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Abstract

In this paper we develop a novel criterion for choosing regularization parameters for nonsmooth
Tikhonov functionals. The proposed criterion is solely based on the value function, and thus applica-
ble to a broad range of functionals. It is analytically compared with the local minimum criterion, and
a posteriori error estimates are derived. An efficient numerical algorithm for computing the minimizer
is developed, and its convergence properties are also studied. Numerical results for several common
nonsmooth functionals are presented.
keywords: Regularization parameter, nonsmooth functional, Tikhonov regularization, value func-
tion, error estimate

1 Introduction

We consider linear inverse problems of seeking an approximate solution x ∈ X to

Kx = yδ, (1)

when only a noisy version yδ ∈ Y of the exact data y† = Kx† with x† being the exact solution is available,
and the given data yδ satisfies φ(x†, yδ) ≤ δ for some metric φ. Here the spaces X and Y are Banach
spaces, and the operator K : X → Y is bounded and linear.

As typical for inverse problems, it suffers from ill-posedness. In particular, small changes in the data
yδ can lead to huge deviations in the solution x. To restore the numerical stability, regularization has
proved an effective approach. Amongst existing approaches, Tikhonov regularization, which amounts to
minimizing the following functional

Jη(x) = φ(x, yδ) + ηψ(x),

is very popular and attractive. Here the functionals φ and ψ are known as data fitting functional and
regularization functional, respectively. Some common choices of the data fitting functional φ(x, yδ) include
1
2‖Kx−y

δ‖2L2 , ‖Kx−yδ‖L1 and
∫

(Kx−yδ lnKx), which are statistically well suited to additive Gaussian
noise, impulsive noise and Poisson noise, respectively. Typical regularization functionals include 1

2‖x‖
2
L2 ,

1
p‖x‖

p
`p , ‖x‖2Hm and |x|TV . Moreover, the functional ψ(x) is assumed to be nonnegative. The parameter

η is called the regularization parameter, and it compromises data fitting with regularization.
The resulting functionals are often nonsmooth. Regularization of this form has attracted considerable

interest in recent years, and found applications in a variety of disciplines, e.g. imaging science [30],
signal processing [5, 12] and parameter identification [9, 11]. These functionals have demonstrated many
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desirable properties, e.g. feature promoting/preserving like edge, sparsity and texture, compared to the
more conventional Tikhonov regularization, i.e. L2 data fitting with smoothness regularization. Because
of their practical importance, nonsmooth functionals have been the subject of many recent investigations.
Theoretically speaking, since the pioneering work [4], convergence and convergence rates under various
conditions have been established [28, 29, 17, 25, 15, 26]. Numerically, several efficient algorithms have
also been proposed, see e.g. [8, 6, 10, 33, 18, 14, 34] for a rather incomplete list.

But one of the most important problems in applying these regularization formulations, i.e. choosing
an appropriate regularization parameter, remains largely unexplored. While the problem of parameter
choice has been discussed in great length for quadratic regularization, see e.g. [13] for theoretical studies,
and [16, 32] for details about of numerical implementation, the case of nonsmooth regularization has
scarcely been addressed. This is attributed to the fact that there often exists only an implicit relation
between the solution and the regularization parameter. As to existing studies in parameter choice for
inverse problems in Banach spaces, we are aware of Morozov’s discrepancy principle, which were recently
investigated [2, 24]. Some theoretical results, e.g. convergence and convergence rates, were derived.
In [24], two efficient algorithms for solving the discrepancy equation were also proposed. However, the
discrepancy principle requires an estimate of the noise level, which is not always available in practice, and
the existence of a solution to the discrepancy equation is not guaranteed for some nonsmooth functionals,
e.g. L1-TV and L2-`1. Therefore, there is a significant interest in deriving rules which do not require
a knowledge of the noise level. One such rule is due to the authors [19], which generalizes the work
[23]. Existence of a solution and a posteriori error estimates are derived. Another is the model function
approach, recently derived in [10], for the formulation L2-`1. Finally, the Hanke-Raus rule and the
quasi-optimality criterion have also been generalized [22], and their convergence behavior is discussed, in
particular convergence is discussed under certain conditions on the exact solution and noise. However,
there is no known efficient algorithm for these two rules.

