UTMS 201123 November 15, 2011

An optimal execution problem

with market impact
by

Takashi KATO

R

UNIVERSITY OF TOKYO
GRADUATE SCHOOL OF MATHEMATICAL SCIENCES
KOMABA, TOKYO, JAPAN




An Optimal Execution Problem with Market Impact
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Abstract

We study an optimal execution problem in a market model which considers market
impact. First we study a discrete-time model and describe a value function. Then,
by shortening the intervals of the execution times, we derive the value function of a
continuous-time model and study some of its properties (continuity, semi-group property
and viscosity property). We show that these vary with the strength of the market impact.
We introduce some examples which show that the forms of the optimal strategies change
completely, depending on the amount of the trader’s security holdings.

Keywords : Optimal execution, Market impact, Liquidity problems, Hamilton-Jacobi-
Bellman equation (HJB), Viscosity solutions

1 Introduction

An optimal portfolio management problem has been developed in [21], [22] and in other
papers. These classical financial theories assumed that assets in the market are perfectly
liquid. But in the real market we face various liquidity risks. For instance, the problem of
transaction costs and the uncertainty of trading.

Another important problem of liquidity is market impact (MI), that is, the effect of the
investment behaviour of traders on security prices. Such problems are often discussed in the
framework of optimal execution problems, where a trader has a certain amount of a security
holdings (shares of a security held) and tries to execute until the time horizon. The optimal
execution problem considering MI was first studied in [7] as a minimization problem of an
expected execution cost in a discrete-time model, and the model of [7] was generalized as a
mean-variance model in [4] and [15]. A continuous-time model of the execution problem was
studied in [13], [27], and [28] as a singular/impulse stochastic control problem. In [10], the
author also studied the continuous-time model in the framework of mean-variance analyses
and gave a viscosity characterization of the corresponding value functions. An infinite time
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horizon case is treated in [26]. The optimal execution problem in the limit-order-book (LOB)
model is also studied in [1], [2], [3], [11], [12], [25], etc.

Recently there have been various studies about the optimization problem with MI, but
the standard framework has not been fixed yet. In this paper, we try to construct such a
framework. We formulate the optimal execution problem in discrete-time, and then derive a
continuous-time model by taking the limit.

We mainly consider the case when the MI function is convex with respect to the execution
volume of a trader. Although some empirical studies tell us that the MI function is concave (see
[5] etc.), considering the effect of a convex MI is interesting and important in a theoretical
viewpoint. As we give some examples later, we can observe the way MI affects a trader’s
execution policy.

This paper is organized as follows. In Section 2 we introduce our model. We formulate
mathematically a trader’s optimization problem in a discrete-time model, and give some as-
sumptions to derive the continuous-time model. In Section 3 we give our main results. We show
that the value functions in the discrete-time model converge to the one in the continuous-time
model. Then we study some properties of the continuous-time value function: continuity, the
semi-group property, and a characterization of it as a viscosity solution of a certain Hamilton-
Jacobi-Bellman (HJB) equation. Moreover we have the uniqueness result of the viscosity
solution of HJB when MI is strong (in a meaning to be discussed later). In Section 4 we also
consider a case where the trader needs to sell up their entire holdings of the security. We
show that such a sell-out condition does not influence the form of the continuous-time value
function in our model. In Section 5 we treat some examples of our model. We conclude this
paper in Section 6. In Section 7, we give the proofs of our results.

2 The Model

In this section we present the details of the model. Let (2, F, (Fi)o<t<r, P) be a filtered
space which satisfies the usual condition (that is, (F;); is right-continuous and F, contains all
P-null sets) and let (B;)o<i<r be a standard one-dimensional (F;)-Brownian motion. Here
T > 0 means a time horizon. For simplicity we assume 7' = 1.

We suppose that the market consists of one risk-free asset (namely cash) and one risky
asset (namely security). The price of cash is always equal to 1, which means that a risk-free
rate is equal to zero. The price of a security fluctuates according to a certain stochastic flow,
and is influenced by the sales of a trader.

First we consider a discrete-time model with time interval 1/n. We consider a single trader
who has an endowment ®, > 0 shares of a security. This trader executes the shares ®, over a
time interval [0, 1], but his/her sales affect the price of a security. We assume that the trader
executes only at time 0,1/n,...,(n—1)/nforn e N=1{1,2,3,...}.

Now we describe the effect of the trader’s execution. For [ = 0,...,n, we denote by S;" the
price of the security at time [/n and X' = log S;'. Let so > 0 be an initial price (i.e., S = s¢)
and X' = logsg. If the trader sells the amount ;" at time [/n, the log-price changes to
X' — gn(¥]"), where g, : [0,00) — [0, 00) is a non-decreasing and continuously differentiable
function which satisfies ¢,,(0) = 0, and he/she gets the amount of cash ¢S] exp(—g,(¢]")) as
proceeds of the execution.



After trading at time {/n, X[\, and S}, are given by

n l+ 1 l n n n n
+1 = Y(T; E7Xl - Qn(wz ))7 Sl+1 = eXP(XzH)’ (2-1)

where Y (¢;r, x) is the solution of the following stochastic differential equation (SDE)

{ dY (t;r,x) = o(Y(t;r,z))dBy + b(Y (t;7r,x))dt, t >,

Y(r;rz)=x (2:2)

and b,0 : R — R are Borel functions. We assume that b and ¢ are bounded and Lipschitz
continuous. Then for each 7 > 0 and = € R there exists a unique solution of (2.2).

At the end of the time interval [0, 1], the trader has the amount of cash W}’ and the amount
of the security ), where

Wi =W+ 40 S exp(—gn (Y1), @iy = @ —Ur (2.3)

n—1

for 1 =0,...,n—1and W =0, g5 = ®;. We say that an execution strategy ('), is

admissible if (¢]'); € A"(®y), where A}(¢) is the set of strategies (')}, such that ¢ is
k1

Fin-measurable, ¢" > 0 for each [ =0,...,k —1, and Zv,bf < .

1=0
A trader whose execution strategy is in A} (®g) is permitted to leave the unsold shares of

the security, and there will be no penalty if he/she cannot finish the liquidation until the time
horizon. In Section 4, we consider a case when the trader must finish the liquidation.

The trader’s problem is to choose an admissible strategy to maximize the expected utility
Elu(W), or Si)], where u € C is his/her utility function and C is the set of non-decreasing
continuous functions on D =R X [0, ] x [0, 00) such that

u(w, g, s) < Cy(14+w* + %)™, (w,p,s) €D (2.4)

for some constants C,, > 0 and m,, € N (i.e., u has polynomial growth rate).

For k = 1,...,n, (w,p,s) € D and u € C, we define the (discrete-time) value function
Vi'(w, ¢, 5;u) by

Vk"(w,gp, S;u) = sup E[U(W£L7¢Z7SI?)]
(W20 EAR (9)

subject to (2.1) and (2.3) for [ =0, ...,k — 1 and (W', ¢}, S5) = (w, ¢, s). (For s = 0, we set
St = 0). We denote such a triplet (W}, ¢}, S;")i_ by Z¢(w, o, s; (¥);). For k = 0, we denote
Vo' (w, @, s;u) = u(w, ¢, s). Then our problem is the same as V,'(0, g, so; u). We consider the
limit of the value function V' (w, ¢, s;u) as n — oo.

Let h : [0,00) — [0,00) be a non-decreasing continuous function. We introduce the
following condition.

d
4] Jim S a9 - h(nw)‘ =0.

