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Abstract. — With the notion of flavor-oscillation clock of Ahluwalia et.
al. or the notion of local time introduced by the author, we will consider a
quantum mechanical local system that forms a bound state with respect
to the local Hamiltonian of the system. We will see that such a local
system is considered timeless and hence the principles of relativity do
not apply to those timeless systems. As application, we will suggest a
possibility of the faster-than-light phenomena and a possible explanation
of dark matter and Big Bang phenomenon consistent with the theory of
relativity and the conservation law of matter.

1 Definition of local time

Ahluwalia et. al. in [1], [2], [3] introduced the concept of flavor-oscillation
clock of a quantum mechanical system, which was later noticed in [4] to be
the same as the notion of local clock introduced earlier by the author in [5]
and developed further in [6], [7], [8], [9] and other papers in the references. We
here review some basic ideas considered there.

A quantum mechanical many body system with Hamiltonian Hnℓ on a
Hilbert space Hnℓ = L2(R3n) is called a local system and is denoted (Hnℓ,Hnℓ),
where N = n + 1 is the number of particles in the system with n ≥ 1, and
the label ℓ = 1, 2, . . . distinguishes different systems with the same number of
particles.

Concretely stating, Hnℓ is defined from the Hamiltonian H̃nℓ of N -particles
located at X1, . . . , XN (Xj = (Xj1, Xj2, Xj3) ∈ R3) in a given Euclidean space
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R3. The Hamiltonian H̃nℓ is defined in L2(R3N) and given by

H̃nℓ = −~2

N∑
j=1

1

2mj

∂2

∂X2
j

+
∑

1≤i<j≤N

Vij(Xj − Xi), (1)

where ~ = h/(2π) with h being Planck constant, mj > 0 is the mass of the
j-th particle,

∂2

∂X2
j

=
3∑

k=1

∂2

∂X2
jk

is Laplacian in R3, and Vij(x) (x ∈ R3) is a real-valued pair potential which
describes the interaction between the particles i and j. Henceforth we assume
that we take a unit system in which ~ = 1 so that we will consider

H̃nℓ = −
N∑

j=1

1

2mj

∂2

∂X2
j

+
∑

1≤i<j≤N

Vij(Xj − Xi) (2)

instead of (1).

As the interaction depends just on relative coordinate Xj −Xi ∈ R3 of the
particles, we can remove the center of mass

XC =
m1X1 + · · · + mNXN

m1 + · · · + mN

from the Hamiltonian H̃nℓ by introducing a relative coordinate system

xi = Xi+1 −
m1X1 + · · · + miXi

m1 + · · · + mi

(i = 1, 2, . . . , n, n = N − 1),

and obtain the following Hamiltonian in Hnℓ = L2(R3n) which describes the
internal motion of the local system (Hnℓ,Hnℓ).

Hnℓ = −
n∑

k=1

1

2µk

∂2

∂x2
k

+
∑

1≤i<j≤N

Vij(xij). (3)

Here the relative coordinate xij = Xj − Xi is the one expressed by the new
coordinate xi (i = 1, 2, . . . , n) introduced above and µk is the reduced mass
defined by

1

µk

=
1

mk+1

+
1

m1 + · · · + mk

(k = 1, 2, . . . , n).
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The remaining Hamiltonian of the center of mass

HC = − 1

2
∑N

j=1 mj

∂2

∂X2
C

is a constant multiple of the negative Laplacian −∆ in R3 and could be omitted
when considering the relative motion inside the system. We will actually do
this later when we make the postulates of relativity on the motion of centers
of mass of various local systems. By this change of coordinate the original
Hamiltonian H̃nℓ is equal to the Hamiltonian

H̃nℓ = HC ⊗ I + I ⊗ Hnℓ

defined in the tensor product L2(R3N) = L2(R3) ⊗ L2(R3n) = L2(R3) ⊗Hnℓ.