In this paper, we propose a novel criterion for choosing regularization parameters for general nons-
mooth Tikhonov regularization functionals. The proposed rule is solely based on the value function. Since
the value function is always continuous, see the next section, the proposed rule is always well defined
irrespective of the smoothness of the functionals. Therefore, it is especially attractive for functionals with
nonunique minimizer, for which many existing rules are ill-defined. The new criterion is closely related
to a known rule (local minimum criterion) due to Regińska [27], which however can be ill-defined for non-
smooth functionals. Moreover, the new criterion is theoretically better behaved in comparison with the
former, and admits easier theoretical justifications in terms of a posteriori error estimates. Numerically,
an efficient algorithm with practically very desirable monotone convergence is proposed.

The rest of the paper is organized as follows. In Section 2, we collect some important properties, e.g.
continuity, concavity, monotonicity and differentiability, of the value function. The value function has
been previously investigated in [31, 24, 21]. These properties are important in designing and analyzing
the new criterion. In Section 3, we give the new criterion. It is then theoretically compared with the
local minimum criterion, and justified in terms of a posteriori error estimates. We develop in Section 4
an efficient numerical algorithm to computing a minimizer of the proposed criterion, and discuss in detail
the convergence property of the algorithm. Finally, numerical results for several examples are presented
to illustrate the features of the proposed rule and to verify some theoretical results. These examples are
of current interest, and include constrained Tikhonov regularization, total variation for deblurring images
subjected impulsive noises, image reconstruction with sparsity and group sparsity.

Notation We shall denote a minimizer of the functional Jη by xδη, the set of minimizers by Mη, and
the minimizer for exact data y† by xη, i.e.

xη ∈ arg min
x∈X

{
φ(x, y†) + ηψ(x)

}
.

The norm on a Hilbert space is generically denoted by ‖ · ‖.
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2 Properties of the value function

We shall use extensively the value function F (η) defined as below

F (η) = inf
x
Jη(x).

In particular, the new criterion is derived based on the function F . This section collects some of its
important properties, especially differentiability. These properties will play an important role in analyzing
the proposed criterion as well as the fixed point iterative algorithm.

A first result shows the monotonicity and concavity of F .

Theorem 2.1. The value function F (η) is monotonically increasing and concave.

Proof. Given a η̂ < η, for any x ∈ X, by the nonnegativity of ψ(x), we have

F (η̂) ≤ Jη̂(x) = φ(x, yδ) + η̂ψ(x) ≤ φ(x, yδ) + ηψ(x).

Taking the infimum with respect to x yields F (η̂) ≤ F (η).
Next we show the concavity of the function F . Let η1 and η2 be given. Set ηt = (1 − t)η1 + tη2 for

t ∈ [0, 1], then

F ((1− t)η1 + tη2) = inf
x
Jηt

(x) = inf
x

{
φ(x, yδ) + ((1− t)η1 + tη2)ψ(x)

}
≥ (1− t) inf

x

{
φ(x, yδ) + η1ψ(x)

}
+ t inf

x

{
φ(x, yδ) + η2ψ(x)

}
= (1− t)F (η1) + tF (η2).

Therefore, F (η) is concave.

A direct consequence of concavity is continuity.

Corollary 2.1. F (η) is continuous everywhere.

Next we examine differentiability of the value function F . To this end, recall first the definition of
one-sided derivatives (Dini derivatives) D±F of F

D−F (η) = lim
h→0+

F (η)−F (η−h)
h , D+F (η) = lim

h→0+

F (η+h)−F (η)
h .

The concavity and monotonicity of the function F in Theorem 2.1 ensures the existence of one-sided
derivatives D±F (η).

Lemma 2.1. The one-sided derivatives D−F and D+F exist for all η > 0 and D±F ≥ 0.

Proof. For a given η, take any 0 < h1 < h2 < η and set t = 1− h1
h2
< 1. Then η−h1 = tη+(1− t)(η−h2).

Now by the concavity of F , we have

F (η − h1) ≥ tF (η) + (1− t)F (η − h2) =
(
1− h1

h2

)
F (η) + h1

h2
F (η − h2).

Rearranging the terms gives

F (η)− F (η − h1)
h1

≤ F (η)− F (η − h2)
h2

.

Hence the sequence
{
F (η)−F (η−h)

h

}
h

is monotonically decreasing as h tends to zero and bounded from

below by zero, and the limit limh→0+
F (η)−F (η−h)

h exists. The existence of D+F follows analogously.
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Remark 2.1. The preceding results do not require the existence of a minimizer to the functional Jη, and
are valid for any space. All subsequent results remain true in the presence of constraints.