¢
Throughout this paper we always assume the above condition. Let ¢({) = / h(¢")d¢' for
0

¢ € ]0,00). Under condition [A], we see that &, — 0, where

ga(t)  glnip)
v o |

En, = Sup (2.5)

%€ (0,Po]
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Now we define the function which gives the limit of the discrete-time value functions. For
t € [0,1] and ¢ € [0, Do) we denote by A;(¢) the set of (F,)o<,<t-progressively measurable

t
process (¢, )o<r<¢ such that ¢, > 0 for each r € [0, ], / ¢rdr < ¢ almost surely and sup ¢, (w) <
0 r,Ww

oo. For t € [0,1], (w,p,s) € D and u € C, we define V;(w, ¢, s;u) by

Vi(w,p,s3u) = sup  Elu(W;, ¢, )]
¢r)reAi(e)

subject to
dW, = (,.S.dr, dp, = —(.dr, dS, =(S,)dB, + lA)(ST)dr — g(¢,)S,dr (2.6)

and (W, o, S0) = (w, @, s), where G(s) = so(logs),b(s) = s{b(logs) + o(logs)?/2}. When
s > 0, we obviously see that the process of the log-price of the security X, = log S, satisfies

dX, = o(X,)dB, + b(X,)dr — g(¢,)dr. (2.7)

We denote such a triplet (W,., oy, S, )o<r<t by Zi(w, @, 8; (¢,)r), and (W, @, X, )o<r<t by Zi (w,
©, 8; (G)r ), respectively. We remark that Vo(w, ¢, s;u) = u(w, ¢, s). We notice that Vi (w, ¢, s; u)
< oo for each t € [0,1] and (w, ¢, s) € D (see Lemma 6 in Section 7.1).

3 Main Results

In this section we present the main results of this paper. First we give the convergence
theorem for value functions.

Theorem 1. For each (w,p,s) € D, t € [0,1] and u € C,

lim Vi (w, @, s5u) = Vi(w, ¢, 5;u), (3.1)

n—oo
where [nt] is the greatest integer less than or equal to nt.

The proof is given in Section 7.2. Theorem 1 implies that an optimal execution problem
in a continuous-time model is derived as the limit of the ones in the discrete-time model. We
call Vi(w, ¢, s;u) a continuous-time value function. We regard the stochastic processes ((,),
as the trader’s execution strategies. The value of (,. is the instantaneous sales (in other words,
execution speed) at time r.

As for the continuity of Vi(w, ¢, s;u), we have the following theorem.

Theorem 2. Letu € C.

(i) If h(oo) = oo, then Vi(w, ¢, s;u) is continuous in (t,w, e, s) € [0,1] x D.

(i) If h(co) < 00, then Vi(w, @, s;u) is continuous in (t,w, p,s) € (0,1] x D and Vi(w, p, s;u)
converges to Ju(w, ¢, s) uniformly on any compact subset of D ast | 0, where

— e~ ()
sup u(w + 16—5, ©—, Sefh(oo)w) (h(o0) > 0)
Ju(w, p,s) = ¢ VEDY] h(o0)
sSup u(w + ¢S7 (2 ¢7 S) (h(OO) = O)
¥el0,¢]



As you can see, continuity in ¢ at the origin depends on the state of the function A at
infinity. When h(oo) < oo, the value function is not always continuous at t = 0 and has the
right limit Ju(w, ¢, s). The function Ju(w,p,s) implies the utility of the execution of the
trader who sells a part of the shares of a security ¥ by dividing infinitely within an infinitely
short time (enough to neglect the fluctuation of the price of a security) and makes the amount
¢ — ¥ remain. We will show Theorem 2 in Section 7.5.

Next we study the semi-group property (Bellman principle) of the family of non-linear
operators corresponding with the continuous-time value function. We define an operator
Q: : C — C by Quu(w, ¢, s) = Vi(w, ¢, s;u). Using Theorem 2 and Lemma 6 in Section 7.1,
we easily see that @), is well-defined. Then we have the following.

Theorem 3. For each r,t € [0,1] witht+r <1, (w,p,s) € D and u € C it holds that
Qt-l—ru(wa 2 S) = QthU(wa 2 S)-

The proof is in Section 7.4. Using Theorem 3, we can characterize the continuous-time
value function as a viscosity solution of the corresponding Hamilton-Jacobi-Bellman equation
(HJB). Since the value functions are defined in a way that does not depend on ®, we can take it
that they are defined on an extended domain D = R x [0, 00) x [0, 00). Let u(w, ¢, s) : D — R
be such that u is a non-decreasing continuous function which has polynomial growth rate with
respect to w, ¢ and s. We define a function F' : .¥ — [—00, 00) by

1. .
F(z,p,X) = — Sglig {QU(ZS)ZXSS + 0(25)ps + € (25Pw — Do) — g(C)zsps} ,

where .7 = U x R3 x S3, U = D \ 815, 53 is the space of symmetric matrices in R* @ R® and

z=| 2, | €D, p=| p, | eR’ X=| Xpu Xp Xps | €S>
ZS ps XS'LU XS(,D XSS

Although the function F' may take the value —oo, we can define a viscosity solution of
the following Hamilton-Jacobi-Bellman equation (HJB) as usual (see [9], [19] and [23] for
instance):

%v + F(2,Dv,D*v) =0 on (0,1] x U, (3.2)

where D denotes the differential operator with respect to z = (w, ¢, s). Here we remark that
(3.2) can be rewritten as

—o(t,w, p,s) —sup Lov(t,w,p,s) =0, (t,w,p,s) € (0,1] x U, (3.3)
ot ¢>0
where
Lov(t,w, p,s) = 1&(5)28—21)(15 w,,s)+ ?)(s)gv(t w, e, s)
I I 80, - 2 852 ) ) %07 85 Y ) 907

+6(soltu0,9) = 5ol w,0,9)) = Q)5 ult . 0,5)
Now we state the following theorem which will be proved in Section 7.6.
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Theorem 4. Assume that h is strictly increasing and h(co) = o0o. Moreover we assume

el0 g
for any t € (0,1] and (w,p,s) € U. Then Vi(w, ¢, s;u) is a viscosity solution of (3.2).
Finally we give the uniqueness result of viscosity solutions of (3.3).

Theorem 5. Assume that 6 and b are both Lipschitz continuous. Moreover we assume the
conditions in Theorem 4 and the growth condition lign inf(h(¢)/¢) = 0. If a polynomial growth
—00

function v : [0, 1] x D—Risa viscosity solution of (3.3) and satisfies the following boundary
conditions

(0, w,¢,5) = u(w,p,s), (w,p,s) €D,
v(t,w,0,s) =Eu(w,0,Z(t;0,s))], (t,w,s)e]0, 1] x R x [0, 00), (3.5)
v(t,w,p,0) =u(w,e,0), (t,w,p)el0,1] xR x [0,00),
then Vi(w, ¢, s;u) = v(t,w, ¢, s), where
Z (t;r,8) = exp (Y (t;r,logs)) (s>0), 0 (s=0). (3.6)

The proof is in Section 7.7. In Section 5.2, we will present an example where the assump-
tions in Theorem 4 and Theorem 5 are fulfilled.

4 Sell-Out Condition

In this section we consider the optimal execution problem under the “sell-out condition.”
A trader has certain shares of a security at the initial time, and he/she must liquidate all
of them until the time horizon. Then the spaces of admissible strategies are reduced to the
following;:

ArO(p) = {(1/)1 € Ai(p Z% = %0} )

A (p) = {(Cr . € Ay / Codr = }

Now we define value functions with the sell-out condition by

VSO (w, g, 5;U) = sup  E[U(W})],
(WP )eATSO ()
‘/;SO(’U), 90’ 8; U) e Sup E[U(Wt)]
(Cr)rEASC(9)

for a continuous, non-decreasing and polynomial growth function U : R — R. Then we have
the following theorem.

Theorem 6. I/;So(w, 0, 8;U) = Vi(w, ¢, s;u), where u(w, ¢, s) = U(w).

6



Proof. The relation V;°°(w, ¢, s;U) < Vi(w, @, s;u) is trivial, so we will show only the as-
sertion V,39(w, p,s;U) > Vi(w,p,s;u). Take any (¢.), € Aip) and let (W,,¢,,S,), =
Z1(w, @, 8;(()r). Moreover take any § € (0,t). We define an execution strategy (¢°), €
AF(p) by ¢ =G (r € [0,¢=36]), @i—5/8 (r € (t=0,1]). Let (W7, ¢, 57), = Ea(w, ¢, 5 (G)y)-
Then we have W,_; = W/ 5 < W?. Thus we get E[U(W,_s)] < E[UW?)] < VO (w, ¢, s;U).
Letting § | 0, we have E[U(W;)] < V;°°(w, ¢, s;U) by using the monotone convergence theo-
rem. Since ((.), € A:(y) is arbitrary, we obtain the assertion. |

t
By Theorem 6, we see that the sell-out condition / (-dr = ¢ makes no change in the

(value of the) value function in a continuous-time modei). Thus, although the value function
in a discrete-time model may depend on whether the sell-out condition is imposed or not, in
the continuous-time model we need not worry about such a condition.