Thus far we have used only the position operator xj = (xj1, xj2, xj3) and
the conjugate momentum operator pj = (pj1, pj2, pj3) = −i∂/∂xj = −i∂xj

=
−i(∂/∂xj1, ∂/∂xj2, ∂/∂xj3) to describe the local system (Hnℓ,Hnℓ). We now
introduce the concept of time as follows in this system. Namely the uni-
tary group exp(−itHnℓ) generated by the local Hamiltonian Hnℓ is called the
flavor-oscillation clock, or local clock of the local system (Hnℓ,Hnℓ), and the
parameter t in the exponent of the local clock exp(−itHnℓ) is called the local
time of the system.

We here recall that the closed space spanned by bound states of Hnℓ is
called a pure point spectral subspace of Hnℓ and is denoted Hnℓ,p. We write the
projection operator onto Hnℓ,p by PHnℓ

so that we have Hnℓ,p = PHnℓ
Hnℓ. The

space orthogonal to the pure point spectral subspace Hnℓ,p is called continuous
spectral subspace or scattering space of Hnℓ and is denoted Hnℓ,c, which is equal
to (I − PHnℓ

)Hnℓ. A state belonging to Hnℓ,c is called a scattering state.

When a state f ∈ Hnℓ is a bound state of Hnℓ with eigenvalue λ ∈ R,
i.e. Hnℓf = λf with the norm ∥f∥ = 1, the evolution exp(−itHnℓ)f of the
state satisfies exp(−itHnℓ)f = exp(−itλ)f so that the probability density of
existence in configuration space is | exp(−itHnℓ)f(x)|2 = | exp(−itλ)f(x)|2 =
|f(x)|2 and this does not vary even when time parameter t changes so that it is
a constant of motion and the state is considered to be stationary with respect
to time. In this sense the system which starts with a bound state is regarded
as timeless. Moreover that the probability density of the evolution is constant
means that the system makes neither emission nor absorption of matter nor
photon, so is regarded as an unobservable or invisible isolated system. (In
our Hamiltonian (3), no photon is accommodated. However with the recent
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progress of quantum field theory in non-relativistic case (e.g. [10]), it will be
possible to discuss photons in our formulation.) We call such a local system
with the state exp(−itHnℓ)f that starts with a bound state f ∈ Hnℓ,p at the
initial time t = 0 a timeless system or timeless local system. We remark that
in a timeless system, the independent coordinates are the 6 components of
configuration operator (x1, x2, x3) and momentum operator (p1, p2, p3) unlike
the classical theory where the fundamental freedom of coordinates is 4 of time
t and configuration (x1, x2, x3).

When, on the other hand, a state f ∈ Hnℓ involves a scattering component
g ̸= 0 belonging to the continuous spectral subspace Hnℓ,c, f is decomposed
as an orthogonal sum f = g + h with h ∈ Hnℓ,p. In this case it is known that
the following lemma holds.

As it requires complicated notation to describe the lemma in the case of
general N -body system, we will in this paper be contented with considering
merely the two body case n = 1. In this case the relative coordinate inside
the two body system (H1ℓ,H1ℓ) is x = x1 = X2 − X1 ∈ R3, where Xj is the
position of the j-th particle in R3 for j = 1, 2, and the reduced mass µ = µ1 is
given by µ = (m−1

2 + m−1
1 )−1. Thus we have only to consider the Hamiltonian

H = H1ℓ of the form

H = H0 + V (x), H0 = − 1

2µ

∂2

∂x2
= − 1

2µ
∆ (4)

defined in H = H1ℓ = L2(R3). For the potential V (x), we assume for in-
stance the usual conditions as follows. V (x) is decomposed as a sum V (x) =
VS(x) + VL(x) of two real-valued measurable functions VS(x), VL(x) of x =
(x1, x2, x3) ∈ R3 satisfying the following conditions. We recall that α =
(α1, α2, α3) is a multi-index when αj ≥ 0 is an integer, and |α| = α1 + α2 + α3

is the length of α. We also use the notation ⟨x⟩ =
√

1 + |x|2 for x ∈ R3,
∂x = (∂x1 , ∂x2 , ∂x3) = (∂/∂x1, ∂/∂x2, ∂/∂x3), and ∂α

x = ∂α1
x1

∂α2
x2

∂α3
x3

.

(Short-range condition) There exists a constant 0 < δ < 1 such that

∥⟨x⟩1+δVS(x)(1 + H0)
−1∥ < ∞, (5)

where ∥ · ∥ denotes the operator norm in H = L2(R3).

