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Abstract

We consider stationary solutions to the three-dimensional Navier-Stokes equa-
tions for viscous incompressible flows in the presence of a linear strain. For certain
class of strains we prove a Liouville type theorem under suitable decay conditions
on vorticity fields.

1 Introduction

In this paper we consider stationary solutions to the three-dimensional Navier-Stokes
equations for viscous incompressible flows with a linear strain:{

−∆U +Mx · ∇U +MU + U · ∇U +∇P = 0 x ∈ R3,

∇ · U = 0 x ∈ R3,
(NSM)

M =

λ1 0 0
0 λ2 0
0 0 λ3

 , λi ∈ R. (1.1)

Here U(x) = (U1(x), U2(x), U3(x)) represents the velocity field, P (x) is the pressure field,
x = (x1, x2, x3) ∈ R3 is the space variable, and each λi is a given real number.

The system (NSM) is closely related with the original Navier-Stokes equations. For
example, the first equation of (NSM) is formally obtained by considering the stationary
solution to the Navier-Stokes equations of the form U(x) + Mx. If the trace of M ,
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denoted by Tr(M) in the sequel, is equal to zero then the second equation of (NSM) is
also recovered. Even in the case Tr(M) 6= 0, (NSM) is derived from the Navier-Stokes
equations through self-similar solutions. To formulate this relation in a more precise way,
let us recall the three-dimensional Navier-Stokes equations for viscous incompressible
flows: {

vt −∆v + v · ∇v +∇p = 0 t > 0, x ∈ R3,

∇ · v = 0 t > 0, x ∈ R3,
(NS)

where v = v(x, t) = (v1(x, t), v2(x, t), v3(x, t)) and p = p(x, t). As stated above, when
Tr(M) = 0 the system (NSM) describes the stationary solutions to (NS) of the form
v(x) = U(x) + Mx and p(x) = P (x) − 1

2
|Mx|2, where | · | denotes the Euclidean norm

in R3. The reader is referred to [8] for the analysis of the nonstationary problem (NS)
with a linear strain, where more general matrices M are treated. If Tr(M) < 0 then
(NSM) is related with the forward self-similar solutions to (NS) with a linear strain, i.e.,
the solutions to (NS) of the form

v(x, t) =
1√
2αt

(U + S1)(
x√
2αt

), p(x, t) =
1

2αt
(P + S2)(

x√
2αt

), (1.2)

where α = |Tr(M)|/3, S1(x) = (M − αI)x, S2(x) = (α2|x|2 − |Mx|2)/2. Finally, if
Tr(M) > 0 then (NSM) describes the backward self-similar solutions to (NS) with a linear
strain,

v(x, t) =
1√

2α(T − t)
(U+S1)(

x√
2α(T − t)

), p(x, t) =
1

2α(T − t)
(P+S2)(

x√
2α(T − t)

),

(1.3)
where T > 0, and S1, S2, and α are the same as above.

Despite of the simple structure of the matrix M in (1.1), the above observation shows
that (NSM) describes three important classes of solutions to (NS) depending on the eigen-
values λi of M . However, it is still not clear whether (NSM) admits nontrivial solutions
or not, except for the following cases:

(i) λi > 0, i = 1, 2, 3 (ii) λ1 < 0, λ2 < 0,
3∑
i=1

λi = 0, (iii) λ1 = λ2 = λ3 < 0.

We note that the sign of the eigenvalues λi plays a critical role for the existence of nontriv-
ial solutions to (NSM). Indeed, if λi is positive then the transport term Mx · ∇ possesses
an expanding effect in xi direction, which tends to trivialize solutions. Conversely, if λi
is negative then the term Mx · ∇ induces a localization in xi direction, bringing an effect
to keep solutions nontrivial.

In this paper we study the case when one of λi is negative and the other two are
positive, for this case is essentially open in the literature and is also important as an
intermediate case between (i) and (ii). By suitable scaling and coordinate transformation
we may assume without loss of generality that

λ1 = −λ < 0, λ2 = 1, λ3 = µ ≥ 1. (1.4)

Before stating our results, we briefly recall the known results on the cases (i)-(iii).
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(i) λi > 0, i = 1, 2, 3: The most important example is λ1 = λ2 = λ3 > 0. In this case
(NSM) is called “Leray’s equation”, for it was suggested by [10] to prove the existence
of blow-up solutions to (NS) by constructing backward self-similar solutions. For this
particular case it was proved by [14] that any weak solution to Leray’s equation in L3(R3)
must be trivial. This result declared that Leray’s idea does not give the construction
of blow-up solutions to (NS). A simpler proof of the same conclusion was obtained by
[15] under a slightly stronger assumption. The result of [14, 15] was extended by [17],
where the condition of the spatial decay on U was completely removed. The expanding
effect of Mx · ∇ in all directions was essentially used in [17]. Although the eigenvalues
λi in [14, 15, 17] are assumed to be positive and identical, one can apply the method
especially in [17] for proving the nonexistence of nontrivial solutions to (NSM) even when
the eigenvalues are all positive but does not coincide with each other. We also refer to [3]
for a related problem on the Euler equations.

(ii) λ1 < 0, λ2 < 0,
3∑
i=1

λi = 0: When λ1 = λ2 (NSM) has an explicit two-dimensional

solution, called the Burgers vortex [1]. Even in the case λ1 6= λ2 the analog of the Burgers
vortex is known to exist; see [4, 5, 12, 13]. For stability of the Burgers vortex the reader
is referred to a recent book [6, Chapter 2] and references cited there.

(iii) λ1 = λ2 = λ3 < 0: In this case (NSM) describes the forward self-similar solutions to
(NS), and their existence is already well known. For example, see [2, 7, 9, 16].

For more references about forward and backward self-similar solutions to (NS) the reader
is referred to [6].

Now let us go back to the case (1.4) treated in the present paper. In this case the solu-
tions are more likely to be trivial due to the expanding effect of Mx ·∇ in two directions.
However, the presence of the negative eigenvalue λ1 gives rise to the interaction of the
localization and the expansion through the diffusion and the nonlinearity, which makes
the problem rather complicated. The aim of this paper is to give sufficient conditions for
(U, P ) so that U must be a constant vector, by overcoming this difficulty. The key idea
is to focus on the vorticity field Ω = ∇×U . The assumptions and the main result of this
paper are stated as follows.