Moreover we obtain the following theorem which is a similar result to Theorem 1.

Theorem 7. For each (w,p,s) € D
lim Vir©(w, o, 5,U) = Vi (w,0,5U) (= Vilw, 0, 5:0).)

Proof. We may assume t > 0. It is easy to see that for large n
n n,SO n
‘/[nt]fl(u% ¥ S5 U) < ‘/[ t] (w7 ¥, S; U) < ‘/[nt](w7 ¥ S5 U’) (41)
By similar arguments as in the proof of Theorem 1, we get

nh~>ngo ‘/[Zt}—l(wa ¥5 Ss U) = ‘/t— (w7 ¥ S; U), nlgilo ‘/[Zt} (wa ¥; Ss U) = ‘/t(w7 ¥5 S5 U)

(4.2)

By (4.1), (4.2) and Theorem 2, we get the assertion. [
5 Examples

In this section we consider two examples of our model. Let b(z) = —p and o(z) = o for

some constants g, > 0 and suppose ji = u — 02/2 > 0. We assume that a trader has a
risk-neutral utility function u(w, ¢, s) = urn(w, ¢,s) = w. We remark that we can replace
the stochastic control problem V;(w, ¢, s; ugn) with the deterministic control problem f(¢, ¢),

where
f t, = Cr ( - Cv d > d
(t,¢) o Tsigctw / exp | —pr / 9(Go)dv | dr

Al (o) = {(G)r € Aip) ; (¢)r is deterministic}.
Indeed we have the following.
Proposition 1. Vi (w, p, s;urn) = w + sf(t, ).
This is proved in Section 7.8. By Proposition 1, we see that

0
&W(wa P, S;URN) = f(t,gD) > Oa tu 2 > 0.



5.1 Log-Linear Impact

Let (ap)nen C (0,00) be a sequence which has a limit
gn(¥) = aup. Then the condition [A] is satisfied with h(()
have the following.

Theorem 8. It holds that

€ (0,00) as n — oo and let
a (and thus g(¢) = af). We

<

1 —e ¥
Vi(w, ¢, s;urn) = w + Y ¢ (5.1)

for each t € (0,1] and (w,p,s) € D.

The proof is in Section 7.9. We notice that the right-hand side of (5.1) is equal to
Jurn(w, ¢, s) and converges to w + s as « | 0, which is the profit gained by choosing
the execution strategy of so-called block liquidation such that the trader sells all shares ¢ at
t = 0 when there is no market impact. Theorem 8 implies that the optimal strategy in this
case is to execute all shares dividing infinitely within an infinitely short time at ¢ = 0. This is
almost the same as a block liquidation at the initial time, and the trader does not delay the
execution time (although MI lowers the profit of the execution). Therefore we cannot see the
essential influence of the MI in this example.

5.2 Log-Quadratic Impact
In this subsection we consider the case of a strictly convex MI function. Let (ay)nen C
(0,0) be a sequence and g,,(v)) = a,1*. We suppose lim |a,, — nal = 0 for some a € (0, c0).

Then the condition [A] is satisfied with h(¢) = 2a¢ and g(¢) = a¢®>. We remark that the
continuous-time value function in this example is the unique viscosity solution of (3.2) with
boundary conditions (3.5).

Now we extend the set of admissible strategies such that

Ailp) = {(Cr)ogrgt; (F»)r~adapted, ¢, >0, /0 Godr <

and sup (r(w) < oo for all € € (0,)}.
(rw)€[0,t—e]xQ

We easily see that the value of Vi(w, ¢, s;u) does not change by replacing A;(¢) with A().
We define functions v*(t,w, ¢, s) and ¢/, i = 1,2, by

sV1 —e2 (= f
92 /_Oéﬂ ) t

131(t,w,g0, s)=w+

and

° S e o [E
v (t,w,g@,s) =W+ 2\/06_/](1 € )7 Ct - \/;1[0,WM](T)'

Moreover we set

arctanhv/ 1~— 6—2/1'57 (1) = Et.

e .

Then we have the following.




Theorem 9.
(i) Ifp > @Al(t), then Vi(w, ¢, s;ugn) = 0 (t,w, p, s) and (C ) is an optimal strategy.
(ii) If ¢ < ®3(t), then Vi(w, @, s;upx) = 2(25 w, @, s) and (C?), is an optimal strategy.

Proof. Let (Wi, @i, 8, = Zy(w, ( N),) for i = 1,2. A straight calculation shows that
E[W{] = 0'(t,w, ¢, s). Then we have v’( w, v, s) < Vi(w, , s;urn). Since 0" satisfies (3.3) at
(t,w, p, s), we see that o' (t,w, p, s) > Vi(w, @, s; urn) by Theorem 5.2.1 in [23]. Then we have

the assertions. [}

This theorem implies that the form of optimal strategies and value functions vary depending
on the amount of the security holdings . If a trader has a small amount of securities, then
we have case (ii) and the optimal strategy is to sell the entire holdings of the security until
the time v/« /fi. If he/she has a large amount, then we have case (i) and the trader cannot
finish the selling.

We have not had an explicit form for V;(w, ¢, s; urn) on a whole space. So we try to solve
this example numerically. V;(w, ¢, s;urn) is approximated by V™ (w,p,s;ugrn) for enough
large n, and we can assume that the optimal strategy is deterministic. We can get the value of
V' (w, @, s; ugn) numerically for finite n. Figure 1 describes the form of the execution strategies
and Figure 2 describes the form of the corresponding processes of the amount of a security
when we set n = 500, w =0,s =1, =0.01,4 =0.05,0 =0 and ¢ = 1,10 and 100. We also
get the form of the function f(t,¢) of Proposition 1 numerically, Which is described in Figure

3. If a pair (t,¢) is in the range (a) of Figure 4, then we have f(t,¢) = /1 — e~2it/(2\/af),
and if (¢, ) is in the range (c), we have f(t,p) = (1 — e”2Vo?) 2\/_ . We have not had
the form of f(¢, ) analytically when (¢, ¢) is in the range (b).

We remark that in case (i) we can also construct a nearly optimal strategy with the sell-out
condition. Let (' = (! (r <t —10), (¢ — $1_5)/6 (t — 0 <1 < t), where

. arctanhy/1 — e~26t — arctanhy/1 — e—20
Pt—6 = = .
Vo

Then (), € A% (p) and the corresponding expected profit E[IW?] converges to V;(w, ¢, s; ugy)
as 0 — 0.

25 50 125
2 F 40 - 100
15 30 75
1 20 -/) 50
05 10 L 25 |
0 ! - 0 . ! . . 0 : . . .
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1

Figure 1: The forms of optimal execution strategies ((,),. Horizontal axis is time r. The left
graph: ¢ = 1. The middle graph: ¢ = 10. The right graph: ¢ = 100. In the middle graph we
calculate (¢, ), numerically.
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Figure 2: The forms of the amount of security holdings (¢,), corresponding with optimal
strategies. Horizontal axis is time r. The left graph: ¢ = 1. The middle graph: ¢ = 10. The
right graph: ¢ = 100. In the middle graph we calculate (¢, ), numerically.

Figure 3: The form of the function f(¢, ) in Section 5.2.

6 Concluding Remarks

In this paper we studied the optimal execution problem when MI is considered. First we
formulated the discrete-time model and then took the limit. We showed that the discrete-time
value functions converge to the continuous-time value function.

We mainly treated the case when the MI function is convex. This is not only for mathemat-
ical reasons, but also from a financial viewpoint. In a Black-Scholes type market, an optimal
execution strategy of a risk-neutral trader is a block liquidation when there is no MI. As we
saw in Section 5, the form of the optimal strategy entirely changes when MI is (log-)quadratic.
In contrast, when MI is not convex, especially (log-)linear, then a trader’s optimal strategy is
almost block liquidation.

However, in the real market, many traders execute the selling in taking time in spite of
recognizing that the MI is concave. One of the reasons is that the trader may have a risk-averse
utility function. As another reason, we surmise that MI can be divided into two parts: perma-
nent impact and temporary impact (see [4] and [14]). As time passes, the temporary impact
disappears and the price once pushed down transitorily, recovers. Our examples treat perma-
nent impact only, but we can also consider temporary impact and price recovery effects. If the
process of security prices follows some mean-reverting process, such as an Ornstein-Uhlenbeck
process, then we may deal with the optimization problem with MI and price recovery. We
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Figure 4: The region of pairs (¢, ). The region (a) (resp., (c)) corresponds to Theorem 9 (i)
(resp., (ii)).

study such a case in [18].

