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Abstract. For the isotropic Lamé system we prove that if the Lamé coefficient µ is a

positive constant both Lamé coefficients can be recovered from the partial Cauchy data.

In a bounded domain Ω ⊂ R2 with smooth boundary we consider the isotropic Lamé

system:

(0.1)
2∑

j,k,l=1

∂

∂xj

(
Cijkl

∂uk
∂xl

)
= 0 in Ω, 1 ≤ i ≤ 2

(0.2) u|Γ0 = 0, u|Γ̃ = f,

where Γ̃ is an arbitrary fixed subdomain of ∂Ω, Γ0 = ∂Ω \ Γ̃,

Cijkl = λ(x)δijδkl + µ(x)(δikδjl + δilδjk), 1 ≤ i, j, k, l ≤ 2

with the Kronecker delta δij. The smooth functions λ and µ are called the Lamé coefficients,

u(x) = (u1(x), u2(x)) is the displacement. Assume that

(0.3) µ(x) > 0 on Ω, (λ+ µ)(x) > 0 on Ω.

We set

Λλ,µ(f) =

(
2∑

j,k,l=1

νjC1jkl
∂uk
∂xl

,

2∑
j,k,l=1

νjC2jkl
∂uk
∂xl

)
,

where ν = (ν1, ν2) is the outward unit normal vector to ∂Ω. Denote

Lλ,µu =

(
2∑

j,k,l=1

∂

∂xj

(
C1jkl

∂uk
∂xl

)
,

2∑
j,k,l=1

∂

∂xj

(
C2jkl

∂uk
∂xl

))
.

The partial Cauchy data Cλ,µ is defined by

Cλ,µ = {(u,Λλ,µ(f))|Γ̃; Lλ,µu = 0 in Ω, u|∂Ω = f, supp f ⊂ Γ̃}.

In this paper, we consider the following inverse problem:Suppose that the partial Cauchy

data Cλ,µ are given. Can we determine the Lamé coefficients λ and µ?

This inverse problem has been studied since early 90’s. In two dimensions Akamatsu,

Nakamura and Steinberg [1] proved that for the case of full Cauchy data (Γ̃ = ∂Ω) one

can recover the Lamé coefficients and its normal derivatives of an arbitrary order on the
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boundary provided that Lamé coefficients are C∞ functions. Later in [12] Nakamura and

Uhlmann for the case of full Cauchy data established that the Lamé coefficients are uniquely

determined, assuming that they are sufficiently close to a pair of positive constants. For the

three dimensional case in [13], [14] these authors and independently in [6] Eskin and Ralston

proved the uniqueness for both Lamé coefficients provided that µ is close to a positive

constant. The proofs in the above papers rely on construction of complex geometric optics

solutions. On the other hand, unlike the case of Schrödinger operator, for partial Cauchy

data, the construction of such solutions for the isotropic Lamé system seems to be possible

only for the dense set of Lamé coefficients. To our best knowledge there are no results on

the unique recovery of the Lamé coefficients from the partial Cauchy data. Also we mention

that a linearized version of this inverse problem was studied in [7].

Finally we mention that this inverse problem is closely related to the method known as

Electrical Impedance Tomography (EIT). EIT method is widely used for detecting oil field

and minerals beneath earth’s surface, diagnosis of the breast cancer. For the mathematical

treatment of this problem we refer to [2], [4], [5], [9], [10], [11], [15].

We state our main result as follows.

Theorem 0.1. Let Ω be a simply connected domain with smooth boundary, (0.3) hold true,

µ1, µ2 be some positive constants and λ1, λ2 ∈ C3(Ω). If Cλ1,µ1 = Cλ2,µ2 then (λ1, µ1) =

(λ2, µ2).

Throughout the paper we use following notations: i =
√
−1, x1, x2 ∈ R, z = x1 + ix2,

ζ = ξ1 + iξ2, z denotes the complex conjugate of z ∈ C. We identify x = (x1, x2) ∈ R2 with

z = x1 + ix2 ∈ C. We set ∂z =
∂
∂z

= 1
2
( ∂
∂x1

− i ∂
∂x2

), ∂z =
∂
∂z

= 1
2
( ∂
∂x1

+ i ∂
∂x2

). We say that a

function a(x) is antiholomorphic in Ω if ∂za(x)|Ω ≡ 0. By ∂−1
z we denote the operator

(0.4) ∂−1
z g = − 1

π

∫
Ω

g(ξ1, ξ2)

ζ − z
dξ2dξ1.

