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ABSTRACT: We compute the holonomic system of rank 6 for the radial
part of the matrix coefficients of class one and non-spherical principal series
representations of SL(3,R). We give explicit formulas of the coefficients of six
power series solutions, and express the matrix coefficients by linear combinations
of these power series. Among others, the c-functions of non-spherical principal
series are obtained.

1 Introduction

It is a classical result to have the matrix coefficient of the class one principal
series of a semisimple real Lie group as a linear combination of asymptotic power
series solutions [1]. But for non-spherical case, there seems to be few references.

In the rather recent literature, Masatoshi Iida [4] studied the systems of the
differential equations satisfied by the spherical functions of the principal series
representations of Sp(2, R) with 1-or 2-dimensional K-types, and found a new
integral formula for the radial part of the spherical functions . And Iida and
Takayuki Oda [3] investigated the differential equations satisfied by the leading
terms of these functions and determined the exact power series expansions of
the matrix coefficients of certain generalized principal series representations of
Sp(2,R) .

In this paper, we handle the case of the group SL(3,R). In this case, the
Dirac-Schmid equation together with the Casimir equation gives the holonomic
system of rank 6 on the split Cartan subgroup of SL(3,R) for the radial part
of the matrix coefficients of the non-spherical principal series belonging to the
minimal K-type of dimension three.

We take K = SO(3, R) as a maximal compact subgroup of G and (1, V), (1, V;)
in K. We define the space of spherical functions by Co(K\G/K) :={¢: G —
Vi, @ Vilp(krgkp') = n(kr) ® 7(kr)$(9), ki, kr € K,g € G} and studied the
case of n = 7 = 1 (the trivial representation of K) or the case n = 7 = 72 (the
three dimensional tautological representation of K).



In the former case, the representation is a class one principal series rep-
resentation. Let g be the Lie algebra of G and U(g) its universal enveloping
algebra. The spherical function associated to class one principal series is com-
pletely determined by the actions of the Capelli elements Cps, Cps, which are
the generators of the center of U(g) together with the regularity at the identity
of G.

Meanwhile, the case of non-spherical principal series which has three di-
mensional K-types, we constructed two kinds of equations: 1.The equations
obtained from the action of Casimir element of degree two  2.The equations
obtained from the action of gradient operator, i.e. the Dirac-Schmid operator.
We compute the eigenvalues of these operators and construct the equations by
combining these results. In both cases, we obtain six power series solutions
corresponding to the six characteristic roots.

The key point in this paper is as follows. We have three different non-
spherical principal series with the same infinitesimal characters Z(g) — C. We
cannot distinguish them only by the elements of Z(g). This is the reason we
need the Dirac-Schmid operator which has distinct eigenvalues for different non-
spherical principal series.

In the last section, we determine the exact power series expansions of matrix
coefficients of spherical and non-spherical principal series representations by
using the formula of hypergeometric functions. The coefficients appearing in the
linear combination of power series are called c-functions, and firstly evaluated
explicitly by G.Schiffmann [7] only for the case of spherical representations (cf.
also the book [8], chap 9 of G.Warner). However, this inductive argument does
not work for non-spherical case. This seems to be the reason why there are little
results for non-spherical case.

Our method is classical. We investigate a part of the monodromy data of our
holonomic system to have the unique solutions invariant under the fundamental
group of the regular part of the split Cartan subgroup in SL(3,R).

The author express his gratitude to Takayuki Oda for constant encourage-
ment among others for suggestions of the computation of the holonomic system
in this paper. He also thanks Tadashi Miyazaki and Masatoshi Iida for valuable
advice.

2 Preliminaries

2.1 Notation

Let G = SL(3,R) and fix K = SO(3,R) as a maximal compact subgroup of
G, and set g = Lie(G) = sl(3,R), ¢ = Lie(K) = s0(3). Put
3
A = {diag(a1, az,a3) € G| Hai =1,a; € R>o}
i=1
and set a = Lie(A4).
The Cartan involution 6 : G — G is defined by g — (‘g)~! (g € G), and its Lie



algebra versionis §: g — g, X — —tX.

Then

K =G"={g€Glb(g) =g}
and

t=g’={X €g|0(X)=X}.
Put

p=g"={X egl0(X)=-X}.
Then we have g = €@ p, called the Cartan decomposition.
Let E;; (1 <14,j < 3) be the matrix unit with 1 at the (i, j)-th entry and 0 at
other entries. Put
Hi,j = Eiﬂ' — EjJ S Cl(i 7é j)
Put X’L',j = E/L',j + Ejﬂ' (Z 7é j) S pand K’i,j = E@j — Ej,i (Z 7& ]) S £

2.2 The principal series representations

Let Py be a minimal parabolic subgroup of G given by the upper triangular
matrices in G, and Py = M AN be the Langlands decomposition of Py with
M = K n{diagonals in G}, and

1 r1 X2
N = 0 1 z3 | €Glr; €R,i=1,2,3
0 0 1

To define a principal series representation with respect to the minimal parabolic
subgroup Py of G, we firstly fix a character o of M and a linear form

v € a* ®g C = Homg(a,C) . We write v(diag(t1,t2,t3)) = vit1 + vate. Then
we can define a representation o ® a” of M A, and extend this to Py by the
identification Py/N ~ M A. Then we set

T = C®Indf, (0 ® a’ 1P @ 1y).
Here p is the half sum of positive roots of (g,a) given by a? = a%as, for a =
diag(a1,as,a3) € A.
The representation space is
Clto)(K) ={f € C(K)|f(mk) = o(m)f(k),m € M,k € K}
and the action of G is defined by
(m(2) f)(k) = a(kz)"** f(r(ka)) (x € G,k € K).
Here, for g € G, g = n(g)a(g)r(g) (n(g) € N,a(g) € A kr(g) € K) is the

Iwasawa decomposition. Next, we difine characters o; (j = 0,1,2,3) of M as
follows. The group M consisting of four elements is a finite abelian group of



(2,2)-type, and its elements except for the unity are given by

1 0 0 -1 0 0 -1 00
mi=|0 -1 0 |,my= 01 0 |,ms= 0 -1 0
0 0 -1 00 -1 0 0 1

Since M is commutative, all the irreducible unitary representations of M is 1-
dimensional. For any 0 € M , we have o2 = 1. Therefore, the set M consisting
of 4 characters {o;|j = 0,1, 2,3}, where each o}, except for the trivial character
00, is specified by the following table of values at the elements m; (i = 1,2, 3).

mia mao ms
o1 |1 -1 -1
og | -1 1 -1
oz | -1 -1 1

The correspondence of a character of M and the minimal K-type of 7,5, is as
follows ([6]).

Proposition 2.1. 1) If o is the trivial character of M, the representation 7.,
is spherical or class one. That is, it has a unique K-invariant vecter in H, .
2)If o is not trivial, the minimal K-type of the restriction 7,k to K is a
3-dimensional representation of K, which is isomorphic to the unique standard
one (12, Va). The multiplicity of this minimal K -type is one:

dimcHompg (72, Hy ) = 1.

2.3 The definition of spherical functions

Let (w, H;) be the principal series representation of G = SL(3,R). We want to
study the matrix coefficient

Qy0:G—C, g—(wmn(gv) (weHveH;).

Let (71, V%) be the K-type of H* and (7g, Vg) be the K-type of H,. And let
t: 7 ®7R — 7 K7 be the K x K embedding. The bilinear form (w, v) — @y, ,
is the element of Homgxa(H} ® Hy,C*(G)). We define a homomorphism
Homgxg(H: ® Hr,C®(G)) — Homg xx (VL ® Vg, C>®(G)) by ® — ®or. The
space Hompg « x (V, ® Vi, C*®(@)) is identified with a space

Cx . (K\G/K)

= {F: G — V} @ Vi|F(kigks) = (17 ¥ 73) (k1, ky D) F(g), k1, ke € K, g € G}
by the correspondence

(Fo(g),v1 ©®v2) = ¢p(v1 @ v2)(g)  (V(v1,v2) € Vi X VR)
for ¢ € Homgxx (Ve @ Vg, C>®(Q)), Fy € G (K\G/K). The element of

R
O o (K\G/K) is called a spherical function. Because of the Cartan double
coset decomposition G = K AK, spherical functions are determined by its re-

striction to A.



3 The double coset Cartan decomposition

Because G has the double coset decomposition G = KAK, we consider the
decomposition of the standard elements in p with respect to the double coset
decomposition:

g=Ad(a)epat

Here a € A is a regular element in A. For z € R, put sh(z) = %(m -1y
ch(z) = (z + ). We have the following decomposition:

Lemma 3.1. We have

XA,__#Ad( *I)KH_H)_,_MK.. .
M sk T R T e

aj

QL@

D|Q

Hi’j =0+ Hi’j +0
with respect to the decomposition g = Ad(a" " )E@ a @ E.

4 The (g, K)-modules of principal series repre-
sentations

4.1 The Capelli elements

The center Z(g) of the universal enveloping algebra U(g) has two independent
generators, and they are obtained as Capelli elements because g = sl3 is of type
A (see [2]). For i =1,2,3, we put

3
’ ].

The following proposition gives the explicit description of the independent gen-
erators of Z(g).

Proposition 4.1. The independent generators {Cpa, Cps} of Z(g) are given as
follows:

Cp2 :(E1,1 - 1)Eé,2 + Eéz(E;?, +1)+ (E11 - 1)(E:;3 +1)
—Ey3E39— FE13F31 —E12E5,

Cps :(E1,1 - 1)Eé,2(E:;,3 + 1)+ E12FE23E31 + E13E1E3 9
- (E11 —1)Ey3E39 — E173Eé,2E3,1 - E1,2E2,1(E;,,3 +1).



4.2 Reduction of Capelli elements

To compute the action of Capelli elements on class one spherical functions, we
may regard the above two elements as elements in Z(g) (modU(g) £), because
class one sperical functions are annihilated by the right action of £. After simple
computations, we have the following lemma.

Lemma 4.2. The Capelli elements Cps,Cps satisfy the next congruences:

Cp2=(Ey 1 —1)Ey o + By o(Es 3+ 1)+ (B 1 — 1)(E3 5+ 1)
- E22,3 - E%s - E%,z (mod U (g)¥),

Cps =(Byq — 1)Ey5(Ey 5 +1) + E1 2Bz 3E3 1 + By 3E21 B3 0
— By3(Byy — 1) = B{ 3By — Ef (B35 +1)
(mod U(g)®).

4.3 Eigenvalues of Cpy, Cps

In order to construct the partial differential equations satisfied by spherical
functions of class one case, we have to compute the eigenvalues of the actions of
the Capelli elements Cpy, C'ps. For the class one principal series, 0 = gq is the
trivial character of M. Let fy be the generator of the minimal K-type in Hy, ,
normalized such that fo| K = 1. The actions of Cpa, Cps on fo are computed
in [6], and the result is as follows:

Proposition 4.3. The Capelli elements Cps, Cps act on fy by scalar multiples,

and the eigenvalues are given as follows:

1 1
Cpafo =52 (§(2V1 — o), 7 (—v1 + 21), —§(V1 + V2)> fo,

= W=

Cpsfo =53 <%(2V1 —12), o (=v1 + 21y), —%(lﬂ + V2)> fo-

'3
Here, So(a,b,c) = ab+ bc+ ca, S3(a,b,c) = abe.

5 The partial differential equations satisfied by
class one spherical functions

5.1 Construction of the differential equations

We put

y1 = y1(a) := a1/az, y2 = y2(a) := az/a3

for a = diag(aq, as,as) € A.
By the definition of the action of Lie algebra, we have the following formula.



