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HOMEOMORPHISM GROUPS OF COMMUTATOR WIDTH ONE

TAKASHI TSUBOI

Abstract. We show that every element of the identity component Homeo(Sn)0
of the group of homeomorphisms of the n-dimensional sphere Sn can be written

as one commutator. We also show that every element of the group Homeo(µn) of
homeomorphisms of the n-dimensional Menger compact space µn can be written as

one commutator.

1. Introduction

The algebraic property of the group of homeomorphisms or diffeomorphisms are
studied by many people. The identity component of the group of homeomorphisms or
diffeomorphisms of compact manifolds are known to be perfect and moreover simple
([23], [1], [12], [10], [13], [16], [19], [11], [2]). Many of them, for example the group
of homeomorphisms of the n-dimensional sphere, are known to be uniformly perfect
([1],[7], [20], [22]). A group is uniformly perfect if every element is written as a product
of a bounded number of commutators. The least number of such bound is called the
commutator width of the group.

In this paper we show that the commutator width of the identity component
Homeo(Sn)0 of the group of homeomorphisms of the n-dimensional sphere Sn is one.

Theorem 1.1. Any element of Homeo(Sn)0 can be written as one commutator.

We also show that the commutator width of the group Homeo(μn) of homeomor-
phisms of the n-dimensional Menger compact space μn is one.

Theorem 1.2. Any element of Homeo(μn) can be written as one commutator.

Anderson showed that in the group Homeoc(R
n) of homeomorphisms of the n-

dimensional Euclidean space with compact support, any element can be written as
one commutator ([1], [15]). Since any element f of Homeo0(S

n) can be written as a
product f = gh such that g and h are the identity on some nonempty open sets, the
fact that the commutator width of Homeoc(R

n) is one implies that f can be written as
a product of two commutators.

It is worth recalling the construction by Anderson ([1]). For given f ∈ Homeoc(R
n),

we find a bounded ball U such that the support supp(f) ⊂ U . Then we can find an
element g ∈ Homeoc(R

n) such that gn(U) (n ∈ Z) are disjoint and lim
n→∞ diam(gn(U)) =

0. Put F =
∞∏
n=0

gnfg−n, then we have gFg−1 = f−1F . Thus f = FgF−1g−1.
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We understand the meaning that the commutator width is one as follows. In the case
of Homeoc(R

n), we see that for any element f , there exist g such that g and fg are
conjugate. That is, g is dynamically so strong that fg and g have the same dynamics,
and hence they are conjugate.

In the case of Homeo0(S
n) or Homeo(μn), we have the candidate which has the

strong dynamics. The candidate is the topologically hyperbolic homeomorphism. A
topologically hyperbolic homeomorphism is a homeomorphism h with one source s+
and one sink s− such that lim

n→+∞ hn(x) = s− and lim
n→−∞ hn(x) = s+ for x �∈ {s−, s+}. It

seems true that the orientation preserving topologically hyperbolic homeomorphisms are
all conjugate, but we are not able to show it at the present. The topologically hyperbolic
homeomorphisms we construct later are conjugate because the are constructed with nice
fundamental domains outside the fixed points.

Hence what we do in this paper is for a given homeomorphism f to construct a
topologically hyperbolic homeomorphism g which is so strong that fg is topologically
hyperbolic.

We will show Theorem 1.1 in Section 2 and Theorem 1.2 in Section 3.
The author would like to thank Professors Koji Fujiwara, Kazuhiro Kawamura, Sa-

dayoshi Kojima, Shigenori Matsumoto and Hiromichi Nakayama for valuable comments
during the preparation of this paper.

2. The group of homeomorphisms of the n-dimensional sphere

For the proof of Theorem 1.1, we need the following deep theorems.

Theorem 2.1 (Generalized Schoenflies Theorem, [4], [5]). Let Σ be a locally flat (n−1)-
dimensional sphere in the n-dimensional sphere Sn. Then the closures of the comple-
mentary domains of Σ are homeomorphic to the n-dimensional disk Dn.