(Long-range condition) Let δ ∈ (0, 1) be the same constant as in the above
condition. For all multi-indices α there exists a constant Cα > 0 such that for
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all x ∈ R3

|∂α
x VL(x)| ≤ Cα⟨x⟩−|α|−δ. (6)

The short-range condition allows the local singularity for instance. It is the
singularity like the one |x|−2+ϵ with ϵ > 0 when speaking about the singularity
at the origin. This together with the long-range condition allows our potentials
to include the Coulomb potential for example.

Then we have the following lemma (Theorem 3.2 in [11] for the general
many body case, and Lemma 5.2 in [12] for the two body case). Noting that
H does not have positive eigenvalues under the above conditions ([13]), we
have only to consider the scattering state in the space Hc(a, b) = EH([a, b])Hc

for 0 < a < b < ∞, where EH is the spectral measure for H.

Lemma 1.1. For any g ∈ Hc(a, b) (0 < a < b < ∞) with ⟨x⟩2g ∈ H =
L2(R3), there exists a sequence tk → ±∞ as k → ±∞ such that for any
ϕ ∈ C∞

0 (R) and R > 0

∥χ{x∈R3||x|<R} exp(−itkH)g∥ → 0, (7)

∥(ϕ(H) − ϕ(H0)) exp(−itkH)g∥ → 0, (8)∥∥∥∥(
x

tk
− p

µ

)
exp(−itkH)g

∥∥∥∥ → 0 (9)

as k → ±∞, where p = −i(∂/∂x1, ∂/∂x2, ∂/∂x3) and χB denotes the charac-
teristic function of a set B.

The relation (9) implies that on the evoluted state exp(−itH)g starting
with a scattering state g ∈ Hc, the asymptotic relation

x

tk
∼ p

µ
(tk → ±∞) (10)

holds. We note that p/µ is the relative velocity of the two particles. The
relation (10) then means that the classical velocity x/tk agrees with the quan-
tum mechanical velocity p/µ asymptotically as tk → ±∞ in the phase space
R3×R3 of (x, p) on the evoluted state exp(−itkH)g when g is a scattering state
of H. Namely micro-locally, the quantum mechanical picture of motion agrees
asymptotically with the classical picture of motion when the system starts with
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a scattering state. This as well implies that the two body system (H,H) is in-
ternally alive in the sense that the probability density | exp(−itH)g(x)|2/∥g∥2

varies along with the change of the parameter t. These results extend to gen-
eral N -body case as shown in Theorem 3.2 in [11]. This justifies the definition
that the local time t of the general local system (Hnℓ,Hnℓ) is given by the pa-
rameter t on the exponent of the evolution exp(−itHnℓ)f of the system when
the system starts with a state f involving a component g ̸= 0 belonging to the
scattering space Hnℓ,c of Hnℓ. Further lemma 1.1 implies that one can take the
4 components of independent coordinates of local time t and the configuration
coordinates (x1, x2, x3) as the fundamental free coordinates which describe the
internal motion of the local system as well as implies that the system is consid-
ered observable as it scatters and emits the parts to the outside of the system.
(We refer the reader to [11] for a detailed argument on this subject.) We de-
note this time t by t(Hnℓ,Hnℓ) indicating the local system under consideration.
We call such visible or observable local systems just local systems when no
confusion arises.

On the contrary as we have seen, when the system starts with a bound
state f of the Hamiltonian Hnℓ with Hnℓf = λf , f ̸= 0 and λ ∈ R, the system
is regarded to have no time coordinate and is called a timeless system. Its
fundamental coordinates are the 6 components of the position (x1, x2, x3) and
momentum (p1, p2, p3), and the timeless system is considered unobservable or
invisible.