It is also meaningful to characterize the continuous-time value function as the solution of
the corresponding HJB. We have shown that the value function is a viscosity solution under
some strong assumptions. Such assumptions would not be necessary if we considered only
bounded strategies, but the control region of our model is unbounded. We avoid this difficulty
by supposing (3.4).

In trading operations, a trader should execute while considering the fluctuation of the price
of other assets (e.g., rebalancing an index fund). In [16], a multi-dimensional version of this
model was studied to consider such a case. However, in the case of rebalancing, it is necessary
to consider not only selling but also buying securities. We should formulate such a model of
an optimal execution problem carefully to avoid the opportunity of a free-lunch when MI is
large.

The complete solution of our example in Section 5.2 is another remaining task. This is
a representative example where a trading policy is influenced vastly by MI, and it would be
interesting to solve this completely in future research.

7 Proofs

7.1 Preliminaries

We introduce some lemmas which we use to prove our main results.
Lemma 1. For each m € N there is a constant C > 0 depending only on b,o and m such that
E[Z(s)™] < Cs™, where Z(s) = sup Z(t;0,s).
0<t<1

Proof. We may assume s > 0. By the definition of Z(s), we have

E[Z(s)"] < s™ E[ sup_exp(Yy)],
t€[0,1]

where (Y;); is given by
dY; = mo (Y (t;0,1og s))dB; + mb(Y (t;0,1og s))dt, Yy = 0.

11



Using Corollary 2.5.10 in [20] for the process (exp(Y};)), we have the assertion. |

Lemma 2. Let 'y, k € N, be sets, u € C and (W,iﬂ,gpiﬂ,S,iﬁ) eD,vyely, keN, i=1,2,
be random variables. Let m, € N be as in (2.4). Suppose

dim sup B[[ Wy = Wiy | + 10k = @il 4 5y = S = 0
el

2

and Z sup sup E[(W{_)*™ + (S} ,)*"™] < co. Then
“— keN qely,

lim sup | B[u(Wy,, ¢k, Skq)] — Blu(Wi ¢k 5. Si,)] = 0.

This lemma is obtained by standard arguments using the Chebyshev inequality and the
uniform continuity of u(w, ¢, s) on Dg for any R > 0, where Dr = [—R, R] x [0, ®¢] x [0, R].

Lemma 3. Let0 <ty <--- <ty <1andf:[0,1] — [0,00) be a Borel measurable function.
Suppose that f is continuous on [0,1] \ {to,...tx} and there is a Borel measurable function
v :[0,1] — [0, 00) and a constant 3 > 0 such that

f@t) <~(t) +ﬁ/0tf(r)dr, t €0,1].

Then

F(t) < () + 8 / () tNdr, 1€ [0,1).

Lemma 3 is obtained by applying the same arguments as in the proof of the Gronwall
inequality to f(¢) on [0,], inductively in [.

Using the Burkholder-Davis-Gundy inequality and the Holder inequality, we have the fol-
lowing lemma.

Lemma 4. Lett € [0,1], ¢ >0, x € R, (¢ )o<r<t € Ai(p) and let (X, )o<r<t be given by (2.7)
with Xo = x. Then there is a constant C' > 0 depending only on b and o such that

4} < C(ry — o)

E[ sup | X, — X, +/ g(¢y)dv

refro,ri] 70

for each 0 <1y <r; <t.

Lemma 5. Lett € [0,1], ¢ >0, x € R, (¢ )o<r<t, ((Mo<r<t € Ai(p) and let (X, )o<r<i (TSP,
(X )o<r<t) be given by (2.7) with ((.), (resp., (¢)r) and Xo = x < X|,. Suppose (. < (. for
each r € [0,t] almost surely. Then X, > X for each r € [0,t] almost surely. In particular we
have exp(X,) < Z(e").

This lemma is obtained by the same arguments as in the proof of Proposition 5.2.18 in

17].

Lemma 1 and Lemma 5 imply the following.

12



Lemma 6. Forn e R, k=0,...,n, t € [0,1] and u € C, V' (w, p, s;u) and Vi,(w, p, s;u)
are non-decreasing in w, @ and s, and have polynomial growth rate with respect to w and s.

By standard arguments, we obtain the next lemma.

Lemma 7. Let

Qn(wa%&w;u)
= Elu(w+ (@ A p)e ) o — (¢ A ), Z(1/n; 0, se9"9))]

forw € C, where a A b =min{a,b}. Then q, is continuous on D x [0, D).

We remark that V" (w, p,s;u) = sup g,(w, v, s,¥;u). By Lemma 6, Lemma 7 and the
1/16[0,@0]
arguments of the Bellman equation in discrete-time dynamic programming theory (see [6]),

V(- u) €C.

7.2 Proof of Theorem 1

We divide the proof of Theorem 1 into the following two propositions.

Proposition 2. limsup Vi, (w, ¢, s;u) < Vi(w, ¢, s;u).

n—oo

Proposition 3. liminf Vi3, (w, @, s;u) > Vi(w, @, s;u).

n—oo

Proof of Proposition 2. For brevity, we suppose t = 1. For v’ € C and (w', ¢, s") € D, let
(W', ', s';u') be an optimal strategy for the value function V" (w', ', s";u'). By Proposition
7.33 in [6], we can take ¥, (w', ¢, s';u’) as a measurable function with respect to (w', ¢, s').

~ We define (¢7)[ € An(p) and (W', ¢}, 7)o by (W, ¢5.55) = (w,0,8), U =
V(W o, STV (5u) A el (2.1)-(2.3) inductively in [ and let X' = log S;'. We also
define a strategy (Cr)OSTSl by Cr = n¢ﬁzr] Then (CT‘)T € Al(@) Let (Wm@er)Ogrgl =
E1 (w, 9,5 (G)r)-

Step 1. First we show that there is a constant C* > 0 and a sequence (¢} )nen C (0, 00)
with ¢ /n — 0 as n — oo such that

g (W) < C* N (e, 1=0,...,n—1.

If Clim h(¢) < oo, the assertion is obvious. So we may assume h(co) = oo. Let f,(¢) =

1/1%9”(1/1) and p,(¢) = e W) for 1) € [0, ®g]. Then we have %pn(w) = e_g"(w)(l — fu(¥)).

Put A, = {¢ € (0,99] ; f.(¢¥y) = 1}. By [A] and the assumption h(oco) = oo, we see that
A, is not empty and the function p,(v)) has a maximum at one of the points in A, for large
enough n. We denote by v a point at which p, (1) has a maximum.

We see that p,(¢) < po(¢)) for ¢ € (¢, ®o] and that Lemma 5 implies that Y (¢;7, 2 —
gn (1)) is non-increasing with respect to ». Moreover the function u(w, ¢, s) is non-decreasing
in (w, p,s). Thus &n(w, @, s;u) < 1 holds for large n. Then, by the definition of ¢}, we get

Y <Y, 1=0,...,n—1 and n >ny (7.1)

13



for some ny € N. Moreover [A] implies
ny; — 00, n — oo. (7.2)

Indeed, if (7.2) does not hold, there is a constant M > 0 and a subsequence (ny)r C N such
that nkw;k < M. Then we have

e = g fo, (05,) < iy, (h(naddy, ) + €5,) < M(R(M) + €,

dgn
for each k, where ¢/, = sup i(17/)) - h(n@b)’ This is a contradiction.

v | dY

Since h(¢) is non-decreasing, we have

P P
gn(®)) < / (h(n!) + &)dy! < / () + L)
0 0
d 1
< (ggown +2m)e = (g +22). v e.v] (7.3)
for each n € N. Thus

gu(¥) < 1+ 2005upel,, ¥ € [0,47). (7.4)

By (7.1)-(7.4), we have the assertion by letting

CF — ﬁ%ﬁfg”(%) + 1429, sup e, o= %: + 2¢!,.
Step 2. In this step we will show that
Jlim B[ max XG = Xpa|] = 0. (7.5)
We define X", r € [0,1], by
K=y (rE X - gp), re (5 (7.6

and X{' = logs. Then we see that X,?/n — X7 for each k = 0,...,n and that X" satisfies

cn(r)