Here, an (n − 1)-dimensional submanifold Ln−1 in an n-dimensional manifold Mn

is locally flat if each point of Ln−1 has a neighborhood U in Mn such that the pair
(U, U ∩ Ln−1) is homeomorphic to (Rn,Rn−1).

Theorem 2.2 (Annulus conjecture, [14], [17]). Let Σ0 and Σ1 be disjoint locally flat
(n − 1)-dimensional spheres in the n-dimensional sphere Sn. Then the closure of the
region between them is homeomorphic to Sn−1 × [0, 1].

Let f be an orientation preserving homeomorphism of the n-dimensional sphere Sn

which is not the identity. Then we can find small n-dimensional closed disks Dn
0 and

Dn
1 in Sn such that ∂Dn

0 , ∂D
n
1 are locally flat and the four disks f−1(Dn

0 ), D
n
0 , D

n
1 ,

f(Dn
1 ) are disjoint.

By Theorem 2.1, Dn
0 and Sn \ int(Dn

1 ) are homeomorphic and Dn
1 and Sn \ int(Dn

0 )
are homeomorphic. Hence there exist an orientation preserving homeomorphism g of
Sn such that g(Dn

0 ) = Sn \ int(Dn
1 ) and g(S

n \ int(Dn
0 )) = Dn

1 .
Let Σ = ∂Dn

0 , then we have four disjoint (n − 1)-dimensional spheres f−1(Σ), Σ,
g(Σ), (fg)(Σ) which are the boundaries of f−1(Dn

0 ), D
n
0 , D

n
1 , f(D

n
1 ), respectively. Then

we see that (gf−1)(Σ), (g2)(Σ), (gfg)(Σ) are contained in Dn
1 , (fgf

−1)(Σ), (fg2)(Σ),
(fgfg)(Σ) are contained in f(Dn

1 ), (g
−1f−1)(Σ), (g−1)(Σ), (g−1fg)(Σ) are contained

in Dn
0 and (f−1g−1f−1)(Σ), (f−1g−1)(Σ), (f−1g−1f)(Σ) are contained in f−1(Dn

0 ).
See Figure 1, where f−1(Dn

0 ) is lower left, Dn
0 is lower right, Dn

1 is upper left and
f(Dn

1 ) is upper right and f translates f−1(Dn
0 ) and D

n
1 to Dn

0 and f(Dn
1 ), respectively.

We require the homeomorphism g to satisfy the following conditions.



(gfg)(Σ)

(g2)(Σ)
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Figure 1. The actions of g and fg

(1) lim
k→±∞

diam(gk(Σ)) = 0.

(2) lim
k→±∞

diam((fg)k(Σ)) = 0,

Let Dn denote the n-dimensional standard disk. Let ψDn
0
: Dn −→ Dn

0 and ψDn
1
:

Dn −→ Dn
1 be homeomorphisms. Then by Theorem 2.1, we have homeomorphisms

ψSn\int(Dn
0 ) : Dn −→ Sn \ int(Dn

0 ) extending ψDn
0
|∂Dn and ψSn\int(Dn

1 ) : Dn −→
Sn \ int(Dn

1 ) extending ψDn
1
|∂Dn. We first define a homeomorphism g by

g =

{
ψSn\int(Dn

1 )ψDn
0

−1 on Dn
0

ψDn
1
ψSn\int(Dn

0 )
−1 on Sn \ int(Dn

0 ) ,

and then we modify g so that (1) and (2) are satisfied. For this purpose we notice the
following fact.

Lemma 2.3. For any compact set K in the interior int(Dn) of the standard disk Dk

and any positive real number ε, there is a homeomorphism ϕK,ε : D
n −→ Dn which is

the identity on ∂Dn such that diam(ϕK,ε(K)) ≤ ε.

For a continuous map ψ between compact metric spaces ψ : X −→ Y , let μψ denote
the modulus of continuity of ψ. This means that distY (ψ(x), ψ(y)) ≤ μψ(distX(x, y))
for x, y ∈ X .