Lemma 5.1. For f(y1,y2) = f(a) € C*(A), we have

o 9 4 4
Hiof = <2y18—y1 - y28—y2> f, Hasf = (—yla—yl + 2y28—y2) I

Now we want to construct the partial differential equations of class one
spherical functions. We define differential operators 01, d2 by

0; = yz% (1=1,2).

By direct computations, we have the following two lemmas.

Lemma 5.2. For 1 <14,j <3 such that i # j, we have

_ a;
[Kij, Ad(a™ K, ;] = —QSh(;)Hm-
J

Lemma 5.3. Fori,j, k € {1,2,3} such that i # j,j # k., k # i, we have

(K, Ad(a™ K i] = Sh(z_i)Ad( K+ ° (Z_;)K
Q¥R a gkl — Sh(s_;) a i,k Sh(g—;) i,k
sh(4L) (&)
Kij,Ad(a YKy = —2%ZAd(a V)Kj g K
[ »J ( ) 7] Sh(ﬁ) ( 75 h(i) 75

By combining Lemma 5.1, Lemma 5.2, and Lemma 5.3, the actions of Cps,
Cps in Lemma 4.2 on fy are obtained by direct computations. The eigenval-
ues are obtained in Proposition 4.3. Thus we have the following differential
equations:

Theorem 5.4. Let F' € C*°(K\G/K) be a class one spherical function of G =
SL(3,R), its restriction to A; F|a = F(y1,y2) satisfies two partial differential
equations:

2 2,2 2
yu+1  yiys +1 yi +1
2(82 —8182+82)F+ (— + +2 o F
! ? ys—1 i3 -1 Tyi—1
y3+1  yiys 1l oyt
+ (255 + =55 - =5 0o F (5.1)
y3—1 yiys—1 yi—1

2
+ {—g(yf — vy + 13) +2}F =0,



2 2 y% y%y% 2
882F—818F+(—1+ + )8F
! 2 yi—1 y3—-1)""

2 2 2 2,2
i <_y§2y—21 " yfzy—l 1) HoL (1 - y%yi 1 y%?%yi 1) %F
N (1 B yiys 3yiys N Yyiys
(W5 —Dwivi—1)  wi-Dw -1 (- iy — 1)
_ 293 _ 22@/% ) O F (5.2)
yy—1 yi—1
N (_1 B yiys B 3yiys yiys
(v5 — 1)(y%y§ 1) wWi-Dw-1 (- Dy —1)
+ 22y§ )82
ys — 1 -1
1

27 (2V1 — VQ)(2V2 - Vl)(Vl + VQ)F =0.

5.2 Power series solution around y;,y; =0

For the class one spherical function F', we want to find its series expansion at
the origin y; = 0, y2 = 0 by solving (5.1) and (5.2). Firstly, we put

ylv y2 Z Qn, mynJrul S (ao,o # 0) (53)

n,m=0

The first task is to compute the characteristic roots (u1, 12). By substituting

(5.3) for F into the equation (5.1) , and picking up the coefficient of y} 1y #2,

we have the next equation satisfied by {an m}-

Proposition 5.5. The coefficients {an.m} satisfy the following recurrence re-
lation:

{2(n =42 —2(n —4)(m' —4) +2(m' — 4)?

+2(n —4) +2(m’ —4) + A} an_s4m-s

+{=2(n =42 +2(n —4)(m —2)—2(m —2)?

—4(n' —4) +2(m" = 2) = N}an—am—2

+{=2(n" =22 +2(n —2)(m —4) —2(m  —4)? (5.4)
+2(n —2) —4(m’ —4) — A}an_o2m-4

+{20n =22 =2(n —2)m +2m% +2(n —2) —4m + A}an_s.m

+{2n2 = 20" (m —2)+2(m —2)2 —4n +2(m —2) + Aanm_2

+ (—2n’2 +2n'm —2m?+2n +2m — A)an,m = 0.



Here, \ := —%(l/% —vive + V3) + 2, n = n+ pui, m = m+ pe, and a;; =0
(if i<0orj<o).

Proposition 5.6. The characteristic roots take siz values:

(Mlv MQ)

1 1
=2 —-wm)+1,—=2ue—11)+1]),
3 3
1
=(2v2 — 1) + 1, —§(2V1 —v2) + 1> ,

1
Qe —11)+ 1, (11 +12) + 1) ,

3 (5.5)

<
(
(_%(ul Fum) 41 —;(QVQ —u)+ 1)
( (21— 1a) + 1, %(ul )+ 1) ,

1 1
<—§(l/1 + o)+ 1,—5(21/1 — )+ 1) .

Proof. Because a;; = 0 (ifi < Oorj < 0), and ap,0 # 0, by substituting
n=m =0 1in (5.4), we have

—2(ui — ppa + p5 — pa — p2) — A = 0.
This equation is equivalent to
1
(11 =12 = (o = D — )+ (12— 1P = 302 —mm +38). (5.6)

Next, by computing the recurrence equation given by equation (5.2), and sub-
stituting n = m = 0 in the coefficient of a,, ,,,, we have

1
Pip — pps — p3 4 p3 4 g — pp = —2—7(21/1 —v2)(2v2 — v1)(v1 + v2).

This equation is equivalent to

1
(0= 1) (2 = D} o1 1)z 1) =~ (24 — 1) (20~ ) (1 + w2). (5.7)
By combining (5.6) and (5.7), we have the result. O
Next, we put

_1 _1 _1
F(y1,y2) = sh(y1)” 2sh(y2)" 2 sh(y1y2) 2 G(y1,92) (0 < y1,y2 << 1)
and compute the power series of G at the origin y; = y2 = 0. We put

G(y1,y2) Z anmyt T Yy (0,0 # 0). (5.8)

n,m=0



Proposition 5.7. The characteristic roots take siz values:
(/-7/1) /]’2)
1 1 1 1
= <§(21/1 — 1), —§(2V2 — 1/1)) , <§(21/2 — 1), —§(21/1 — 1/2)) ,
1 5.9
<§(2V2 — 1/1)7 ( )
1
<§(2V1 — 1/2)7
Proof. We have
sh(y)? shiy2)*sh(y192)* = y1 95" (14 Oy, 32)

when 0 < y1,y2 << 1. By combining this with Proposition 5.6, we have the
result. O

(1 + u2)> , (%(m + 1), —%(zyz - m) ,

W= Wl

(v + u2)> , (%(m + 1), —%(21/1 _ y2)> .

By substituting (5.8) into (5.1) , we have the following differential equation:
Proposition 5.8. For the class one spherical function F, the function

G(y1,y2) = sh(y1)? sh(y2)? sh(y1y2)? F(y1,y2) (0 < y1,y2 << 1)

satisfies

- , / 1 1 1 B
20t -00a+ ) 6+ (¥ + g + 2 * ) G<O' )
5.10

!’
2
Here, X = —3(V] —v11p +13).

When 0 < y < 1, we have

2sh =2 Z ™.

Hence the equation becomes

2(0F =010, +05) G+ <>" +2> k42 kst 2Zkyfky§k> =0.
k=1 k=1
(5.11)

By substituting (5.8) into (5.11), and picking up the coefficient of g}t y7" T2
we have the recurrence relation of {ay, m, }:
Proposition 5.9. The coefficients {Gn.m} satisfy

(in2 —on'm +2m?+ )\l)dn,m

> > > 5.12
+2) kn-okm +2 Y kinm-ok+2Y kin_okm—2x = 0. (512)
k=1 k=1 k=1

Here, n/ =n+ i, m =m+ fis.

10



Note that because a; ; = 0if ¢ < 0 or j < 0, the summations above are all
finite sum. By substituting n = m = 0, we have

2012 — 2finfiz + 275 + A = 0.
Hence we have
22 —2n'm’ +2m? + X
=2{n® —nm +m? + (2fun — fia)n + (2fi2 — fir)m}.
By substituting this into (5.12), we have

{n® —nm +m? + (2fn — fia)n + (2fi2 — i1)m}an,m

> > > 5.13)
+ ) kln—okm + Y klnm—ok + Y kin—2km—2k = 0. (
k=1 k=1 k=1

From this equation, easily we have
Gnm =0 (ifnormisodd).

We put

p(n,m) =n® —nm+m® + (2 — fio)n + (2fi2 — fir)m.

The following theorem is one of the main theorems of this paper, which gives
the explicit expression of Gy, 2m.

Theorem 5.10. Suppose that aoo =1 and p(n,m) # 0 if (n,m) # (0,0).
Let Py, be the family of all sets {p(2ng,2my), - ,p(2no, 2mo)} such that

nE =n,mg =m,ng=mg =20
and
(Nig1,Mig1) = (ng + L, mg) or (ng,mi +1;) or (ng + Li,m; + 1)
(Jl; € Zsp), (1=0,---,k—1).
(Here, k depends on each set ).

For {p(2ng,2my),--- ,p(2ng,2mo)} € Py and 0 <i < k—1, we define d; € Z
by d; = —l;. And we put

k—1
Cln,mpima o) = | | di- (5.14)
i=0
Then we have
in,2m = 3 (mcmimame) - (515)

(p(2m,2me) om0, 2mo)} P P2 2110k) -+ P(201, 21 )

for (n,m) # (0,0).

11



Proof. We prove this statement by induction with respect to m. First, we
consider the case m = 0. Suppose that for 0 < N < n,

C(n1 conp30,--0)
aaN,0 = E — . (5.16)
’ 9 (2
{p(21%,0),--- ,p(2n0,0)}€P N 0 P2, 0) -+ p(2m1, 0)

Now, {an,0} satisfies

n
p(2n,0)dzn,0 + Y lazn 210 = 0.

=1
Thus we have
1 n+1
aon, = laop4+o—
2n+2,0 P20 1 2,0) lz:; 2n+2-21,0
_ 1
 p(2n+2,0)

n+1 C
. Zl Z (n1,--ng;0,---0) .
p(2nk7 O) o 'p(2n17 O)

=1 {p(2nk,0),--,p(2n0,0)}EP2pn42_2;,0

For {p(znk7 0)) e ap(2n07 0)} € P2n+2—2l7 the coeflicient of
1/p(2n + 2,0)p(2n,0) - - - p(2n1,0)

is —1C(ny - myp:0,-0) = —L[I=y di, and by definition, —I = dj.

Thus, in this case, the coefficient is just as (5.14). Hence (5.15) holds when
m = 0.

Next, suppose that (5.15) holds when 0 < M < m. Let ¢ be the translation of
parameters fi; — [i2, fi2 — fi1. Then

a0,2m+2 = L(G2m+2,0)

|
~

Z C(ml,-- ,m;0,-++,0)
p(ka; 0) o 'p(2m17 O)

Pami20

_ Z C(07...70;m17...7m,k)
p(07 2mk) o p(oa Zml) .

