
v = E1,0(Ω1)uε ∈ H1

0 (D) into (1.2), we obtain

ε(∇uε, v)Ω + ‖∇uε‖20,Ω1
= ε(f̃ , v)D,
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which leads to an estimate of uε|Ω1
, in particular,

C1‖uε‖21,Ω1
≤ ‖∇uε‖20,Ω1

≤ Cε‖f‖0‖v‖1 + ε|uε|1,Ω|v|1,Ω.

Therein, the first inequality is deduced by Friedrichs’ inequality, and the
second term of the right-hand side is bounded by C2ε‖f‖0‖uε‖1,Ω1

. Thus we
have

‖uε‖1,Ω1
≤ Cε.

Next, we consider the trace operators

γ(Ω,Γ) : H1(Ω)→ H
1
2 (Γ); γ(Ω1,Γ) : H1(Ω1)→ H

1
2 (Γ).

Since uε ∈ H1(D), we have γ(Ω,Γ)uε = γ(Ω1,Γ)uε ∈ H
1
2 (Γ). Hence,

γ(Ω,Γ)(u− uε) = γ(Ω,Γ)u− γ(Ω,Γ)uε = 0− γ(Ω1,Γ)uε.

Setting w = u− uε|Ω, we have

‖γ(Ω,Γ)w‖ 1
2 ,Γ

= ‖γ(Ω1,Γ)uε‖ 1
2 ,Γ
≤ C‖uε‖1,Ω1

≤ Cε.

We define an operatorA : H1(Ω)→ H−1(Ω) by 〈Au, v〉 = (∇u,∇v)Ω, ∀v ∈
H1

0 (Ω). We observe that for any v ∈ H1
0 (Ω),

〈Aw, v〉 = (∇u,∇v)Ω − (∇uε,∇v)Ω = (∇u,∇v)Ω − (∇uε,∇ṽ)Ω

= (f, v)Ω − (f̃ , ṽ)D +
1

ε
(∇uε,∇ṽ)Ω1

= (f, v)Ω − (f, v)Ω +
1

ε
(∇uε, 0)Ω1 = 0,

where ṽ means the zero extension of v into D. This implies Aw = 0 in H−1(Ω).
Since w → {Aw, γ(Ω,Γ)w} is an isomorphic map of H1(Ω) → H−1(Ω) ×

H
1
2 (Γ), we obtain that

‖u− uε‖1,Ω = ‖w‖1,Ω ≤ C(‖Aw‖H−1(Ω) + ‖γ(Ω,Γ)w‖ 1
2 ,Γ

) ≤ C(0 +Cε) ≤ Cε,

which completes the proof. �

Remark 2. The conclusion of Theorem 2.1 remains valid even for f ∈ H−1(Ω).

Remark 3. The saddle-point method in [10] requires a symmetric variational
form, and the operator method in [15] is not so easy to deal with the op-
erator of time-derivative when one considers parabolic problems. However,
our method of analysis is applicable to parabolic problems; this is a recent
achievement, and will be presented in our future work.
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2.2. Neumann boundary value problem. The original problem (Q) with
homogeneous Neumann boundary condition reads as:

(2.3)

{
Find u ∈ H1(Ω) such that

(u, v)1,Ω = (f, v)Ω, ∀v ∈ H1(Ω),

where (u, v)1,Ω := (∇u,∇v)Ω + (u, v)Ω.
The H1-penalty problem (Qε) reads as:

(2.4)

{
Find uε ∈ H1

0 (D) such that

(uε, v)1,Ω + ε(∇uε,∇v)Ω1
= (f̃ , v)D, ∀v ∈ H1

0 (D).

Theorem 2.4. There exist unique solutions u and uε for (2.3) and (2.4),
respectively, and we have the following estimates:

(2.5) ‖uε − u‖1,Ω ≤ Cε,

(2.6) ‖uε‖1,Ω1 ≤ C.

Proof. Firstly, substituting v = uε into (2.4), we obtain

‖uε‖21,Ω + ε‖∇uε‖2Ω1
= (f, uε)Ω.

This gives
‖uε‖1,Ω ≤ C‖f‖Ω.

Since v ∈ H1
0 (D) implies v|Ω ∈ H1(Ω), subtracting (2.3) from (2.4), we have

(2.7) (uε − u, v)1,Ω + ε(∇uε,∇v)Ω1
= 0, ∀v ∈ H1

0 (D).

Setting v = uε − E1,0(Ω)uε in (2.7), and noticing that v|Ω = 0, we have

(uε − u, 0)1,Ω + ε(∇uε,∇(uε − E1,0(Ω)uε)).

And we see that

‖∇uε‖2Ω1
= (∇uε,∇E1,0(Ω)uε))Ω1

≤‖∇uε‖Ω1
‖∇E1,0(Ω)uε)‖Ω1

≤ ‖∇uε‖Ω1
‖E1,0(Ω)uε)‖1,D

≤C‖∇uε‖Ω1
‖uε‖1,Ω ≤ C‖∇uε‖Ω1

‖f‖Ω.
Together with Friedrichs’ inequality, we have

‖uε‖1,Ω1
≤ C‖∇uε‖Ω1

≤ C‖f‖Ω.
Thus, we proved (2.6).

In order to derive (2.5), we substitute v = E1,0(Ω)(uε|Ω − u) ∈ H1
0 (D) in

(2.7). Then, together with (2.6), we have

‖uε − u‖21,Ω = −ε(∇uε,∇v1)Ω1
≤ Cε|v1|1,Ω1

≤ C1ε‖uε|Ω − u‖1,Ω,
which implies (2.5). We complete the proof. �

Remark 4. Recall Remark 3 again. It should be noticed that our analysis
method is much simpler than that in [10, 15].
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2.3. Mixed boundary value problem. Let Γ = Γ1 ∪ Γ2, Γ1 ∩ Γ2 = ∅.
The domian D\Ω is assumed to be split into two part Ω1 and Ω2, which
respectively share the boundaries Γ1 and Γ2 with Ω. In addition both share
non-empty measure boundary with D( see Figure 3). Set

V = {u ∈ H1(Ω) | γ(Ω,Γ1)u = 0}.

The original problem (Q) with homogeneous mixed boundary is stated as:

(2.8)

{
Find u ∈ V such that

(∇u,∇v)Ω = (f, v)Ω, ∀v ∈ V.