The modification of g is done step by step.



First we look at g2(Σ) and take K1 = ψDn
1

−1((g2)(Σ)) and ε1 such that μψDn
1
(ε1) ≤

2−2, where μψDn
1
is the modulus of continuity of ψDn

1
. Then we look at (fg)2(Σ) and

take K2 = ψDn
1

−1((gfg)(Σ)). We take δ such that μf (δ) ≤ 2−2 and take ε2 such that
μψDn

1
(ε2) ≤ δ. Then for K = K1 ∪ K2 and ε = min{ε1, ε2}, by Lemma 2.3, we have

ϕK,ε : D
n −→ Dn. We replace g|(Sn \ int(Dn

0 )) by ψDn
1
ϕK,εψDn

1

−1(g|(Sn \ int(Dn
0 ))).

Then diam(g2(Σ)) ≤ 2−2 and diam((fg)2(Σ)) ≤ 2−2. The first step is done.
In the second step, we modify g on Dn

1 ∪ f(Dn
1 ) . We look at g3(Σ) and take

K1 = (g ◦ψDn
1
)−1((g3)(Σ)) and ε1 such that μg◦ψDn

1
(ε1) ≤ 2−3, where g ◦ψDn

1
: Dn −→

g(Dn
1 ). We also look at (fg)3(Σ) and take K2 = ((gf) ◦ ψDn

1
)−1((g(fg)2)(Σ)), where

(gf) ◦ ψDn
1
: Dn −→ (gf)(Dn

1 ). We take δ such that μf (δ) ≤ 2−3 and take ε2 such that

μ(gf)◦ψDn
1
(ε2) ≤ δ. We replace g|Dn

1 by (g ◦ ψDn
1
)ϕK1,ε1(g ◦ ψDn

1
)−1(g|Dn

1 ) and replace

g|f(Dn
1 ) by ((gf) ◦ ψDn

1
)ϕK2,ε2((gf) ◦ ψDn

1
)−1(g|f(Dn

1 )), where ϕK1,ε1 and ϕK2,ε2 are

given by Lemma 2.3. Then diam(g3(Σ)) ≤ 2−3 and diam((fg)3(Σ)) ≤ 2−3.
In the k-th step, we modify g on gk−2(Dn

1 ) ∪ (fg)k−2f(Dn
1 ) . We look at gk+1(Σ)

and take K1 = (gk−1 ◦ ψDn
1
)−1((gk+1)(Σ)) and ε1 such that μgk−1◦ψDn

1
(ε1) ≤ 2−(k+1),

where gk−1 ◦ ψDn
1

: Dn −→ gk−1(Dn
1 ). We also look at (fg)k+1(Σ) and take K2 =

((gf)k−1 ◦ψDn
1
)−1((g(fg)k)(Σ)), where (gf)k−1 ◦ψDn

1
: Dn −→ (gf)k−1(Dn

1 ). We take

δ such that μf (δ) ≤ 2−(k+1) and take ε2 such that μ(gf)k−1◦ψDn
1
(ε2) < δ. We replace

g|gk−2(Dn
1 ) by

(gk−1 ◦ ψDn
1
)ϕK1,ε1(g

k−1 ◦ ψDn
1
)−1(g|gk−2(Dn

1 ))

and replace g|((fg)k−2f)(Dn
1 ) by

((gf)k−1 ◦ ψDn
1
)ϕK2,ε2((gf)

k−1 ◦ ψDn
1
)−1(g|((fg)k−2f)(Dn

1 )),

where ϕK1,ε1 and ϕK2,ε2 are given by Lemma 2.3. Then diam(gk(Σ)) ≤ 2−k and
diam((fg)k(Σ)) ≤ 2−k.

