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Abstract A method by the reproducing kernel Hilbert space is applied to an inverse heat problem of

determining a time-dependent source parameter. The problem is reduced to a system of linear equations.

The exact and approximate solutions are both obtained in a reproducing kernel space. The approximate

solution and its partial derivatives are proved to converge to the exact solution and its partial derivatives,

respectively. The proposed method improves the previous method. Our numerical results show that the

method is of high precision.
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1 Introduction

The literature on the numerical approximation of solutions to inverse problems for parabolic partial differ-

ential equations is large and still growing rapidly. Many methods based on the finite difference, the finite

element, the spectral, the finite volume, the boundary element and the meshless methods have been proposed

to approximate solutions and we can refer for example to [1-8] and the references therein.

We consider the following inverse problem of simultaneously finding unknown coefficients p(t) and w(x, t)

from the following parabolic equation (e.g. [2,5])

wt = wxx + qwx + p(t)w + k(x, t), (x, t) ∈ D = [0, 1]× [0, 1], (1.1)

w(x, 0) = g(x), x ∈ [0, 1], (1.2)

w(0, t) = h1(t), w(1, t) = h2(t), t ∈ [0, 1], (1.3)
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subject to the pointwise observation data at x∗

w(x∗, t) = E(t), x∗ ∈ (0, 1), t ∈ [0, 1]. (1.4)

Throughout this paper, we assume that k(x, t), g(x), h1(t), h2(t) and E(t) are known and sufficiently smooth

functions, q is a known constant and x∗ is a fixed prescribed interior point in (0, 1). Equation (1.1) models

a heat process with heat source whose intensity is proportional to the temperature with coefficient p(t) (e.g.

[2]). Equation (1.4) represents the temperature at a given point x∗ in a spatial domain at time t. Thus

the purpose of solving this inverse problem is to identify the source parameter p(t) that produces a desired

temperature profile at each time t and a given point x∗ in a spatial domain (see e.g. [2]).

The existence and uniqueness of the solutions to this problem and also some more applications are

discussed in [6-12]. Various numerical methods [13-21] are developed for this inverse problem and related

inverse parabolic problems. As for other types of inverse parabolic problems, see e.g. [2,22]. The approach

in the current paper is by the reproducing kernel Hilbert space and is different for example from the finite

difference method [5,21].

In recent years, there is much interest in the use of reproducing kernel for the solution of nonlinear

physical and engineering problems [23-28]. The reproducing kernel has been applied successfully to wavelet

transforms [29], stochastic processes [30], signal processing [31], machine learning [32], ill-posed Cauchy

problems for elliptic equations [33], inverse problems [34,35], etc. Those papers indicate that the reproducing

kernel method (RKM) [36-38] possesses many outstanding advantages, which can handle the nonlinear and

ill-posed problems. Also the numerical solutions can be obtained by this method for the practical problems

that cannot be solved efficiently before [39-45].

The most important advantages of RKM are as follows:

(i) The approximate solution converges uniformly to the exact solution, also partial derivatives of the

approximate solution converge uniformly to partial derivatives of the exact solution.

(ii) The structure of numerical programming is simple and the calculations are very fast.

(iii) The accuracy of approximate solution is very high.

In this paper, we give the representation of exact solution to problem (1.1)-(1.4) in the reproducing

kernel space, and improve the existing methods as follows: first, we obtain the reproducing kernel spaces by

redefining the inner products, which are simpler than the former [27], and so it can decrease the accumulative

errors to improve the precision and decrease the runtime; second, this approach reduces problem (1.1)-(1.4)

to a system of linear equations, and avoids the Gram-Schmidt orthogonalization process [28]. Numerical

calculations indicate that this method improves the precision and decreases the runtime, especially when the

number of knots is large.

Before applying our method to problem (1.1)-(1.4), we apply two different procedures for the problem,
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which are inspired by [5,6,15,21]. Henceforth ·′ denotes the derivative in the variable under consideration.