The H1-penalty problem (Qε) reads as:

(2.9)


Find uε ∈ H1

0 (D) such that

(∇uε,∇v)Ω +
1

ε
(∇uε,∇v)Ω1

+ε(∇uε,∇v)Ω2
= (f̃ , v), ∀v ∈ H1

0 (D).

Theorem 2.5. There exist unique solutions u and uε for (2.8) and (2.9),
respectively, and we have the following estimates:

(2.10) ‖uε − u‖1,Ω ≤ Cε,

(2.11) ‖uε‖1,Ω1
≤ Cε,

(2.12) ‖uε‖1,Ω2
≤ C.

Proof. The following results have already been achieved( Theorem I-8 in [9]):

(2.13) uε|Ω → u in H1(Ω);

(2.14)
uε|Ω1√

ε
→ 0 in H1(Ω1);

(2.15)
√
εuε|Ω2

→ 0 in H1(Ω2),

as ε → 0. Noting Ω∗ = Ω ∪ Ω1 ∪ Γ1, we set v = uε − E1,0(Ω∗)uε ∈ H1
0 (D).

From (2.13) and (2.14), we have

(2.16) ‖E1,0(Ω∗)uε‖1,D ≤ C‖uε‖1,Ω∗ ≤ C.

We find that v|Ω∗ = 0 and substitute this v into (2.9) to obtain

ε(∇uε,∇v)Ω2
= 0.

This gives

|uε|21,Ω2
= (∇uε,∇E1,0(Ω∗)uε)Ω2

≤ |uε|1,Ω‖E1,0(Ω∗)uε‖1,D.

Combining with ‖uε‖1,Ω2
≤ C|uε|1,Ω2

and (2.16), it shows (2.12).
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Substitueting v = E1,0(Ω1)uε into (2.9), we have

(∇uε,∇E1,0(Ω1)uε)Ω+
1

ε
‖∇uε‖2Ω1

+ε(∇uε,∇E1,0(Ω1)uε)Ω2
= (f̃ , E1,0(Ω1)uε),

from which we obtain that

‖uε‖21,Ω1
≤ C|uε|21,Ω1

=C
(
ε(∇uε,∇E1,0(Ω1)uε)Ω + ε2(∇uε.∇E1,0(Ω1)uε)Ω2

+ ε(f̃ , E1,0(Ω1)uε)
)

≤Cε(‖f‖Ω + |uε|1,Ω + ε|uε|1,Ω2)‖E1,0(Ω1)uε‖1,D ≤ Cε‖uε‖1,Ω1 ,

which implies (2.11).
Setting w = uε|Ω − u, we have γ(Ω,Γ1)w = γ(Ω,Γ1)uε − 0 = γ(Ω1,Γ1)uε,

which shows

‖γ(Ω,Γ1)w‖ 1
2 ,Γ1
≤ C‖uε‖1,Ω1 ≤ Cε.

Applying Lemma 2.3, there exists w1 = γ(Ω,Γ1)−1γ(Ω,Γ1)w ∈ H1(Ω), satis-
fying

‖w1‖1,Ω ≤ C‖γ(Ω,Γ1)w‖ 1
2 ,Γ1
≤ Cε.

Next, we define a continuous operator A : V → V ′( V ′ is the dual space of
V ) by 〈Aφ, v〉 = (∇φ,∇v)Ω, φ ∈ V, ∀v ∈ V. Applying Friedrichs’ inequality,
we have

(∇v,∇v)Ω = |v|21,Ω ≥ C‖v‖21,Ω = ‖v‖2V .
Hence, the bilinear form a(φ, v) on V × V defined by a(φ, v) = 〈Aφ, v〉 is
V -elliptic. It follows from the Lax-Milgram theorem that

‖w − w1‖V ≤ C‖A(w − w1)‖V ′ ≤ C(‖Aw‖V ′ + ‖Aw1‖V ′).
As ‖uε − u‖1,Ω = ‖w‖V ≤ ‖w − w1‖V + ‖w1‖V ≤ ‖w − w1‖V + Cε, to
prove (2.10) we need to show that ‖w − w1‖V ≤ Cε, where we already know
‖Aw1‖V ′ ≤ C‖w1‖1,Ω ≤ Cε by the continuity of A. To estimate ‖Aw‖V ′ , we
observe that ∀v ∈ V, v̄ = E1,0(Ω)v ∈ H1

0 (D) with E1,0(Ω)v|Ω1 = 0,

〈Aw, v〉 = (∇uε,∇v)Ω − (∇u,∇v)Ω = (∇uε,∇v̄)Ω − (∇u,∇v)Ω

= (f̃ , v̄)D −
1

ε
(∇uε,∇v̄)Ω1

− ε(∇uε,∇v̄)Ω2
− (f, v)Ω

= (f, v)Ω −
1

ε
(∇uε, 0)Ω1

− ε(∇uε,∇v̄)Ω2
− (f, v)Ω

≤ ε|uε|1,Ω2
|v̄|1,Ω2

≤ Cε‖v‖1,Ω,

that is ‖Aw‖V ′ ≤ Cε. Thus, we have ‖w −w1‖V ≤ C(‖Aw‖V ′ + ‖Aw1‖V ′) ≤
Cε, and the proof is completed. �

Remark 5. Basically, the proof for the mixed boundary case is a combination
of those for the Dirichlet and Neumann boundary cases.
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Remark 6. All of the above in this section, which involve homogeneous bound-
ary conditions are also suitable for the non-homogeneous boundary value prob-
lems.

3. The regularity of the solutions of H1-penalty problems

This section is devoted to the regularity theorems for (Qε) with homoge-
neous Dirichlet, Neumann, and mixed boundary conditions respectively. As
it is shown in [9], these (Qε) are equal to certain interface elliptic problems,
denoted as (Pε). There are some regularity theorems for the interface elliptic
problems in the literature( see [1, 12] for example), however, these are not
specific to our problems. Our particular objective is to deduce explicit de-
pendence of various norms of uε on the penalty parameter ε. We show some
estimates which are only suitable for our problems, as well as some higher-
order regularity which will be used in the study of the H1-penalty parabolic
problem.

3.1. Dirichlet boundary value problem. As a first step, let us assume D
is sufficiently smooth. Then, we have the following theorem.