2 Local systems as classical particles

There are zillions of observable local systems in our universe. Each of those
local systems is a quantum mechanical system and is regarded as a classical
particle as usual with its center of mass being identified with a classical particle.
In fact as the center of mass and the internal relative coordinates of a local
system are mutually independent, we could remove the center of mass of each
local system when we consider the internal motion, as stated above. Utilizing
this mutual independence between the internal coordinates and the center of
mass of a local system, we can assume general theory of relativity among the
centers of mass of those local systems and can prove that the postulates of
general relativity posed on the centers of mass of local systems are consistent
with the postulates of quantum mechanics assumed on the internal motion of
each local system. Namely we have proved the following theorem in Theorem
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2 of [5].

To state the theorem we first note that, with utilizing the definition of the
local time t = t(Hnℓ,Hnℓ) of the system (Hnℓ,Hnℓ) which has nonzero scattering
space, we can define the local space-time (t, x) = (t(Hnℓ,Hnℓ), x(Hnℓ,Hnℓ)) ∈ R4

of the local system (Hnℓ,Hnℓ) such that the center of mass of the local system
(Hnℓ,Hnℓ) is at the origin x = 0 of the space coordinates x = (x1, x2, x3) of
R3.

We are now in a position to state our postulates of relativity on the centers
of mass of local systems.

General principle of relativity. The laws of physics which govern the rela-
tive motion of the centers of mass of the observed local systems are ex-
pressed by the classical equations which are covariant under the change of
observer’s coordinate systems of R4 from one observer’s coordinates (t, x) =
(t(Hmk,Hmk), x(Hmk,Hmk)) to another observer’s coordinates (t, x) = (t(Hnℓ,Hnℓ),
x(Hnℓ,Hnℓ)) for any pairs (m, k), (n, ℓ).

It is included in this postulate that one can observe the positions of the
centers of mass of other systems in his coordinate system (t, x). The relative
velocities of the observed systems are then defined as quotients of the relative
positions of those systems and the local time t of the observer’s system.

Principle of equivalence. The coordinate system (t(Hnℓ,Hnℓ), x(Hnℓ,Hnℓ)) associ-
ated with the local system (Hnℓ,Hnℓ) is the local Lorentz system of coordinates.
Namely, the gravitational tensor gµν for the center of mass of the local system
(Hnℓ,Hnℓ), observed in these coordinates (t(Hnℓ,Hnℓ), x(Hnℓ,Hnℓ)), are equal to
ηµν . Here ηµν = 0 (µ ̸= ν), = 1 (µ = ν = 1, 2, 3), and = −1 (µ = ν = 0).

The principle of equivalence together with the general principle of rela-
tivity implies that for the coordinate system (t(Hnℓ,Hnℓ), x(Hnℓ,Hnℓ)) associated
with the local system (Hnℓ,Hnℓ), the principle of constancy of the velocity
of light holds in the following sense: The light radiated from another system
(Hmk,Hmk) moving with a steady velocity relative to an observer’s system
(Hnℓ,Hnℓ) propagates through the flat region where gµν = ηµν at a constant
velocity c, independently of the velocity of the system (Hmk,Hmk) relative to
the observer’s system (Hnℓ,Hnℓ).

In particular, those principles imply the Lorentz transformation which con-
nects the two inertial frames of reference which move each other with a constant
velocity.
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Under these conditions we have proved the following consistency theorem
between quantum mechanics and general theory of relativity in Theorem 2 of
[5].

Theorem 2.1. General principle of relativity and the principle of equivalence
postulated on the relative motion between the centers of mass of various local
systems are consistent with the postulate of quantum mechanics posed on the
internal motion of each local system (Hnℓ,Hnℓ), i.e. consistent with the postu-
late that the internal relative motion of particles inside the system (Hnℓ,Hnℓ)
is described by the Hamiltonian Hnℓ defined by (3).

For the proof we refer the reader to [5].

As a special case, we have discussed in [4] the case where the velocity
of an observable local system is constant relative to an observer with some
postulates on the relation between the internal velocity of the system and
the external velocity of its center of mass with respect to the observer. With
those postulates we have deduced the same consequence as the special theory
of relativity and, in particular the Lorentz transformation, showing that the
quantum mechanical local clock is equivalent to the classical relativistic clock.