Procedure I

Here we assume

E(t)− h1(t)(1− x∗)− h2(t)x∗ 6= 0, t ∈ [0, 1]. (1.5)

By the maximum principle for the parabolic equation, condition (1.5) is satisfied for example, if

h1(t) = h2(t) = 0 , k(x, t) ≥ 0, g(x) ≥ 0(6≡ 0), x, t ∈ [0, 1]. (1.6)

Then we set

v(x, t) = w(x, t)r(t), r(t) = exp
(
−

∫ t

0

p(s)ds

)
. (1.7)

Then the direct calculations yield

vt = vxx + qvx + r(t)k(x, t), (x, t) ∈ D,

v(x, 0) = g(x), x ∈ [0, 1],

v(0, t) = r(t)h1(t), t ∈ [0, 1],

v(1, t) = r(t)h2(t), t ∈ [0, 1],

v(x∗, t) = r(t)E(t), t ∈ [0, 1]. (1.8)

Again we set

u(x, t) = v(x, t)− (v(0, t)− g(0)) (1− x)− (v(1, t)− g(1))x− g(x).

Then we can further transform the original problem to

Lu(x, t) = f(x, t), (x, t) ∈ D (1.9)

u(x, 0) = 0, x ∈ [0, 1], (1.10)

u(0, t) = 0, t ∈ [0, 1], (1.11)

u(1, t) = 0, t ∈ [0, 1]. (1.12)

Here we set

Lu = ut − uxx − qux − F (x, t)
u(x∗, t)
M(t)

+ H(x, t)
(

u(x∗, t)
M(t)

)′
,
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f(x, t) = (g(x∗)− g(0)(1− x∗)− g(1)x∗)
(

F (x, t)
M(t)

+
H(x, t)M ′(t)

M2(t)

)

+g′′(x) + q(g′(x) + g(0)− g(1)),

where

F (x, t) = q
(
h2(t)− h1(t)

)
− ∂tH(x, t) + k(x, t),

H(x, t) = (1− x)h1(t) + xh2(t)

and

M(t) = E(t)− h1(t)(1− x∗)− h2(t)x∗.

Procedure II

We assume

E(t)−
(
h1(t)(1− x∗) + h2(t) exp

(q

2

)
x∗

)
exp

(
−q

2
x∗

)
6= 0, t ∈ [0, 1]. (1.13)

The condition (1.13) is satisfied for example under condition (1.6). Then we set

v(x, t) = w(x, t)r(t) exp
(q

2
x
)
, r(t) = exp

(
−

∫ t

0

(p(s)− q2/4)ds

)
. (1.14)

Then the problem becomes

vt = vxx + r(t) exp
(q

2
x
)

k(x, t), (x, t) ∈ D,

v(x, 0) = g(x) exp
(q

2
x
)

, x ∈ [0, 1],

v(0, t) = h1(t)r(t), t ∈ [0, 1],

v(1, t) = h2(t)r(t) exp
(q

2

)
, t ∈ [0, 1],

v(x∗, t) = r(t)E(t) exp
(q

2
x∗

)
, t ∈ [0, 1]. (1.15)

Thus by direct calculations:

u(x, t) = v(x, t)− (v(0, t)− g(0)) (1− x)−
(
v(1, t)− g(1) exp

(q

2

))
x− v(x, 0).

The original problem (1.1)-(1.4) can further be reduced to (1.9)-(1.12). Here we set

Lu = ut − uxx + exp
(
−q

2
x∗

) (
F (x, t)

u(x∗, t)
M(t)

+ H(x, t)
(

u(x∗, t)
M(t)

)′)
,

f(x, t) =
(
g(x∗)−

(
g(0)(1− x∗) + g(1) exp

(q

2

)
x∗

)
exp

(
−q

2
x∗

))

×
(
−F (x, t)

M(t)
+

H(x, t)M ′(t)
M2(t)

)
+

(
g′′(x) + qg′(x) +

q2

4
g(x)

)
exp

(q

2
x
)
,
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where

F (x, t) = ∂tH(x, t)− k(x, t) exp
(q

2
x
)

,

H(x, t) = (1− x)h1(t) + xh2(t) exp
(q

2

)

and

M(t) = E(t)−
(
h1(t)(1− x∗) + h2(t) exp

(q

2

)
x∗

)
exp

(
−q

2
x∗

)
.

Our method is composed of

(i) Solve (1.9)-(1.12) which is an initial-boundary value problem for a non-classical heat equation.

(ii) Find p(t) by (1.7)-(1.8) in Procedure I or (1.14)-(1.15) in Procedure II.

We apply our numerical method to problem (1.9)-(1.12) for each procedure.