(C0) |U(x)|+ |P (x)|
1 + |x|

∈ L∞(R3);

(C1) either (i) there is {x(n)} ⊂ R3 such that

lim
n→∞

|x(n)1 | =∞, sup
n

(|x(n)2 |+ |x
(n)
3 |) <∞, lim

n→∞

P (x(n))

x
(n)
1

= 0

or (ii) there is {x(n)} ⊂ R3 such that lim
n→∞

|x(n)| =∞, lim
n→∞

U1(x
(n)) = 0;

(C2) (1 + |x|)|Ω(x)| ∈ Lp0(R3) for some p0 ∈ (1, 3);

(C3) there is θ0 > λ such that

either (i) (1 + |x2|)θ0+1|Ω(x)| ∈ L∞(R3) or (ii) (1 + |x3|)
θ0
µ
+1|Ω(x)| ∈ L∞(R3) holds.
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Theorem 1.1 Let (U, P ) ∈ (C2(R3))3 × C1(R3) be a solution to (NSM). Assume that
(C0)-(C3) hold. Then U ≡ const.

Remark 1.2 Under the conditions (C0) and (C2) it is not difficult to deduce ∇kU ∈
L∞(R3) for each k ∈ N. We will freely use this fact in the rest of the paper.

This theorem implies that when the vorticity field decays sufficiently fast there are only
trivial solutions to (NSM). We note that the absolute value of each eigenvalue represents
the intensity of its straining effect, and it crucially acts on the structure of (NSM). In
particular, the ratios of |λ1| = λ (localizing effect) and λ2 = 1, λ3 = µ (expanding effect)
are important and they appear in the condition (C3).

As in the previous papers [14, 15, 17], the key of our proof is to estimate the generalized
pressure

Π(x) =
1

2
|U(x)|2 +Mx · U(x) + P (x). (1.5)

However, the arguments in [14, 15, 17] rely on the positivity of each λi in the core part of
the proof. So another new idea is needed to deal with the negative eigenvalue in our case.
Under the conditions (C0) and (C2) the generalized pressure Π is written as Π = a+Π0,
where a is a constant and Π0 decays uniformly at |x| → ∞. The basic strategy is to
investigate the spatial decay of Π0 in details. In particular, we establish the pointwise
estimates of |Π0(x)| from above and below that cannot be compatible to hold at the same
time when Π0 is not trivial. Theorem 1.1 is an immediate consequence of this result. As for
the lower bound, we observe that Π0 satisfies the inequality ∆Π0−Mx·∇Π0−U ·∇Π0 ≥ 0
and then apply the argument in [11] to get

|Π0(x)| ≥ Cx1(1 + x22 + (1 + x23)
1
µ )−

θ
2 if Π0(x) ≡/ 0, (1.6)

where Cx1 is a positive constant independent of x2 and x3; see Proposition 3.5. In fact,
when Π0 decays at spatial infinity the estimate (1.6) is proved only under the conditions
(C0) and (C1’): lim|x|→∞ |U1(x)| = 0. Especially, it is possible to derive the conclusion in
Theorem 1.1 by alternatively assuming (C0), (C1’), and suitable decay conditions on Π
(or on Π0) so as to contradict with (1.6). Although we do not need to pay much attention
on vorticity fields in this alternative result, instead, there we are forced to assume strong
spatial decay conditions on Π if |λ| is large. But these are not so “realistic” assumptions
because Π includes the pressure term P for which we cannot expect fast spatial decay in
general even if U decays rapidly. On the other hand, the flows with localized vorticity
fields are considered to be natural objects, and Theorem 1.1 excludes the possibility of
the realization of such flows.

From mathematical point of view it is essential that Π0 solves the Poisson equation
with the inhomogeneous terms which are written in terms of the vorticity field Ω. Then
under the assumptions in Theorem 1.1 the lower bound (1.6) is improved by

|Π0(0, x2, 0)| ≥ Cl(1 + x22)
−l or |Π0(0, 0, x3)| ≥ Cl(1 + x23)

−l if Π0(x) ≡/ 0, (1.7)

for all l > 0; see Proposition 3.8. Since l > 0 in (1.7) is arbitrary it is not difficult to obtain
the upper bound of |Π0(x)| such that a contradiction arises. Indeed, after establishing
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several estimates of Ω by using the vorticity equations, we can deduce some polynomial
decay of Π0 from the analysis of the Poisson equation.

The plan of this paper is as follows. In Section 2.1 we recall some equations which Π or
Ω satisfies. In Section 2.2 we prove some estimates of Ω by using the vorticity equations.
In this step we use the weighted estimates of the Ornstein-Uhlenbeck semigroup which
are given in the appendix. In Section 2.3 we give the estimates of the velocity field from
the Biot-Savart law. Section 3 is devoted to establish the pointwise estimates of Π0. Then
Theorem 1.1 is proved in Section 4.

2 Preliminaries

2.1 Fundamental equality

In this section we state several equalities which are fundamental in this paper. Set

Π(x) =
1

2
|U(x)|2 + P (x) +Mx · U(x). (2.1)

Let L be the differential operator defined by

Lf = ∆f −Mx · ∇f. (2.2)

Proposition 2.1 Let (U, P ) be a smooth solution to (NSM). Then the following equalities
hold.

LΠ− U · ∇Π = |Ω|2, (2.3)

−∆Uj − (U × Ω)j + ∂jΠ = −Mx · (∇Uj − ∂jU), (2.4)

LΩ + (M − Tr(M)I)Ω = U · ∇Ω− Ω · ∇U. (2.5)

Proof. Since each equality is derived from a direct computation without difficulty we omit
the details here.

2.2 Estimates for vorticity

In this section we prove some estimates of Ω from the vorticity equations (2.5).

Proposition 2.2 Assume that (C0) and (C2) hold. Let k = 0, 1, 2. Then

(1 + |x|)|∇kΩ(x)| ∈ Lp(R3) for all p ∈ [p0,∞]. (2.6)

Moreover, we have

(1 + |x2|)θ0+1|∇kΩ(x)| ∈ L∞(R3) if (i) of (C3) holds, (2.7)

(1 + |x3|)
θ0
µ
+1|∇kΩ(x)| ∈ L∞(R3) if (ii) of (C3) holds. (2.8)
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To prove Proposition 2.2 we introduce the semigroup etLf associated with the operator
L defined by

(etLf)(x) = (2π)−
3
2 (det Qt)

− 1
2 e−tTr(M)

∫
R3

e
− 1

2

{
λe2λt

e2λt−1
y21+

1
e2t−1

y22+
µ

e2µt−1
y23

}
f(e−tM(x−y)) dy.

(2.9)
Here

det Qt = λ−1µ−1(e2tλ − 1)(1− e−2t)(1− e−2µt). (2.10)

The operator like L is well known as the Ornstein-Uhlenbeck operator. The representation
(2.9) is easily obtained through the Fourier transform, so we proceed by admitting (2.9).