Theorem 3.1. Let uε ∈ H1
0 (D) be the solution of the H1-penalty problem

(1.2) for f ∈ L2(Ω). Then, we have

uε|Ω ∈ H2(Ω), uε|Ω1
∈ H2(Ω1),

(3.1) ‖uε‖2,Ω ≤ C‖f‖0,Ω,

(3.2) ‖uε‖2,Ω1
≤ Cε‖f‖0,Ω.

First, we recall the following basic regularity result:

Lemma 3.2. Let ω ⊂ R2 be a bounded domain. Assume that the boundary ∂ω
is divided into two disjoint smooth components ∂ω1 and ∂ω2; ∂ω = ∂ω1∪∂ω2.
Let v ∈ H1(ω) be the unique weak solution of

∆v = f in ω, v = g1 on ∂ω1,
∂v

∂n
= g2 on ∂w2,

where f ∈ L2(ω), g1 ∈ H
1
2 (∂ω1) and g2 ∈ L2(∂ω2).

Then, if g1 ∈ H
3
2 (∂ω1) and g2 ∈ H

1
2 (∂ω2), we have v ∈ H2(ω) and

‖v‖2,ω ≤ C(‖f‖ω + ‖g1‖
H

3
2 (∂ω1)

+ ‖g2‖
H

1
2 (∂ω2)

).
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Before the proof, we see that, by applying Green’s formula, (1.2) is equiv-
alent to (Pε), which reads as:

(3.3)



Find uε ∈ H1
0 (D) such that

−∆uε = f in Ω,

∆uε = 0 in Ω1,

∂uε
∂n

∣∣∣∣
Γ,Ω

=
1

ε

∂uε
∂n

∣∣∣∣
Γ,Ω1

,

where, for example,

∂uε
∂n

∣∣∣∣
Γ,Ω

= (γ(Ω,Γ)∇uε) · n.

From (Pε), we see that, if we have uε|Ω ∈ H2(Ω) with ‖uε‖2,Ω ≤ C, then
we have

∂uε
∂n

∣∣∣∣
Γ,Ω1

= ε
∂uε
∂n

∣∣∣∣
Γ,Ω

∈ H 1
2 (Γ).

Moreover, according to the trace theorem, we have∥∥∥∥∂uε∂n

∥∥∥∥
1
2 ,Ω1

≤ C‖uε‖2,Ω ≤ C.

Then, applying Lemma 3.2, we obtain

‖uε‖2,Ω1
≤ C

‖0‖Ω + ‖0‖
H

3
2 (∂D)

+

∥∥∥∥∥ ∂uε∂n

∣∣∣∣
Γ,Ω1

∥∥∥∥∥
1
2 ,Γ


= C

∥∥∥∥∥ε ∂uε∂n

∣∣∣∣
Γ,Ω

∥∥∥∥∥
1
2 ,Γ

≤ Cε.

Now, we can state the following proof.

Proof of Theorem 3.1. From the discussion above, we only need to show that
uε|Ω ∈ H2(Ω) and ‖uε‖2,Ω ≤ C. This is a well-known result; however, we
want to present a brief proof here, because we will show that, by a slight
change of this process, we can obtain a higher-order regularity, with smoother
assumptions on f .

There exist {Uj}Nj=1, Uj ∈ R2, Φj ∈ C∞(R2;R2), with Ψj = Φ−1
j , j =

1, 2, . . . , N.

Ω ⊂ ∪Nj=1Φj(Uj) ⊂ D. Uj0 := Ψj(Φj(Uj) ∩ Ω) = R2
+ ∩ Uj ,

Uj1 := Ψj(Φj(Uj) ∩ Ω1) = R2
− ∩ Uj , j = 1, 2, . . . , N.
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And also, there exists θj ∈ C∞0 (Ω) with supp θj ⊂ Φj(Uj), j = 1, 2, . . . , N,
with

N∑
j=1

θj = 1, on Ω.

Hence, (θjuε)◦Φj ∈ H1
0 (Uj), j = 1, 2, . . . , N.Now we write U, U1, U0, Φ, Ψ, θ

instead of Uj , Uj1 , Uj0 , Φj , Ψ, θj . Setting u2 := (θjuε) ◦ Φj , we investigate
u2 in the H2 space for two cases.

(1)The case U1 = ∅. We find u1 := θuε satisfies

(∇u1,∇v)Ω = (θf −∇uε∇θ −∇(uε∇θ), v), ∀v ∈ H1
0 (Ω).

Since (θf −∇uε∇θ −∇(uε∇θ))|Ω ∈ L2(Ω), obviously, we have

u1|Ω ∈ H2(Ω), ‖u1‖2 ≤ C.

So, u2 ∈ H2(U) and ‖u2‖2,U ≤ C.
(2)The case U0 6= ∅, and U1 6= ∅. Writing Di = ∂

∂xi
, (i = 1, 2), we have

u2 ∈ H1
0 (U) satisfies

2∑
i,j=1

∫
U0

aijDiu2Djvdx+
1

ε

2∑
i,j=1

∫
U1

aijDiu2Djvdx

−
∫
U0

(uε∇θ) ◦ Φ∇v∇Ψ|DΦ|dx− 1

ε

∫
U1

(uε∇θ) ◦ Φ∇v∇Ψ|DΦ|dx

=(f1 ◦ Φ|DΦ|, v), ∀v ∈ H1
0 (U),

where

aij = (

2∑
k=1

DkψiDkψj) ◦ Φ|DΦ|, i, j = 1, 2, Ψ = (ψ1, ψ2).

Let ũ2 be the zero extension of u2 onto R2. Substituting ing

v =
τh − 1

h

τ−h − 1

h
ũ2

into the above equation, where τh is the translation operator with τhφ(x) =
φ(x1 +h, x2), φ(x) ∈ L2(R2). Using some lemmas of τh−1

h in Chapter 2 of [3],
we can obtain

2∑
i=1

∥∥∥Di

(
τh − 1

h
ũ2

)∥∥∥2

U0

+
1

ε

2∑
i=1

∥∥∥Di

(
τh − 1

h
ũ2

)∥∥∥2

U1

≤C
2∑
i=1

(∥∥∥Di

(
τh − 1

h
ũ2

)∥∥∥
U0

+
∥∥∥Di

(
τh − 1

h
ũ2

)∥∥∥
U1

)
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Thus, we get
2∑
i=1

∥∥∥Di

(
τh − 1

h
ũ2

)∥∥∥
U0

≤ C.