It is known (see e.g [17]) that the operator ∂−1
z is continuous from the space Cm+α(Ω) into

Cm+1+α(Ω) for any integer non-negative m and positive α from interval (0, 1).

For the proof, we need the following proposition:

Proposition 0.1. If Cλ1,µ1 = Cλ2,µ2, then

(0.5) (µ1 − µ2)|Γ̃ = (λ1 − λ2)|Γ̃ = 0.

Proof of Proposition 0.1. The proof of the proposition follows from [1]. The only difference

is that we are using the calculus of pseudodifferential operators with symbols of limiting

smoothness. Since the Lamé system is translationally invariant, it suffices to prove the

statement of the proposition at point x = 0. Taking into account that the isotropic Lamé

system is rotationally invariant, without loss of generality we may assume that ν(0) = (0, 1).

Therefore locally near zero we may assume that the boundary of Ω is given by equation

x2 − ℓ(x1) = 0 and x ∈ Ω implies x2 − ℓ(x1) > 0. Moreover ℓ′(0) = 0. After change of

variables y1 = x1 and y2 = x2 − ℓ(x1) the domain Ω near 0 is transformed into some open

set G in R × (0, 1). Consider the Lamé system in the new coordinates. Let e be a function
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with compact support concentrated in a ball of a small radius centered at zero and e ≡ 1 in

a small neighborhood of zero. We set U = (U1, U2) where

U1(y) =

∫
R1

(1 + |ξ1|2)
1
2 (êu)(ξ1, y2)dξ1 = Λ(D)(eu)

and U2(y) = Dy2(eu), Dy2 =
1
i

∂
∂y2

. Here we used the notation

û(ξ1, y2) =

∫
R1

u(y)e−iy1ξ1dy1.

In the new notations problem (0.1), (0.2) can be written in the form

Dy2U =M(y,Dy1)U + F, U1|y2=0 = Λ(D)(ef).

The function F satisfies the estimate

(0.6) ∥F∥L2(R2) ≤ C∥f∥
H

1
2 (∂Ω)

.

Here M(y,Dy1) is a 2 × 2 pseudodifferential operator with the principal symbol M1(y, ξ1)

given by

M1(y, ξ1) =

(
0 Λ1E

A−1M21Λ
−1
1 A−1M22

)
,

where

M21(y, ξ1) = −µξ21E − (λ+ µ)ξ̃T ξ̃, M22(y, ξ1) = −(λ+ µ)(ξ̃TG+GT ξ̃)− 2µ(ξ̃, G)E,

A(y, ξ1) = (λ+ µ)GTG+ µ|G|2E, Λ1 = |ξ1|, ξ̃ = (ξ1, 0), G = (−ℓ′, 1)

and E is the unit matrix. It is well known that all the eigenvalues α(y, ξ1) of the matrix

M1(y, ξ1) satisfy the equation (ξ̃ + G̃α, ξ̃ + G̃α) = 0. Hence we have two eigenvalues which

depend smoothly on y and ξ1

α±(y, ξ1) = −(ξ̃, G)

|G|2
±

(
− ξ21
|G|2

+
(ξ̃, G)2

|G|4

) 1
2

.

The corresponding eigenvectors are

w±
1 (y, ξ1) =

(
ξ̃ + α±G

|ξ̃ + α±G|
,
α±

|ξ1|
ξ̃ + α±G

|ξ̃ + α±G|

)
.

The Jordan form of the matrix M1 has two Jordan blocks of the size 2× 2:

(M1 − α±)η
± = |ξ1|w±

1 ,

where η±(y, ξ1) = (η±1 (y, ξ1), η
±
2 (y, ξ1)),

η±1 (y, ξ1) = −λ+ 3µ

λ+ µ

|ξ1|
|ξ̃ + α±G|

G, η±2 (y, ξ1) =
1

|ξ1|

(
−α±

λ+ 3µ

λ+ µ

|ξ1|
|ξ̃ + α±G|

G+ |ξ1|
ξ̃ + α±G

|ξ̃ + α±G|

)
.
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Observe that α±(0, ξ1) = ±i|ξ1|, w−
1 (0, ξ1) =

1√
2|ξ1|

(ξ1,−i|ξ1|,−iξ1, ξ1), η− = (0,− λ(0)+3µ(0)√
2(λ(0)+µ(0))