Lemma 2.3 Let θ1, θ2, θ3 ≥ 0 and 1 ≤ q ≤ p ≤ ∞. Set

b(x) = (1 + x21)
θ1 + (1 + x22)

θ2 + (1 + x23)
θ3 . (2.11)

Then for each k ∈ N ∪ {0} there are positive constants C and c such that

‖b∇ketLf‖Lp ≤ Ct−
3
2
( 1
q
− 1
p
)− k

2 ect‖bf‖Lq . (2.12)

The proof of Lemma 2.3 will be stated in the appendix. The Lp-Lq estimates for etL

without weight functions are obtained by [8] for a general class of M .

Proof of Proposition 2.2. We give the proof only for (2.6), since (2.7) and (2.8) are
obtained in the similar manner. By taking (2.5) and the Laplace transform into account
we set

Φ(F ) =

∫ ∞
0

etLet
(
M−(Tr(M)+c′)I

)(
c′Ω− U · ∇F + F · ∇U

)
dt. (2.13)

Here F satisfies bF ∈ (Lp0(R3) ∩ Lp1(R3))3 and b∂jF ∈ (Lp0(R3) ∩ Lp2(R3))3 for some
p1, p2 ∈ (p0,∞] satisfying 1/p1 > 1/p0 − 2/3 and 1/p2 > 1/p0 − 1/3, and c′ > 0 is taken
sufficiently large. Then by Lemma 2.3 and by using the L∞ bound of U and ∇U , it is
not difficult to see

‖bΦ(F )‖Lp0∩Lp1 ≤ C‖bΩ‖Lp0 + δ(c′)
(
‖bF‖Lp0 + ‖b∇F‖Lp0

)
,

‖b∇Φ(F )‖Lp0∩Lp2 ≤ C‖bΩ‖Lp0 + δ(c′)
(
‖bF‖Lp0 + ‖b∇F‖Lp0

)
,

‖bΦ(F1)− bΦ(F2)‖Lp0∩Lp1 ≤ δ(c′)
(
‖bF1 − bF2‖Lp0 + ‖b∇F1 − b∇F2‖Lp0

)
,

‖b∇Φ(F1)− b∇Φ(F2)‖Lp0∩Lp2 ≤ δ(c′)
(
‖bF1 − bF2‖Lp0 + ‖b∇F1 − b∇F2‖Lp0

)
.

Here the constant δ(c′) satisfies δ(c′)→ 0 as c′ →∞. Hence by taking c′ large enough we
find a fixed point F∗ of Φ from the contraction mapping theorem in the natural weighted
Sobolev space. Since ∇kU is bounded we can also show that F∗ is smooth and bounded,
and satisfies the equation

LF∗ + (M − (Tr(M) + c′)I)F∗ = −c′Ω + U · ∇F∗ − F∗ · ∇U. (2.14)

Moreover, solving the adjoint equation of (2.14), we can show the uniqueness of solutions
to (2.14) in (Lp0(R3))3; the details are omitted here since the argument is standard. Thus
we have Ω = F∗, i.e., bΩ ∈ (Lp1(R3))3 and b∂jΩ ∈ (Lp0(R3) ∩ Lp2(R3))3. Repeating this
argument at most finite times, we conclude that bΩ ∈ (L∞(R3))3 and b∂jΩ ∈ (L∞(R3))3.
The property b∂2ijΩ ∈ (Lp(R3))3 for p ∈ [p0,∞] is then proved by the same argument
as above, if one uses the equality ∇etLf = etLe−tM∇f . This completes the proof of
Proposition 2.2.
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2.3 Estimates for velocity

Let V be the velocity field recovered from Ω via the Biot-Savart law, i.e.,

V (x) = (−∆)−1∇× Ω = − 1

4π

∫
R3

(x− y)

|x− y|3
× Ω(y) dy. (2.15)

Then by (C0) we have

U = uc + V uc : a constant vector. (2.16)

Proposition 2.4 Assume that (C0) and (C2) hold. Then

|V (x)| ≤ C(1 + |x|)−1. (2.17)

Proof. We first note the inequality

(1 + |x|)|V (x)| ≤ C
( ∫

R3

|Ω(y)|
|x− y|

dy +

∫
R3

(1 + |y|)|Ω(y)|
|x− y|2

dy
)

=: C(I1 + I2).

Then for 1/p′0 + 1/p0 = 1, the term I1 is estimated as

I1 ≤
∫
|x−y|≤1

|Ω(y)|
|x− y|

dy +

∫
|x−y|≥1

|Ω(y)|
|x− y|

dy

≤ C‖Ω‖L∞ +
( ∫
|x−y|≥1

|x− y|−p′0(1 + |y|)−p′0 dy
) 1
p′0 ‖(1 + | · |)Ω‖Lp0 <∞,

since p0 ∈ (1, 3). By Proposition 2.2 we have (1+ |x|)|Ω(x)| ∈ Lp0(R3)∩L∞(R3). Then by
applying the Hardy-Littlewood-Sobolev inequality and the Calderón-Zygmund inequality,
we get I2 ∈ L∞(R3). This completes the proof.

3 Estimates for Π

In this section we establish the estimates for Π, which is the core of the proof of Theorem
1.1. From (2.4) we have

−∆Π = −∇ · (U × Ω) +
∑
j

∂j
(
Mx · (∇Uj − ∂jU)

)
. (3.1)

Taking (3.1) into account, we set

Π0(x) := −(−∆)−1∇ · (U × Ω) +
∑
j

(−∆)−1∂j
(
M(·) · (∇Uj − ∂jU)

)
= C

∑
j

∫
R3

xj − yj
|x− y|3

(
(U(y)× Ω(y))j −My · (∇Uj(y)− ∂jU(y))

)
dy. (3.2)

7



3.1 Upper bound of −Π0

Proposition 3.1 Assume that (C0) and (C2) hold. Set 〈x〉 = (1 + |x|2)1/2. Then

‖Π0‖Lq0 ≤ C(1 + ‖U‖L∞)‖〈·〉Ω‖Lp0 , (3.3)

‖∇Π0‖Lp ≤ C(1 + ‖U‖L∞)‖〈·〉Ω‖Lp , (3.4)

‖∇2Π0‖Lp ≤ C
(
(1 + ‖∇U‖L∞)‖〈·〉Ω‖Lp + (1 + ‖U‖L∞)‖〈·〉∇Ω‖Lp

)
, (3.5)

for 1/q0 = 1/p0 − 1/3 and for all p ∈ [p0,∞). In particular, Π0,∇Π0 ∈ L∞(R3) and

lim
R→∞

sup
|x|≥R

(|Π0(x)|+ |∇Π0(x)|) = 0. (3.6)