As a consequence of the definition of one-sided derivatives, we have:

Corollary 2.2. The one-sided derivatives D−F and D+F are left- and right continuous, respectively.

The solution set Mη might contain multiple elements, i.e. there exist distinct xδη, x̂
δ
η ∈Mη such that

F (η) = φ(xδη, y
δ) + ηψ(xδη) = φ(x̂δη, y

δ) + ηψ(x̂δη),

and
φ(xδη, y

δ) < φ(x̂δη, y
δ), ψ(xδη) > ψ(x̂δη).

In other words, the functions φ(xδη, y
δ) and ψ(xη) are potentially multi-valued. Nonetheless, the functions

φ(xδη, y
δ) and ψ(xδη) are monotone with respect to the regularization parameter η.

Lemma 2.2. Given η1, η2 > 0, if Mη1 and Mη2 are both nonempty, then for any xδη1 ∈ Mη1 and
xδη2 ∈Mη2 , there hold

(ψ(xδη1)− ψ(xδη2))(η1 − η2) ≤ 0, (φ(xδη1 , y
δ)− φ(xδη2 , y

δ))(η1 − η2) ≥ 0.

Proof. The minimizing property of xδη1 and xδη2 gives

φ(xδη1 , y
δ) + η1ψ(xδη1) ≤ φ(xδη2 , y

δ) + η1ψ(xδη2),

φ(xδη2 , y
δ) + η2ψ(xδη2) ≤ φ(xδη1 , y

δ) + η2ψ(xδη1).

Adding these two inequalities yields the first inequality. The second inequality follows analogously.

With the help of the function ψ(xδη), the one-sided derivatives D±F (η) can be made more precise.

Lemma 2.3. Suppose that for a given η > 0 the set Mη is nonempty. Then there hold

D+F (η) ≤ ψ(xδη) ≤ D−F (η), F (η)− ηD−F (η) ≤ φ(xδη, y
δ) ≤ F (η)− ηD+F (η).

Proof. For any η̂ such that 0 < η̂ < η, we have

F (η̂) = inf
x
Jη̂(x) ≤ Jη̂(xδη) = φ(xδη, y

δ) + η̂ψ(xδη).

Therefore, we have

F (η)− F (η̂) ≥ φ(xδη, y
δ) + ηψ(xδη)− φ(xδη, y

δ)− η̂ψ(xδη) = (η − η̂)ψ(xδη).

Thus we obtain
F (η)−F (η̂)

η−η̂ ≥ ψ(xδη).

By passing to limit η̂ → η, it follows that D−F (η) ≥ ψ(xδη). The inequality D+F (η) ≤ ψ(xδη) follows
analogously. The remaining assertion follows from these two inequalities and the definition of the value
function F .

The next two results follow directly from the above two lemmas.

Lemma 2.4. (a) If F ′ exists at η > 0, then ψ(xδη) = F ′(η) and φ(xδη, y
δ) = F (η)− ηF ′(η).

(b) There exists a countable set C ⊂ R+ such that for any η ∈ R+\C, F is differentiable, φ(xδη, y
δ) and

ψ(xδη) are continuous and

ψ(xδη) = F ′(η), φ(xδη, y
δ) = F (η)− ηF ′(η).
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Proof. The assertion (a) is a direct consequence of Lemma 2.3. Assertion (b) follows from the fact that
ψ(xδη) is monotone, see Lemma 2.2, and thus there exist at most countable discontinuity points.

We shall need the next assumption for establishing refined properties of F .

Assumption 2.1. The functionals φ(x, yδ) and ψ(x) satisfy:

(a) The functional Jη is coercive for any η > 0, and any sequence bounded with respect to both φ and
ψ contains a subsequence converging weakly ∗ in the topology of X.

(b) The functionals φ and ψ are weak ∗ lower semicontinuous.

These two assumptions are needed for the existence of a minimizer to Jη, and thus not restrictive.
Under Assumption 2.1, the attainability of one-sided derivatives D±F can be assured.

Lemma 2.5. Under Assumption 2.1, there exist xδ−η , xδ+η ∈ Mη such that D−F (η) = ψ(xδ−η ) and
D+F (η) = ψ(xδ+η ) for all η > 0.

Proof. Fix η > 0, and let h > 0 be a parameter such that h � η and h → 0. We shall show that the
sequence {xδη−h}h contains a minimizing subsequence for the functional Jη. By the monotonicity of F (η)
in Theorem 2.1, we have

Jη−h(xδη−h) = F (η − h) ≤ F (η).