Poomi2
Thus (5.15) holds for ag 2m-+2-
Next we suppose that (5.15) holds for ag.2m—+2,@2,2m+2, "+ , G2n,2m+2. Since
Gp,m satisfies
n+1 m+1
p(2n + 2,2m + 2)a2n42,2m+2 + Z laon42—21,2m+2 + Z la2n+2,2m+2-21
=1 =1

12



min{n+1,m+1}

+ E laon12—21,2m+2—21 = 0,
=1

we have
1 n+1 m+1
A2n+2,2m+2 = — E laon+2-21,2m+2 + E laon+2,2m+2—21
n+2,2m-+ p(2n+2,2m+2) = n+ m+ = n+2,2m+

min{n+1,m+1}

+ Z la2nt2-21,2m+2-21
=1

Here, by assumption,

Z C(n17~~~7nk;M1,~~wmk)

A2n+2—21,2m+2 = .
p(ni, my) -+ p(ni, my)

Poiiimt1
For {p(ng,mg),---p(no,mo)} € Ppi1—1.m+1, we have {p(2n + 2,2m + 2),
p(Nes i), - - p(no,mo)} € Ppi1m+1, and the coefficient of 1/p(2n + 2,2m +
2)p(ng, mi) -+ -p(ni,my) is =l Hfz_ol d;, and by definition, —I = di. So the
coefficient is just as (5.14). Similarly, the coefficients of the terms appearing the
rest two summations are just as (5.14).
Each expansion of G2n2-21;, 2m+2, @2n+2,2m+2—21 G2n+2—215,2m+2—215 (1,
l4 € N) has p(2n+2—211,2m+2), p(2n—+2,2m+2—2I3), p(2n+2—2I3,2m—+2—
2l4) respectively, and each of them doesn’t appear in the expansions of the rest
two kinds of @, ,,. So there is no term which appears more than two times in the
summation above. The fact that all of the elements in P,, 11,41 appear follows
from the assumption of induction and the summation. Hence Ggy,42 2m+2 is just
as (5.15). Thus the induction is completed and we have proved the theorem. O

6 The case of the 3-dimensional tautological
representation

Let 7 : K = SO(3) — GL(3,R) be the tautological representation. Then we
say that

{s1 ="(1,0,0),52 = (0,1,0),s3 = *(0,0,1)}
is the natural basis of this representation 75. We consider a spherical function
U eCr_ (K\G/K). ¥ can be written in terms of the basis {s;|i = 1,2,3}:

T2,T2

3 3

U(g) = ZZdij(g)siL ® sf.

i=1 j=1

Lemma 6.1. For a € A, we have d;;(a) =0 if i # j.
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Proof. A subgroup M of G is defined by

M =7k(A)={k € Klak=ka (NVa€ A)}
= {diag(e1, €2, €3)|e; € {£1}, €065 = 1}.

Then for m € M, a € A, we have

7.(m)¥(a) = ¥(ma) = ¥(am) = 7r(m™ ") ¥(a).

Therefore, for example, for mz = diag(—1,—1,1) € M, we have
To(m3) @ ¥(a) = 1 @ 72(m3 ") ¥(a). So we have

-1 -1
-1 (dij(a)) = (di;(a)) -1
1 1
From this, we have diz(a) = dsi(a) = des(a) = dsz(a) = 0. Similarly, the
actions of the other elements of M show that d;;(a) = 0 if ¢ # j. O

6.1 The action of Casimir operator

We use the same coordinate y; = ¢t,ys = 2 (a = diag(aq,az2,a3) € A) as in
the class one case. The Casimir operator C of SL(3,R) is decomposed into two
parts with respect to the Cartan decomposition g = ¢ @ p:

C=C(p)+C(b).

Here,

2 1
C(p) = 5(H} 5+ Hi2Ha s+ Hig) + 5 ; X2,

First, we consider the action of C(p).

2
(The action of g(HfQ + Hy2Ho 3 + H223))

2
= 5{(281 — 82)2 + (281 — 82)(—81 + 282) + (—81 + 282)2}
= 207 — 0,05 + 02).

Next,

@ 2
X2 = L Ad(a™ M) K; ; + Ch(i)K- ;
A T C R T R

14



ch(4)

-1 2 a;j -1
——a (Ad(a™ ) K 5) —QWAd(a )Kij- Kij
) ch(Z—J)
sh(g)? "j sh(gt)?

1
sh(zr)
ch(g)?

[K@j, Ad(a_l)Ki,j].

A direct computation shows that the above bracket product is given as follows:

Lemma 6.2. For i # j, we have
(K, Ad(a™ ) Ky 5] = —2sh(5:) Hi ;.-

Therefore, we have

Iy 1 1

2 20 = 3 S 2 Shi)?

lCh(yl)Q 2 Ch(yl)H
2sh(y1)? 7 sh(y)
1 1 _ Ch(y1y2) _
—-————(Ad NKq3)? — —2272 A(d NKi3- K-
28h(y1y2)2( (@ )K5) sh(y1y2)? (@ MHs - Ks
1 ch(y1y2)? 5 ch(y1y2)

4 o SON2) g CUILDR)
2sh(y1y2)? ° 7 sh(yiye)
1 1 -1 2 ch(y2) -1
25h(y2)2(Ad(a )K2.3) sh(yg)QAd(a VK23 Ka3
Lch(ya)® .o | ch(y2)

2sh(y2)? 2% sh(ye) 2%

The actions of (Ad(a™)Ki;)?, (Ad(a™)Kiy)Kiy, Kj on W(g) = 3,3,
dij(9)st ® Sf are given by

(Ad(a™")K; ;)*¥(a) = dii(a)siLiR — dj;(a)sjf,
(Ad(a™" VK ;) Ki ;¥ (a) = djj(a ) T+ dii(a)s JJR’
K2;9(a) = —di(a)s}" — d;-;(a)sff‘

on A. Here, we put SLR = S & s
Therefore, we have

C(p)\ll( )
=2(07 — 0102 + 03)¥(a)

Ch (y1) Ch (y1y2) Ch(y2)>
— v
( sh(y1) Sh (y1y2)  sh(y2)) (a)




1
———{du(a)s{{ + dss(a)sty}

{dn(a)sn +d22(a) 5 ( )

+ ( y1y2 y2 )
y1y2
1
2sh( 1)? -
1

- S @ + d (s

ch(y1) ch(y1y2)
+ Sh(yn)? 5{d2a(a)si{ + di1(a)sy; }+W{d33(a)sfﬁ+dn(a)5§§}

ch(y2)
sh(yz)?

5{dss(a)shy’ + daa(a)sky™}

1ch 2
S{dii(a)shf + doa(a)shfy — 5 ch(y1yz2)

5 m{dll(a)sfﬁ + dss(a)sss'}

{doz(a)sgs’ + dss(a)sy'}.

Next, the action of C(£) = —1 Doicy K7 is given as follows:
( The action of C(®))
1 1
= 5{du(a)sii’ + daa(a)ss'} + S {daa(0)s35" + daa(a)s3y’}

1
+ §{d11(a)8ﬁR + dss(a)sss ).

Therefore,

(C¥)(a)
= 2(0% — 0102 + 03)¥(a)
+ (2ch(y1) ch(yrya) _ ch(y ) LU (a

o

sh(y1) = sh(yiy2)  sh(y2)
(_Ch(yl) ch(yrya) | ,chlye)
sh(y1) Sh(y1y2 Sh (y2)
b=

~ S [ (@5t + daafa) s -7—7WMﬁﬁ+%@%ﬂ
~ S (@) + o))

ﬁ@%“@(ﬁ%aHm() }+£%%%%m%mpﬁwwnmn$@
S%&wﬁm£+@@%ﬁ
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The next step is to compute the eigenvalue A of the Casimir operator C. We
compute the action on f € H,, , such that f(e) = 1. First,

2
(The action of g(Hi2 + HyoHs 3 + H;B))

= g{(lﬂ — v+ 1)+ (1 — v+ D) (va + 1) + (v + 1)}

2
= g(yf — e + Vi + 301 +3).

Next,

%ZXi ——ZK ZE,NLEN) —%Z(Ei,j—Ej,i)Q

i<j i<J z<] i<J
=> (Ei;Eji+ EjiEij).

1<j

Since X f(e) = 0 for X € n, the action of E; ; E;; is 0. On the other hand, since
[Ei;, E;il = Hj,

YR B

we have
E;:E;; =E; ;E;; — H; ;.
Thus
. 1 1
(The action of 3 ZXEJ- -3 Z Ki%j)
i<j i<J
= (The action of — Z H, ;)
1<j
= (The action of — 2H; 3) = —2(11 + 2).

Therefore, we have

A= (Vf—1/1V2+1/22+3V1+3)—2(1/1—|—2)

N Wl N

= g(uf — Vs +1/22) — 2.

For W(g) = Y0, Y0, dij(g)st @ sft € O, (K\G/K), we put

dii(a) = F(a) = F(y1,y2),

17



d22(a) = G(a’) = G(yla y2)7

ds3(a) = H(a) = H(y1,y2)-
Then, by compairing the coefficients of s2# in both sides of the equation C¥ =
AV, we have the following three equations:

Theorem 6.3. F,G,H satisfy the relations:

2(02 — 018 + O2)F(y1, ys)
ch(yr) | ch(yiy2)  ch(yz)
+ (250 * T~ Sy ) A

" <_ch(y1) ch(y1y2) ch(yz2)

() " shlyryn) T 2 shiya)

) 02F (y1,92)

(6.1)
1 1
(S * ) P
ch(y1) ch(y1y2)
shlyn? O Gy 1O
- AF(yl;y2)7
20 — 9102 + 03)G (y1, y2)
ch(y1) | ch(yry2)  ch(y2)
+ (25500 + S ~ S ) G )
_Ch(y1) ch(y1y2) ch(yz2)
# (500 + g + i) 0 (62)
1 1 o '
~ (e * ) G
ch(y1) ch(y2)
sh(y1)2 F(ylva) + sh(y2)2H(y1’y2)
= )\G(ylay2)7
2(0% — 0102 + 02)H (y1, y2)
ch(yr) | ch(yiy2)  ch(yz)
+ (2500 S~ i) Al
_chlyr) | ch(yrya) ch(y2)
( sh(y1)  sh(yiyz2) 25h(92)> Oty v2) (6.3)
1 1
B (sh(y2)2 + sh(y1y2)2) Hyr,y2)
ch(y1yz2) ch(y2)
Sh(y1ya)? (y1,92) + Sh(yQ)QG(ylam)
- AH(ylay2)

Here, A= 2(vi — vy +13) — 2.
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6.2 The gradient operator
For the spherical function ¥(g) € C° _(K\G/K), we define the right gradient

T2,T2
operator V% as follows:

Definition 6.4. For the orthonormal basis {X;}?_; of p, the right gradient
operator V% is defined by

5
VAU (g) =Y Rx, Ve X;.
=1

Here, X is the dual basis of X; with respect to the inner product (X,Y) €
pxp—Tr(XY)eC.

If we take {H12,H23,X12,X23,X13} as a basis of p, the dual basis is
{%(2H172 —|— 1{273)7 %(H172 —|— 2H273), %XLQ, %X273, %XLg}. Therefore,

1 1
VR\I/(Q) :gRHLQ\I/ (024 (2H172 + H273) =+ gRHZS\II (024 (HLQ =+ 2H273)
1
+ 3 ; Ry, , ¥ ® X, ;.
<]

Claim 1. We define {w;|0 <i <4} C pc =p ®r C by
Wo = —2(H2’3 — —1X273)
Wy = —2(H273 —|— vV —1X273)
2
Wo 1= §(2H1’2 —+ H2’3)

wy = X134+ V—1X1
w3 = —X13+V-1X1 2.

Then {w;|0 <i < 4} becomes the basis of pc.
With this basis, the gradient operator V is written as

1 1 1
vy =15 R U @ wo + 75 Rug ¥ @ wy — 2 Ry U @y

1 3
= R ¥ @ w3 + ngQﬁf@wz
1/1 1
= Z (ZRUM\I/@’LUO + ZRUJO\II®w4 _nglll®w1

3
R ¥ @+ SR, VO w2> .
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K acts on pc by adjoint action. We denote this representation by (74, Wy). By
the Clebsh-Gordan theorem, 72 ® 74 has the irreducible decomposition

ToR Ty ZTo B T4 BTG
In this decomposition, the projector of K-modules
Pra i T2 @ T4 — T2

is described as in the following table:

Table 1: Table of pra(s; ® wy)

wo w1 w2 w3 w4
S1 0 7%(83 + 7182) *%81 %(83 — 7182) 0
S2 %(82 — —183) —@81 %82 —gkﬁ %(82 + \/—183)
ss | -3(ss +v/—1s2) —151 253 151 2 (—s3+/—1sa)

VEU is a 75 ® (12 ® pc)-valued function. Then, by mapping s* ® sf ® wy
to sk ® sf‘wk (here, sfwk = prg(sf’ ® wg)) , we have a K-homomorphism

pia(VE): 2 (K\G/K) — C_(K\G/K).