Moreover, if (C3) holds in addition, then there is δ > 0 such that

|Π0(0, x2, 0)| ≤ C(1 + |x2|)−δ if (i) of (C3) holds, (3.7)

|Π0(0, 0, x3)| ≤ C(1 + |x3|)−δ if (ii) of (C3) holds. (3.8)

Proof. It is easy to see that

|Π0(x)| ≤ C(1 + ‖U‖L∞)

∫
R3

1

|x− y|2
〈y〉|Ω(y)| dy. (3.9)

Hence by the Hardy-Littlewood-Sobolev inequality we have

‖Π0‖Lq0 ≤ C(1 + ‖U‖L∞)‖〈·〉Ω‖Lp0 for
1

q0
=

1

p0
− 1

3
. (3.10)

Moreover, the Calderón-Zygmund inequality implies

‖∇Π0‖Lp ≤ C(1 + ‖U‖L∞)‖〈·〉Ω‖Lp <∞ for all p ∈ [p0,∞). (3.11)

by Proposition 2.2. The estimate for ‖∇2Π0‖Lp is obtained in the similar manner. To
prove (3.7) we use the inequality (3.9) and observe that

(1 + |x2|)δ|Π0(x)|

≤ C
( ∫

R3

1

|x− y|2−δ
(1 + |y|)|Ω(y)| dy +

∫
R3

1

|x− y|2
(1 + |y|)(1 + |y2|)δ|Ω(y)| dy

)
= C(I1(x) + I2(x)). (3.12)

Since (1 + |x|)|Ω(x)| ∈ Lp0(R3) ∩ L∞(R3) and p0 ∈ (1, 3), if δ ∈ (0, θ0) is small enough,
then it is not difficult to see I1 ∈ L∞(R3) by dividing the integral into

∫
|x−y|≤1 and

∫
|x−y|≥1.

As for I2, we observe that

I2(0, x2, 0) =

∫
R3

1

(x2 − y2)2 + y21 + y23
(1 + |y|)(1 + |y2|)δ|Ω(y)| dy

≤ C

∫
|y1|+|y3|≤1

1

(x2 − y2)2 + y21 + y23
(1 + |y2|)1+δ|Ω(y)| dy

+ C

∫
|y1|+|y3|≥1

1

(x2 − y2)2 + y21 + y23
(1 + |y2|)1+δ|Ω(y)| dy

+ C

∫
|y1|+|y3|≥1

1

|x2 − y2|+ |y1|+ |y3|
(1 + |y2|)δ|Ω(y)| dy

= I2,1(x2) + I2,2(x2) + I2,3(x2).
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Then I2,1 ∈ L∞(R) if δ ∈ (0, θ0). As for I2,2, we note that for any ε > 0 if δ < εθ0 then
(1 + |y2|)1+δ|Ω(y)| ≤ C{(1 + |y2|)|Ω(y)|}1−ε by (i) of (C3). Since {(1 + |y|)|Ω(y)|}1−ε ∈
Lp(R3) for some p ∈ (1, 3) if ε > 0 is sufficiently small due to (C2), we have I2,2 ∈ L∞(R3)
by the Hölder inequality. Similarly, from (1 + |y2|)δ|Ω(y)| ≤ C|Ω(y)|1−ε for any ε ∈ (0, 1)
with δ < ε(1 + θ0), we have

|I2,3(x2)| ≤ C
( ∫
|y1|+|y3|≥1

1

(|x2 − y2|+ |y1|+ |y3|)q′(1 + |y|)(1−ε)q′
dy
) 1
q′ ‖〈·〉Ω‖1−ε

L(1−ε)q ,

where 1/q′ + 1/q = 1. We choose ε > 0 sufficiently small so that both p0 ≤ (1− ε)q and
q < 3/(1 + 2ε) are satisfied. Then the right-hand side of the above inequality is uniformly
bounded with respect to x2, since (1 − ε)q′ > 3/2 in such case. The estimate (3.8) is
proved in the same way. This completes the proof.

The condition (C0) implies |Π(x)| ≤ C(1 + |x|), and hence, we have from (3.1) and
the definition of Π0,

Π(x) =
∑
i

aixi + a0 + Π0(x), (3.13)

for some ai ∈ R, i = 0, 1, 2, 3. Then (2.3) yields

(U +Mx) · a = −|Ω|2 + ∆Π0 − (U +Mx) · ∇Π0, a = (a1, a2, a3). (3.14)

By Proposition 3.1 the right-hand side of (3.14) has the order o(|x|) at |x| → ∞, so a
must be the zero vector. Hence we have Π = a0 + Π0 and

LΠ0 − U · ∇Π0 = |Ω|2. (3.15)

Since |Π0(x)| → 0 as |x| → ∞ by Proposition 3.1, the strong maximum principle implies

Corollary 3.2 Assume that (C0) and (C2) hold. Then either Π0 ≡ 0 or Π0(x) < 0 for
all x ∈ R3.

By using (2.4) we can derive the estimates for the derivatives of Π0, which are different
from the ones in Proposition 3.1.

Proposition 3.3 Assume that (C0), (C2), (C3) hold. Let k = 1, 2. Then it follows
that

|∇kΠ0(x)| ≤ C(1 + |x1|+ |x3|)(1 + |x2|)−θ0 if (i) of (C3) holds, (3.16)

|∇kΠ0(x)| ≤ C(1 + |x1|+ |x2|)(1 + |x3|)−
θ0
µ if (ii) of (C3) holds. (3.17)

Proof. It suffices to consider the case when (i) of (C3) holds. By (2.4) and Π = a0 + Π0

we have

∂jΠ0 = ∂jΠ = ∆Uj + (U × Ω)j −Mx · (∇Uj − ∂jU)

= −(∇× Ω)j + (U × Ω)j −Mx · (∇Uj − ∂jU)

= I1 + I2 + I3. (3.18)
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Here we have used ∆U = −∇× Ω. From Propositions 2.2, 2.4 we have

|I1(x)|+ |I2(x)| ≤ C(1 + |x2|)−θ0−1. (3.19)

As for I3, we have from (C3),

|I3(x)| ≤ C|x||Ω(x)| ≤ C(1 + |x1|+ |x3|)(1 + |x2|)−θ0 . (3.20)

The estimate for ∇2Π0 is proved in the same way, due to Proposition 2.2. This completes
the proof.