In this way, we modify g successively and we obtain a homeomorphism g such that
lim
k→∞

diam(gk(Σ)) = 0 and lim
k→∞

diam((fg)k(Σ)) = 0, because the modification is done

in finite stage for any point except those in

∞⋂
k=2

gk−2(Dn
1 ) ∪

∞⋂
k=2

((fg)k−2f)(Dn
1 ) and it

is ensured that

∞⋂
k=2

gk−2(Dn
1 ) and

∞⋂
k=2

((fg)k−2f)(Dn
1 ) are one-point sets.

Now we need to modify g so that the limit as k tends to −∞ also satisfy the condition.
We look at g−1 and (fg)−1.

For the negative iteration of g and fg, we look at g−1(Σ) and take K1 =
ψDn

0

−1(g−1(Σ)) and ε1 such that μψDn
0
(ε1) ≤ 2−2. Then we look at (fg)−1(Σ) and take

K2 = ψDn
0

−1((fg)−1(Σ)). We take δ such that μf−1(δ) ≤ 2−2 and take ε2 such that
μψDn

0
(ε2) ≤ δ. Then forK = K1∪K2 and ε = min{ε1, ε2}, by Lemma 2.3, we have ϕK,ε :

Dn −→ Dn. We replace g−1|(Sn\int(Dn
1 )) by ψDn

0
ϕK,εψDn

0

−1(g−1|(Sn\int(Dn
1 ))). Note

that we did not change g|Dn
0 : Dn

0 −→ Sn \ int(Dn
1 ) when we modified g for the positive

iterations of g and fg. Then diam(g−1(Σ)) ≤ 2−2 and diam((fg)−1(Σ)) ≤ 2−2. The
first step for g−1 and f−1 is done.

In the second step for g−1 and (fg)−1, we modify g−1 on Dn
0 ∪f−1(Dn

0 ) . We look at
g−2(Σ) and take K1 = (g−1 ◦ ψDn

0
)−1(g−2(Σ)) and ε1 such that μg−1◦ψDn

0
(ε1) ≤ 2−3,

where g−1◦ψDn
0
: Dn −→ g−1(Dn

0 ). We also look at (fg)−2(Σ) and take K2 = ((fg)−1◦
ψDn

0
)−1((fg)−2(Σ)), where (fg)−1 ◦ ψDn

0
: Dn −→ (fg)−1(Dn

0 ). We take ε2 such that



μ(fg)−1◦ψDn
0
(ε2) ≤ 2−3. We replace g−1|Dn

0 by (g−1◦ψDn
0
)ϕK1,ε1(g

−1◦ψDn
0
)−1(g−1|Dn

0 )

and replace g|f−1(Dn
0 ) by ((fg)−1 ◦ψDn

0
)ϕK2,ε2((fg)

−1 ◦ψDn
0
)−1(g−1|f−1(Dn

0 )), where

ϕK1,ε1 and ϕK2,ε2 are given by Lemma 2.3. Then diam(g−2(Σ)) ≤ 2−3 and
diam((fg)−2(Σ)) ≤ 2−3.

In the k-th step for g−1 and (fg)−1, we modify g−1 on g−k+2(Dn
0 )∪(f−1(fg)−k+2)(Dn

0 ).
We look at g−k(Σ) and take K1 = (g−k+1 ◦ ψDn

0
)−1((g−k)(Σ)) and ε1 such that

μg−k+1◦ψDn
0
(ε1) ≤ 2−k−1, where g−k+1 ◦ ψDn

0
: Dn −→ g−k+1(Dn

0 ). We also look

at (fg)−k(Σ) and take K2 = ((fg)−k+1 ◦ ψDn
0
)−1((fg)−k(Σ)), where (fg)−k+1 ◦ ψDn

0
:

Dn −→ (fg)−k+1(Dn
0 ). We take ε2 such that μ(fg)−k+1◦ψDn

1
(ε2) < 2−k−1. We replace

g|g−k+2(Dn
0 ) by

(g−k+1 ◦ ψDn
0
)ϕK1,ε1(g

−k+1 ◦ ψDn
0
)−1(g|g−k+2(Dn

0 ))

and replace g|(f−1(fg)−k+2)(Dn
0 ) by

((fg)−k+1 ◦ ψDn
0
)ϕK2,ε2((fg)