T2,T2 T2,T2

Since minimal K-type 7> is multiplicity one, piy(V%) is a map of constant
multiple.
We compute 4p7o(VED)(a) for ¥(g) =3, > dij (9)sF ® sf’, a€ A

1)

1 . 1
7772 (B, ¥ ©wo) = 702(R g1, 41y =1x00) ¥ © W0)

1 . v—=1
= _EpTQ(RHgy:;\I/ ® 'LU()) -

pro (RXQ)3 U ® ’LU())

First,

1
- EpTQ(RHQJ\II ® wo)

3
1
= —5(—81 + 282) Z dm(a)sf & Sf’LUO

=1
1 1
=—5(=0+ 202)dos (a)sy @ 5(85 —V=1s])
1 1
- 5(=o+ 20)ds3(a)st @ —5(35 SEVASTS!

1 v—1
= —Z(—c‘h + 282)(122(0,)8%2]% + T(—81 + 282)(122(0,)8%3]%
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+ ( 01 + 202)ds3(a)sky’ + ( 01 + 202)ds3(a)sky’.
Next, since
1 _ ch(yz)
Xo3=———"Ad(a Ky 3+ Ky 3,
2,3 shiy) (a™") K3 sh(ya) 2,3
we have
1
5 pro(Rx, , ¥ ® wo)
-1 1 ch(yz) >
= - ro | — Rad(a-1)k, s ¥ ® wo + Ry, , ¥ ®@w
B pra < shiy2) Ad(a=1)Ko, 0 Sh(yg) Ko, 0
V-1 L R
= ~(sB - /=1
25h(y2) S3 & ( 83)
vV R /TR
2Sh( )d33( ) ® — ( 3 + _182)
V—1ch(y2) 1 S~
_ ZSh(yQ) d22 (G)Sé &® —5(8? —+ —185)
vV —1ch(y2) Lol o r R
v T2 “(sB— /1
+ 25T (ya) ds3(a)sy @ 2(52 s3')
_ 1 ch(yz2) LR
o (4sh(y2)d 4sh(y2)d22(a)) 522
V-1 v —1ch(y2) LR
+ ( 4sh(y2 (a) + 4sh(y2) d22(a)) 523
V-1 vV —1ch(y2) LR
+ ( 4sh(y2 (a) + 4sh(y2) d33(a)) 552
1 ch(y2) LR
+ ( 4sh(y2 (a) + 4sh(y2) d33(a)> %83 -
Therefore, we have
1
—pTQ(RW‘I/ ® wo)
1 vV —
= _Z( 01 + 202)da2(a)syy’ + ~—— 4 ( 01 + 20,)dna (a)sys"
v—1

+ (=01 + 20y)dss(a)ssy" +

W

1

_|_

v—1
4sh(y2

_|_

<4Sh(y2)
(-

( O1 + 202)ds3(a) skt

chiyo) dzz(a)> sy

4sh(y2)
V=1ch(ys)
(a) + Wm;dm(a)) sby’
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\/—_10h(y2)
+ Wd% (a)) §2R

ch(y2)
@)+ gk dafa) ) s

4+ ————d
( 4sh(yz) 2

2) Similarly, we have

1
_pTQ (RwO\II & ’LU4)

1 vV —
= _Z( O1 + 202)d22(a)shy’ — T( 01 + 202)d22(a) sy
v—1
— ~—— (=01 + 20)ds3(a)sy" + ( 01 + 20,)dss(a)sss"

. dsz(a) — 4?,1(5/;2)) dzz(a)> 555"

d22(a)> 533"

_p%Q(Rw;;\II ®w1)
:p?Q(Rxllel ®w1) -V _1p?2(RX1,2 ®w1)'

First,

Dra (RX1,3\I/ ® wl)

3
1
= — Ad(a DK 3 <Z S ®S,f%> w1

sh(y1y2)

ch(
+ 7y1y2 Kis <Z dii(a s & sf) w

h(y1y2
1
= —7(—d11(a)s3 ® sl wy + d33(a)s{“ ® s3Rw1)
sh(y1y2)
ch(y1y2) L R L R
- SR g ] d
Sh(y1y2)( 11(a)sy ® sz'wi + dsz(a)sz ® si'wi)
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sh(y1y2)
1
— dsz(a)sy ® st
Shy2) 33(a)sy 1
ch
+ (ylyQ)dn( )5t ® —=s7’
sh(y1y2)
h 1
- Md%(a)sgg ® ——(si + /15l
sh(y1yz2) 4

ch(y1y2) LR
d33(a) 4sh(y1y2)dn(a> 11

+§\/_1 dn(a)+7\/__16h(yly2)d33(a)> LR
(

S:
4sh(y1y2) 5

1 Ch(ylyQ) > LR
_7d + 7d a S .
11(a) 15h(5192) 33(a) | s33

Next,
_ \/—_p?“g(Rxl L,V ® wl)
- S\h/(y_ll>( di1(a)sh ® s?wl +daa(a)sy @ s5wr)
T %(—dn(a)sf ® sywi + dag(a)sy @ s1wn)
_ S\h/(_> dy1(a)sh ® —i(s;’f ++v/—1s%)
+ s\f{(_) dyz(a)st @ —\/fsf%
_ %du(a)sf ® — \/fslf‘
N %dw(apg ® — (5 + VT
_ <md22(a) - ::h(é/yll)) d11(a)> s
(@ ~ L )
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T (—md

Therefore, we have

- p?Q (ng\I/ ® wl)

- (mdgg(a) + md%(a)
Tl i @)
(gt - Y i) 4
= () + ) 4 )
(- g (@ + pt () )
() o)) 4
4) Similarly, we have
— pia (R, ¥ ® ws)
- (ﬁ wl0) ~ {0
B ) G @) i
+ (i@ + g ) o
(@ - ey et
" < 48h1(y1 4Chh(§/ 1)) dm(a)) 2’
" ( 4sh( y1y2 %d%@) S5

5)Finally,

3 .
§P7’2(Rw2‘1’ ® we)
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3
= §p7”2(R§(2H1,2+H2,3)\I/ ® wa)

3
= Rop, 5+ Ha s (Z dii(a)sf @ 8?) wo

i=1

1 1
= —01dy1(a)si + 531(122(@)852}?’ + 531d33(a)8§3,R~

By summing these results, we have
Apry(VrY)(a)

_ | ch(yr) | ch(yiy2) u
- { (81 T Seh() T 2sh<y1yg>) (@)

+———dao(a) + ) d33(a)} st

2sh(y1) W
1 u N ch(y1)  ch(y2) u
+{ 2sh<y1>d““+(al %2 ey 2sh<y2>)d””

1 LR
+2Sh(y2) d33(a)} 822

+ { édn(a) - ;dm(a)

 2sh(y1ys2) 25h(y2)

ch(y2) | ch(yiy2)
’ (32 T Sshm) 2sh<y1y2>> d33<‘”)} s

This equals \; E?Zl di;(a)sEE where \; (i = 1,2, 3) are some constants depend-
ing on the choice of ¢ = ¢; of the principal series representation.
Next, we compute A; (i =1,2,3).
Let K — GL(3,C), k — (sij(k))?’jzl be the tautological representation of
K. It is easy to check that {s;1, si2,s:3} is the generator of the minimal K-
type of C7,.(K) (i = 1,2,3), and we may identify s;; with s; (j = 1,2,3)
via K-isomorphism. The dual s}; of s;; is si; itself (j = 1,2,3). Fix ¢ €
Hompg k(5 W75, HE K H;). To find the value Ay, it is sufficient to compute
the action of pry o VZ on
3
U= (51 ®s1) @ D(s}; ®57,)(91,92) € {(Vx BV%) @ (Hy B Hy) K
i,j=1

)

Since 75 is multiplicity one in H,, pr, o V# acts on this function by constant
multiple, and the matrix coefficient of 75, , inherits this value, because the
matrix coefficient can be written Zij=1(51i ® 515) @ Ao U(s}; ® s1;). Here,
A HXXRH, - C®(Q), f*®@ f— (f*,n()f) is a G x G-homomorphism.

Let e € G be the unit element of G.

25



1 . ~ 1 . ~
ZPTQ (Rw4\I] ® wo)(e, 6) = 5])7“2 (RH2,3 ¥® U)())(e, 6)

T2 (RX2,3(I} & wo)(e, 6)'

First,

1 .
— Eprg(RHQYS\I' ® wo)(e, e)

1
= —5(1/2 + 1)s11 ® s11wp = 0.

Next, since the action of X 3 is the same as that of —Kj 3, we have

pia(Rx, s ¥ @ wp)(e,e) = 0.
Therefore, we have

1 _ -

ZPT2(Rw4\I’ ® wp) (e, e) = 0.

2) Similarly, we have

1 -
Zp?’g(Rwo\Il ® wy)(e,e) = 0.

3)
—pra (Rw3q] ® wl)(ev 6) =pra (RX1,3\I~I & U)1)(€, 6)
— \/—1p7'2(RX112\‘I~1 ® w1 )(e, e).
First,
- ~ 1
pro(Rx, ,¥ @ wy)(e) = —s11 ® s13w1 = 15u ® 511-
Next,

. =~ 1
—V—=1pia(Rx, ,¥ @ wi)(e,e) = V1511 ® s10w1 = 151 ® S11-

Therefore, we have

- ~ 1
—pro(Ruw, ¥ @ wy)(e,e) = 551 ® 511.
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4) Similarly, we have

- ~ 1
—pra(Ru, ¥ @ ws)(e,e) = 5511 ® 811.

5) Finally,

3 -
§pr2(Rw2\Il ® wa)(e, €)
= Zp?“g(RHm\if ® ws)(e,e) + p?g(RHm\if ® wa)(e, e)

2 1
= —g(Vl — v+ 1)s11 @ 511 — §(V2 +1)s11 ® s11
1
= {_§(2V1 — 1) — 1} 511 ® S11.
By summing these results, we have
- ~ 1
Apry(VrY)(e,e) = —§(2V1 — 12)511 @ S11

= —%(2V1 — VQ)\II(67 6).

In these computations, we used s11(e) = 1,s12(e) = 0,s13(e) = 0. Therefore,

we conclude that Ay = —3(2v1 — ).

The computation of Ag, A3 is the same as that of \;, and the values are Ao =

%(1/1 — 21/2), A3 = %(1/1 —+ 1/2).
Summing up, we have the next result:

Theorem 6.5. Let ¥U(g) = Zle 2?:1 dij(9)sF ® st e O (K\G/K) be the

J T2,T2

matriz coefficient obtained from the non-spherical principal series representation

whose character of M is 0 = 0; (i = 1,2,3). Put

di1(a) = F(y1,y2), d22(a) = G(y1,92),ds3(a) = H(y1,y2).
Then F, G, H satisfy the following relations:

ch(y1) ch(y1y2) 1
— <31 + 25h(51) 28h(y1y2)> F(y1,y2) + mG(ZJhZh)

1
—  _H =\NF
+ 25 h9) (Y1,92) = MiF (Y1, y2)

ch(yr) — ch(y2)
2sh(y1)  2sh(ya)

1
— o F(y1, ) + <81 ~ 0y +

3R ) Gt

1
+ ——H(y1,y2) = MGy,
25h(y2) (y1,92) (y1,92)
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1
 2sh(y1y2)
ch(y2) | ch(yiy2)
0o +
( 2 2sh(y2) = 2sh(y1y2)

Here, \y = —3(2v1 —1n), Ao = 3(v1 — 21), A3 = %(1/1 + ).