3.2 Lower bound of −Π0

For the moment we consider a smooth nontrivial function f which satisfies

Lf −B · ∇f ≥ 0, lim
R→∞

sup
|x|≥R

|f(x)| = 0. (3.21)

In this section B is always assumed to be a smooth vector function satisfying ∇ ·B = 0.
The strong maximum principle implies that f(x) < 0 for all x ∈ R3. The aim of this
section is to derive a lower bound on the spatial decay of −f . We start from the “rough”
lower bound.

Proposition 3.4 Let f ∈ BC2(R3) be a nontrivial solution to (3.21). Assume that

lim
R→∞

sup
|x|≥R

|B(x)|
|x|

= 0. (3.22)

Then for all ε > 0 there exists Cε > 0 such that

−f(x) ≥ Cεe
−λ(1+ε)

2
x21−

ε
2
(x22+µx

2
3), x ∈ R3. (3.23)

Proof. We set

f̃(x) = −f(x)e−
1
2
(x22+µx32) = −f(x)e−

1
2
xtM0x, (3.24)

where

Mγ =

 γ 0 0
0 1 0
0 0 µ

 for γ ∈ R. (3.25)

Then the direct calculations yield

∆f̃ = e−
1
2
xtM0x

(
−∆f + 2M0x · ∇f − f |M0x|2 + fTr(M0)

)
,

(−B +Mλx) · ∇f̃ = e−
1
2
xtM0x

(
B · ∇f −Mλx · ∇f − fM0x ·B + fMλx ·M0x

)
.

Thus we see

L̃f̃ := ∆f̃ + (−B +Mλx) · ∇f̃ + (Tr(M0)−M0x ·B)f̃

= e−
1
2
xtM0x

(
−∆f +B · ∇f +Mx · ∇f

)
= e−

1
2
xtM0x(−Lf +B · ∇f) ≤ 0. (3.26)
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Now we set N = 2‖f̃‖L∞ > 0, and let δ ∈ (0, 1/4) and K > 1. Then we define the
function Fδ by

Fδ(x) =
1

w(x)
log(

f̃(x)

N
+ δ) < 0,

where

w(x) = K +
1

2
(λx1

2 + x2
2 + µx3

2) = K +
1

2
xtMλx.

Since

∇Fδ =
∇f̃

w(f̃ +Nδ)
− ∇w

w
Fδ,

and

∆Fδ =
∆f̃

w(f̃ +Nδ)
− 2
∇w · ∇Fδ

w
− ∆w

w
Fδ −

|∇f̃ |2

w(f̃ +Nδ)
2

=
∆f̃

w(f̃ +Nδ)
− 2
∇w · ∇Fδ

w
− ∆w

w
Fδ − w|∇Fδ|2 −

|∇w|2

w
Fδ

2 − 2Fδ∇w · ∇Fδ,

we get from (3.26) the equation for Fδ such as

−∆Fδ ≥
(
−B +Mλx+ 2

∇w
w

+ 2Fδ∇w
)
· ∇Fδ

+
(
(−B +Mλx) · ∇w

w
+

∆w

w
+
|∇w|2

w
Fδ
)
Fδ + w|∇Fδ|2 +

(Tr(M0)−M0x ·B)f̃

w(f̃ +Nδ)
.

Since Fδ < 0, we have for large p ∈ N,

(2p− 1)

∫
R3

|∇Fδ|2F 2(p−1)
δ dx =

∫
R3

−∆FδFδ
2p−1 dx

≤
∫
R3

(
−B +Mλx+ 2

∇w
w

+ 2Fδ∇w
)
· ∇FδFδ2p−1 dx

+

∫
R3

{(−B +Mλx) · ∇w
w

+
∆w

w
+
|∇w|2

w
Fδ}Fδ2p dx

+

∫
R3

w|∇Fδ|2Fδ2p−1 dx+

∫
R3

(Tr(M0)−M0x ·B)f̃

w(f̃ +Nδ)
Fδ

2p−1 dx.

(3.27)

By the integration by parts and ∇·B = 0 the first term of right hand side of (3.27) equals

1

2p

∫
R3

∇ ·
(
−Mλx− 2

∇w
w
− 2Fδ∇w

)
Fδ

2p dx.
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Since the third term of the right hand sider of (3.27) is nonpositive and Tr(M0) > 0, we
get

(2p− 1)

∫
R3

|∇Fδ|2Fδ2(p−1) dx ≤ 1

p

∫
R3

(
− 1

2
Tr(Mλ)−∇ ·

∇w
w
−∇ · (Fδ∇w)

)
Fδ

2p dx

+

∫
R3

(
(−B +Mλx) · ∇w + ∆w + |∇w|2Fδ

)Fδ2p
w

dx

+

∫
R3

|M0x ·B|
w|Fδ|

Fδ
2p dx.

By the integration by parts we have∫
R3

∇ · (Fδ∇w)Fδ
2pdx =

2p

2p+ 1

∫
R3

∆wFδ
2p+1 dx,

and observe that ∇w = Mλx and ∆w = Tr(Mλ) > 0. Thus we obtain

(2p− 1)

∫
R3

|∇Fδ|2Fδ2(p−1) dx ≤
∫
R3

(
(−B +Mλx) · ∇w − Tr(Mλ)w

2p
+
(
1− 1

p
− 2wFδ

2p+ 1

)
∆w

+ (Fδ +
1

pw
)|∇w|2 +

|M0x ·B|
|Fδ|

)
Fδ

2p

w
dx

=

∫
R3

(
(−B +Mλx) ·Mλx+

(
1− 2wFδ

2p+ 1

)
Tr(Mλ)

+ (Fδ +
1

pw
)|Mλx|2 +

|M0x ·B|
|Fδ|

)
Fδ

2p

w
dx

= I1 + I2. (3.28)

Here

I1 =

∫
Fδ>−1−ε

(
(−B +Mλx) ·Mλx+

(
1− 2wFδ

2p+ 1

)
Tr(Mλ)

+ (Fδ +
1

pw
)|Mλx|2 +

|M0x ·B|
|Fδ|

)
Fδ

2p

w
dx

I2 =

∫
Fδ≤−1−ε

(
(−B +Mλx) ·Mλx+

(
1− 2wFδ

2p+ 1

)
Tr(Mλ)

+ (Fδ +
1

pw
)|Mλx|2 +

|M0x ·B|
|Fδ|

)
Fδ

2p

w
dx. (3.29)