X:’ =log s+ / O'(X;Z)dBU + / b(X:?>dU - Z gn(sz
0 0 k=0
-1
where ¢, (r) = [nr] — 1z, (nr) and Zgn(w}i) = 0.
k=0
~ 1
Let A" = E [max{|Xﬁ X2 =05, Mr}] We have
n n

+ dn (1) gn (Vf)

\%)gnwz)— IRCEED>




1
forr’ =0,—,..., M,T, where d,,(r) = ¢,(r) + 1 — nr. Then Step 1 implies
n n

— p(Xm)d|

1% - X < 4{ ‘/ ) — o (X))

>

k=0
/0 (0(X,) — (X))

FO3E2 + O () |

ga(0) = —g(n}) ) <r>2gn<w@r]>2}

< 4{ sup

0<v<r

/0 (b(X) — (X |

0<v<r

1
for ' = 0,—,. M ,7, where ¢, is defined by (2.5). Thus, using the Burkholder-Davis-

n
Gundy inequahty and the Holder inequality, we get

A? < Co{a(r) + E [/0 1%, = Xof2dv] b < Codmlr) + /0 Azdv}

for some constant Cy > 0, where ,,(r) = ®5c2 + C*cd,,(r)* E[¢f;,1]. Then Lemma 3 implies

Al < C’O%(T)%—C’g/ Y (©)e0T) gy,
0

Since 0 < d,(v) <1 for v € [0,1] and d,(1) = 0, we have

-----

cpoc*c;;} )

} < 01{2<I>35§ +
n

for some C; > 0. By (2.5) and the assertion of Step 1, the right-hand side of (7.7) tends to
zero as n — o0o0. Then we have (7.5).

y n (I+1)/n
Step 3. Let W) =w+ Z/ n exp(X]* — (nr —1)g,(¢"))dr. From

l/n

1
= e < [ et ol — y] < (¢ 4 1)(e + Dl -, (7.5)
0

it follows that

W —Wh| < @(Z(s) + 1) max sup | X)" = (nr = Dgn(¥]') — X, .
1=0,.5n=1 pcli/n,(1+1) /n]

Since
| X" = (nr = Dgn(¥]") — X,
< X, =Xy + / 9(Go)dv| + X7 = Xyn| + (nr = Deyty!
!

/n
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for each [ =0,...,n—1and r € [I/n, (I + 1)/n], by virtue of Lemma 4, we have

B[ max sup X7 — (nr = Dga(4]) — X, 72
1=0,- =L refi/n,(141)/n]

n—1 r

47 1/4
< { E [ sup X, — Xim +/ g(Cv)dv‘ } } + 0, + Poe,
=0 re(l/n,(1+1)/n] 1/n
1
< CO X — + 6n -+ (I)(]Sn (79)

/4

.....

E[[W — W] < QoE[(Z(s) + 1)1]'/%5, < C1d, (7.10)
for some C; > 0, where 4, is a right-hand side of (7.9).
On the other hand we have
B[Sy —exp(X1)|] < BI(Z(s) + D] B[ X] — X1 ]2 < Cady (7.11)

for some Cy > 0. Since Step 2 implies that 6, and 4, converge to zero as n — oo, by (7.10),
(7.11) and Lemma 1, we can apply Lemma 2 and then we obtain

nhjgo ‘ E[“(‘/T/gv 902’ S;LL)] - E[U(Wh ¥1, eXp(Xl))H = 0. (7'12)

Since u is non-decreasing in w and W > W", we have

Vnn(wa ¥; Ss U) - Vi(’UJ, ¥, S; 'LL) < E[U<W:7 @Za SZ)] - E[U(Wh 1, exp(Xl))]

< E[U(W:,Q@Z,Sﬁ)] - E[U(Wl7901’exp(X1))]' (713)
Now the assertion of Proposition 2 is given by (7.12) and (7.13). |

Proof of Proposition 3. Again we suppose t = 1. Take any ((.)o<r<1 € Ai(p) and
l/n

let ¢ = / ¢-dr, where a Vb = max{a,b}. Then we have (¢'), € A'(p). Let
((1=1)/n)V0

(WMQOWXT)OSTSl = E{(<w79075; (CT)T) and (‘/Vlnvgp?ﬂsln>?:0 = EZ(w79078;(1/}ln)l) and Xln =

log SI.

Step 1. First we will show that
E[ max [X}'— Xi/n|] — 0, n — oc. (7.14)

.....

Define X" by (7.6) and let A" = E[ sup | X" — X,/|?]. By a similar calculation as in the
0<r'<r

proof of Step 2 of Proposition 2, we get

=VU,...,
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for some Cj > 0 depending only on b and o, where

M2 1
zn:qugi—i—F—i—E [/ \Gn(v)\de}, M = g(sup ¢ (w)),
0 W

([nv]+1)/n

Gutw) =o(n [ | o) (6

Here |G, (r,w)| < 2M and Lebesgue’s differentiation theorem implies G, (v, w) — 0 asn — oo
for almost all (v,w) € [0,1] x Q. Then, using the dominated convergence theorem, we have
2z, — 0 as n — 0o. Then we obtain (7.14).

) n—1 (1+1)/n
Step 2. Let W' =w + Zwl"n/ exp(X,)dr. Then we have
1=0 !

n

E[[W] — W]

=2 .(i+1)/n
< sy |

=0 l/n

+E [/(1 eXp(Xr)Q.dr]

n—1)/n

(I+1)/n
exp(Xoihn [ Guo = exp(X,)6,

l/n

dr|

1
< Co{@El swp  [Xprun = X2+ K+~ ]
]

veEl0,1-1/n

for some Cy > 0 depending only on b, 0, ((.), and s, where

K, = (/1 E[\Hnmmdr)”z, Ho(r) = n/([nml)/n Codv — G
0

[nr]/n
By Lemma 4, we have
1 M
E| sup |X, n—XU21/2§C’ X — + —
[UE[O,lfl/n] | Y ] ? N

for some Cy > 0. Lebesgue’s differentiation theorem and the dominated convergence theorem
imply K,, — 0. Then we obtain E[[WW}*—W;|] — 0. On the other hand, a similar calculation
to Step 2 of the proof of Proposition 2 implies E[|W" — W|] — 0. Thus E[|[W —W?"|] — 0
converges. Moreover, by (7.14), we have E[|S], — exp(X;)|] — 0. Then we can apply Lemma
2 and we get

E[u(W1, @1, exp(X1))] = lim Elu(W;, ¢y, S))] < liminf V' (w, ¢, s;u).

n—oo

Since (()r € Ai(y) is arbitrary, we obtain the assertion. |
By Proposition 2 and Proposition 3, we obtain Theorem 1.
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7.3 Strategy-Restricted Value Functions

In this subsection we prepare strategy-restricted value functions to prove Theorem 2 and
Theorem 3. For L > 0, we define

AP (o) = {(W)ly € A(p) s < L/n, 1=0,....k—1},
Af(p) = {(Go<r<t € Aule) sup |G- (w)] < L},

Vit (w, @, s5u) = sup E[u(Wy', ¢r, Sl
(V)5 €A ()
VtL(w,go, S,U) = sup E[U<Wt7gpt75’t>]‘
(Cr)r<t€AE(9)

We see easily that V" (w, ¢, s;u) = sup Vk"’L(w, @, s;u) and Vi (w, p, s;u) = sup Vi¥(w, o, s;u).
L>0 L>0

By similar arguments as in Section 7.2, we see that for each L > 0, (w,p,s) € D, t € [0,1]
and u € C

lim Vi (w, 0, 55u) = Vi (w, ¢, 550). (7.15)

00 [nt]

Now we consider the continuity of VtL(w, ¢, s;u). Our purpose in this section is to prove
the following proposition.

Proposition 4. V/*(w, g, s;u) is continuous with respect to (t,w,p,s) € [0,1] x D.
To prove Proposition 4, we will prove the following lemmas.

Lemma 8. For each (w,p,s) € D and t € [0, 1]

lim sup |VtL(w', ¢, s u) — ‘/;L(w7 @, s;u)| = 0.
(w/,ap/,s’)ﬂ(w,go,s) L>0

Proof. Let R > 0 and (w, ¢, s), (w',¢',s") € Dg. We may assume s’ > 0. Take any ((,),<; €
AL(p). Let p=inf{r >0 ; / Gdv > A @'} At and ¢ = G 1g<py. Then (()r<r € AF(¢).