Thus φ(xδη−h, y
δ) ≤ F (η) and ψ(xδη−h) <

F (η)
η−h and thus the sequence {xδη−h}h is uniformly bounded

by the coercivity of the functional Jη. By Assumption 2.1, there exists a subsequence of {xδη−h}, also
denoted by {xδη−h}h, that converges weak ∗ to some x∗ ∈ X. Then by the continuity of F (η) and weak
∗ lower semicontinuity of φ and ψ, it follows that

F (η) = lim
h→0+

F (η − h) ≥ lim inf
h→0+

φ(xδη−h, y
δ) + η lim inf

h→0+
ψ(xδη−h)

≥ φ(x∗, yδ) + η lim inf
h→0+

ψ(xδη−h)

≥ φ(x∗, yδ) + ηψ(x∗) = Jη(x∗) ≥ F (η).

Consequently, ψ(x∗) = lim infh→0+ ψ(xδη−h) = limh→0+ ψ(xδη−h) by Lemma 2.2, and x∗ ∈Mη. It suffices
to show that ψ(x∗) = D−F (η). We observe from Lemma 2.3 that

lim inf
h→0+

D+F (η − h) ≤ lim inf
h→0+

ψ(xδη−h) ≤ lim inf
h→0+

D−F (η − h) = D−F (η).

where we have utilized the left continuity of D−F , see Corollary 2.2. Using the inequality

D−F (η) ≤ D+F (η − h),

we deduce that lim infh→0+ D+F (η − h) = D−F (η). Consequently, we obtain lim infh→0+ ψ(xδη−h) =
D−F (η) and ψ(x∗) = D−F (η). Similarly, we can show the existence of a minimizer xδ+η such that
ψ(xδ+η ) = D+F (η).

Remark 2.2. Lemma 2.3 implies that ψ(xδ−η ) = maxx∈Mη
ψ(x) and ψ(xδ+η ) = minx∈Mη

ψ(x).

If ψ(xη) = ψ(x̂δη) for all xδη, x̂
δ
η ∈Mη, then D−F (η) = D+F (η). Consequently, we have

Theorem 2.2. If Assumption 2.1 holds and the minimizer to Jη is unique for all η, then F is continuously
differentiable and for all η > 0

ψ(xδη) = F ′(η) and φ(xδη, y
δ) = F (η)− ηF ′(η).

We shall also use the following two results.
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Lemma 2.6. Suppose F ′′(η) exists. Then we have F ′′(η) ≤ 0.

Proof. It follows from

F ′′(η) = lim
h→0

F (η + h)− 2F (η) + F (η − h)
h2

= lim
h→0

1
h

(
F (η + h)− F (η)

h
− F (η)− F (η − h)

h

)
= lim
h→0

1
h

(
D+F (η)−D−F (η)

)
≤ 0,

where we have used the fact that D+F (η) ≤ D−F (η), see the proof of Lemma 2.1.

Lemma 2.7. For any η, if both φ′(xδη, y
δ) and ψ′(xδη) exist, then there holds

φ′(xδη, y
δ) + ηψ′(xδη) = 0.

Proof. For any η̂ < η, the minimizing property of xδη gives

φ(xδη, y
δ) + ηψ(xδη) ≤ φ(xδη̂, y

δ) + ηψ(xδη̂).

Consequently, we have
φ(xδη, y

δ)− φ(xδη̂, y
δ)

ψ(xδη)− ψ(xδη̂)
≥ −η.

Similarly, we can derive
φ(xδη, y

δ)− φ(xδη̂, y
δ)

ψ(xδη)− ψ(xδη̂)
≤ −η̂.

Combining these two inequalities and letting η̂ → η concludes the proof.

3 A new criterion

We are now in a position to propose a new criterion for choosing regularization parameters in Tikhonov
regularization. The new criterion consists of minimizing the function Φγ(η) defined as

Φγ(η) =
γγ

(1 + γ)1+γ
F 1+γ(η)

η
,

where γ is a positive constant. The new criterion takes a local minimizer ηγ of the function Φγ(η) over
a certain closed interval in the positive semi-axis R+ as the regularization parameter. The new criterion
is closely related to a criterion due to Regińska [27] (also known as the local minimum criterion), which
in our notation (see Theorem 2.2) consists of minimizing the function Ψ defined by

Ψγ(η) = (F (η)− ηF ′(η))γF ′(η).

The close relation between the two criteria is revealed in the next result.