−k+1 ◦ ψDn
0
)−1(g|(f−1(fg)−k+2)(Dn

0 )),

where ϕK1,ε1 and ϕK2,ε2 are given by Lemma 2.3. Then diam(g−k(Σ)) ≤ 2−k−1 and
diam((fg)−k(Σ)) ≤ 2−k−1. In this way, we modify g−1 successively and we obtain a

homeomorphism g−1 such that lim
k→−∞

diam(gk(Σ)) = 0 and lim
k→−∞

diam((fg)k(Σ)) =

0, because the modification is done in finite stage for any point except those in
∞⋂
k=2

g−k+2(Dn
0 ) ∪

∞⋂
k=2

(f−1(fg)−k+2)(Dn
0 ) and it is ensured that

∞⋂
k=2

g−k+2(Dn
0 ) and

∞⋂
k=2

(f−1(fg)−k+2)(Dn
0 ) are one-point sets.

Thus we can construct the desired g.

Lemma 2.4. The homeomorphisms g and fg are topologically conjugate. Namely, there
is an orientation preserving homeomorphism h : Sn −→ Sn such that fg = hgh−1.

Proof. This follows from Theorem 2.2. Since Σ = ∂Dn
0 and g(Σ) = ∂Dn

1 are locally flat
(n− 1)-dimensional spheres, there is a homeomorphism Φ1 : Sn−1 × [0, 1] −→ Sn to its
image such that

Φ1(S
n−1 × [0, 1]) ∩Dn

0 = Φ1(S
n−1 × {0}) = Σ and

Φ1(S
n−1 × [0, 1]) ∩Dn

1 = Φ1(S
n−1 × {1}) = g(Σ).

Here by Theorem 2.2, there is Φ1 such that (Φ1|Sn−1 × {1})T (Φ1|Sn−1 × {0})−1 = g,
where T (x, 0) = (x, 1) for x ∈ Sn−1. In the same way, since Σ = ∂Dn

0 and (fg)(Σ) =
∂f(Dn

1 ) are locally flat (n − 1)-dimensional spheres, there is a homeomorphism Φ2 :
Sn−1 × [0, 1] −→ Sn to its image such that

Φ2(S
n−1 × [0, 1]) ∩Dn

0 = Φ2(S
n−1 × {0}) = Σ and

Φ2(S
n−1 × [0, 1]) ∩Dn

1 = Φ2(S
n−1 × {1}) = (fg)(Σ).

By Theorem 2.2, there is Φ2 such that (Φ2|Sn−1 × {1})T (Φ2|Sn−1 × {0})−1 = fg.
The conjugating homeomorphism h is defined as follows.⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

h(x) = (fg)k((Φ2Φ1
−1)(g−k(x))) for x ∈ gk(Φ1(S

n−1 × [0, 1])) (k ∈ Z)

h(x) ∈
∞⋂
k=2

(fg)k−2f(Dn
1 ) for x ∈

∞⋂
k=2

gk−2(Dn
1 )

h(x) ∈
∞⋂
k=2

(fg)−k+2(Dn
0 ) for x ∈

∞⋂
k=2

g−k+2(Dn
0 )



Since (Φ1|Sn−1×{1})T (Φ1|Sn−1×{0})−1 = g, Φ2(S
n−1×[0, 1])∩Dn

1 = Φ2(S
n−1×{1}) =

(fg)(Σ) and

∞⋂
k=2

(fg)k−2f(Dn
1 )),

∞⋂
k=2

gk−2(Dn
1 )),

∞⋂
k=2

(fg)−k+2(Dn
0 )) and

∞⋂
k=2

g−k+2(Dn
0 ))

are one-point sets, h is well defined. Since h−1 can be defined in a similar way, h is a
homeomorphism. By the definition of h, we have fg = hgh−1.

By this lemma, we showed our main theorem 1.1.