For i = 1, 2, we consider any sequence hj → 0, as j → ∞. We see that

Di

τhj − 1

hj
ũ2 converges weakly to some function φ ∈ L2(R2), and also

Di

τhj − 1

hj
ũ2 → DiD1ũ2, as j →∞,

in the sense of distribution. Consequently, DiD1ũ2 = φ ∈ L2(R2
+). This

shows that all second derivatives, except D2
2u2, are in L2(R2). We find that

the equation of u2 is also equivelent to

(∇u1,∇v)Ω +
1

ε
(∇uε,∇v)Ω1

=(θf̃ , v)− (∇uε, v∇θ)Ω −
1

ε
(∇uε, v∇θ)Ω1

− (∇(uε∇θ))Ω −
1

ε
(∇(uε∇θ))Ω1

+

∫
Γ

(uε∇θv)|Γ,Ω · ndσ −
1

ε

∫
Γ

(uε∇θv)|Γ,Ω1 · ndσ

:=(f3, v)D + (g, v)Γ ∀v ∈ H1
0 (D).

As ‖f3‖0,D ≤ C and ‖g‖ 1
2 ,Γ
≤ C( since ‖uε‖1,Ω1

≤ Cε), there exists w ∈

H2(Ω) satisfying that
∂w

∂n
= g. Thus, (u1 − w) ◦ Φ = u2 − w ◦ Φ, and from

the equation of u1 above, w satisfies

2∑
i,j=1

Dj(aij(Di(u2 − w ◦ Φ))) = (f3 + ∆w) ◦ Φ in U0,

which comes from Green’s formula.
Thus we have D2

2u2 ∈ L2(U0), so that ‖u2‖2,U0 ≤ C. And because for
every j = 1, 2, . . . , N, ‖u2‖2,Uj0 ≤ C. We have ‖uε‖2,Ω ≤ C. �

Remark 7. With the assumption that f ∈ H1(Ω). In the above proof, we find

that by taking v =
τh − 1

h

τh − 1

h

τ−h − 1

h
ũ2 or

τh − 1

h

τ−h − 1

h

τ−h − 1

h
ũ2 on

case(2) instead of
τh − 1

h

τ−h − 1

h
ũ2, we can obtain D3

1u2, D
2
1D2u2, D

2
2D1u2 ∈

L2(U0). Noticing that in this time f3◦Φ ∈ H1(U0), g ∈ H 3
2 (Γ), we have‖u‖3,Ω ≤

C. And applying the (Pε), we have ‖u‖3,Ω1
≤ Cε. Hence, we can obtain

higher-order regularity of (Qε).

By an analogue of the proof of Theorem 3.1 and the Remark 7, we have



14 GUANYU ZHOU AND NORIKAZU SAITO

Theorem 3.3. Under the assumption that f ∈ Hk(Ω), for all non-negative
integers k, we have

uε|Ω ∈ Hk+2(Ω), uε|Ω1
∈ Hk+2(Ω1).

(3.4) ‖uε|Ω‖k+2,Ω ≤ C‖f‖k,Ω,

(3.5) ‖uε|Ω1‖k+2,Ω1 ≤ Cε‖f‖k,Ω.

Remark 8. In the above two theorems, we both assume that D is sufficiently
smooth; however, in our case, D is a rectangle( a convex polygon). From the
discussion in [3, 4] on elliptic problems in non-smooth domains, we can keep
Theorem 3.1 remains true for any convex polygon D.

3.2. Neumann boundary value problem. As a first step, let us assume
D is sufficiently smooth. Then, we have the following theorem.

Theorem 3.4. (Q) is the original problem with homogeneous Neumann bound-
ary. f ∈ L2(Ω), then the corresponding H1-penalty problem (Qε) has a unique
solution uε ∈ H1

0 (D). Moreover,

uε|Ω ∈ H2(Ω), uε|Ω1
∈ H2(Ω1),

(3.6) ‖uε|Ω‖2,Ω ≤ C‖f‖0,Ω,

(3.7) ‖uε|Ω1
‖2,Ω1

≤ C‖f‖0,Ω.

Before the proof, we show that, by applying the Green’s formula, (Qε) is
equivalent to (Pε), which reads as:

(3.8)



Find uε ∈ H1
0 (D) such that

−∆uε + uε = f in Ω,

∆uε = 0 in Ω1,

∂uε
∂n

∣∣∣∣
Γ,Ω

= ε
∂uε
∂n

∣∣∣∣
Γ,Ω1

.

From (Pε) we know that, if we have uε|Ω ∈ H2(Ω) with ‖uε‖2,Ω ≤ C, then
we have

uε|Γ,Ω1 = uε|Γ,Ω ∈ H
3
2 (Ω).

Since the right-hand-side function is 0, and with the homogeneous Dirichlet
boundary of D, it concludes that uε|Ω1 ∈ H2(Ω1) and

‖uε‖2,Ω1
≤ C‖uε‖ 3

2 ,Γ
≤ C.

This means we have left to prove only uε|Ω ∈ H2(Ω).

Proof. The process of the proof is very similar to that of Theorem 3.1. In

fact, we only need to replace the
1

ε
in the proof of Theorem 3.1 by ε. �
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Remark 9. The same comments as those in the Dirichlet case apply here,
specifically, we can obtain higher-order regularity for f ∈ Hk(Ω), and, if D is
a convex polygon, Theorem 3.4 remains true.

3.3. Mixed boundary value problem. The (Qε) for original problem with
homogeneous mixed boundary is equivalent to the problem (Pε):

(3.9)



Find uε ∈ H1
0 (D) such that

−∆uε = f in Ω,

∆uε = 0 in Ω1,

∆uε = 0 in Ω2,

∂uε
∂n

∣∣∣∣
Γ1,Ω

=
1

ε

∂uε
∂n

∣∣∣∣
Γ1,Ω1

,

∂uε
∂n

∣∣∣∣
Γ2,Ω

= ε
∂uε
∂n

∣∣∣∣
Γ2,Ω2

,

1

ε

∂uε
∂n

∣∣∣∣
Γ3,Ω1

= ε
∂uε
∂n

∣∣∣∣
Γ3,Ω2

,

where Γ3 is the common boundary of Ω1 and Ω2. By an analogue of the
previous proof, we can obtain that uε|Ω ∈ H2(Ω).

Since the domain Ω1 and Ω2 have corners at the intersection points of
their boundaries( see Fig. 3), uε|Ω1

and uε|Ω2
would not be in H2 space but

H1+α, α ∈ (0, 1)( see [12, 4]).