On the other hand, with regards to the invisible timeless local systems,
those principles of general relativity do not apply as those systems have no time
coordinate. In particular, the fact that time is not defined in such a system
yields that the Lorentz transformation does not apply to timeless systems even
if the system moves with a constant velocity relative to an observer. Therefore
we can assume in a consistent manner with the theory of relativity that the
mass of such a timeless system is constant, independently of its velocity relative
to the observer. Namely we can assume the following on timeless local systems
consistently with the principles of general relativity.

Principle of constancy of mass of timeless systems. The mass of the timeless
unobservable system exp(−itHnℓ)f which starts with a bound state f ∈ Hnℓ,p

with Hnℓf = λf , f ̸= 0, λ ∈ R at the initial time t = 0 is a constant,
independently of its velocity relative to the observer.

We remark that there might be other possible consistent assumptions on
those timeless systems. The problem which assumption is appropriate will
be decided by the future investigation both from experimental and theoretical
perspectives. Considering the nature of the timeless system that it has no time,
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it would be a natural assumption that the mass of such a timeless system does
not change and is independent of its velocity relative to the observer, however.

3 Superluminal phenomena, dark matter and

Big Bang

As we have seen in the previous section, if a state exp(−itHnℓ)f starts at the
initial time t = 0 with an eigenstate f ∈ Hnℓ,p of the Hamiltonian Hnℓ, the
system is regarded to have no time coordinate as well as it is unobservable or
invisible. We called such a system a timeless system or timeless local system.

A feature of timeless local systems is that they have no coordinate system
which includes time coordinate. Therefore the principles of general theory of
relativity postulated in the previous section do not apply to such a timeless
system. Hence it is consistent with the theories of relativity to assume the
principle of constancy of mass of timeless systems stated at the end of the
previous section. Then the mass of the timeless system will not increase nor
change until it becomes observable by some causes even if it moves with a speed
close to that of light relative to the observer. Therefore such a timeless system
exp(−itHnℓ)f with Hnℓf = λf , f ̸= 0, λ ∈ R could travel with an arbitrary
speed, e.g. with a superluminal speed, relative to the observer accordingly
to the force applied to it at the initial time t = 0, until the system turns
into a state involving scattering component at a time s by some causes like
colliding with other local system (Hmk,Hmk) so that the state exp(−isHnℓ)f
becomes a state exp(−isHnℓ)h involving a nonvanishing scattering component
exp(−isHnℓ)g (g ∈ Hnℓ,c = (I − PHnℓ

)Hnℓ) with respect to the Hamiltonian
Hnℓ when considered in the combined system (Hpj,Hpj) of (Hnℓ,Hnℓ) and
(Hmk,Hmk). At this moment s, the state exp(−isHnℓ)h involves a scattering
state so that it has its local time. Consequently it becomes observable and
appears in the real world at the position of the collision with the system
(Hmk,Hmk). An important remark at this point is that this superluminal travel
does not violate the principle of causality. In the usual theory of relativity, it
is assumed that in a superluminal travel, the direction of the traveler’s time
is reversed and he will be back to the past at the arrival. But in our timeless
system, the time inside it does not change so that it arrives at the destination
at the same time as its departure, but in the observer’s framework a nonzero
positive time has passed. Thus the system arrives at the destination at a

9



future time in the observer’s time coordinate.

Utilizing these considerations, we would be able to construct a warp drive
system for example under the before-metioned principle of constancy of mass of
timeless systems. Given a local system (Hnℓ,Hnℓ), if one can make it a bound
state with respect to the local Hamiltonian Hnℓ, he can send that timeless
system with a superluminal velocity relative to the observer to a target by
applying an appropriate force at the initial time. If it remains the bound state
it is not observable and it is the same that it does not exist. Nonetheless if
one can wake up the local system at the destination to turn a system to a
state which possesses a component of scattering state which belongs to the
continuous spectral subspace Hnℓ,c = (I − PHnℓ

)Hnℓ of Hnℓ, then the system
obtains time coordinate and becomes observable. A timeless system (Hnℓ,Hnℓ)
in a bound state wakes up to obtain time coordinate, when it collides with
another system (Hmk,Hmk) for instance as stated above. At the collision the
bound state would be broken into several subsystems in the combined system
(Hpj,Hpj) of (Hnℓ,Hnℓ) and (Hmk,Hmk) so that the system (Hnℓ,Hnℓ) becomes
involving a scattering component with respect to the system’s Hamiltonian
Hnℓ. If we can send out a system in a bound state toward some object with
applying a sufficient amount of energy, and if the collision with the target
takes place in an appropriate manner, the system will appear in the real world
at the target as a state involving scattering component and time coordinate.
The mean velocity from the start till the appearance at the target will be
superluminal.