We claim that if p � (‖Fδ‖L∞ + 1)(K + 1) then there are positive constants C ′ and R′

which are independent of p and δ such that

I1 ≤ C ′‖Fδχ{Fδ>−1−ε}‖
2p−1
L2p−1 , I2 ≤ C ′‖Fδχ{|x|≤R′}‖2pL2p .
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Indeed, we have

I1 ≤
∫
Fδ>−1−ε

(
|B ·Mλx|

w
+
Mλx ·Mλx

w
+

Tr(Mλ)

w
− 2Tr(Mλ)

Fδ
2p+ 1

+
|Mλx|2

pw2
+
|M0x ·B|
w|Fδ|

)
Fδ

2p dx

≤ C
(
1 + ‖B ·Mλx

w
‖
L∞

+ ‖B ·M0x

w
‖L∞

)
‖Fδχ{Fδ>−1−ε}‖

2p−1
L2p−1 .

and

I2 ≤
∫
Fδ≤−1−ε

(
|B ·Mλx|+Mλx ·Mλx+ Tr(Mλ)

(
1− 2wFδ

2p+ 1

))Fδ2p
w

dx

+

∫
Fδ≤−1−ε

(
− (1 + ε)|Mλx|2 +

|Mλx|2

pw
+ |M0x ·B|

)Fδ2p
w

dx

≤
∫
Fδ≤−1−ε

(
|B ·Mλx|

w
+
|B ·M0x|

w
+

Tr(Mλ)

w
− Tr(Mλ)

2Fδ
2p+ 1

+
|Mλx|2

pw2
− ε |Mλx|2

w

)
Fδ

2p dx.

We observe that if R′ and p are sufficiently large and |x| ≥ R′ then

|B ·Mλx|
w

+
|B ·M0x|

w
+

Tr(Mλ)

w
− Tr(Mλ)

2Fδ
2p+ 1

+
|Mλx|2

pw2
− ε |Mλx|2

w
≤ 0.

Therefore

I2 ≤ C
(
1 + ‖B ·Mλx

w
‖
L∞

+ ‖B ·M0x

w
‖
L∞

)
‖Fδχ{|x|≤R′}‖2pL2p .

So the claim holds by taking

C ′ = C
(
1 + ‖B ·Mλx

w
‖
L∞

+ ‖B ·M0x

w
‖
L∞

)
.

We have from the Sobolev inequality

‖Fδ‖2pL6p = ‖Fδp‖2L6 ≤ C‖∇(Fδ
p)‖2L2 = C

∫
R3

p2Fδ
2(p−1)|∇Fδ|2 dx.

Then by the claim and (3.28) we get

‖Fδ‖2pL6p ≤ C
p2

2p− 1

(
‖Fδχ{Fδ>−1−ε}‖

2p−1
L2p−1 + ‖Fδχ{|x|≤R′}‖2pL2p

)
.

Hence by letting p→∞ we have

‖Fδ‖L∞ ≤ ‖Fδχ{Fδ>−1−ε}‖L∞ + ‖Fδχ{|x|≤R′}‖L∞ ≤ 1 + ε+ ‖Fδχ{|x|≤R′}‖L∞ .

Since R′ does not depend on δ and K, we have for |x| ≤ R′,

|Fδ(x)| ≤ − 1

K + 1
2
(xtMλx)

log(
inf |x|≤R′ f̃(x)

N
+ δ) ≤ − 1

K
log(

inf |x|≤R′ f̃(x)

N
) ≤ ε
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if K is sufficiently large but independent of δ. So we have ‖Fδ‖L∞ ≤ 1 + 2ε, that is,

log(
f̃(x)

N
+ δ) ≥ −(1 + 2ε)

(
K +

1

2
(xtMλx)

)
, which implies

f̃(x)

N
+ δ ≥ e−(1+2ε)Ke−

(1+2ε)
2

xtMλx.

Hence the proof is complete by letting δ → 0 and from the definition of f̃(x).

Next we show a more precise lower bound of −f under the additional condition on B.

Proposition 3.5 Let f ∈ BC2(R3) be a nontrivial solution to (3.21). Assume that
B ∈ (L∞(R3))3 and

lim
R→∞

sup
|x1|≤R0,|x2|+|x3|≥R

|B1(x)| = 0 for all R0 > 0. (3.30)

Then for all θ > λ and ε > 0 there is Cθ,ε > 0 such that

−f(x) ≥ Cθ,ε(1 + x22 + (1 + x23)
1
µ )−

θ
2 e−

1+ε
2
λx21 . x ∈ R3. (3.31)

Proof. For ε, ε′ > 0 we set

Wε,ε′(x) := (1 + x22 + (1 + x23)
1
µ )−

θ
2 e
−ε′
2

(x22+µx32)− 1+ε
2
λx12 , Hε,ε′(x) :=

Wε,ε′(x)

−f(x)
≥ 0.

Note that by Proposition 3.4 the function Hε,ε′(x) rapidly decays at spatial infinity for
each ε, ε′ > 0. The direct calculation shows

∇Hε,ε′ = −Hε,ε′
∇f
f
− ∇Wε,ε′

f
= −Hε,ε′

∇f
f

+
∇Wε,ε′

Wε,ε′
Hε,ε′ ,

∆Hε,ε′ = −∆f

f
Hε,ε′ − 2

∇f
f
· ∇Hε,ε′ −

∆Wε,ε′

f

= −∆f

f
Hε,ε′ + 2(

∇Hε,ε′

Hε,ε′
− ∇Wε,ε′

Wε,ε′
) · ∇Hε,ε′ +

∆Wε,ε′

Wε,ε′
Hε,ε′ .

Thus by (3.21) we have

−∆Hε,ε′ ≤ (B +Mx) · ∇f
f
Hε,ε′ − 2(

∇Hε,ε′

Hε,ε′
− ∇Wε,ε′

Wε,ε′
) · ∇Hε,ε′ −

∆Wε,ε′

W
Hε,ε′

≤
(
−B −Mx+

2∇Wε,ε′

Wε,ε′

)
· ∇Hε,ε′ −

(
(−B −Mx) · ∇Wε,ε′

Wε,ε′
+

∆Wε,ε′

Wε,ε′

)
Hε,ε′ .