4. Finite element approximation and discrete problems

Recall that the Cartesian mesh is introduced to the rectangular domain
D to get a uniform triangulation Th, and h is the maximum diameter of the
triangles of Th. Each K ∈ Th is assumed to be a closed set. Vh(D) ⊂ H1

0 (D)
is the subspace of all piecewise linear continuous functions subordinate to Th.

4.1. Dirichlet boundary value problem. We consider the discrete prob-
lem (1.3).

Lemma 4.1. There exists a unique solution uε,h ∈ Vh(D) for (1.3). uε is the
solution of (1.2), and we have

(4.1)

‖uε − uε,h‖1,Ω +
1√
ε
‖uε − uε,h‖1,Ω1

≤C inf
vh∈Vh(D)

(
‖uε − vh‖1,Ω +

1√
ε
‖uε − vh‖1,Ω1

)
.

Proof. Subtracting (1.2) from (1.3), we have

(∇(uε − uε,h),∇vh)Ω +
1

ε
(∇(uε − uε,h),∇vh)Ω1

= 0, ∀vh ∈ Vh(D).
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Then we find

|uε − uε,h|21,Ω +
1

ε
|uε − uε,h|21,Ω1

≤ inf
vh∈Vh(D)

{
(∇(uε − uε,h),∇(uε − vh))Ω +

1

ε
(∇(uε − uε,h),∇(uε − vh))Ω1

}
≤ inf
vh∈Vh(D)

{
|uε − uε,h|1,Ω|uε − vh|1,Ω +

1

ε
|uε − uε,h|1,Ω1

|uε − vh|1,Ω1

}
≤
{
‖uε − uε,h‖1,Ω +

1√
ε
‖uε − uε,h‖1,Ω1

}
×

inf
vh∈Vh(D)

{
‖uε − vh‖1,Ω +

1√
ε
‖uε − vh‖1,Ω1

}
.

Applying the Poincaré inequality to the left-hand-side, we have

|uε − uε,h|21,Ω +
1

ε
|uε − uε,h|21,Ω1

=|uε − uε,h|21,D +

(
1

ε
− 1

)
|uε − uε,h|21,Ω1

≥C
(
‖uε − uε,h‖21,Ω +

1√
ε
‖uε − uε,h‖21,Ω1

)
Thus, we have proved the result. �

To estimate

inf
vh∈Vh(D)

(
‖uε − vh‖1,Ω +

1√
ε
‖uε − vh‖1,Ω1

)
,

we need some lemmas, which can be found in [16], and several other sim-
ilar results in [13, 17]. For a curve γ in C2(R2) and δ > 0, we define a
δ-neighborhood γδ = {x ∈ R2 | dist(x, γ) ≤ δ}.

Lemma 4.2. Suppose γδ ⊂⊂ R, R is a domain in R2, and v ∈ H1(R). Then
we have

(4.2) ‖v‖0,γδ ≤ C
√
δ‖v‖1,R.

If we assume v ∈ H2(R), then we have

(4.3) ‖v‖1,γδ ≤ C
√
δ‖v‖2,R.

Lemma 4.3. Suppose w ∈ H2(D), and we define IKw as the linear interpo-
lation of w on the vertices of a triangle K ∈ Th. Then, we have

(4.4) |IKw|1,K w
3∑

i,j=1,i6=j

|w(νi)− w(νj)|,
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where νi, i = 1, 2, 3, are vertices of K. (A w B means that there exist
constants depending on the regularity of the triangulation C1, C2 such that
C2B ≤ A ≤ C1B.)

Theorem 4.4. The following error estimate for (1.2) and (1.3) holds:

(4.5) ‖uε−uε,h‖1,Ω +
1√
ε
‖uε−uε,h‖1,Ω1 ≤ C(

√
h+
√
ε)(‖uε‖2,Ω + ‖uε‖2,Ω1).

Before the proof, we define some notations:

Λh = the set of all vertices of Th,
Λ(K) = {νK1 , νK2 , νK3 } = the set of all vertices of K ∈ Th,

TΩ = {K ∈ Th |K ⊂ Ω, K ∩ Γ = ∅},
TΩ1 = {K ∈ Th |K ⊂ Ω1, K ∩ Γ = ∅},

TΓ = {K ∈ Th |K ∩ Γ 6= ∅},
T0 = {K ∈ TΩ|K ∩ TΓ 6= ∅},
T1 = {K ∈ TΩ1 |K ∩ TΓ 6= ∅},

ω0 = ∪K∈T0
K,

ωΩ = ∪K∈TΩ\T0
K,

ωΓ = ∪K∈TΓ
K.

We may assume that TΩ\T0 6= ∅ and TΩ1\T1 6= ∅ without loss of generality.

Proof of Theorem 4.4. We define vh by setting,

vh(ν) =

{
uε(ν) for ν ∈ Λ(K), K ∈ TΩ\T0,

0 for all others vertices ν,

and substitute this vh into the right-hand-side of (4.1). We find that ‖uε −
vh‖1,Ω1

= ‖uε‖1,Ω1
≤ Cε. To estimate ‖uε − vh‖1,Ω, we use the scheme pro-

posed in [16] by using Lemma 4.2 and Lemma 4.3. However, there are several
differences between our analysis and that of [16], because we apply our regu-
larity theorem presented in the previous section, which simplifies the analysis.

We find that ‖uε − vh‖21,Ω = ‖uε − vh‖21,ωΩ
+ ‖uε − vh‖21,ω0

+ ‖uε − vh‖21,ωΓ
.

For the first term ‖uε − vh‖1,ωΩ
= ‖uε − IKuε‖1,ωΩ

≤ Ch‖uε‖2,Ω.
For the third term ‖uε − vh‖1,ωΓ

= ‖uε − 0‖1,TωΓ
≤ C
√
h‖uε‖2,Ω, following

from Lemma 4.2.
Then, for the second term ‖uε−vh‖1,ω0

≤ ‖uε‖1,ω0
+‖vh‖1,ω0

, and we have

‖uε‖1,ω0
≤ C
√
h‖uε‖2,Ω, again, following from Lemma 4.2. What remains is

to estimate ‖vh‖1,ω0
.
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For every K ∈ T0, we have

‖vh‖1,K ≤ ‖vh − IKuε‖1,K + ‖IKuε‖1,K
≤|vh − IKuε|1,K + ‖vh − IKuε‖0,K + ‖IKuε‖1,K
≤|vh − IKuε|1,K + ‖vh‖0,K + ‖IKuε‖0,K + ‖IKuε‖1,K .