3. The group of homeomorphisms of the n-dimensional Menger compact

space

The proof of our main theorem uses Theorems 2.1 and 2.2 and Lemma 2.3. Similar
theorems hold for the n-dimensional Menger compact space μn ([3], [18]). For the n-
dimensional Menger space and Menger manifolds, we refer the reader to [3], [9] and
[18].

The main tool to show the corresponding results for the n-dimensional Menger space
is Bestvina’s Z-set unknotting theorem.

Put Ik = [0, 1]k. A closed subset A of a k-dimensional Menger manifoldM is a Z-set,
if for any continuous map f : Ik −→ M and any positive real number ε, there exists a
continuous map f ′ : Ik −→M which is an ε-approximation of f and f ′(Ik)∩A = ∅ ([3],
[9]). This is equivalent to that for any positive real number ε, there exists a continuous
map g :M −→M \A which is an ε-approximation of the identity. A Z-embedding is a
homeomorphism onto a Z-set of a Menger manifold.

Theorem 3.1 (Z-set unknotting theorem, [3]). Let A be a Z-set in a k-dimensional
Menger manifold M . Any Z-embedding A −→ M which is (k − 1)-homotopic to the
inclusion A ⊂ M extends to a homeomorphism M −→ M which is (k − 1)-homotopic
to the identity.

Here (k−1)-homotopy is defined as follows ([8]). Two maps f0 and f1 : X −→ Y are
(k−1)-homotopic if f0◦α and f1◦α are homotopic for any continuous map α : Z −→ X
from an arbitrary space Z of dimension less than k. When X and Y have the (k − 1)-
homotopy types of countable simplicial complexes, f0 and f1 are (k − 1)-homotopic if
and only if they induce the same homomorphisms in the homotopy groups of dimension
less than k for each connected component. Note that compact k-dimensional Menger
manifolds have the (k − 1)-homotopy types of finite simplicial complexes ([8]).

In [18], we used Theorem 3.1 to construct topologically hyperbolic homeomorphism
of the Menger compact space μn. We can reformulate what was used in the construction
in [18] and what we are going to use as follows.

Proposition 3.2. Let A be a closed set in the compact n-dimensional Menger space μn

such that

(1) A is homeomorphic to the compact (n− 1)-dimensional Menger space μn−1,
(2) μn \A = U1 ∪ U2, U1 �= ∅, U2 �= ∅ and U1 ∩ U2 = ∅, and
(3) U1 ∪ A and U2 ∪ A are n-dimensional Menger manifolds and A is a Z-set in

U1 ∪ A and in U2 ∪A.
Then U1 ∪A and U2 ∪A are homeomorphic to μn.

Proposition 3.3. Let A1 and A2 be a closed set in the compact n-dimensional Menger
space μn such that

(1) A1 and A2 are homeomorphic to the disjoint union of two compact (n − 1)-
dimensional Menger space μn−1,



(2) μn \Ai = Ui1 ∪ Ui2 ∪ Ui3 (disjoint union of nonempty open sets; i = 1, 2) and
(3) Ui1, Ui2 and Ui3 are n-dimensional Menger manifolds and Ai ⊂ Ui2 is a Z-set

as well as Ai ∩ Ui1 ⊂ Ui1 and Ai ∩ Ui3 ⊂ Ui3.

Then any homeomorphism A1 −→ A2 extends to a homeomorphism h : μn −→ μn such
that h(U1j) = U2j after changing the indices i1 and i3 if necessary.

Proposition 3.4. Under the assumption of Proposition 3.2, for any compact set K
in U1 and any positive real number ε, there is a homeomorphism ϕK,ε of μn such that
ϕK,ε|(U2 ∪ A) = idU2∪A, diam(ϕK,ε(K)) ≤ ε.

The proof of Theorem 1.2 is done by the same argument as that of Theorem 1.1. It
is clear that Propositions 3.2, 3.3 and 3.4 can play the same role of Theorems 2.1 and
2.2 and Lemma 2.3. Thus we showed that the commutator width of Homeo(μn) is one.
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