0
Let (W, ¢r, Sr)r<t = Zi(w, 9,55 ((,),) and (W), ¢y, 5] )<y = E(w', ¢, 8" (¢))r). Moreover let
us define (S!),<; by

dS = 6(S1)dB, + b(S")dr — g(¢.)Sldr, Sh=5.
Then Lemma 5 implies S’ > S’ for each r € [0, ] almost surely. Thus
E[u(Wy, 1, )] — Vi(w', ¢, s u) < E[u(W, ¢, Sp) — u(W7, @), S (7.16)
By a simple calculation we get

W, — W/| < |w—w'| + Z(s)|¢ — ¢'| + @ sup |S, — S|

re(0,t]

and |p; — ;] < | — ¢'|. Moreover Theorem 3.2.7 in [23] and Lemma 1 imply

5 Cos’ (s=0)
E[sup |S, = S|] <
[Tel[lo% | =< { Collog s —log s'| (s> 0)
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for some Cj > 0 depending only on b, 0 and R. Then we obtain

sup sup EHU(Wt? Pt St) - U(Wt/7 901,67 S;)H —0 (717)

L0 (¢,), €A ()
as (w', ¢, ") — (w, p,s) by using Lemma 2. Then (7.16) and (7.17) imply

lim  sup(V (w, ¢, s;u) = ViH (W', ¢, 5" u)) < 0.
(w,¢,s" )= (w,p,8) L>0

A similar argument gives us

lim sup(V,"(w', ¢', s";u) — V*(w, ¢, s;u)) < 0.
(wlv‘plvsl)_)(wvﬂovs) L>0

So we get the assertions. [ |

By Proposition 4, it follows that the convergence of (7.15) is uniform on any compact subset
of D for each fixed ¢ (we remark that Vk"’L(w, ¢, s;u) and VX (w, ¢, s;u) are non-decreasing in
w, ¢ and s).

Lemma 9. For each compact set E C D,

limsupsup sup (VE(w, 9, 50) — ViE(w, g, 55)) <0, € (0,1],
rTt  L>0 (w,p,s)EE

lmsupsup sup (VE(w, 0,5 4) — ViE(w, 0, 5:0) <0, 7 € [0,1).
tlr  L>0 (w,p,s)€E

Proof. Let r,t € [0,1] with < t. Lemma 2 and Lemma 4 imply

sup  sup sup  E[|u(Wr, ¢, exp(X,))] — w(Wy, 3y, exp(Xy))[] — 0
L>0 (w,p,s)€E (Cu)vEAL ()

aSNT T t a’I}d t l« r, where (Wln SOU7~XU)0SIIS7’ = EtX(w7 ¥, S5 (C"‘)T)u
Wy, Po, Xo)o<oct = =5 (w, 9, 85 (¢,),) and (, = Culjo,(v). This implies the assertions. [ |

Similar arguments give us the following lemma.

Lemma 10. For each L > 0 and compact set E C D,

limsup sup (VE(w, g, 550) — VEw, g, 50) <0, ¢ € (0,1,
th (wﬁa)s)eE

lmsup sup (ViE(w, @, 5:) — VE(w, 9, 5) <0, € [0,1)
tir (w,p,8)EE

By Lemmas 8-10, we obtain Proposition 4. We remark that Lemma 6 and Proposition 4
imply Vi*(+;u), Vi(-;u) € C.
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7.4 Proof of Theorem 3

In order to show Theorem 3, we define the operators QF : C — C and Q?’L :C — C by
QLu(w, ¢, s) = ViE(w, , 5;u) and Q) u(w, ¢, s) = V[SZ;}Lu(w, ¢, 5). We see that QF and Q)"
are also well-defined. First we will show

Q1€L+Tu(w7 P, S) = QtLqu(wa 2 8) (718)

for each t,r € I with t +r < 1, where I = {k/2"; k,1 € Z,}N[0,1]. Let n € N be large
enough so that 2"t,2"r € Z,. By the Bellman equation of the discrete-time case ([6]), we
have

Q- u(w, ¢, 5) = QP Q™ u(w, v, 5). (7.19)
By (7.15), we see that the left-hand side of (7.19) converges to that of (7.18) as n — oo for each

t,r € I. To see the convergence of the right-hand side, we prove the following proposition.

Proposition 5. Let u,,u € C be utility functions satisfying (2.4) for some C, and my,.
Assume that u, is converges to u uniformly on any compact subset of D as n — oco. Then

lim sup |Vk"’L(w,<p,s;un) — ‘/k"’L(w,gp,s;uﬂ =0, (w,p,s)€D.
n—=00 k=0, .n

Proof. Take any R > 0. Then we have

VP (w, o, 83u,) — ViH(w, 0, s30))
< sup  E[lun(WP o8, Sp) — u(Wi, ¢}, SP)]]

W@MeAR T (9)
A VAR Co
< sup [un(w', ', 8") —u(w', ¢, s")| + —
(w',p',s")EDR R

by virtue of Lemma 1 and the Chebyshev inequality, where Cy > 0 depends only on b, o, C,,,
m,, and (w, @, s). Now we easily see the assertion. |

Using Proposition 5 and the uniform convergence of (7.15) on any compact set, we see
that the right-hand side of (7.19) converges to that of (7.18). Moreover Proposition 4 implies
that (7.18) also holds for each t,r € [0,1]. Theorem 3 is obtained by (7.18), the relation
Quu(w, p, s) = sup QFu(w, ¢, s) and similar calculation to the proof of Proposition 4 in [24].

L>0

7.5 Proof of Theorem 2

In this section we give the proof of Theorem 2. First we consider the right-continuity at
t = 0 when h(c0) = 0.

Lemma 11. Assume h(co) = co. Then for each t € [0,1] and (¢, )o<r<t € Asi(@),

/Or exp (- /0 9(Co)d ) v < 6(r), 7 € [0,1),

where ¢(r), r € (0,1], is a continuous function depending only on the function h(() and @
such that liI% o(r) = 0.
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Proof. Let m, = / 9(¢y)dv and 7 = inf{v € [r/2,r] ; m, > R} Ar for r € (0,¢] and R > 0.
0

Then we have
T TR T TR
/ exp(—my,)(udv < / Codv +/ e fi¢,dv < / Codv + Dpe
0 0 - 0

for r € (0,t] and R > 0. Since ¢g({) is convex, the Jensen inequality implies

/OTR Cudv < TR91</019(<TRv)dU> < 7”91<§ /OTR g(Cv)dv> <rg '(2R/r),

where g~ *(y) = inf{¢ € [0,00) ; g(¢) =y}, y > 0. The function g *(y) is well-defined at any
y > 0 and continuous for large y.

Let us define a function f(¢), ¢ > 0, by f(¢) = (v/h(¢/2). Then f(() is continuous, strictly
increasing for large y and satisfies f(0) = 0 and Clim f(¢) = oco. Thus f(¢) has an inverse

function f~'(y) on [0, 00) such that f~'(0) = 0, lim f~*(y) = oo and f~*(y) is continuous for
y—00

large 3. So we can define M(r) = f~*(1/r) and R(r) = rg(M(r))/2 for r € (0,1]. Then we
see that M(r), R(r) — oo as r — 0 and that

ro (M) rM(r r r
Rz ] [ o » TMEIONON) _ VTG

> — = 00

2 M(r)/2 4 4
as 7 — 0. Moreover we have

1
-1
rg  (2R(r)/r)=rM(r) = ————— — 0, r —0.
V(M (r)/2)

Then the assertion holds by letting ¢(r) = rg ' (2R(r) /1) + ®g exp(—R(r)). |

Proposition 6. Assume h(occ) = oo. Then for each compact set E C D

lim sup |Vi(w,p,s;u) —u(w,p,s)| =0.
t10 (w,p,8)EE

t
PTOOf' Take anyt € (Oa 1) Let St = S€exp (_/ g(Cv>dv> and (Wra Prs Sr)OSrSt = Et(wa ¥ S; (gr)r)
0

Then we have

E[U(Wt> Pts St)] - E[u(wa Pts St)]

Vi(w, @, s;u) —u(w, p,s) < sup (7.20)

(Cr)r€AL(p)

by virtue of the relations ¢; < ¢ and S, < s. Using Lemma 11, the Burkholder-Davis-Gundy
inequality and the Holder inequality, we have E[|S; — S]] < Cyst'/? and

s -l < sB] [ew (- [Tai)en] B[ [ 1. - Sica]
< sp(t) + Cydyst!'/?

for some Cjy > 0 which is independent of ¢, w, ¢, s and ((.),. Then, by (7.20) and Lemma 2, we

get limsup sup (Vi(w,p, s;u) —u(w, ¢, s)) < 0. The inequality limsup sup (u(w,p,s)—
t10 (w,p,8)EE t10 (w,p,8)ER
Vi(w, ¢, s;u)) < 0 is obtained by Lemma 9. Then we have the assertion. [
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Next we consider the case of h(oco) < 0.