This paper is organized as follows: in Section 2, we construct reproducing kernel spaces according to

(1.9)-(1.12). Section 3 gives the exact and approximate solutions in the reproducing kernel space. The

convergence analysis is presented in Section 4. The numerical example is studied in Section 5. Finally a

conclusion is given in Section 6.

2 Several reproducing kernel spaces

In this section, we construct the reproducing kernel spaces according to (1.9)-(1.12) by redefining the inner

products, which are simpler than the former [27]. Therefore it can decrease the accumulative errors and

thereby improve the precision and decrease consumedly the runtime.

2.1 The reproducing kernel space W3[0, 1]

The inner product space W3[0, 1] is defined as W3[0, 1] = {u | u, u′, u′′ are absolutely continuous real value

functions, u, u′, u′′, u(3) ∈ L2[0, 1], u(0) = 0, u(1) = 0}. The inner product and the norm in W3[0, 1] are given

respectively by

< u, v >W3=
2∑

i=0

u(i)(0)v(i)(0) +
∫ 1

0

u(3)(x)v(3)(x)dx,

‖ u ‖W3=
√

< u, u >W3 ,

where u, v ∈ W3[0, 1].

Theorem 2.1: The space W3[0, 1] is a reproducing kernel space. That is, for every fixed x ∈ [0, 1], there is a

function Rx(y) ∈ W3[0, 1], y ∈ [0, 1], such that for every u ∈ W3[0, 1], < u, Rx >W3= u(x). The reproducing
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kernel Rx(y) is given by

Rx(y) =





− (x− 1)y
18720

(
156y4 + 12x(360− 300y − 100y2 − 15y3 + 3y4)

+ x2(6− 4x + x2)(120 + 30y + 10y2 − 5y3 + y4)
)
, y ≤ x,

−x(y − 1)
18720

(
10(3 + x)xy(−120 + 6y − 4y2 + y3)

+ 5y(24− x3)(36 + 6y − 4y2 + y3)

+ x4(156 + 36y + 6y2 − 4y3 + y4)
)
, y > x.

(2.1)

The proof of Theorem 2.1 is similar to [46, Theorem 2.1].

2.2 The reproducing kernel space W2[0, 1]

The inner product space W2[0, 1] is defined by W2[0, 1] = {u | u, u′ are absolutely continuous real value

functions, u, u′, u′′ ∈ L2[0, 1], u(0) = 0}. The inner product and norm in W2[0, 1] are given respectively by

< u, v >W2=
1∑

i=0

u(i)(0)v(i)(0) +
∫ 1

0

u(2)(x)v(2)(x)dx,

‖ u ‖W2=
√

< u, u >W2 ,

where u, v ∈ W2[0, 1]. Similarly, we can prove that W2[0, 1] is a complete reproducing kernel space and its

reproducing kernel is

R{2}x (y) =




− 1

6y
(
y2 − 3x(2 + y)

)
, y ≤ x,

− 1
6x

(
x2 − 3y(2 + x)

)
, y > x.

(2.2)

2.3 The reproducing kernel space W1[0, 1]

The inner product space W1[0, 1] is defined by W1[0, 1] = {u | u is absolutely continuous real value function,

u, u′ ∈ L2[0, 1]}. The inner product and norm in W1[0, 1] are given respectively by

< u, v >W1= u(0)v(0) +
∫ 1

0

u′(x)v′(x)dx,

‖ u ‖W1=
√

< u, u >W1 ,

where u, v ∈ W1[0, 1]. Similarly, we can prove that W1[0, 1] is a reproducing kernel space and its reproducing

kernel is

R{1}x (y) =





1 + y, y ≤ x,

1 + x, y > x.
(2.3)
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2.4 The reproducing kernel space W(3,2)(D) and W(1,1)(D)

Assume that {pi(x)}∞i=1 is an orthonormal basis of W3[0, 1] and {qi(t)}∞i=1 is an orthonormal basis of W2[0, 1].

Now we define W(3,2)(D) by

W(3,2)(D) = {u|u(x, t) =
∞∑

i,j=1

cijpi(x)qj(t),
∞∑

i,j=1

| cij |2< ∞, cij ∈ R}.