Proposition 3.1. Assume F ′′(η) exists and does not vanish. Then the functions Φγ and Ψγ share the
same set of critical points.

Proof. Observe that

Φ′γ =
γγ

(1 + γ)1+γη2
F γ(η)[(1 + γ)ηF ′(η)− F (η)].
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Since F (η) > 0 for all η > 0, the minimizer ηγ solves the equation

(1 + γ)ηF ′(η)− F (η) = 0. (2)

Next we note that
Ψ′γ = −(F (η)− ηF ′(η))γ−1F ′′(η)((1 + γ)ηF ′(η)− F (η)),

i.e. the regularization parameter determined by the criterion solves also equation (2).

Note that the equivalence between the proposed criterion Φγ and the criterion Ψγ requires the ex-
istence of a nonvanishing F ′′. A sufficient condition for the existence of the second derivative and the
negativity can be found in [20]. Equation (2) is known as the balancing principle, and has been derived
previously in the context of L1-L2 formulation using the model function approach [10].

Remark 3.1. The new criterion Φγ makes only use of the value function F (η), not of the function F ′(η),
which can be potentially multi-valued in case that the functional Jη has multiple minimizers. In contrast,
the value function F (η) is always continuous, see Theorem 2.1, and thus the optimization problem of
minimizing Ψγ(η) over any bounded closed intervals is always well-defined. The local minimum criterion
and balancing principle, i.e. equation (2), are ill-defined, and they are problematic in practical use, for
formulations with potentially nonunique minimizers, e.g. L1-TV and L2-`1 with noninjective operator
K. Therefore, the proposed criterion Φγ is advantageous then.

Remark 3.2. Obviously, η = +∞ is a global minimizer of the criteria Φγ and Ψγ . The existence of
a finite minimizer to the criterion Ψγ is not always guaranteed. Similarly, this is also the case for the
proposed criterion Φγ . However, this can be remedied by a simple modification

Φ̃γ =
γγ

(1 + γ)1+γ
(F (η) + β0η)1+γ

η
,

where β0 is a small number. Under the condition limη→0+ φ(xη, yδ) > 0, a finite positive minimizer is
guaranteed, which follows from

lim
η→0+

Φ̃γ(η) = +∞ and lim
η→+∞

Φ̃γ(η) = +∞,

and the continuity of the value function F (η). A similar modification can be made for the local minimum
criterion Ψγ and the balancing principle. This kind of modification has been previously derived in the
Bayesian framework [23].

The remaining parts of this section are devoted to the analysis of the criterion Φγ , in particular
analytical comparison with Ψγ , and a posteriori error estimates.

3.1 Comparison of Φγ with Ψγ

This part is devoted to the comparison of the proposed criterion Φγ with the criterion Ψγ , and some
properties of the minimizer.

The next result shows a first interesting relation between the proposed and local minimum criteria.

Theorem 3.1. Let γ be a positive number. Then

Φγ(η) ≤ Ψγ(η) for all η.

The equality is achieved if and only if η solves equation (2).
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Proof. Recall that for any a, b ≥ 0 and p, q > 1 with 1
p + 1

q = 1, there holds the inequality

ab ≤ ap

p
+
bq

q
,

with equality holds if and only if ap = bq. Let p = 1+γ
γ and q = 1 + γ. For notational simplicity, we

denote φ(xη, yδ) and ψ(xη) by φ and ψ, respectively. Applying the inequality with a = φ
γ

1+γ η−
γ

2(1+γ) and
b = (γψ)

1
1+γ η

1
2(1+γ) gives

φ
γ

1+γ (γψ)
1

1+γ η
1−γ

2(1+γ) ≤ γ

1 + γ

φ+ ηψ

η
1
2

=
γ

1 + γ

F (η)
η

1
2
.

Collecting terms in the inequality yields

φ
γ

1+γ ψ
1

1+γ ≤ γ−
1

1+γ
γ

1 + γ

F (η)

η
1

1+γ

.

Hence, we have

Ψγ(η) ≤
γγ

(1 + γ)1+γ
F 1+γ(η)

η
= Φγ(η).

The equality holds if and only if ap = bq, i.e.

[φ
γ

1+γ η−
γ

2(1+γ) ]
1+γ

γ = [(γψ)
1

1+γ η
1

2(1+γ) ]1+γ .

Simplifying this equation yields φ− γηψ = 0, i.e. equation (2). This concludes the proof.