We note that the local time of the timeless system is frozen just as in the
biological hypothermic hibernation of living things. In this sense we may as
well call a timeless system as a physically hibernated system or simply a frozen
system. The travel in the timeless system is therefore the one in which the
system is frozen as a local system. It should be remarked that this does not
mean that sublocal systems of the frozen system are also frozen however. On
the contrary the subsystems can be alive just as the local systems inside the
total stationary timeless universe ϕ considered in [5] can be alive and each can
have the local time of its own ([11], [14], [15]).

We remark that such a frozen system would be abundant in nature and
countless such systems are around us with being unnoticed. Some of them
would appear in the real world by some chance. For example, the creation and
annihilation of elementary particles would be one of such phenomena. What
we can notice of them is only their appearance usually, so that we rarely know
that they had travelled faster-than-light.
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Such timeless, frozen systems would be the one that has been called “dark
matter” in the sense that each of those systems is unobservable as remarked
above but has mass of its own. Until those systems appear in the real world
by some causes like collision with other systems they are hidden and unseen
because they are eigenstates of some Hamiltonians. Those systems have mass
however, which will explain the invisible dark matter.

The fact that timeless systems are not observable will give an explanation
of the so-called Big Bang phenomenon as a collision of plural timeless local
systems whether they had travelled faster-than-light or slower-than-light until
the collision. If we think the Big Bang as such a collision of timeless unob-
servable systems, it will give an explanation consistent with the conservation
law of matter or energy of the observed fact that no emission of photon nor
other matter before some 13.7 billion years ago has been observed.

4 Conclusion

We have reviewed the notion of local system and local time, and distinguished
the two cases of local systems. One is the timeless and unobservable local
system, and another is the observable local system with the associated local
time. The former timeless local system is a bound state or an eigenstate of the
local Hamiltonian of the system, and is regarded timeless because it does not
change according to its time variation. Further as an eigenstate of the local
Hamiltonian, the timeless system emits nothing outside, so is unobservable.

The nature that the timeless system does not have time defined yields
a possibility, consistently with the theory of relativity, that its mass might
be constant regardless of its velocity relative to the observer, so implies a
possibility that such a system could travel with a superluminal speed according
to the energy applied to it at the initial time.

Another nature that the timeless system is not observable suggests an
explanation of dark matter as timeless systems as each of those systems has
mass of its own although they are unobservable. The nature that those timeless
systems are unobservable as well would give an explanation of Big Bang as a
collision of plural unobservable timeless systems some billions years ago, which
is consistent with the conservation law of matter or energy and the fact that
no emission of photon nor matter has been observed before about 13.7 billions
years ago.
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coefficients from partial Cauchy data.

2011–21 Pen-Yuan Hsu, Yasunori Maekawa: On nonexistence for stationary solutions
to the Navier-Stokes equations with a linear strain.

2011–22 Hitoshi Kitada: Timeless system, superluminal phenomena, dark matter and
Big Bang.

The Graduate School of Mathematical Sciences was established in the University of
Tokyo in April, 1992. Formerly there were two departments of mathematics in the Uni-
versity of Tokyo: one in the Faculty of Science and the other in the College of Arts and
Sciences. All faculty members of these two departments have moved to the new gradu-
ate school, as well as several members of the Department of Pure and Applied Sciences
in the College of Arts and Sciences. In January, 1993, the preprint series of the former
two departments of mathematics were unified as the Preprint Series of the Graduate
School of Mathematical Sciences, The University of Tokyo. For the information about
the preprint series, please write to the preprint series office.

ADDRESS:
Graduate School of Mathematical Sciences, The University of Tokyo
3–8–1 Komaba Meguro-ku, Tokyo 153-8914, JAPAN
TEL +81-3-5465-7001 FAX +81-3-5465-7012