The inner product of W(3,2)(D) is defined dy

< u1, u2 >W(3,2)=
∞∑

i,j=1

cijdij ,

where u1 =
∞∑

i,j=1

cijpi(x)qj(t) and u2 =
∞∑

i,j=1

dijpi(x)qj(t). The norm is denoted by

‖u‖2W(3,2)
=< u, u >W(3,2) .

By [36], it is easy to prove the following Propositions 2.1 and 2.2.

Proposition 2.1. If u(x, t) = u1(x)u2(t) and v(x, t) = v1(x)v2(t) ∈ W(3,2)(D), then

< u, v >W(3,2)=< u1, v1 >W3< u2, v2 >W2 .

Proposition 2.2. W(3,2)(D) is a reproducing kernel space and the reproducing kernel is

K(ξ,η)(x, t) = Rξ(x)R{2}η (t),

where Rξ(x), R
{2}
η (t) are given by (2.1) and (2.2) respectively.

Similar to the definition of W(3,2)(D), we can define W(1,1)(D). W(1,1)(D) is also a reproducing kernel

space, and the reproducing kernel is

K(ξ,η)(x, t) = R
{1}
ξ (x)R{1}η (t),

where R
{1}
ξ (x), R

{1}
η (t) are given by (2.3).

3 The solution of Eqs.(1.9)-(1.12)

In this section, the exact solution of problem (1.9)-(1.12) is given in the reproducing kernel space W(3,2)(D).

In Eqs.(1.9)-(1.12), since k(x, t), g(x), h1(t), h2(t) and E(t) are sufficiently smooth, L : W(3,2)(D) →
W(1,1)(D) is a bounded linear operator. Put M = (x, t),Mi = (xi, ti), ϕi(M) = KMi(M), and ψi(M) =

L∗ϕi(M), where K is the reproducing kernel of W(1,1)(D) and L∗ is the adjoint operator of L. The orthonor-

mal system {ψi(M)}∞i=1 of W(3,2)(D) can be derived from the Gram-Schmidt orthogonalization process of

{ψi(M)}∞i=1,

ψi(M) =
i∑

k=1

βikψk(M), (βii > 0, i = 1, 2, ...).
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Theorems 3.1 and 3.2 can be proved similarly to Lemma 3.2 and Theorem 3.1 respectively in [28] where

a forward problem for a heat equation with non-local boundary condition is discussed.

Theorem 3.1. For Eqs.(1.9)-(1.12), if {Mi}∞i=1 is dense in D, then {ψi(M)}∞i=1 is the complete system of

W(3,2)(D) and ψi(M) = LNKM (N)|N=Mi .

The subscript N of LN indicates that the operator L applies to the function of N .

Theorem 3.2. If {Mi}∞i=1 is dense in D and the solution of Eqs.(1.9)-(1.12) is unique, then the solution of

Eqs.(1.9)-(1.12) satisfies the form

u(M) =
∞∑

i=1

i∑

k=1

βikf(Mk)ψi(M). (3.1)

Now, the approximate solution un(M) can be obtained by the n-term interception of the exact solution

u(M) and

un(M) =
n∑

i=1

i∑

k=1

βikf(Mk)ψi(M). (3.2)

Theorem 3.3. If u(M) is the solution of Eqs.(1.9)-(1.12) represented in the form of (3.1), un = Pnu(M),

where Pn is an orthogonal projector from W(3,2) to Span{ψi(M)}n
i=1, then Lun(Mi) = f(Mi), i = 1, 2, ..., n.

Proof.

Lun(Mi) =< Lun(M), ϕi(M) >=< un(M), L∗ϕi(M) >

=< Pnu(M), ψi(M) >=< u(M), Pnψi(M) >

=< u(M), ψi(M) >=< Lu(M), ϕi(M) >

= Lu(Mi) = f(Mi), i = 1, 2, ..., n.

Now

un(M) =
n∑

i=1

i∑
k=1

βikf(Mk)ψi(M)

=
n∑

i=1

i∑
k=1

βikf(Mk)
i∑

l=1

βilψl(M)

=
n∑

i=1

Ciψi(M),

(3.3)

where Ci =
i∑

k=1

βikf(Mk)
i∑

l=1

βil, then from Theorem 3.3 we have

Lun(Mj) =
n∑

i=1

CiLψi(Mj) = f(Mj), j = 1, 2, · · ·, n. (3.4)
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Thus, from Eq.(3.4), we obtain Ci, i = 1, 2, · · ·, n. Taking them into Eq.(3.3), we get the approximate

solution un(M) of Eqs.(1.9)-(1.12). Then we may obtain the approximation (wn, pn) of the original inverse

problem from (1.7) and (1.8) for procedure I, and from (1.14) and (1.15) for procedure II.