1
F(y1,y2) — mG(yhyz)

6.3 Power series solutions

) Hy1,2) = MNH (31, 2).

(6.6)

We give the power series solution of the equations obtained in Theorem 6.3 and

Theorem 6.5. Firstly, we modify F,G, H by
F(y1,y2) = sh(ys) * sh(ya) * sh(y1y2) * F (41, 42)

C(y1,y2) = sh(y1)E sh(y2)? sh(y1y2)* Gly1, y2)

(SIS

H(y1,y2) = sh(y1) 2 sh(y2)? sh(y1y2)* H(y1, y2).

Then the six equations are rewritten as follows:

(207 — 2010 + 203) F(y1,y2)

2 2 2 ~
T <_2 “a— yi + Y3 y1y2 >F Yy1,y2)

WF—12  (B-12 (4310
v+ y G
(91 - 1)

Yiys + 1y -
(Y1,y2) + 25555 H(y1,92) = 0
(yiys — 1)?

+2

(202 — 20,0 + 202) Gy, o)

22 22 222 ~
+<_2_A_( i 2 Wiy 2>G(y17y2)

yi—-1)2 (y3-1)2 (yiy3—1)

+y1 ~ yg’ +y2 ~
+ 27F(y17y2) +25—5H(y1,y2) =0
(yi —1)2 (y5 —1)2

(282 — 2010 + 282) (yla y2)

2 2 2 ~
T <_2_ Pt yi _ Y5 9192 ) Hy1,ys)

W12 (B-12 (y3ys-1)
ylyQ + ylZJQF

y2 + Y2 e
(yiys —1)2

+2 (y1,y 2)+2(2 1)? (y1,92) =0

8 1
— 0 F(y1,2) +

= NF(y1,v2)

28

R R SR N
28h(y1) (yl y2) 28h(y1y2) (yl y2)
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1

- F o — D) G H
25h(on) (y1,y2) + (01 — 92) G(y1, y2) + 251 0) (Y1,92) (6.11)
= NG (y1,12)
Plyn, ) — g Gl ) + 2 (01, 1)
57  FPWLY2) - 55700y YLy
2sh(yiya)” 0 2sh(yy) 0T TR (6.12)
= NiH (y1,92)-
Here, X is in Theorem 6.3 and ); is in Theorem 6.5.
We put
F(y1,y2) Z iy Ty (6.13)
n,m=0
ylayQ bn my"ﬂ“ e 6.14
1
n,m=0
yhyz Z Cn. myn+u1 m+ o (6.15)
n,m=0

(@0,0,b0,0, co,0) 7 (0,0,0)

and compute the characteristic roots (11, u2) and the coefficients (an.m), (bn,m),
(¢n,m). Hereafter we compute under the assumption that 1,4, v, are linearly
independent over Q. Since

Zk% 71’ Y S k- )yt (0<y< 1),

(y? —1 1) =
by substituting these relations into equations (6.7), (6.8), (6.9) and picking up
the coefficients of y} 145" 2 we have

(2n% — 2n'm/ + 2m* + /\l)amm

oo o0 o0
— 2 kpokm +2Y  Kpmook —2 Y K _opm—2k
k=1 k=1 k=1

(6.16)
+2) 2k = Dbp—akyrm +2 > _(2k — 1)en_oks1m—2k41 =0
k=1 k=1
(2" — 20'm’ + 2m" + X )by m
=2 kbpgkm =2 kbnm-ok +2 > kbp_okm—2k
k=1 k=1 k=1 (617)
o o
+2) 2k = Dan-okp1.m +2 Y _(2k = 1)enm-oki1 =0
k=1 k=1
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(2n"2 — 20'm/ +2m"* + N )enm

00 00 00
+2 Z kcn—Qk,m -2 Z kcn,m—Qk -2 Z kcn—Qk,m—Qk
k=1 k=1 k=1

(6.18)
o0 o0
+2> (2k—1)an—2kt1,m—2k+1 + 2 Z(Zk — 1)bp,m—2k41 = 0.
k=1 k=1
Here, n' = n+ p1, m' = m+ p2, N = =2 — X and anm, bnms Coom = 0 if

n < 0 or m < 0. By substituting n = m = 0 into these equations, since
(@0,0,b0,0, 0,0) # (0,0,0), we have

213 — 2puapn + 203 + A = 0. (6.19)
Therefore,
o' — 2n'm’ + 2m’? + X
= 2(n+ p1)® = 2(n+ pa) (m + pi2) + 2(m + p2)* + X
=2{n? —nm +m? + 2u1 — p2)n + (2u2 — p1)m}.
Now, we put
p(n,m) = qln,m) = r(n,m) = n® —nm +m? + (21 — ) + (242 — )

and subsutitute 2p(n, m), 2q(n, m), 2r(n,m) for 2n'2 —2n'm’ + 2m’2+ X" in the
equations (6.16), (6.17), (6.18) respectively. Then we have

p(n, M)an m

_Zkan ka—i—Zk‘anm 2k_zkan 2k,m—2k

k=1 (6.20)
o0
+ Z bn—2k+1,m + Z(% = Den—2k41,m—2641 =0
k=1 k=1
Q(n7 m)bn,m
(o) o0 (o)
- Z kbn—Qk,m - Z kbn,m—Qk + Z kbn—Qk,m—Qk
k=1 k=1 k=1 (6.21)
(o) (o)
+ (Zk - 1)an—2k+1,m + Z(Zk - 1)Cn,m—2k+1 =0
k=1 k=1
r(n, m)cn,m
+) ken—okm — Z kenm—2r — Z kcn—2k,m—2k
P (6.22)
(o)
+Z (2k — 1)an—2k+1,m— 2k+1+z 2k — 1)bp,m—2k41 = 0.
k=1 k=1
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(Though p(n,m),q(n,m),r(n,m) are the same polynomials, but we use the dif-
ferent symbols. By doing so, the expressions of the coefficients ay, m, bn,m, Cn,m
become a little easier.)

Before computing (anm), (bn,m), (¢n.m), we compute the characteristic roots
(1, p2). By substituting (6.13), (6.14), (6.15) into (6.10), (6.11), (6.12) and
subsutituting n = m = 0, we have

(—p1 — Ai)ag,o =0

(1 — p2 — Xi)boo =0
(2 — Ai)co,0 = 0.

Since (ao,0,bo,0,¢0,0) 7# (0,0,0), at least one of —py — i, p1 — fi2 — Ay iz — As
is 0. By combining this with the equation (6.19), we can compute the values of
(1, p2). (Because of the assumption of the linearly independence of 1,14, va,
we know that just one of —py — A;, p1 — o — Ai, o — A; is 0, and the other two
are not 0.)

Lemma 6.6. 1) In case of 0 =01, \j = \1 = —%(2u1 — ).
a) If — 1 — )\1 = 0,

(11, p12) = (%(zyl — 1), _%(QVQ - m) , (%(m — ), %(ul 4 y2)>

and 0,0 7é O7 b070 = O7 Co,0 = 0.
b) If p1 — p2 — A1 =0,

(i, 12) = (%(zyz — ), %(ul + ug)) , (_%(yl + 1), —%(zyz - yl))

and ap,0 = O7 b070 75 O7 Co,0 = 0.
¢) If po — A1 =0,

(romn) = (202 =)= =) ) (=500 4 ). =521 = )
and ap,0 = O7 b070 = O7 €0,0 7é 0.

2) In case of 0 = 09, \j = Aa = %(l/l — 219).
a) [f — 1 — /\2 = 0,

(o) = (52 =) 501+ 02) ) (G2 = ). =52 o)

and @p,0 75 0, bo}o = 0, Co,0 = 0.
b) If p1 — p2 — A2 =0,

(o) = (2 =) 301 02) ) (5004 1)~ 2 -0
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and ap,0 = 0, bo}o # 0, Co,0 = 0.
C) Ifﬂ2_>\2 :0,

(1, 12) = <%(2yl — ), —%(% - V1)> , (—%(ul 1), —%(21/2 - V1)>

and ap,0 = 0, bo}o = 0, Co,0 7é 0.
3) In case of 0 = 03, \j = A\ = %(1/1 + ).
a) [f — 1 — /\3 = 0,

(s iz) = <—%(V1 +ua), —%(% - yl)) , (—%(ul + ), —%(m - y2)>

and 0,0 75 0, bo}o = 0, Co,0 = 0.
b) If p1 — p2 — A3 = 0,

(1, p2) = (%(21/1 — 1), —%(21/2 - 1/1)) ) (%(21/2 —v1), —%(21/1 - 1/2))

and ap,0 = O7 b070 75 O7 Co,0 = 0.
C) If/ﬁg—)\g :0,

(un, piz) = (%(zyl — ), é(ul + ug)) , (%(M — ), %(ul + VQ))

and ap,0 = O7 b070 = O7 €0,0 7é 0.

The following theorem gives the explicit expressions of the coefficients (an m ),
(bn,m)s (€nm)-

Theorem 6.7. Let Py, ,,, be the family of all sets {au(ng, my),-- -, ao(no, mo)}
satisfying the next rules;
A) o; =p or q or T (Z =0, ak)’ (nkvmk) = (nam); (n07m0) = (070);

B) a;(ni,m;) = p(ni,mi) = ai—1(ni—1,mi—1) = p(n; — 2l;,m;) ;1; or
p(ni, m; — 21;); =1; or p(n; — 2l;,my — 20;) 51 or q(ng — 21; + 1,m;) ; —(21; — 1)
orr(n; —2l; +1,m; —2l; +1); —(21; — 1).

a;(ng,mg) = q(ni,mi) = ai—1(ni—1, mi—1) = q(ng — 2l;,my) 5 1; or
q(ng,mi —21;); 1; or q(ng — 2L, m; — 21;) 5 —1; or p(n; — 2l; + 1, m;); —(21; — 1)
or r(ng,m; —2l; +1);—(2; — 1).

a;i(ni,mg) = r(ng, m;) = a;_1(ni—1,mi—1) = r(n; — 2l;,m;) ; —l; or
r(ng,m;—2l;); L orr(n;—2l;, m;—21;) ;1; orp(n;—2l;+1,m; —2l;+1); —(21;—1)
or q(ni,m; —2l; +1);—(2l; — 1).

(E”l c Z>0), (i: 1,'~' ,k)
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( k depends on each set ).

For each i, we express the number after ; of each correspondence as d;.

We put
(a0,0,b0,0,C0,0) (n; even, m; even)
(50' 50 5¢ ) _ (GJO,O; €0,0, bo}o) (TL; even, m; Odd)
n,m’ - n,m’ - n,m (b0,0; ao,0, CO,O) (n; Odd, m; 6’067”&)
(0,0, b0,0,a0,0) (n; odd, m; odd)
And we put

P! . = PumN{ar =p}, P, :=Pnmn{ar =q}, P}, = PnmN{ap =71}

Then we have

Qn,m = E

{ak(nk,mi), - a0(no,mo) }EPT m

(HL dz‘) Onm

ag(ng,mg) - a1 (ng,my)’

(HL dz‘) Sh

ag(ng,mg) - ax(ng, my)

bn,m = Z

{ak(ng,mg), - ,c0(no,mo) yePE 1

Cn,m = g

{ak(nk,m), - ,a0(no,mo) }EPL,

Y

(I ) ..

ag(ng,mg) - oaq(ni,my)’

for (n,m) # (0,0). Here, anm = 0 (resp. bpm = 0,¢pm = 0) if PP

(resp. PY = 0, Pl = 0).
Proof. We prove this theorem by the induction with respect to m.