,
ξ1√
2|ξ1|

, i√
2

µ(0)
λ(0)+µ(0)

). From (0.6) and the standard a priori estimates for the systems of elliptic

equations see (e.g., [8]) one can show that

∥Bj(λ, µ, y1, Dy1)Uλ,µ∥L2(R1) ≤ C∥f∥
H

1
2 (∂Ω)

, ∀j ∈ {1, 2},

where B1(λ, µ, y1, Dy1), B2(λ, µ, y1, Dy1) are pseudodifferential operators of the class C3S0

(for definition see e.g. [16]) and the principal symbols of these operators satisfy

B1(λ, µ, 0, ξ1) = w−(0, ξ1), B2(λ, µ, 0, ξ1) = η−(0, ξ1).

Consider a matrix pseudodifferential operator

B(λ, µ, y1, Dy1) =

(
B1,3(λ, µ, y1, Dy1) B1,4(λ, µ, y1, Dy1)

B2,3(λ, µ, y1, Dy1) B2,4(λ, µ, y1, Dy1)

)
.

The corresponding principal symbol of this operator is invertible matrix at point (0, ξ1), ξ1 ̸=
0

B0(λ, µ, 0, ξ1) =

( −iξ1√
2|ξ1|

ξ1√
2|ξ1|

ξ1√
2|ξ1|

i√
2

µ(0)
λ(0)+µ(0)

)
.

Then there exists a parametrix to the operator B (see e.g. [16]) which is a pseudodifferential

operator with symbol C3S0. We denote this pseudodifferential operator as B−1(λ, µ, y1, Dy1)

with the principal symbol satisfying

B−1
0 (λ, µ, 0, ξ1) =

1

detB0(λ, µ, 0, ξ1)

(
i√
2

µ(0)
λ(0)+µ(0)

− ξ1√
2|ξ1|

−ξ1√
2|ξ1|

− iξ1√
2|ξ1|

)
.

Then

(0.7)

∥U2,λ,µ+B−1(λ, µ, y,Dy1)

(
B1,1(λ, µ, y1, Dy1) B1,2(λ, µ, y1, Dy1)

B2,1(λ, µ, y1, Dy1) B2,2(λ, µ, y1, Dy1)

)
U1,λ,µ∥L2(R1) ≤ C∥f∥

H
1
2 (∂Ω)

.

The operator Λλ,µ(f) in the new coordinates can be written as

Λλ,µ(f) = Aλ,µ(y1)U2,λ,µ + Pλ,µ(y1, Dy1)f

where

Aλ,µ(0) =

(
0 iλ(0)

iµ(0) 0

)
, Pλ,µ(0, Dy1) =

(
i(λ(0) + µ(0))ξ1 0

0 iµ(0)ξ1

)
.

Since the partial Cauchy data are the same we have

Aλ1,µ1(y1)U2,λ1,µ1 − Aλ2,µ2(y1)U2,λ2,µ2 + (Pλ1,µ1(y1, Dy1)− Pλ2,µ2(y1, Dy1))f = 0.

Using (0.7) we obtain

(0.8) ∥K(y1, Dy1)f∥L2(R1) ≤ C∥f∥
H

1
2 (∂Ω)

.
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where

K(y1, Dy1) = −Aλ1,µ1(y1)B−1(λ1, µ1, y1, Dy1)

(
B1,1(λ1, µ1, y1, Dy1) B1,2(λ1, µ1, y1, Dy1)

B2,1(λ1, µ1, y1, Dy1) B2,2(λ1, µ1, y1, Dy1)

)
Λ(D)(e·)

+Aλ2,µ2(y1)B−1(λ2, µ2, y1, Dy1)

(
B1,1(λ2, µ2, y1, Dy1) B1,2(λ2, µ2, y1, Dy1)

B2,1(λ2, µ2, y1, Dy1) B2,2(λ2, µ2, y1, Dy1)

)
Λ(D)(e·)

+(Pλ1,µ1(y1, Dy1)− Pλ2,µ2(y1, Dy1)).(0.9)

By (0.9) the operator K(y1, Dy1) belong to the class C2S1. On the other hand, by (0.8) the

principal symbol K1(y, ξ1) of the operator K(y1, Dy1) should be zero.(Otherwise we have the

contradiction to the Gardings inequality.) The simple computations provide

K(0, 1) =

(
iλ1(0)(λ1+µ1)(0)

µ1(0)
− iλ2(0)(λ2+µ2)(0)

µ2(0)
λ1(0)− λ2(0)

−µ1(0) + µ2(0) −i(λ1(0) + µ1(0)) + i(λ2(0) + µ2(0))

)
.