Using Eqs.(3.3) and (3.4) to solve Eqs.(1.9)-(1.12), we can avoid the Gram-Schmidt orthogonalization

process [28] of {ψi(M)}∞i=1, and so we can improve the precision and decrease consumedly the runtime when

the number of knots is the same, especially when the number of knots is large. It is efficiently applied to

solving some model problems, and is of high precision.

4 Convergence analysis

We assume that {Mi}∞i=1 is dense in D. We discuss the convergence of the approximate solutions constructed

in Section 3. Let u(M) be the exact solution of Eqs.(1.9)-(1.12), un(M) be the n-term approximation solution

of Eqs.(1.9)-(1.12). We set ‖ u ‖C, max
M∈D

|u(M)|. Then arguing similarly to [28], we have

Theorem 4.1. (i) ‖ u− un ‖W(3,2)(D)→ 0, n →∞. Moreover a sequence ‖u− un‖W3,2(D) is monotonically

decreasing in n.

(ii) ∥∥∥∥
∂i+ju

∂xi∂tj
− ∂i+jun

∂xi∂tj

∥∥∥∥
C

→ 0, n →∞; i = 0, 1, 2; j = 0, 1; i + j = 0, 1, 2.

5 Numerical example

In this section, some numerical examples are studied to demonstrate that our method is effective and the

accuracy of approximate solution is high.

The domain D is divided into an N ×M mesh with the spatial step size h = 1/N in x direction and the

time step size k = 1/M , respectively, in which N and M are integers.

Example 1

Consider problem (1.1)-(1.4) with the following conditions:




w(x, 0) = sin
(π

2
x
)

,

w(0, t) = 0, w(1, t) = exp(t),

k(x, t) =
((

π2

4
− t

)
sin

(π

2
x
)
− π cos

(π

2
x
))

exp(t),

q = 2, x∗ =
1
2
,

E(t) =
√

2
2

exp(t).

The exact solution is w(x, t) = sin
(π

2
x
)

exp(t) and p(t) = 1 + t.
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With our method and finite difference method (FDM) [21], the root mean square (RMS) errors of the

w(x, t) and p(t), and CPU time are presented in Tables 1-3 for procedure I.

From the above results, we can see that our method uses shorter CPU time, and obtains good results.

Another solution examples have been done to control the sensitivity of procedure I to errors. Artificial

errors were introduced into the additional condition data by defining functions E(t) = E(t)(1 + d) where d

represents the level of noise in the corresponding piece of data. Results with grid N ×M = 8× 5 and noise

d = 0.01, d = 0.025 and d = 0.033 are given in Figures 1 and 2 for procedure I.

As seen from the figures that errors results are worsening.

Example 2

Consider problem (1.1)-(1.4) with the following conditions:





w(x, 0) = x,

w(0, t) = 0, w(1, t) = exp(t),

k(x, t) = −(2 + xt2) exp(t),

q = 2, x∗ =
1
2
,

E(t) =
1
2

exp(t).

The exact solution is w(x, t) = x exp(t) and p(t) = 1 + t2.

With our method and finite difference method (FDM) [5], the root mean square (RMS) errors of the

w(x, t) and p(t), and CPU time are presented in Tables 4-6 for procedure II.

From the above results, we can see that our method uses shorter CPU time, and obtains good results.

Another solution examples have been done to control the sensitivity of procedure II to errors. Results

with grid N × M = 8 × 9 and noise d = 0.01, d = 0.025 and d = 0.033 are given in Figures 3 and 4 for

procedure II.

As seen from the figures that errors results are worsening.

6 Conclusions

In this article, our method has been successfully applied to an inverse problem of determining a t-dependent

function of the source term which is proportional to the temperature. Our method is based on the reproducing

kernel Hilbert space, and the approximate solution and its partial derivatives are proved to converge to the

exact solution and its partial derivatives, respectively. Our method improves the previous method. The

computational results confirmed the efficiency, reliability and accuracy of our method, and our method is

applicable to more general inverse source problem for parabolic equations.
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Table 1: RMS errors of w(x, t) with our method and FDM [21] for Example 1.