1) Firstly, if m = 0, by the equations (6.20), (6.21), (6.22) , we have

p(n,0)an0 — > lan-210+ Y (20 = 1)by_2141.0 =0
=1 =1

o0 o0
q(n, O)bn’o — Z lbnle’o + 2(21 — 1)an,21+170 = 0
=1 =1

r(n, O)Cn’o + Z lcnfglyo =0.
=1

(6.23)

(6.24)

(6.25)

7m:®

(6.26)

(6.27)

(6.28)

Suppose that equations (6.20), (6.21), (6.22) hold for m =0, 0 <n < N. From

the equation (6.26), we have

o0

1

> 1
= l ol g— ———————— 20—1)b _o10. (6.29
aN+1,0 (N 11,0 ; AN+1-21,0 (N +1,0) ( )bn 12 21,0 ( )

=1
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Since 0%, ;_ 260 = §N+2 200 = §N+1 s if we expand anyi1-210 and byy2—20
as (6.23), (6. 24) O 41,0 appears in the numerator of the right hand side of the
equation (6.29).

We add p(N +1,0) in front of each element of %, _,, ; and express this family
by P€v+1—21.0' Next, we add p(N + 1,0) in front of each element of P%_, ,

and express this family by f"}v 42-21,0- Then , by difinitions, easily we have

N+1 0= <U PN+1 21 0) U (U P(JIV+221,0> )

l
PN+1 21,0 PN+1 w0 = =0 (VL,I'st.l#1),
PN+2—21,0 n PN+2_21/ =0 (VL,I'stl#1),
PZJ)V+172I,0 N P(J]V+2—2l/,o =0 (v, ).
Therefore, the set appearing in the expansion of ant1,0 is just as (6.23) for
n = N 4+ 1,m = 0. The rule of products directly follows from the assumption
and the equation (6.29). So any1,0 is just as (6.23) for n = N +1,m = 0.

Therefore, we have proved (6.23) for Vn and m = 0. The proof of b, ¢ and ¢, o
is the same as ay, .

2) Assume that for 0 < ¥m < M, the equations (6.23),(6.24),(6.25) hold for
all n. We put m = M + 1. Then, the equations satisfied by (an,ar+1), (bn,m+1);
(Cn,p41) are;

p(n, M + 1)an p+1

- E lan—21 pr41 + E lan, pr1-21 — E lan—21, 04121
=1

(6.30)
o0
+Z (2l = 1)b,,— 21+1M+1+Z 20— 1)en—oit1,m—2142 =0
=1 =1
(’I’L M + 1)()" M+1
- Zlbn AUM+1 — Zlbn M+1-20 + Zlbn 2, M+1—21
=1 (6.31)
+Z (2l = Day,— 2l+1M+1+Z 20 — 1)cp,p—2042 =0
=1 =1
r(n, M + 1)cp,p+1
+ ) len—ons1 — Z len, my1—21 — Z len—ot -2 (6:32)
=1 )

e}

+Z (2l — Dan—2141,m— 2l+2+z 2l — 1)bp, m—2142 = 0.
=1 =1
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Firstly, we put n = 0. Then (6.30) becomes

1 (oo}
= l _ol. 6.33
ag,M+1 p(O,M+ 1) ; ag,M+1-21 ( )

For each [, we add p(0, M + 1) in front of each element of Pg,M+1—21 and denote
this family by P87M+1_21. Then, since

Pg,MJrlle N Pg,MJrlle’ =0 (l #* l/)
and .
Pg,MJrl = UPg,M+1—2l7
l

the set appearing in the expansion of ag ar41 is just P87M+1. And since

06 My1-20 = 96 41> 06 41 appears in the numerators of ag ar4+1. Further-
more, the rule of products in the numerators also holds because of the assump-
tion and (6.33). Therefore, for m = M + 1,n = 0, equation (6.23) holds. The
proof of (6.24), (6.25) for m = M + 1,n = 0 is the same.

Next, suppose that for 0 <Vn < N and 0 < Vm < M + 1, the equations (6.23),
(6.24), (6.25) hold.

For n = N + 1, we have

AN4+1,M+1

1 (oo}
= ZlaN+1—21,M+1
p(N+1,M +1) &

1 oo
- ZlaN+1,M+1—21
p(N+1,M+1) &

oo

1

+—_ la _ _
PN+ LM+ 1) ; N+1—20,M+1—21
1 o0
- 20— 1)b _
PN+ LM+ 1) ;( )ON 221,41
1

hE

-_—_——— 20 -1 _ _9].
p(N+1,M+1) ( )CN+2 21, M+2—21

~

1

For each I, we add p(N+1, M +1) in front of each element of P€v+1—21,M+1 (resp.

p p q r .
PNJII,MJrlle: PN~+17~2I,Mir172l’ PN+272l,M+1 ) PN+2721,M+1) and express this
by P} (resp. P,, P4, P} PL). Then , since

PINP/ =0 (I#£l) (i=1,--5),

PiNP; =0 (i#)),
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5
P?\/’+1,M+1 = U UPi

i=1 1
the set appearing in the expansion of ay1,a741 is just P’]’VJFLMH. The assertion
about ¢ is the same as above. From (6.34) and the assumption, the rule of
numerators also holds. Therefore, for m = M 4+ 1 and n = N + 1, (6.23) holds.
The proof of by41,m+1, CN+1,Mm+1 is the same. Thus we have completed the
proof of this theorem. O

7 The expansion of the matrix coefficients in
terms of the power series around y; =y, =0

In the previous two sections, we obtained power series solutions for differential
equations of class one case and three dimensional case. Our purpose in this
section is to express the matrix coefficients by their linear combinations. In
other words, we want to determine the coefficients of 1, g in the expressions of
matrix coefficients. Here, (v, () is the characteristic root and ), g is the power
series solution corresponding to («, ().

7.1 Class one case

By solving the equations (5.1) and (5.2), we obtained six power series solutions
corresponding to the six characteristic roots. For a characteristic root (a, 3), we
express the power seires solution corresponding to (a, 3) by ¥a,5. We assume
that the constant term of ¢, g is 1. As 3, we have

1 1 1
61 = 5(1/1 —|—l/2) + 1,52 = —§(2V1 — VQ) —|— 1,63 = —5(21/2 — 1/1) + 1

And for each f3;, we have two power series solutions.
Therefore, we can write matrix coefficient F' by

3
Fyi,y2) = Y _ ciai(yn, Y)Y
i=1

Here, ¢; (1 = 1,2,3) are some constants and a;(y1,y2) (i = 1,2,3) are some
analytic functions . By substituting ai(yl,yg)yg"’
have

into the equation (5.1), we

yg"'{Z(&%ai(yl, Y2) — 0102ai(y1, y2) — Bidrai(y1,y2)

+ 03a;(y1,y2) + 26020 (y1,y2) + Brai(y1,y2))

2 2,,2 2
ya+1  yiys +1 y1+1>
+ (- + +2 Oa;i(y1, ya
( -1 ylyi-1 Tyi-1 ' )
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+<2y§+1 yiys +1  yi+1

+ D2ai(y1,y2) + Biai(y1, Y2
T D) )+ e

2
+ (—5(1/12 — e + 1/22) + 2) ai(yhyz)} =0.

Dividing both sides by yg * and taking the limit yo — 0, then we obtain

2
+1
28fai(y1, 0) + (Zyé 1 Zﬁi) 81ai(y1, 0)
u (7.1)
o yitl 2, 9 2
+ 261 — y2 — 161 — 361 — g(Vl — V1V —|— 1/2) —|— 2 ai(yl,O) = O
1
We put 2 = u, f;(u) = ai(y1,0). Then the equation (7.1) becomes
d2 f: df;
SuQ—ﬁ—i— 4u—|— —406; + 8 uﬁ
du? -1 du
+1 2 (7.2)
+ <2ﬂ§ - Z_lﬂi—s@— g(uf —u1u2+u§)+2> fi=0.

Next, we put f;(u) = u”g;(u) (x € C) and substitute this into (7.2). Then we
have

2y, dgi
8229 L (4% 4B 484160 ) w2
1 du

du? —
2
+ (8332 +(4—48)z + 2@2 —408; — 5(1/12 — e + V%) (7.3)
8z — 2,
+2 4 M) gi = 0.
u—1

Now, we choose x; satisfying
2
833? + (4 — 4ﬁ1)$1 + 2612 — 461 — g(V% — 1V + 1/22) + 2=0

and substitute x = x; into (7.3). Then we have

d?g; u+1 dg; 8x; —20;
2 4 4 i i
4 —40; 162; | u— + ————¢g;, = 0. 7.4
su du2+(u—1 it8+ 6x>udu+ u—1 7 0 (7.4)
Finally, we put u = % and substitute this into (7.4). Then we have
d?g; 1 1 dy;
(- DT% + (~3068— 40+ 1)+ 15— 40, +9C) L
dc 2 2 € )
+(ait 2gi =0
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(7.5) is a Gaussian hypergeometric differential equation, and if we define p;, g;
as the complex numbers satisfying

1
l+pi+q= 5(51' —dz; +3),

5.
Piq;i = —T; + ZZ

and define r; by
1
i = 5(@‘ —dz; + 1),

then the solution is

0 1 00 0 1 00
P 0 0 pi ;Cp =P 0 0 pi;l1=¢
L=ri mi—Di—¢ G ri—pi—q l=7ri g

The regular solution is,
gi(y1) = 211 (pis qis 1 —ri +pi + i3 1 — C)
1
=2 (Pi,(Jz‘;l—?“i-i—Pi-qu‘;l— ?> :
1

(See [9]). Since o F} satisfies a formula ([5])

eI a) | o
oF1(a,b;c;2) =(1 — 2) F(c—a)F(b)2F1 a,c—b;l1+a b’l—z
wI(e)T'(a —b) 1
1- )= b (be—a;1+b—a;
A=) e e \be et b a2 )
(7.6)
we have
T =7 +pi+a)T(a — ps
gi(y1) =yi* ( i+ pit gl pz)QFl(pivl_Ti‘f'pi;l“‘pi_(b‘;y%)

(1 —r; 4+ ¢)T(q:)
Il —7ri+pi+¢)(pi —

) 7 QZ)
I'(1 =7 +pi)l(pi)

Ly oF1 (i, 1 — 7 + @i 1+ ¢i — pi v2).

Therefore, we have

a;(y1,0)

=u"gi(y1)

= y1" gi(n)

_ 2w (L =7 +pi +¢)T(qi — pi)
(1 =7 4+ q)T(q)

4 Rlata) T(1—ri +pi +q)T(pi — @)
L1 =7 +pi)L(pi)

o F1(pis 1 — 7 4+ pis 1+ pi — qis y7)

o F1 (g3, 1 — 1+ qis L+ ¢ — pis yi)-
(7.7)
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Next, for i = 1,2, 3, we compute (z;,p;, g, ;). (The final form doesn’t depend
on the choice of z;).