The proof of the proposition is completed. �
Now we proceed to the proof of theorem 0.1.

Proof. Since µ1 and µ2 are assumed to be some constants, Proposition 0.1 implies immedi-

ately that µ1 = µ2.

Instead of the vector function u, it is more convenient for us to work with the complex

valued function D = u1 + iu2. The isotropic Lamé system for unknown function D, for the

case µ = const, can be written as

(0.10) ∂z(2(λ+ µ)(∂zD + ∂zD)) + 4µ∂z∂zD = 0 inΩ.

This equation can be solved explicitly. Indeed using the fact that µ is a constant and

domain Ω is simply connected we have

(0.11) 2(λ+ µ)(∂zD + ∂zD) + 4µ∂zD = Θ(z),

where Θ is a holomorphic function in Ω. Then Re ∂zD = 1
4λ+8µ

Θ(z)+Θ(z)
2

and Im∂zD =

1
4µ

Θ(z)−Θ(z)
2i

. Since

(0.12) ∂zD =
(λ+ 3µ)

8µ(λ+ 2µ)
Θ− (λ+ µ)

8µ(λ+ 2µ)
Θ,

we have

(0.13) D = Ψ(z) + ∂−1
z

{
λ+ 3µ

8µ(λ+ 2µ)
Θ

}
−Θ∂−1

z

{
λ+ µ

8µ(λ+ 2µ)

}
,

where Ψ(z) is an arbitrary antiholomorphic function.

Using the fact that Lamé system is rotationally invariant from Proposition 0.1 one can

immediately obtain that the following Cauchy data are the same

(0.14) Cλ1,µ1 = Cλ2,µ2 ,

where

Cλ,µ =

{(
u,
∂u

∂ν

)
|Γ̃; Lλ,µu = 0 in Ω, u|∂Ω = f, supp f ⊂ Γ̃

}
.
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Let a function D1 be a solution to the Lamé system in Ω:

(0.15) D1 = Ψ1(z) + ∂−1
z

{
λ1 + 3µ1

8µ1(λ1 + 2µ1)
Θ1

}
−Θ1∂

−1
z

{
λ1 + µ1

8µ1(λ1 + 2µ1)

}
.

Let us fix some functions Θ1(z) ∈ C2(Ω) and Ψ1(z) ∈ C2(Ω) such that D1|Γ0 = 0. Since

by (0.14) the partial Cauchy data Cλj ,µj
are the same, there exist functions Θ2(z) ∈ C2(Ω)

and Ψ2(z) ∈ C2(Ω) such that for the function D2 given by formula

(0.16) D2 = Ψ2(z) + ∂−1
z

{
λ2 + 3µ1

8µ2(λ2 + 2µ1)
Θ2

}
+Θ2∂

−1
z

{
λ2 + µ1

8µ2(λ2 + 2µ1)

}
,

we have

(0.17) D1 = D2 on ∂Ω,
∂D2

∂ν
=
∂D2

∂ν
on Γ̃.

By (0.11), (0.14), (0.13) and Proposition 0.1, we have Θ1 = Θ2 on Γ̃. Since Θj are holo-

morphic we have

(0.18) Θ1 = Θ2 on Ω.

Now let us fix some smooth holomorphic function Θ1 ∈ C3(Ω). Then for any positive ϵ

one can choose Ψ∗
1,ϵ(z) ∈ C3(Ω) such that

ψϵ = Ψ∗
1,ϵ(z) + ∂−1

z

{
λ1 + 3µ1

8µ1(λ1 + 2µ1)
Θ1

}
+Θ1∂

−1
z

{
λ1 + µ1

8µ1(λ1 + 2µ1)

}
,

(0.19) ψϵ → 0 in C3(Γ0) as ϵ→ 0.

Now let us construct the function Rϵ as the solution to the boundary value problem

Lλ1,µ1Rϵ = 0 in Ω, Rϵ|∂Ω = −Υψϵ,

where Υ is some extension operator continuous from C3(Γ0) to C
3(∂Ω). By (0.19)

(0.20) ∥Rϵ∥C2(Ω) → 0 as ϵ→ +0.