Then the integration by parts yields

(2p− 1)

∫
R3

|∇Hε,ε′ |2H2(p−1)
ε,ε′ dx

≤ − 1

2p

∫
R3

∇ ·
(
−B −Mx+ 2

∇Wε,ε′

Wε,ε′

)
H2p
ε,ε′ dx

−
∫
R3

(
(−B −Mx) · ∇Wε,ε′

Wε,ε′
+

∆Wε,ε′

Wε,ε′

)
H2p
ε,ε′ dx

= −
∫
R3

{−Tr(M)

2p
+

1

p
∇ · ∇Wε,ε′

Wε,ε′
+

∆Wε,ε′

Wε,ε′
+ (−B −Mx) · ∇Wε,ε′

Wε,ε′
}H2p

ε,ε′dx (3.32)
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We observe that

∆Wε,ε′

Wε,ε′
−Mx · ∇Wε,ε′

Wε,ε′
= (θ + 2ε′θ)

x2
2 + (1 + x3

2)
1
µ
−1x3

2

1 + x22 + (1 + x32)
1
µ

− λ+ λ2ε(1 + ε)x1
2 + ε′xtM0x

+ (ε′)2xtM0x− ελ− ε′Tr(M0) +O(
1

1 + x22 + x23
), (3.33)

−B · ∇Wε,ε′

Wε,ε′
= λ(1 + ε)B1x1 + ε′B ·M0x+

θ

µ

µB2x2 +B3x3(1 + x3
2)

1
µ
−1

1 + x22 + (1 + x32)
1
µ

, (3.34)

and

∇ · ∇Wε,ε′

Wε,ε′
= −(λ+ ελ+ ε′ + ε′µ) +O(

1

1 + x22 + x23
). (3.35)

From the assumption on B and the condition θ > λ, if ε and ε′ are small enough and p is
sufficiently large then there exists R > 0 independent of ε′ (but depending on ε) such that
the integrand of the right hand side of (3.32) is nonnegative when |x| ≥ R. Indeed, it
suffices to consider each case of (i) |x1| ≥ R/2 and (ii) |x1| ≤ R/2 and (x22 +x23)

1/2 ≥ R/2;
when |x1| ≥ R/2 the term λ2ε(1 + ε)x1

2 + ε′xtM0x is dominant, and when |x1| ≤ R/2 and
(x22 + x23)

1/2 ≥ R/2 the term

(θ + 2ε′θ)
x2

2 + (1 + x3
2)

1
µ
−1x3

2

1 + x22 + (1 + x32)
1
µ

+ ε′xtM0x

becomes dominant by the assumptions. Therefore we have

(2p− 1)

∫
R3

|∇Hε,ε′|2H2(p−1)
ε,ε′ dx ≤ C‖Hε,ε′χ{|x|≤R}‖2pL2p ,

and then ‖Hε,ε′‖2pL6p ≤ Cp2(2p − 1)−1‖Hε,ε′χ{|x|≤R}‖2pL2p . By taking p → ∞, we have
‖Hε,ε′‖L∞ ≤ ‖Hε,ε′χ{|x|≤R}‖L∞ for all small ε′ > 0, and thus ‖Hε,0‖L∞ ≤ ‖Hε,0χ{|x|≤R}‖L∞ .
Since inf |x|≤R(−f(x)) 6= 0 for each R > 0, we have

0 < Hε,0(x) =
(1 + x22 + (1 + x23)

1
µ )−

θ
2 e−

1+ε
2
λx12

−f(x)
≤ Cθ,ε if |x| ≤ R.

So we conclude that |Hε,0(x)| ≤ ‖Hε,0χ{|x|≤R}‖L∞ ≤ Cθ,ε, which gives

−f(x) ≥ Cθ,ε(1 + x22 + (1 + x23)
1
µ )−

θ
2 e−

1+ε
2
λx12 .

This completes the proof of Proposition 3.5.

Remark 3.6 The function f(x) = −(1 + (x22 + x23)/2)−1e−x
2
1 satisfies (3.21) with B = 0,

λ = 2, and µ = 1. Hence (3.31) is considered to be rather optimal under the conditions
in Proposition 3.5.

15



Corollary 3.7 Assume that (C0)-(C2) hold and that Π0 6≡ 0. Then for all θ > λ and
ε > 0 there is Cθ,ε > 0 such that

−Π0(x) ≥ Cθ,ε(1 + x22 + (1 + x23)
1
µ )−

θ
2 e−

1+ε
2
λx21 . x ∈ R3. (3.36)

Proof. From (2.16) and Proposition 2.4 it suffices to show U1 = V1; then the assumptions
in Proposition 3.5 are satisfied. Assume that (i) of (C1) holds. Then by the relation
Π(x) = |U(x)|2/2 + P (x) + Mx · (uc + V (x)) we must have uc = (0, uc,2, uc,3) since
Π(x) = a0 + Π0(x) is bounded function. Thus U1 = V1 follows. When (ii) of (C1) holds
uc = (0, uc,2, uc,3) is trivial due to Proposition 2.4. This completes the proof.

3.3 Lower bound of −Π0 in (x2, x3) direction

Proposition 3.8 Assume that (C0)-(C3) hold and that Π0 6≡ 0. Then for any l > 0
there is C > 0 such that

−Π0(0, x2, 0) ≥ C(1 + |x2|)−l if (i) of (C3) holds, (3.37)

−Π0(0, 0, x3) ≥ C(1 + |x3|)−l if (ii) of (C3) holds. (3.38)

Proof. We give the proof only for the case when (i) of (C3) holds, since the other case is
proved in the same way. Set g(x2) = −Π0(0, x2, 0) > 0. From (2.3), g satisfies

∂22g−x2∂2g = (∂21Π0)(0, x2, 0)+(∂23Π0)(0, x2, 0)−U(0, x2, 0)·(∇Π0)(0, x2, 0)−|Ω(0, x2, 0)|2,

and hence, by Proposition 3.3 and (C0),

∂22g − x2∂2g ≤ C(1 + |x2|)−θ0 . (3.39)

Now we use the same argument as in Proposition 3.5 to establish the lower bound of g.
Set

hl,ε(x2) =
wl,ε(x2)

g(x2)
, wl,ε(x2) = (1 + x22)

−le−εx
2
2 , l, ε > 0. (3.40)

Then h ∈ W 2,p(R3) for all p� 1, and we have the inequality

(2p− 1)

∫
R
|∂2hl,ε(x2)|2|hl,ε(x2)|2(p−1) dx2

≤ 1

2p

∫
R

(
1− 2∂2(

∂2wl,ε
wl,ε

)
)
|hl,ε(x2)|2p dx2

−
∫
R

(
− x2∂2wl,ε

wl,ε
+
∂22wl,ε
wl,ε

− C (1 + |x2|)−θ0
g

)
|hl,ε(x2)|2p dx2. (3.41)

Since l > 0, θ0 > λ, and g(x2) ≥ C(1 + |x2|)−θ for all θ > λ by Corollary 3.7, there is
R ≥ 1 independent of ε > 0 such that

(2p− 1)

∫
R
|∂2hl,ε(x2)|2|hl,ε(x2)|2(p−1) dx2 ≤ C‖hl,ε‖2pL2p(BR)

.
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Then the Gagliardo-Nirenberg inequality yields

‖hpl,ε‖L∞ ≤ C‖hpl,ε‖
1
2

L2‖∂2(hp)‖
1
2

L2 ≤ Cp
1
4‖hp‖

1
2

L2‖h‖
p
2

L2p(BR)
,

that is, ‖hl,ε‖L∞ ≤ (Cp)1/(4p)‖hl,ε‖
1
2

L2p‖hl,ε‖
1
2

L2p(BR)
. Tending p → ∞, we get ‖hl,ε‖L∞ ≤

‖hl,ε‖L∞(BR) <∞. Since R is independent of ε > 0, we have g(x2) ≥ C(1 + |x2|)−l for all
l > 0. This completes the proof.