We want to show that ‖vh‖0,K ≤ C‖IKuε‖1,K . There are two possibilities:
(1) if for all νi = νKi ∈ Λ(K), i = 1, 2, 3, uε(νi) have the same sign, then
obviously, |vh(x)|2 ≤ |IKuε(x)|2, (x ∈ K) and ‖vh‖0,K ≤ C‖IKuε‖0,K ; (2) if
we consider the case where for νi, i = 1, 2, 3, ui = uε(νi) do not all have the
same signs, then, without loss of generality, we assume that |u1| = ‖u‖∞,K
and u1u2 ≥ 0 and u3 ≤ 0. We have ∇(IKu) · −−→ν3ν1 = u1 − u3 on K. Hence,
|u1| ≤ |u1−u3| ≤ |∇(IKu)| · |−−→ν3ν1| ≤ |∇(IKu)|hK on K, since u1 and u3 have
the different signs. Therefore,

‖vh‖0,K ≤ |K|
1
2 ‖vh‖∞,K

≤ |K| 12 ‖uε‖∞,K
≤ |K| 12 |IKu|hK = hK |∇(IKu)|0,K .

Thus, we have ‖vh‖0,K ≤ (1 + hK)‖IKu‖1,K , which gives

(4.6)
‖vh‖1,K ≤ |vh − IKuε|1,K + C‖IKuε‖1,K

≤ |vh − IKuε|1,K + C‖IKuε − uε‖1,K + C‖uε‖1,K

By the standard interpolation error estimates, we have

(4.7)
∑
K∈T0

‖IKuε − uε‖21,K ≤ Ch2‖uε‖22,Ω.

We notice that there exists C ′ > 0 such that ωΓ ⊂ γC′h. By Lemma 4.3,
setting v̂h = vh − IKuε, we obtain

(4.8) |vh − IKuε|1,K ≤ C
∑

νi,νj∈Λ(K)
i 6=j

|v̂h(νi)− v̂h(νj)|.

Next, we set

ΛΩ(K) = {ν ∈ Λ(K) | ∃K ′ ∈ TΩ\T0, s.t. ν in Λ(K ′)},

ΛΓ(K) = {ν ∈ Λ(K) | ∃K ′ ∈ TΓ, s.t. ν in Λ(K ′′)}.
By definition, we see that Λ(K) = ΛΩ(K)∪ΛΓ(K), ΛΩ(K) 6= ∅, ΛΓ(K) 6= ∅.
There are two possibilities: for {νi = νKi }3i=1 = Λ(K),

(i) ΛΩ(K) = {ν1, ν2}, ΛΓ(K) = {ν3};
(ii) ΛΩ(K) = {ν1}, ΛΓ(K) = {ν2, ν3}.
(See Figure 1 and Figure 2.)
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Figure 2. (ii)

For (i), we have

v̂h(νi) = vh(νi)− (IKuε)(νi) = 0, i = 1, 2,

v̂h(ν3) = vh(ν3)− (IKuε)(ν3) = −uε(ν3).

Hence, |v̂h|1,K ≤ C|uε(ν3)|. Taking arbitrary point νΓ ∈ Γ ∩ K ′′, we have
|v̂h|1,K ≤ C(|uε(ν3)− uε(νΓ)|+ |uε(νΓ)|).

At this stage, we apply the Sobolev and Morrey’s inequalities. Let ω be a
Lipschitz domain in R2. They are given as

‖u‖L∞(ω) ≤ C‖u‖H2(ω), (∀u ∈ H2(ω))

‖u‖W 1,q(ω) ≤ C‖u‖H2(ω), (1 ≤ q <∞, ∀u ∈ H2(ω))

|u(x)− u(y)| ≤ C‖u‖W 1,q(ω)|x− y|α,
(x, y ∈ ω, 2 < q, α = 1− 2

q , u ∈W
1,q(ω))

We choose q = 4, and define K ′′Ω = K ′′ ∩ Ω, K ′′Ω1
= K ′′ ∩ Ω1, and we have

|uε(ν3)− uε(νΓ)| ≤ C‖uε‖W 1,4(K′′Ω)|ν3 − νΓ|
1
2 ≤ Ch 1

2 ‖uε‖2,K′′Ω ,

|uε(νΓ)| ≤ C‖uε‖2,K′′Ω1
.

Hence, we obtain |v̂h|1,K ≤ C‖uε‖2,K′′Ω1
+ Ch

1
2 ‖uε‖2,K′′Ω .
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Then, applying the same trick to (ii), we can show that

v̂h(ν1) = vh(ν1)− (IKuε)(ν1) = 0,

v̂h(νi) = vh(νi)− (IKuε)(νi) = −uε(νi), i = 2, 3,

|v̂h|1,K ≤ C(|uε(ν2)− uε(ν3)|+ |uε(ν2)|+ |uε(ν3)|)

≤ C
∑
i=2,3

|uε(νi)− uε(νΓ)|+ C|uε(νΓ)|

≤ C‖uε‖2,K′′Ω1
+ Ch

1
2 ‖uε‖2,K′′Ω .

Combining (i) and (ii), we have

(4.9)

∑
K∈T0

|v̂h|21,K ≤ C
∑
K∈T0

(
‖uε‖22,K′′Ω1

+ Ch‖uε‖22,K′′Ω
)

≤ C‖uε‖22,Ω1
+ Ch‖uε‖22,Ω.

From (4.6), (4.7), (4.8), (4.9), we can easily derive that

‖vh‖21,ω0
=
∑
K∈T0

‖vh‖21,K

≤
(
‖uε‖22,Ω1

+ h‖uε‖22,Ωh2‖uε‖22,Ω + h‖uε‖22,Ω
)

≤ ε2‖f‖20,Ω + C(h2 + h)‖f‖20,Ω,
where the last inequality is from Theorem 3.1. Hence, we get

‖vh‖1,ω0 ≤ C(ε+ h+ h
1
2 )‖f‖0,Ω.

Recalling that ‖uε−vh‖1,Ω1
= ‖uε‖1,Ω1

≤ Cε and other estimates from the
beginning of the proof, we have

‖uε − vh‖1,Ω +
1√
ε
‖uε − vh‖1,Ω1 ≤ C(

√
ε+
√
h).