A) In caseof 5; = 1 = %(Vl—f—llg)—l-l, T = %Vl— %VQ, P = —%Vl—l—%yg—f—%,
Q=311 =—31+ 3 +1

B) In case of §; = B2 = —3(2v1 — 1) + 1, @2 = —gv1 + 302, P2 = — 312+ 3,
2=7%3,T2=—2v2+1

C) In case Of 61 = ﬁg = —%(21/2 — Vl) =+ 1, Tr3 = §V1 — €V27 pP3 = —51/1 + %,
3=13,7m3=—351+1

By substituting these results into equation (7.7), we have

al(ylvo)
_ ienmt L(3v1 — 310)
! ﬁf(%ul — %1/2 + %)

1 1 11 1 1
o (—— _ - Z._ = - 1: 2
o F ( 2V1+2V2+2,2, 2V1+2V2+ YT)
" y%(2u17u2)+1 F(—%lﬂ + %VQ)
! VaD(=ivi + Lvy + 1)
1 1

11
o (2 — = Z .
2 1(2V1 2V2+2,2,

1541
1 1
VLT 52 + L),

az(y1,0)
_ yl—%<m+vz>+1%m(—%ug + 55—t )
+ y§(2u2_ul)+1%2}7‘1(%y2 + %, %; %VQ + 1%9%)a
az(y1,0)
_ ylé(VlJr”Z)“%QFl(—%m iyt L))
+ y§(2”1”2)+1%2F1(%V1 + %, %; %Vl + 1;9%)-
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Therefore, by compairing the leading terms, we have

w%(2V2—u1)+1,%(u1+u2)+1(yla Y2)
_ yl%(QVQ—Vl)JFlyz%(VlJFVQ)JFl 1 1 11

1 1
2fi(=gnit gt gi—gntgret L)

+ (higher order terms),

’lp%(Ql/l—llg)-f-l,%(Vl-’rllg)Jrl (y17 y2)

L(20,— 1 1 1 1
FEnTr L S By (S — Sup + >

11 1
=y > 5 Fight— g2t 1;y7)

+ (higher order terms),

wfé(1/1+1/2)+1,7%(21/171/2)+1(y17 y2)

— (v 4ve)+l —1(201—o)+1 1 11 1
=y T g T S R (=g 5 5 g L)
+ (higher order terms),
1Z)%(21/271/1)+1,7%(21/171/2)+1(y17y2)
_ y%(2u2—y1)+1y—§(2:/1—1/2)4-1 P (ly n 11 ly +1;42)
1 2 2471 2 2 25272 2 » J1
+ (higher order terms),
w—%(V1+VQ)+1,—§(21/2—1/1)-1-1(3/17y2)
—Lwi4)+1 -1 (2ua—v1)+1 1 11 1
=y, Oy, 3 2F1(—§1/1+5,§;—51/1+1;yf)

+ (higher order terms),

w%(Ql/l—1/2)+1,—%(21/2—1/1)+1(y17 y2)

1 _ _1 _ 1
ARG AR LG Y I

5 ==+ 1yd)

N
N |

N | =

+ (higher order terms),
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and
F(y1,y2)

¢ F(%Vl — %1/2) 1/)
= 1 1
VAT (i — Lrp + §) @ttt

F(—%lll + %VQ)

A (Lt L+ %)wé(z’”l‘””“’é(”*”)“}

+c F(%VQ) w

_ e 1

’ VAT (Rvg 1) T s tra)tlms (v mva) 4 (7.8)
[(—3w)

TR Ly 1 ) Ve

F(%lll)

B Wy L TRt AR
L(—31)

AT (C i £ D) ey

The next work is to determine cy,c2,c3. To do this, we apply the same
method to yo-part. That is, for ay = —%(Vl +w)+1,a0 = %(2V1 —w)+1,a3 =
%(21/2 — 1)+ 1, we can write

+

3
Flyi,ya) = Y dibiyr, y2)ys"

i=1

and by investigating the differential equations satisfied by b;(0,y2) (i = 1,2,3)
and compairing the leading terms with respect to y2, we have

F(y17 y2)

p F(%l/l - %1/2) "
= 1 1
1 \/EF(%M — %1/2 T %) —3(n1+v2)+1,— 3 (2v1—ra)+1

. L(—3v1 + 3v2) " .
VAL (=31 + dva 4+ 3) —3(tra) =5 (e —)+1
[(ivs)
Tk {m%mw>ﬂ,é<2ww>ﬂ (7.9)

F(—%l/g)
+—\/EF(—%V2 T %) w%(2y171/2)+1,%(1/1+1/2)+1

+d —F(%Vl) Y1 1
3 \/EF(%V1+%) 53 (u2—v1)+1,—35(2v1—rv2)+1

F(—%Vl)
+\/E1—\(_%V1+%)w%(21/271/1)+1,%(1/1+1/2)+1 .

By compairing the coefficients of 1, g in the equation (7.8) and (7.9), we can
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determine ¢;,d; (i = 1,2,3) up to constant multiples. In particular,

o Tl
F(—%IA + %)F(—%VQ + %),
o — P(Gn — 5wl (5v )
L3y — o+ DTGy + 1)
L Tdn bl
D(—3v+ 3o+ HP(Eve 4+ 3)°

Thus, we completely determined the six coefficients. We have

F(y1,y2)

D(=21)D(=2v2)T (311 — 31)
VAT Ton + DL + DE(Ros — Lo + 1)V h@sm bt
4 F(—%yl)l“(—%z/g)l“(—%ul + éllg) w
VAT (= 3v1 + DT(=3ve + DT(—3v1 + Lvg + 1) 3B tlsat)il
I‘(éul - %1/2)1—‘ %I/l)r(%l/g)
VR — 3+ DT + DG+ 5t den

N F(%l/l — QI/Q)F(%I/l)F(—%I/Q) " 1

VAL (G = Sva + DTG + DT (—Jwg + §) T3 Cremmrtma@nma)it
n F(—%IA + %VQ)F(%I/Q)F(%I/l) " )

VAl (=3 + Jvn + DTG + DT (Gwy + 5) st those v

v
D(=2v1 + L) (30)D(—211)

+ 12w — Lo, .
VAT (o1 + T+ DEhoa 1 DI din 1 5 VHammt i d e

7.2 Three dimensional case

Firstly, we take 0 = oy for the character of M. Let ¥ = (F,G, H) be the

matrix coefficient with K-type of three dimensional tautological representation,

and Yo, = "(fa,3, 9,8, ha,p) be the power series solution around y; = y2 = 0

corresponding to the characteristic root (a, 3) whose constant term is *(1,0,0)
r £(0,1,0) or ¥(0,0,1).

As a, we have

1 1 1
o) = —5(1/1 +urv)+1lay= 5(21/1 —wm)+1,as = §(2V2 —v)+ 1.

Therefore, we can write

F(y1,y2) Zd b() (Y1,92)y
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G(y1,v2) Zdb() (y1,92)y

H(y1,y2) Zdb (y1,92)y

Here, d;(i = 1,2,3) are some constants and bz(-j ) (y1,y2) are analytic functions
for0<gys <land0<y <<1.

By inserting F' = bél)(yl,yg)ny,G = béz)(yl,yg)ny,H = b(23) (y1,y2)y1? into
the equation (6.1), we have

{ (0265 (y1, o) + 2020105 (41, y2) + 2657 (41, o)
- 313252 (Y1,y2) — 04232 (91792) + 8217 (yla Y2))

ch(yr) . ch(yiy2) B ch(ya2) e "
+ (28h(y1) * Sh(ylyQ) Sh(yg)) ( 2b2 (y17y2) + 81b2 (yl,yQ))

_ch(yr) | ch(yry2) | ,ch(y2) )
i ( sh(y1) - sh(y1y2) * 28h(y2)) 92by” (Y1, y2)

. ! (1)
- <8h(y1)2 " h(ylyQ)z) by (y1,92)
ch(y1) (2) ch(y1ys) )
A o0+ Gt o)

— by )(ylva)} =0.

By dividing both sides by y{? and taking the limit y; — 0, we have

2
+1
23§b(21)(0ay2) + <2Z§ 1~ 2042) 32551)(04/2)
-

2

+1

+ (2043 - Z% %2~ 3o — )\) bél)(O,yg) =0.
2

(Note that because of Lemma 6.6, since ago # 0 if @ = aq, bgl)(O,yg) is not
identically 0. Hereafter the same statement holds for all the functions we com-
pute.) This equation is the same type of equation as (7.1). By solving this, we
have

INEY 1 11 1
(5v2) oFi(—zvo + —vp + 1;93)

b(l) 0 3(21/2 l/1)+1 .
0.92) =y, V(s + 1) 22T )
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T A C12)) 1

- Fi(log 4 2
_ Pl=gw) L L
v VAT(—lo,+ 52 2 T

N}Ir—\

1
3 1/2+1y2)

and by compairing the leading terms, we have

f%(21/171/2)+1,7%(21/271/1)+1(y17 y2)

_ %(21/171/2)4’1 7*(21/2 1/1)+1 ]- ]-
=Y

1
Ys 2Fi(—gra+ 5. i gve + 15wd)

+ (higher order terms),

f%(21’1*1’2)+1 l(u1+u2)+1(yl7y2)

= 1% 1% 1% 1% ].
_ ylg,(z 1— 2)+1y 5 (1 + 2)+12F(

+ (higher order terms)
and
T(5v2)
\I/(ylva) {\/—1—‘( 1/2—|— )w%(21,171,2)+1’,%(21,2,l,1)+1
INGE12)
\/_F(——V2+ )w%(QVI*V2)+1,%(V1+V2)+1

+ (linear combination of the other four solutions).

(7.10)

Next, as 3, we have

1 1 1
61 = 5(1/1 —|—l/2) + 1,ﬁ2 = —§(2V1 — VQ) —|— 1,63 = —§(2V2 — 1/1) + 1

Therefore, we can write
y17y2 Zcz ( ) y17y2 y2ia
G(y1,y2) Zcz (Y1, y2) yz )

H(y1,92) ZC'L ()yl,ygy

By inserting F' = aél)(yhyz)ygz, G = aéz) (ylayQ)yzﬁza H = aé )(y1,y2)y2 into
the equation (6.3) and applying the same method, we have
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1y
U(y1,y2) = { [(zv2)

mwf%(V1+u2)+1’,%(21,17y2)+1
F(——Vz)

(hnear combmation of the other four solutions).

(7.11)

Next, we take i = 1 or 3.

i 2 i 3 i
By inserting F' = a( )(y17y2)y5 G = a§ )(yhyz)yg yH = a§ )(y1,y2)y§ into
the equation (6.1), we have

m@wwwwga@a@wgﬁﬁa@wg

+ 82a (yla Yy2) + 25@ (yla Yyo) + ﬁ (y1, y2))
+ (2 ch(y1) + ch(y1y2) Ch(i‘ﬁ)) oa

sh(y1) — sh(yiye)  sh(yz)
(_Ch(yl) chyryz) , ,chlys)
sh(y1) — sh(yiy2) sh(yz2)

B 1 1 (1)
@ww*mmwﬁ (w1, 52)

ch(y1) (2)( ch(y1y2) (3)(
sh(y:)? sh(y1y2)?

- /\ai (91792)} =0.

(yla yQ)

) (Bia, W (y1,92) + 3261 (?Jhyz))

y1,Y2) + Y1, Y2)

By dividing both sides by yg * and taking the limit yo — 0, we have

20%a{" (y1,0) + ( ) oral") (y1,0)
+ dy 1
@W ;164m-rém—gékwm (7.12)
1 1
2
+ M (yh 0) = 0.
(y7 —1)?
Next, by inserting F' = a( )(y1,y2)y§i7G = a§2) (ylva)ygiaH = ag3)(y1,y2)y§"’

into the equation (6.4), we have
. ch
yg’{ - 81@5”(?;1, yg) - 67;6%(1)(:(]1, y2) - %agl)(yla y2)
ch(y1y2) ()
- R
25h(y192)

1 (3) (1)
\ , —\a, , } =0.
+ 2sh(y1y2)al (?Jl y2) 1G4, (?Jl yz)

1 @
(ylay2)+ 2Sh(y) a; (ylay2)
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By dividing both sides by yg * and taking the limit yo — 0, we have

2
Y1 (2 yr +1 1\ o
A al®01.0) = 010 30,0) + (5 + - 5 ) a0 (713

By combining equations (7.12) and (7.13) to eliminate a§2) (y1,0), we have

2
1

282 (1)(y1,0)+ (4y2 —2@) 81a (yl,o)
1

+1
+<Zl (22 — ﬁi—1)+2ﬁf—3ﬁi—A+1) o (y1,0) = 0.
1_

We put y1 = u, fi(u) = al! )(yl,O) and define a differential operator d; by
81 =y d . Then the equatlon becomes

88," fi(u) + <8 4@+£) O fi(u)

28— 2
+ (Zﬁf —406; + 2\ — A+ %) filu)=0
Next, we put f;(u) =u"g;(u) (x € C). Then the equation becomes

~ 16 ~
881291‘(“) + (8 —48; + =1 + 1633) algi(u)

16z +4)\ — 26, — 2
+ (83:24—(8—4@-)3:4—2@2 — 4B+ 20 — A+ ul—l bi )gi(u) = 0.
We take z = x; as the number satisfying

822 + (8 — 48;)x; + 262 — 48; + 2M1 — A = 0.