4 Proof of Theorem 1.1

Proof of Theorem 1.1. If Π0 6≡ 0 then the lower bound for Π0 in Proposition 3.8 contradicts
with the decay estimate of Π0 in (3.7) or (3.8). Hence Π0 ≡ 0, i.e., Π ≡ const. Thus we
have Ω ≡ 0 from (2.3), which implies U = uc = const.

5 Appendix

Proof of Lemma 2.3. We first give the proof for k = 0. For simplicity of notations we set

h(t, x) = e
− 1

2

(
λe2λt

e2λt−1
x21+

1
e2t−1

x22+
µ

e2µt−1
x23

)
, G(t) = (2π)−

3
2 (detQt)

− 1
2 e−tTr(M), F (t, x) = f(e−tMx).

Then we have

b(x)(etLf)(x) = G(t)b(x)

∫
R3

h(t, y)F (t, x− y) dy = G(t)

∫
R3

b(x)h(t, x− y)F (t, y) dy,

and by the definition of b(x) we obtain

|b(x)(etLf)(x)| ≤ CG(t)
( ∫

R3

b(x−y)h(t, x−y)|F (t, y)| dy+

∫
R3

h(t, x−y)b(y)|F (t, y)| dy
)
.

(5.1)
For 1 ≤ q ≤ p ≤ ∞ and 1 ≤ r < ∞ satisfying 1/p = 1/r + 1/q − 1 we get by the Young
inequality

‖betLf‖Lp ≤ CG(t)
(
‖bh(t)‖Lr‖F (t)‖Lq + ‖h(t)‖Lr‖bF (t)‖Lq

)
. (5.2)

We observe that

‖F (t)‖qLq = etTr(M)

∫
R3

|f(z)|q dz ≤ etTr(M)

∫
R3

|b(z)|q|f(z)|q dz = etTr(M)‖bf‖qLq ,

and

‖bF (t)‖qLq =

∫
R3

|b(y)|q|f(e−tMy)|q dy ≤ CectetTr(M)

∫
R3

|b(z)|q|f(z)|q dz ≤ Cect‖bf‖qLq ,

where C and c depend on θi and λi. So we have

‖betLf‖Lp ≤ C(det Qt)
− 1

2 ect‖bf‖Lq
(
‖bh(t)‖Lr + ‖h(t)‖Lr

)
. (5.3)
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The direct calculation implies

‖h(t)‖Lr =
( ∫

R3

e
− r

2

{
λe2λt

e2λt−1
y21+

1
e2t−1

y22+
µ

e2µt−1
y23

}
dy
) 1
r

=
( ∫

R3

e−z
2

dz
) 1
r

Gr(t) ≤ CGr(t),

where

Gr(t) =
(2

r

) 3
2r
( λe2λt

e2λt − 1

)−1
2r ( 1

e2t − 1

)−1
2r ( µ

e2µt − 1

)−1
2r
.

Next we compute

‖bh(t)‖Lr

=
( ∫

R3

|b(y)|re−
r
2

(
λe2λt

e2λt−1
y21+

1
e2t−1

y22+
µ

e2µt−1
y23

)
dy
) 1
r

≤ C

(∫
R3

(
1 +

2

r

e2λt − 1

λe2λt
z1

2
)θ1r +

(
1 +

2

r
(e2t − 1)z2

2
)θ2r +

(
1 +

2

r

e2µt − 1

µ
z3

2
)θ3r dy

) 1
r

Gr(t).

Since

∫
R
|zj|2θjre−zj

2

dzj < C for 1 ≤ r <∞ we have

‖bh(t)‖Lr ≤ C
(
1 + (

2

r

e2λt − 1

λe2λt
)θ1 + (

2

r
(e2t − 1))θ2 + (

2

r

e2µt − 1

µ
)θ3
)
Gr(t).

Then by combining the estimates of ‖h(t)‖Lr and ‖bh(t)‖Lr with (5.3) we obtain

‖betLf‖Lp ≤ C(det Qt)
− 1

2 ect‖bf‖LqGr(t)
(
1+(

2

r

e2λt − 1

λe2λt
)θ1 +(

2

r
(e2t−1))θ2 +(

2

r

e2µt − 1

µ
)θ3
)
.

Observing that

(det Qt)
− 1

2Gr(t) ≤ Ce(
1+µ
r
−λ)t{ 1

(1− e−2tλ)(1− e−2t)(1− e−2tµ)

} 1
2
(1− 1

r
)

,

we finally obtain

‖betLf‖Lp ≤ Ct−
3
2
( 1
q
− 1
p
)ect‖bf‖Lq ,

where the constants C and c depend only on θi, λi, p, and q. As for the case r =∞, the
only possibility is p =∞ and q = 1. Then the similar argument shows

‖betLf‖L∞ ≤ C(det Qt)
− 1

2 ect‖bf‖L1

(
‖bh(t)‖L∞ + ‖h(t)‖L∞

)
.

Since h and bh are bounded functions in time and space we complete the proof for k = 0.
For k = 1 it will be sufficient to show that

‖b∂1etLf‖Lp ≤ Ct−
3
2
( 1
q
− 1
p
)− 1

2 ect‖bf‖Lq .

But as in the case of k = 0 it is not difficult to derive the inequality

‖b∂1etLf‖Lp ≤ Cect‖bf‖Lq
{ 1

(1− e−2tλ)(1− e−2t)(1− e−2tµ)

} 1
2
( 1
q
− 1
p
)( 1

1− e−2tλ
) 1

2

≤ Ct−
3
2
( 1
q
− 1
p
)− 1

2 ect‖bf‖Lq .
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The estimates (2.12) for higher order derivatives are proved in the same manner. This
completes the proof.
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