Proposition 7. Assume h(co) < oo. Then for each compact set E C D

limsup sup (Vi(w,p,s;u)— Ju(w,p,s)) <O0.
tl0  (w,p,8)EE

Proof. Take any ¢ € (0,1) and (¢ Jo<r<t € Ai(0). Let (Wy, @r, Xp)osr<t = E7 (w, 9, 8; (G )r)-

Easily we have

lim sup sup E[u(Wy, 1, St)]

tl0 (w,(p,s)GE (Cr)r cA; (‘P)

t
—E [u(w + s/ e Codr, o — g, se_ﬁt)] ’ =0 (7.21)
0

by virtue of Lemma 2, where 7, = / (pdv and 7, = / 9((y)dv.
0 0

Now we define
Nr e D
0 = oo+ (' /r)dC!, Wy = — h(¢'/H)dC" | dp.
i =toa) [ ¢ mac = [" e (= [Muenac)ap

Since ¢(() is convex, the Jensen inequality implies 7, > rg(n,/r) = 7, and

iy > /0 exp (— /O mh((’/r)dg’) Codr > /0 e Cdr

for r € (0,t]. Moreover h(() is non-decreasing in ¢ and so is u(w, ¢, s) in w. Thus we get

t
B |u(w+s / e Gdr, = e ™) | < Eluw + sty 0 — i, se )]
0
for each ((,), € Ai(¢). By this inequality and (7.21), we get

limsup sup (Vt(w, ©, s;u)
tl0  (w,p,s)EE

—  sup  Elu(w + sy, ¢ —n, se‘ﬁt)]) <0. (7.22)
(CT)TE.At((P)
Next let us define
(o P .
q= [ o)~ he/dc, Fw)= [ e rrdy 729
0 0

Then we have e —e_h(o")”ﬂ < 4é; and |wy—F(n;)| < 49yé;. Since the dominated convergence
theorem implies &, — 0 as ¢ | 0, using Lemma 2, we get

lim sup sup ‘ E[u(w + sy,  — nt, s exp(—1))]
t0 (w,p,5)EE (¢r)reAi(p)

- E[u(w + F(nt)sv © = T, Se_h(OO)m)H =0.

By this and (7.22), we get the assertion. |
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Proposition 8. Assume h(occ) < oo. Then for each compact set E C D,

limsup sup (Ju(w,q,s)— Vi(w,p,s;u)) <O0.
tl0  (w,p,8)EE

Proof. Let t € (0,1). For each (w,p,s) € F, take any ¢ € [0, ] and define ({.)o<r<¢ € Ai(¥)
by ¢, =¥/t and (W,., ¢, Sy )o<r<t = Ze(w, , $; (¢),). Similarly to the proof of Proposition 7,
we get

lim sup  sup |u(w+ F()s, ¢ — ¥, se ") — Elu(W;, ¢y, Sp)]| = 0,
t0 (w,p,5)€E $e[0,¢]

which implies our assertion. [ |
Finally we consider the continuity with respect to ¢t € (0, 1].

Proposition 9. For each compact set E C D we have

(i) lim sup |Vi(w,p,s5u) = Vi(w, p,s5u)| =0, te(0,1],
vt (w,p,s)EE

(i) lm sup [Vi(w, o, 5u) — Vi(w, g, 55u)] =0, ¢ € (0,1).

YUt (w,p,5)€E

Proof. Lemma 9 implies

limsup sup (Vi(w, g, 5:u) — Vi(w, , 5:)) < 0.
vt (w,p,8)EE

By the following uniform convergence (which is given by Dini’s theorem)

lim sup |V (w, ¢, s;u) = Vi(w, ¢, s;u)] =0
L—oo (w,p,8)ER

and Lemma 10, we have

limsup sup (Vi(w,¢,s;u) — Ve(w,p,s;u)) <0.
1t (w,p,8)EE

Then we get the assertion (i).

Next we will check (ii). If h(co) = oo, this assertion holds by Proposition 6 and Theorem
3. So we may assume h(00) < 00.

By Propositions 7-8 and Theorem 3, we get

lim sup |Vi(w,p,s;u)— JVi(w,p,s;u)| =0,
YUt (w,p,5)€E

and obviously V;(w, ¢, s;u) < JVi(w, e, s;u). So it suffices to show
JVi(w, ¢, s;u) < Vi(w, @, s;u), t>0. (7.24)

Take any ¢ € [0, ¢] and (¢ )o<r<t € Ai(¢ — ). Let § € (0,1) and define (Co<r<t € Ai()
by Cr = (¢/5)1[0,5] (T) + Cv“ Let (Wra SDraXr)OSTSt = Ef((w + F(¢)S790 - 1/}a Se_h(oo)w; (Cr)r)
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and (W, &r, X\ )o<r<t = Zi¥ (w, ¢, 85 (C,)r), where F(x) is given by (7.23). Then we have for

T

%=X = [ o) = o )aB+ [ 05) ~ b))+

0

00)Y) — / (&) — 9(G) dv—(s//< (C/+Cv>)d§’dv.

Using the Burkholder-Davis-Gundy inequality and the Holder inequality, we get

lsup 1%, — X, < Cof [ B, - X,Pldo -+ Bles]}

veld,r]
r 0
< o / E[[Xy = Xo[*)dv +2 / B, [? + X, [2)do + Eles] |
g 0

S Cl{/ E[ sup ‘XU/—XU/|2]CZU+5+E[66]}7 re [67t]
1)

v’ €[8,v]

where

for some Cjy, C; > 0 depending only on b, ¢ and E. So the Gronwall inequality implies

t
E[sup |X, - X,])] < O {(5+E[65]+((5+E[65])/ e@(t—r)dr}
1

re(d,t]
< (0 +Eles))

for some Cy > 0. Since Eles] < €5 — 0 as 6 — 0, where &5 is given by (7.23), we get

E[sup | X, — X,[3], E[sup |exp(X,)—exp(X,)|]] — 0, & — 0. Moreover we have
rE[8,t] r€(0,t]

E[|W; — ]

< / exp(X,)dr — F(u)s]] + B /0 lexp(X,) — exp(X,) | dr]

exp(f(r) — seeor/o

dr] 4+ @ E[ sup | eXp(Xr) — exp(X,)|]

re0,t]

< @+ D) + 0P { B sup 1K, —logs+ [ oGl
r€(0,4] 0

1
+/ Espdr + dg (sup Cr(w)) } + &g E[ sup \exp(f(r) —exp(X,)|],
0 rw

rel0,t]
thus E[|W; — W;|]] — 0, & — 0 by virtue of Lemma 4. Then Lemma 2 implies
lim | Efu(We, 1, exp(X,))] = E[u(Wi, @i, exp(X0))]| = 0. (7.25)

By (7.25), we easily get E[(Wi, ¢r, exp(Xy))] < Vi(w, ¢, s;u). Since (¢r), € Ai(p — 1) is
arbitrary, we have

Vi(w + F(i)s, 0 — b, se7 "W u) < Vi(w, @, 5;0),
Moreover, since 1) € [0, ¢] is arbitrary, we get (7.24). [ |
By Propositions 6-9 and the relation V(- ;u) € C, we complete the proof of Theorem 2.
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7.6 Proof of Theorem 4

In Section 7.6 and Section 7.7 we always assume that h is strictly increasing and h(oo) =
oo. First we consider the characterization of V,*(w, ¢, s;u) as the viscosity solution of the
corresponding HIJB. We define a function F* : . — R by

FL(Z,p, X) = — Sup {16(25)2Xss + I;(Zs)ps + C (Zspw - pcp) - g(C)Zsps} .