Thus we have the sequence D1,ϵ = ψϵ +Rϵ such that

D1,ϵ = Ψ1,ϵ(z) + ∂−1
z

{
λ1 + 3µ1

8µ1(λ1 + 2µ1)
Θ1,ϵ

}
+Θ1,ϵ∂

−1
z

{
λ1 + µ1

8µ1(λ1 + 2µ1)

}
inΩ, D1,ϵ|Γ0 = 0.

We claim that

(0.21) Θ1ϵ → Θ1 inC2(Ω) as ϵ→ 0.

Indeed

2(λ1 + µ1)(∂zRϵ + ∂zRϵ) + 4µ1∂zRϵ = Θ1ϵ −Θ1.

Hence by (0.20) we obtain (0.21). Since the partial Cauchy data are the same, by (0.18)

there exists a sequence D2,ϵ such that

D2,ϵ = Ψ2,ϵ(z) + ∂−1
z

{
λ2 + 3µ1

8µ2(λ2 + 2µ1)
Θ1,ϵ

}
+Θ1,ϵ∂

−1
z

{
λ2 + µ1

8µ2(λ2 + 2µ1)

}
inΩ, D2,ϵ|Γ0 = 0.
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We set

Dϵ = D1,ϵ −D2,ϵ = Ψ1,ϵ −Ψ2ϵ + ∂−1
z

{(
λ1 + 3µ1

8µ1(λ1 + 2µ1)
− λ2 + 3µ1

8µ2(λ2 + 2µ1)

)
Θ1,ϵ

}
+Θ1,ϵ

(
∂−1
z

{
λ1 + µ1

8µ1(λ1 + 2µ1)

}
− ∂−1

z

{
λ2 + µ1

8µ2(λ2 + 2µ1)

})
,(0.22)

Dϵ|∂Ω = 0, Dϵ|Γ̃ =
∂Dϵ

∂ν
|Γ̃ = 0.

Passing to the limit in (0.22) and using the standard a priori estimates for the Lamé system

we have

D = Ψ+ ∂−1
z

{
(

λ1 + 3µ1

8µ1(λ1 + 2µ1)
− λ2 + 3µ1

8µ1(λ2 + 2µ1)
)Θ1

}
+Θ1

(
∂−1
z

{
λ1 + µ1

8µ1(λ1 + 2µ1)

}
− ∂−1

z

{
λ2 + µ1

8µ2(λ2 + 2µ1)

})
in Ω,(0.23)

D|∂Ω = 0,
∂D

∂ν
|Γ̃ = 0.

Next we make a choice of the holomorphic function Θ1. We set Θ1 = eτΦ,Φ(z) = (z − z̃)2

where τ is a positive parameter, z̃ = x̃1 + ix̃2 and x̃ = (x̃1, x̃2) is an arbitrary point from Ω.

Differentiating equation (0.23) by z we have

(0.24)

∂zD =

(
λ1 + 3µ1

8µ1(λ1 + 2µ1)
− λ2 + 3µ1

8µ1(λ2 + 2µ1)

)
eτΦ+eτΦ

(
λ1 + µ1

8µ1(λ1 + 2µ1)
− λ2 + µ1

8µ1(λ2 + 2µ1)

)
, D|∂Ω = 0.

Multiplying (0.24) by e−τΦ and integrating by parts we obtain∫
Ω

{(
λ1 + 3µ1

8µ1(λ1 + 2µ1)
− λ2 + 3µ1

8µ1(λ2 + 2µ1)

)
e2τiImΦ +

(
λ1 + µ1

8µ1(λ1 + 2µ1)
− λ2 + µ1

8µ1(λ2 + 2µ1)

)}
dx = 0.

Using the stationary phase argument (see e.g. [3]), we write the above formula as

2π
(

λ1+3µ1

8µ1(λ1+2µ1)
− λ2+3µ1

8µ1(λ2+2µ1)

)
(x̃)e2τiImΦ(x̃)

τ |det ImΦ′′(x̃)| 12

+

∫
Ω

(
λ1 + µ1

8µ1(λ1 + 2µ1)
− λ2 + µ1

8µ1(λ2 + 2µ1)

)
dx+ o(

1

τ
) = 0 as τ → +∞.

Hence (
λ1 + 3µ1

8µ1(λ1 + 2µ1)
− λ2 + 3µ1

8µ1(λ2 + 2µ1)

)
(x̃) = 0.

Hence, λ1(x̃) = λ2(x̃). The proof of theorem is completed. �
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