Hence, the theorem follows from Lemma 4.1. �

Remark 10. Since we have ‖uε‖2,Ω1 ≤ Cε, other choices for vh than that above
can be taken, such as

vh =

{
uε(ν) for ν ∈ Λ(K), K ∈ TΩ\T0,

ūε(ν) for ν ∈ Λ(K), K ∈ TΩ1 ∪ TΓ,

where ūε is the extension of uε|Ω1
onto D with ‖ūε‖2,D ≤ C‖uε‖2,Ω1

, and the
estimate result still holds.

To estimate ‖uε − uε,h‖0,D, we need the adjoint boundary value problem,
which reads as:

(4.10)


For any given f ∈ L2(Ω), find uεf ∈ H1

0 (D) such that

(∇v,∇uεf )Ω +
1

ε
(∇v,∇uεf )Ω1

= (f̃ , v), ∀v ∈ H1
0 (D).
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(f̃ is the zero extension of f .) We see that there exists a unique solution
uεf ∈ H1

0 (D), with

‖uεf‖2,Ω ≤ C‖f‖0,Ω, ‖uεf‖2,Ω1
≤ Cε‖f‖0,Ω,

which follows from Theorem 3.1.

Theorem 4.5. We have the error estimate in L2 norm for (1.2) and (1.3),

(4.11) ‖uε − uε,h‖0,D ≤ C(ε+ h+
√
hε).

Proof. Let f = (uε− uε,h)|Ω and substitute v = uε− uε,h into the equation of
the adjoint problem, we get

‖uε − uε,h‖20,Ω = (f, uε − uε,h)0,Ω

=(f̃ , uε − uε,h)0,D

=(∇(uε − uε,h),∇uεf )Ω +
1

ε
(∇(uε − uε,h),∇uεf )Ω1

≤(∇(uε − uε,h),∇(uεf − vh))Ω +
1

ε
(∇(uε − uε,h),∇(uεf − vh))Ω1

, ∀vh ∈ Vh(D)

≤‖uε − uε,h‖1,Ω‖uεf − vh‖1,Ω +
1

ε
‖uε − uε,h‖1,Ω1

‖∇uεf − vh‖1,Ω1

≤C(
√
ε+
√
h)(
√
ε+
√
h)‖f‖0,Ω + C

1

ε

√
ε(
√
ε+
√
h)
√
ε(
√
ε+
√
h)‖f‖0,Ω

The last inequality follows from Theorem 3.1 and Theorem 4.4. Noticing that
f = (uε − uε,h)|Ω, we get

‖uε − uε,h‖0,Ω ≤ C(
√
ε+
√
h)2

With ‖uε‖1,Ω1 ≤ Cε and ‖uε,h‖1,Ω1 ≤ Cε, we have proved the result. �

4.2. Neumann boundary value problem. The discrete problem (Qε,h)
reads as:

(4.12)

{
Find uε,h ∈ Vh(D) such that

(uε,h, vh)1,Ω + ε(∇uε,h,∇vh)Ω1
= (f̃ , vh)D, ∀vh ∈ Vh(D).

Lemma 4.6. There exists a unique solution uε,h ∈ Vh(D) for (4.12). uε is
the solution of (2.4), and we have

(4.13)
‖uε − uε,h‖1,Ω +

√
ε‖uε − uε,h‖1,Ω1

≤C inf
vh∈Vh(D)

(
‖uε − vh‖1,Ω +

√
ε‖uε − vh‖1,Ω1

)
.

Proof. The proof of this lemma is an analogue of that of Lemma 4.1. �

Then, we have the error estimate theorem:

Theorem 4.7. We have the error estimate for (2.4) and (4.12)

(4.14) ‖uε−uε,h‖1,Ω+
√
ε‖uε−uε,h‖1,Ω1 ≤ C(h+ε+

√
hε)(‖uε‖2,Ω+‖uε‖2,Ω1).
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Proof. By taking

vh =

{
uε(ν) for ν ∈ Λ(K), K ∈ TΩ ∪ TΓ,

ūε(ν) for ν ∈ Λ(K), K ∈ TΩ1
\T1,

the proof is an analogue of that of Theorem 4.4. �

With the analogue of the proof of the Dirichlet case, we have the error
estimate in L2 norm for Neumann case.

Theorem 4.8. For uε and uε,h are the solutions of (2.4) and (4.12), respec-
tively, we have

(4.15) ‖uε − uε,h‖0,D ≤ C(ε+ h+
√
hε)2.

4.3. Mixed boundary value problem. Since the regularity theorem of
(Qε) for mixed boundary case is weak, we will not put a discussion on the
error estimates of the discrete problem for this case. Also, we could not find
any discussion on this issue in [16, 10] etc.

5. An approximation for discrete problems

In the discrete problem, we find the inner-product (∇uε,h,∇vh)Ω or Ω1
and

(f̃ , vh)D (since f̃ is the zero extension of f from Ω onto D) are not applicable
to computation, because we assumed that Ω has a curved boundary Γ. The
integral of the elements crossing Γ becomes a problem when doing compu-
tation. Thus, we need a proper approximation. One way is to replace the
integral in the open triangle K, K ∩ Γ 6= ∅, of

(∇uε, vh)K∩Ω +
1

ε
(∇uε, vh)K∩Ω1

by the integral of

(∇uε, vh)K∩Ω̂ +
1

ε
(∇uε, vh)K∩Ω̂1

where Ω̂ is a polygon with vertices which are the points of intersection between
Γ and the triangles’ edges. Ω̂ satisfies (Ω\Ω̂) ∪ (Ω̂\Ω) ⊂ Γδ, δ = O(h2).

Ω̂1 = D\Ω̂. The approximation problem of (Qε,h) is denoted as (Q̂ε,h).

5.1. Dirichlet boundary value problem. The problem (1.4) is considered.

We assume that fh is some interpolation of f̃ , such that (fh, vh)D is applicable

to computation and has ‖fh − f̃‖0 ≤ Ch holds. For example, suppose f ∈
C1(Ω); then we can choose fh is the linear interpolation of f on the vertices

ν of triangles for every ν ∈ Ω̂ and zero on other vertices. Before giving the
estimate of ‖ûε,h−uε,h‖1,D, we quote a lemma from [17]. For any open triangle
K, we denote

πK = (Ω1\Ω̂1) ∩K = (Ω̂\Ω) ∩K
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and
π̂K := (Ω̂1\Ω1) ∩K = (Ω\Ω̂) ∩K.