0<¢<L
Then we have the following.

Proposition 10. Assume h(oco) = oo. Then, for each u € C, the function V;*(w, p, s;u) is
the viscosity solution of

9,
oY + F¥(2,Dv,D*») =0 on (0,1] x U. (7.26)
Since the control region [0, L] is compact, we obtain Theorem 10 by using (7.18) and the
standard arguments of the Bellman principle (see Theorem 5.4.1 in [23]).
Next we treat HIB (3.2). Let % = {(z,p,X) € . ; F(z,p,X) > —oo}. A direct
calculation gives the following.

Proposition 11. For (z,p, X) € %,

~

Fep. X) = —%6(25)2)(55—19(25);05
— mnax {C*(Z,p) (Zspw - pcp) - g(C*(zap))Zspsa O} )

where *(z,p) = h™! (M Y h(O)) Lip.>0y- In particular F is continuous on % .
ZSpS

Now we prove Theorem 4. We define an open set Z = U x (R? x (0,00)) x S® C % . Since
F is continuous on Z and FL converges to F monotonuously, we see that this convergence is
uniform on any compact set in & by Dini’s theorem. Similarly, using Dini’s theorem again,
we see that V% converges to V uniformly on any compact set in [0, 1] x D. Moreover we notice
that if we take & € C"?((0,1] x U) such that V — ¢ has a local maximum 0 at (¢, 2), then
(3.4) implies (09/0z,)(t, z) > 0 and (2, Di(t, 2), D*i(t, 2)) € Z. Then the same arguments as
in the proof of Lemma 5.7.1 in [23] lead us to the assertion. |

7.7 Proof of Theorem 5

First we remark that Lemmas 1 and 5 also imply that V;(w, ¢, s; u) has polynomial growth
in w,p and s.

Let U C U be open and bounded. Let ‘@fdji]xﬁ be parabolic variants of semijets and
—2+ ’

2 p1)x be their closures (see [8]). For A > 0, we define F(z,7,p, X) = A + F(z,p, X). We
see that the following (a.) and (b.) are equivalent:

(a.) A function v is a viscosity subsolution (resp., supersolution) of (3.2),
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(b.) A function vy (t,2) = e Mu(t, 2) is a viscosity subsolution (resp., supersolution) of

%v,\ + F\(z,vA(2), Dv, D*v) = 0. (7.27)

By Proposition 11, we can easily prove the following lemma.

Lemma 12. Suppose v is a viscosity subsolution (resp., supersolution) of (7.27). Then
a+ Fx(z,v(t, 2),p, X) <0 (resp., >0)

for any (t,a,z,p, X) € (0,1] x Rx U xR>x S* with (z,p, X) € ??(’)z]xgv(z) (resp., (a,p, X) €
2

P o0 (2))-

Especially we note that @?&;]ng(z) C 7% when v is a viscosity supersolution of (7.27).
Now we consider the comparison principle on a bounded domain.

Proposition 12. Suppose v (resp., v') be a viscosity subsolution (resp., supersolution) of

(7.27) on (0,1] x U. Moreover suppose v(0,z) < v'(0,2) for z € Uandv <0 < v on
(0,1] x OU. Then v <" on [0,1] x U.

By Lemma 12 and Theorem 8.12 in [8], we see that to prove Proposition 12 it suffices to
show the following Proposition 13.

Proposition 13. The function F' satisfies the following structure condition
F(z,a(z=2),Y) = F(z,a(z — 2),X) < p(alz = 2P + [z = 2]

fora>1, peC([0,00);]0,00)) with p(0) =0, 2,2’ € U, X,Y € S* with F(,a(z —2),Y) >

—00 and
I O X O J
(5 0)< (5 ) em(f 7), -

where I € R* @ R? denotes the unit matriz.

Proof. The condition F(2',a(z—2"),Y) > 0 implies (2, a(z—2"),Y) € %, thus either (i) z, >
zg or (i) z, = 2, and 2 (pw —pl,) — (Pp—1,,) < 0. In each case we have F(z,a(z—2), X) > —o0
and

(2 ra(z—=2),Y) = F\(z,r,a(z — 2'), X)
= F(#,a(z - #),Y) = F(z,a(z — ), X)
L.
5(07(2) Xss = 6%(20)Yss) + 1b(z,) —b( Ilalz — =]

Fasup {— 25 = 2)29(0) + (25 — 2) (2 — 2,)C } - (7.29)

VAN

Since (7.28) implies



and, ¢ and b are both Lipschitz continuous and linear growth, we have

1 R R
5(&2(25))(53 - 62(22)}{85) + 1b(2s) — b(z;)|a|zs - Z;| < Coarlzs — Z;|2

for some Cy > 0.
Next we estimate the last term of the right-hand side of (7.29). If z, = z., it is obvious
that this term is equal to zero, so we consider the case z; > z.. Since lign inf(h(¢)/¢) > 0, we

see that there exist 3 > 0 and ¢y > 0 such that g(¢) > 3¢? for any ¢ > ¢y. Thus

sup {— (2, — 2)°9(C) + (2 — 2) (20 — 2,,)¢}

¢>0
< —(9(Go) + o)l = 2 + Sup {=(es = 20°B¢% + (25 — 2) (20 — 2,)C }

/

w\/O) < Cylz — 2P

Zw — %
20

for some C7,Cy > 0. Thus we obtain the assertion. |

< (9(G0) + o)l — 712+ | — 2] (

Now we present the following proposition which includes the assertion of Theorem 5.
Proposition 14. Let v (resp., v') be functions such that
[o(t, 2)| + |v'(¢,2)] < C(L+ 25 + 25 + 2™, (t,2) € 0,1] x D

for some C;m > 0. Suppose that v (resp., v') is a viscosity subsolution (resp., supersolution)
of (3.2) on (0,1] x D. Moreover suppose that v and v" satisfy (3.5). Then v <v' on [0,1] x D.

Proof. Let q(z) = (1425 422+22)""". By the similar arguments as in the proof of Proposition
13, we have

|F(qu(2)7Dq(Z>7D2q(z))| < COQ(Z)7 z € D

for some Cy > 0. Let A > Cy and take any ¢ > 0. We define o(t,2) = e *v(t,2) — eq(2)
and ¥'(t,2) = e M'(t,2) + eq(z). Then there is some R, > 0 such that o < 0 < ¢ holds on
[0,1] x {|z| > R.}. By a straightforward calculation, we see that @ (resp., ') is a viscosity
subsolution (resp., supersolution) of (7.27). Thus Proposition 12 implies o < @' on [0,1] x D.
Since € > 0 is arbitrary, we obtain the assertion. [ |

7.8 Proof of Proposition 1
First we prove the following lemma.

Lemma 13. Under the assumptions of Section 5, V.'(w, ¢, s;u) is equal to the discrete-time
value function with b(z) = —f and o(x) = 0.

This lemma is easily proved by mathematical induction. Then we see that the optimal
strategy in the discrete-time model is deterministic. By the proof of Theorem 1, the optimal
strategy in continuous-time model is also deterministic. For ((,.), € A% (), we have

blsi) = sex (<t = [ o)
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and

t t T
E[W,| =w +/0 G E[Sy]dr = w + S/o G- exp (—[w“ — /o g(@)dv) dr.

This implies the assertion.

7.9 Proof of Theorem 8

Take any ({,)o<r<i € A () and let 7, = / Cudv for r € [0,t]. Then we have
0

t r t 1 — e~ 1 — e
/ ¢, exp (—[u“ — / OzCUdU> dr < / e Yrdn, = ¢ < <
0 0 0 o o

Since ((,), € As(p) is arbitrary, we get

1 — 0¥
Vi(w, p, s;u) <w+ ————s. (7.30)
«

On the other hand, take any § € (0,t) and let (¢?),<; € Ai(¢) be such that ¢’ = ?1[075}.

Then we have

1 — exp(—ay — [id)
ap + fid

where (W?9)o<,<; is given by (2.6) with (¢°),.. Letting § | 0, we get

1 —e
Vi(w, ¢, s;u) > w+ ———s. (7.31)
a

By (7.30) and (7.31), we obtain the assertion. |
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