Our method h = 0.1 h = 0.05 h = 0.02

k = 0.05 1.75E-4 3.36E-5 3.84E-6

k = 0.02 2.09E-4 4.15E-5 5.00E-6

FDM [21] h = 0.1 h = 0.05 h = 0.02

k = 0.05 2.81E-3 2.59E-3 2.52E-3

k = 0.02 1.21E-3 1.00E-3 9.48E-4

Table 2: RMS errors of p(t) with our method and FDM [21] for Example 1.

Our method h = 0.1 h = 0.05 h = 0.02

k = 0.05 5.14E-3 1.47E-3 2.55E-4

k = 0.02 4.97E-3 1.45E-3 2.54E-4

FDM [21] h = 0.1 h = 0.05 h = 0.02

k = 0.05 9.56E-2 9.05E-2 8.90E-2

k = 0.02 3.99E-2 3.52E-2 3.39E-2
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Figure 1: Error |w − w40| with our method for Example 1: (down) d = 0.01, (middle) d = 0.025, (top)

d = 0.033.
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Figure 2: Error |p−p5| with our method for Example 1: (−−−) d = 0.01, (· · ·) d = 0.025, (−·−) d = 0.033.
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Table 3: CPU time with our method and FDM [21] for Example 1.

Method N ×M RMS errors of RMS errors of CPU time

w(x, t) p(t) (s)

Our method 4× 4 1.3× 10−3 1.6× 10−2 0.733

5× 5 8.3× 10−4 1.4× 10−2 1.794

6× 6 5.3× 10−4 1.0× 10−2 3.822

7× 7 3.8× 10−4 8.7× 10−3 7.113

8× 8 2.7× 10−4 7.0× 10−3 12.184

FDM [21] 30× 30 1.6× 10−3 5.8× 10−2 1.029

40× 40 1.2× 10−3 4.3× 10−2 2.433

50× 50 9.5× 10−4 3.4× 10−2 5.367

56× 56 8.4× 10−4 3.0× 10−2 8.237

66× 66 7.1× 10−4 2.5× 10−2 15.459

Table 4: RMS errors of w(x, t) with our method and FDM [5] for Example 2.

Our method h = 0.1 h = 0.05 h = 0.02

k = 0.05 1.14E-4 3.48E-5 6.84E-6

k = 0.02 1.07E-4 3.36E-5 5.91E-6

FDM [5] h = 0.1 h = 0.05 h = 0.02

k = 0.05 1.45E-3 1.40E-3 1.38E-3

k = 0.02 5.49E-4 5.02E-4 4.89E-4

Table 5: RMS errors of p(t) with our method and FDM [5] for Example 2.

Our method h = 0.1 h = 0.05 h = 0.02

k = 0.05 5.48E-3 1.72E-3 3.06E-4

k = 0.02 5.23E-3 1.64E-3 2.86E-4

FDM [5] h = 0.1 h = 0.05 h = 0.02

k = 0.05 2.02E-1 1.95E-1 1.93E-1

k = 0.02 7.43E-2 6.88E-2 6.73E-2
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Table 6: CPU time with our method and FDM [5] for Example 2.

Method N ×M RMS errors of RMS errors of CPU time

w(x, t) p(t) (s)

Our method 3× 3 8.3× 10−4 4.8× 10−2 0.125

4× 4 2.9× 10−4 1.7× 10−2 0.405

5× 5 1.9× 10−4 1.0× 10−2 0.998

7× 7 1.6× 10−4 8.0× 10−3 3.853

8× 8 1.4× 10−4 7.0× 10−3 6.568

FDM [5] 20× 20 1.4× 10−3 1.9× 10−1 0.219

26× 26 1.0× 10−3 1.4× 10−1 0.578

34× 34 7.5× 10−4 1.0× 10−1 1.388

50× 50 4.9× 10−4 6.7× 10−2 5.274

56× 56 4.3× 10−4 6.0× 10−2 8.035
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Figure 3: Error |w − w72| with our method for Example 2: (down) d = 0.01, (middle) d = 0.025, (top)

d = 0.033.
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Figure 4: Error |p−p9| with our method for Example 2: (−−−) d = 0.01, (· · ·) d = 0.025, (−·−) d = 0.033.
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