π := ∪KπK .
π̂ := ∪K π̂K .

Lemma 5.1. As we have (Ω\Ω̂) ∪ (Ω̂\Ω) ⊂ Γδ, δ = O(h2), the following
estimates hold for any vh ∈ Vh,

(5.1) |vh|1,π ≤ h
1
2 |vh|1,Ω1 ( or h

1
2 |vh|1,Ω̂),

(5.2) |vh|1,π̂ ≤ h
1
2 |vh|1,Ω̂1

( or h
1
2 |vh|1,Ω).

Then we have the following theorem.

Theorem 5.2. There exists a unique solution ûε,h for (1.4). uε,h is the
solution of (1.3), and we have

(5.3) ‖uε,h − ûε,h‖1,D ≤ Ch.

Proof. Subtracting the equation in (1.4) from that in (1.3), we have

(∇(uε,h − ûε,h),∇vh)Ω∩Ω̂ +
1

ε
(∇(uε,h − ûε,h),∇vh)Ω∩Ω̂1

+ (∇uε,h,∇vh)Ω\Ω̂

+
1

ε
(∇uε,h,∇vh)Ω1\Ω̂1

− (∇ûε,h,∇vh)Ω̂\Ω −
1

ε
(∇ûε,h,∇vh)Ω̂1\Ω1

=(f̃ − fh, vh)D, ∀vh ∈ Vh.

Since Ω1\Ω̂1 = Ω̂\Ω and Ω̂1\Ω1 = Ω\Ω̂, the above equation can be written as

(∇(uε,h − ûε,h),∇vh)Ω∪Ω̂ +
1

ε
(∇(uε,h − ûε,h),∇vh)Ω∩Ω̂1

=

(
1

ε
− 1

)
(∇ûε,h,∇vh)Ω̂1\Ω1

+

(
1− 1

ε

)
(∇uε,h,∇vh)Ω1\Ω̂1

+ (f̃ − fh, vh)D.

We apply Lemma 5.1 to obtain

|ûε,h|1,Ω̂1\Ω1
≤ C
√
h|ûε,h|1,Ω̂1

≤ C
√
hε,

|vh|1,Ω̂1\Ω1
≤ C
√
h|vh|1,Ω̂1

( or
√
h|vh|1,Ω),

|uε,h|1,Ω1\Ω̂1
≤ C
√
h|uε,h|1,Ω1 ≤ C

√
hε,

|vh|1,Ω1\Ω̂1
≤ C
√
h|vh|1,Ω1

( or
√
h|vh|1,Ω̂).

Since we have ‖f̃ − fh‖0,D ≤ Ch, for vh = uε,h − ûε,h, we get

|uε,h − ûε,h|21,Ω∪Ω̂
+

1

ε
|uε,h − ûε,h|21,Ω1∩Ω̂1

≤Ch(|uε,h − ûε,h|1,Ω∪Ω̂ + ‖uε,h − ûε,h‖0,D).

This, together with the Poincaré inequality, implies the desired result. �
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5.2. Neumann boundary value problem. (Q̂ε,h) reads as:

(5.4)

{
Find ûε,h ∈ Vh(D) such that

(ûε,h, vh)1,Ω̂ + ε(∇ûε,h,∇vh)Ω̂1
= (fh, vh)D, ∀vh ∈ Vh(D).

Lemma 5.3. (Ω\Ω̂) ∪ (Ω̂\Ω) ⊂ Γδ, δ = O(h2) implies that:

(5.5) ‖vh‖0,Ω\Ω̂ ≤ Ch‖vh‖1,Ω ( or h‖vh‖1,Ω̂1
).

(5.6) ‖vh‖0,Ω̂\Ω ≤ Ch‖vh‖1,Ω̂ ( or h‖vh‖1,Ω1).

(This lemma is quoted form [13].)

Theorem 5.4. There exists a unique solution ûε,h for (5.4). If f̃ − fh = 0

on Ω1 ∩ Ω̂1, and uε,h is the solution of (4.12), then we have,

(5.7) ‖uε,h − ûε,h‖1,Ω∪Ω̂ ≤ Ch.

The proof is an analogue of that of Theorem 5.2, with using Lemma 5.1
and Lemma 5.3.

6. Numerical experiments

Let ũ ∈ H1
0 (D) be the zero extension of the solution u ∈ H1

0 (Ω) of the
Dirichlet boundary value problem (1.1). Then, from the results of previous
sections, we find that

‖ûε,h − ũ‖1,D ≤ ‖ûε,h − uε,h‖1,D + ‖uε,h − uε‖1,D + ‖uε − ũ‖1,D
=‖ûε,h − uε,h‖1,D + ‖uε,h − uε‖1,D + ‖uε|Ω − u‖1,Ω + ‖uε‖1,Ω1

≤Ch+ C(
√
h+
√
ε) + Cε+ Cε

≤C(
√
h+
√
ε).

In addition, for the error in L2 norm, we also have

‖ûε,h − ũ‖0,D ≤ C(ε+ h+
√
hε).

So in our computation, to calculate L2 and H1 errors of ûε,h− ũ on D is suffi-
cient to verify the theoretical results, which is more practical than computing
the norm of ûε,h|Ω − u in Ω, because of the curved boundary of Ω. Now, let
Ω = {(x, y) ∈ R2 | x2 + y2 < 4}. The original problem reads as:{−∆u = 4 in Ω,

u = 0 on Γ.

The exact solution is u = 4 − x2 − y2. Let D = {(x, y) | −3 < x < 3, −3 <
y < 3}, Ω ⊂ D, and introduce a Cartesian mesh to D( see Fig. 4).

The error estimates are showed in Fig. 5 and Fig. 6, from which we see
that for fixed ε, L2 error behaves as Ch and H1 error behaves as C

√
h. But

at the same time, they also have lower bounds even if we allow h to become



FICTITIOUS DOMAIN METHOD WITH PENALTY FOR ELLIPTIC PROBLEMS 25

1

D

Ω2

Γ1

Γ2

Figure 3. On mixed
boundary case

Ω

D

Figure 4. Ω, D
and the mesh

arbitrarily small. The lower bounds are controlled by ε. And we can observe
that L2 error has the lower bound that behaves as Cε, and H1 error behaves
as C

√
ε. This confirms our theoretical results.
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