Then we have

d? 16 d
su22 9l 4 (16— 48; + 16 +— u

du? du

16x; +4X — 206; — 2
+ : U 1_ 1 & gi(u) = 0.

Finally, we put u = % Then the equation becomes
d*gi
-1
1 1 dg;
+ ((5@- —23:1-—|—2> ¢— _ﬁi+2l‘i> diz (7.14)

1
+ (—2:@ -1+ 51 ) g; = 0.
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(7.14) is the Gaussian hypergeometric differential equation, and if we define

pi,q; by complex numbers satisfying

1
L+pit+a= 50— 2w +2
1 1 1
ifi = =2 — SA + 20+
Piq v — Mt Bt
and r; by
1
i = =B — 2wy,
T 2[3 x
then the general solution is
0 1 o0 0 1 00
P 0 0 pi ;6p =P 0 0 pi;l-=¢
ri—pi—q l=7ri g

L=ri mi—Di—¢ G

The regular solution is,
gi(y1) = 211 (pis qis 1 —ri +pi +qi31 — Q)

1
=k (pi,qi;l—rﬁpﬂrqi;l—?)-
1

Since o F} satisfies a formula (7.6), we have

LA =7 +pi +qi)T (g — p
2p; L'( pi+ai)(g p)QFl(pi,l—m+pi;1+pi—qz‘;yf)

9ilyr) =4 'l —r +¢)T'(q)
L1 =7 +pi +9)C(pi — ¢:)
2q; [ 4 4 i 4 2
+y Fi(qi, 1 —ri +qi; 1+ q; — pisy1)-
! T(1—ri+p)(p)  ° i )

Therefore, we have

1 T; _ 2z,
al) (41,0) = u® g;(y1) = ¥ gi(y1)
1—7ri+pi +q)l(q — pi
( pit+4)Lg p)2F1(pi;1_7"i+pi§1+pi_%';y%)

_ yQ(:Da:-i-iCi)F
! L1 =7 +qi)T(q:)
2(qitan) L1 =7 + pi + @)D(pi — i) )
+ Fi(gi,1 =7 +qi51 + i — pis
h Tt p)fp) 200 @it p y(l) |
7.15

for i = 1,3. The values (z;,p;, qi, i) (i = 1,3) are as follows;

A) When i = 1, we have

L 1 1 +1 +1
r = -V — = = ——v —
1 31 62’ p1 21 22 »
1 1 +1 +1
== r=—=U — —.
q1 9 1 21 22 5
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B) When ¢ = 3, we have

1 1

T3 =gV T gl2, P3= T3 +1,
1 1 1

QB:§7 73:—§V1+§-

By inserting these results into (7.15), we have

1
Clg )(y170)
_ y%(2V2—V1)+2 F(%IA — %1/2 — %)
1 VAL (3 — d1m + 1)

1 1 3 1 1
2P (=5 = 1, —:—= - 2.2
2 1( 21/1+2V2+ 1y 2V1+21/2—|—2,y1)
+ y%(Qul—V'zH-l 2F(_%V1 + %1/2 + %)
' VAL(—3v1 + 212 4+ 1)

1 1 11 1 1
'2F1(§V1 -z +1, 55 51/1 - 51/2 + 552!%%

2

1
a5 (y,0)
1 1
—1(vi4va)+2 L(5v1—3) r 1 3 1 3 4
= - - 1 -, — = -
41 \/ET(%V1+1)2 1( 2V1+ 'y 2y1+2,y1)
1 1
l(21/171/2)4’1 2F(_§I/l+§) 1 1 1 1 2
+yi —— 1 hn+ 1l gion + 5vi).
Y1 \/7_TF(—%1/1+1)2 1(2V1 5 2V1 5 Y1)

Here, we used I‘(%) = /7, I‘(%) — @

From the equation of agl)(yl, 0), we have

f%(21/171/2)+1,%(1/1+1/2)+1(y17 y2)
1 11

vy —v)+1 L (vi4e)+1 1 1
=yi s T R - gt Lgign — g 5iv)

+ (higher order terms),

f%(21/271/1)+1,%(u1+1/2)+1(ylvy2)

l(21/ —v1)+2 .l(Vl-'rl/ )+1 1 1 3 1 1 3
=y Y5 ’ 2F1(—§V1+§V2+17§;—§V1+§V2+§;y%)
+ (higher order terms).
L2ua—v1)+2 L(vi4ve)+1 .
; = y23 e of f%(2u2—u1)+1,%(vl+u2)+l m

And since the coefficient of y;
. 1 . .
wé@urm)ﬂ,é(vﬁw)ﬂ I8 o—0—, if the coefficient of w%(%ﬁz)ﬂyé(yﬁyz)ﬂ
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2T (—3vi+3v2+3)
fl—‘(——vl-i- V2-|-1)7
1 1 1
Iz — 572 —3)

\/EF(%I/l — %l/z + 1)

Therefore, we have

U =c D(—51+ 31 +3) "
o \FF(——VW Ty + 1) FEn )ttt

is

the coefficient of \P%(Q,,Z,VIHLL(VIJFW)H is

QF( v, — —l/2+ )
\/_F(Q 51/2"_1).

X(lll—llg—l):

LAy — 3w +3) (7.16)
\/_F( vy — —VQ + 1)w%(Q”Z*”l)Jrlx%(VlJer)Jrl
+ (linear combination of the other four solutions).
Similarly, from the equation of aél)(yl, 0), we have
F( 1/1 + )
U =c3 {mﬁ’ L(2u1 —v2)+1,— L (2v—11)+1
F( v+ —) (7.17)

\/_F( l/l+1)w—%(V1+u2)+1,—%(21/2—1/1)+1}

+ (linear combination of the other four solutions).

Next, we insert F = b\ (y1,42)y8, G = 07 (y1,y2)y8, H = 0 (y1, y2)y
(1 = 1,3) into the equation (6.3), (6 6). By applying the same method as we

used above to bz(j)(yl, y2) (i =1,3,5 = 1,2,3) (eliminate b§2) (0,y2) and construct
the differential equation with respect to b§3)(0, y2) ), we have

F(llll 1V2 + 1)
U =d 2
1 {\/_F( v — —1/2 + 1),ll)fé(l/1+1/2)+1,7%(21/171/2)4’1

(=301 + 310+ 3) (7.18)
V(=L + T+ 1)¢§(u1+u2)+1,g(zyzul)ﬂ}
+ (linear combination of the other four solutions)
and
U =ds { \/I;(F(V1V-1F+)1)w%(2yzul)+l —1(2v1—v)+1
(=301 +3) (7.19)

mw (2v2=v1)+1,3 <V1+Vz>+1}

+ (linear combination of the other four solutions).
Now we have six equations with respect to the matrix coefficient ¥ (i.e. (7.16),
(7.11), (7.17), (7.18), (7.10), (7.19) ). By combining these equations, we obtain
two different expressions of ¥. That is;
F(—ll/l + 11/2 + 1)
U =c; V1o, _ 1
\/_F( Vl + 1/2 +1) 5 (2v1—v2)+1,5(v1+r2)+1
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F(él/l — —V2 + )
\/_F( — 51/2 + 1)w%(Ql/Q—l/l)-Fl,%(l/l-'rl/g)-i-l

F(;VQ)
T\ VT Ly 4 D)V 0t den

F(—%llg)
+_\/7_TF(—1V +%)w%(2”2—”1)+17—%(2V1—V2)+1
P(—gv1 +3)
+ C3 { \/_F(—— v + 1)#)%(21/1—1/2)-‘,-1 —*(21/2 l/1)+1
F( 141 + —)
\/_F( l/l+1),l/}—%(V1+l/2)+1,—%(2u2—l/1)+1
[ Tn—dny)
\/_F( vl — —VQ + 1)w—%(1/1+1/2)+1,—%(21/1—1/2)+1

n L(—3m+ i +1) b 1
VD (=Lv + Ly 1) 7 sttt Gram

d F(;VQ)
+ d2 mw%@ul—@ﬂ—l —L@ua—11)+1

F(—%llg)
+—\/7_TF(—%V2 i %)w%(Qul—u2)+1,%(u1+l/2)+l
F( v+ 5 )
+d3{\/_F( Vl+1)w%(2u2—u1)+1,—%(2u1—u2)+1

(=31 +3) } .

mw%(QVQ—V1)+17%(V1+V2)+1

By compairing the coefficients of 14,3, we have

F(—%Vl + %)F(—%llg)

T+ )=l + 1)

o — DA — 3o+ DT (3va + 3)
P(Av — o+ DT (301 + 1)

oy — FAv)T (=30 + 310+ 3)

F(%VQ + %)F(—%lll + %1/2 + 1)

up to constant multiples. Thus we obtained the expression of ¥ in case of
o = o1. Note that since the transform vy +— vo, 5 — 11 does not change the
eigenvalue of Casimir operator A and change the eigenvalue of gradient operator
A1 to Mg, this transform gives the expression of ¥ in case of ¢ = g5. Similarly,
the transform vy — —uvq, 9 — —v1 + 15 gives the expression in case of o = o3.

Trerefore, we obtained the following theorem.
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Theorem 7.1. Let the character of M be 0 = o1. Let ¥ = Y(F,G, H) be the
matriz coefficient with K-type of three dimensional tautological representation,
and Yo 3 = "(fa.8: o8, ha, ) be the power series solution around y; = y2 = 0
corresponding to the characteristic root (v, 3) whose constant term is *(1,0,0)
or 1(0,1,0) or “(0,0,1). Then we have

U(y1,y2)

B D(—3v1 4+ $)0(—1)T(— 301 + 312 + 3) "

VAL (=i + DD(= 3 + HT(—Lvs + 10 + 1) §(vimva)+l s (ntve)+1
D(—4v1 + DT(—32)T (311 — 22 + 1)

T AT (b DT (et DT (on — B + 1)V @emr S0

N T(3v1+ DTG (Gv — 310+ 3) o 1

VAT (o + T + DG — Jra 1)t mdan v

T(3v1+ 3T(—3)l (301 — e+ 3)

* VAT (v + DT (= 3 + 1w — Lup + 1)w%(2’”2‘””“"%(2’”1‘”2”1
D(—4v1 + DT (30)D (=301 + 22 + 1)

* VAL(=3v1 + DI (Ave + DT (=301 + 12+ 1)w%(m’l_”2)"’1’_%(2”2_”1)“
L3+ )T (3v2)0 (31 + 310+ 3)

F AT Gt DN + DN B o 4 1)o@

(7.20)
The transform vy — va,va — 11 in (7.20) gives the expression of ¥ in case
of 0 = o9 and the transform vy — —vi,v9 — —1q1 + Vo in (7.20) gives the
expression of ¥ in case of o = o3.
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