Theorem 3.1 indicates that the new criterion Φγ is sharper than the criterion Ψγ , which lends itself
to easier numerical implementation as a sharper local minimum is easier to locate numerically. However,
it does not give a quantitative measure of the sharpness. To this end, we first observe from Lemma 2.6,
the quantity Ψ′

γ

Φ′
γ

is nonnegative. The next result reveals more clearly the sharpness.

Theorem 3.2. Assume that F ′′ exists and is continuous. If a local minimizer ηγ of the function Φγ
verifies the second order condition, i.e. Φ′′γ > 0, then in its neighborhood there holds

Ψ′
γ

Φ′
γ
< 1.

Proof. Direct computation gives

Φ′γ = γγ

(1+γ)1+γη2F
γ [(1 + γ)ηF ′ − F ],

Ψ′γ = −(F − ηF ′)γ−1F ′′((1 + γ)ηF ′ − F ),

and
Φ′′γ = γγ

(1+γ)1+γ
Fγ−1

η3 [γ(1 + γ)(ηF ′)2 + (1 + γ)η2F ′′F − 2(1 + γ)ηF ′F + 2F 2].

Consequently,
η2Φ′′

γ

Φγ
= γ(1 + γ) (ηF ′)2

F 2 + (1 + γ)η
2F ′′

F − 2(1 + γ)ηF
′

F + 2

= γ(1 + γ)θ2 + (1 + γ)η
2F ′′

F − 2(1 + γ)θ + 2,

where θ = ηF ′

F , i.e.

−(1 + γ)η
2F ′′

F = γ(1 + γ)θ2 − 2(1 + γ)θ + 2− η2Φ′′
γ

Φγ
.
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Assisted with this identity, we deduce

Ψ′
γ

Φ′
γ

= [−F ′′]φγ−1η2(γ + 1)γ+1γ−γF−γ

=
(
1 + 1

γ

)γ
· (1 + γ)−η

2F ′′

F ·
(
φ
F

)γ−1

=
(
1 + 1

γ

)γ
·
[
γ(1 + γ)θ2 − 2(1 + γ)θ + 2− η2Φ′′

γ

Φγ

]
· (1− θ)γ−1.

At a local minimizer ηγ , we have θ = 1
1+γ , and thus

Ψ′
γ

Φ′
γ

= 1−
(
1 + 1

γ

)
η2Φ′′

γ

Φγ
< 1,

by noting the assumption Φ′′γ(η) > 0 at ηγ . The remaining assertion follows from the continuity of F ′′.

Theorem 3.2 indicates that the criterion Φγ is indeed sharper than Ψγ in a neighborhood of a local

minimum point of Γγ . In case that the continuity of F ′′ does not hold, the inequality Ψ′
γ

Φ′
γ
< 1 remains

true at the minimizer ηγ .
We can give a more refined sharpness result under further assumptions.

Proposition 3.2. If both φ′(xδη, y
δ) and ψ′(xδη) exist and are continuous, and limη→0+ φ′(xδη, y

δ) is finite
and does not vanish. Then for any γ ≥ 1, there holds

Ψ′γ(η)
Φ′γ(η)

< 1,

for all η sufficiently small.

Proof. Because limη→0+ φ′(xδη, y
δ) is finite and does not vanish, and the function φ′(xδη, y

δ) is continuous,
we deduce that there exists a neighborhood N of η = 0 and two positive constants c1 and c2, such that

c1 ≤ φ′(xδη, y
δ) ≤ c2.

Now recall the identity φ′(xδη, y
δ) + ηψ′(xδη) = 0, see Lemma 2.7. Consequently, there holds

ψ′(xδη) = −
φ′(xδη, y

δ)
η

,

and then integrating the identity from η0 to η gives

ψ(xδη)− ψ(xδη0) ≥ c1 ln
η0
η
,

where η0, η ∈ N . In particular, this implies that ψ(xδη) → +∞ as η → 0. Therefore, for η sufficiently
small, we have

cγψ(xδη) ≥ φ′(xδη, y
δ),

with cγ = γγ

(1+γ)1+γ . Noting the inequality

F γ−1 ≥ (F − ηF ′)γ−1

for γ ≥ 1, observing that the desired assertion is equivalent to

cγ
F γ

η2
> −(F − ηF ′)γ−1F ′′,

and the identity φ′(xδη, y
δ) + ηψ′(xδη) = 0, we conclude the proof of the proposition.
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Proposition 3.3. Assume that F ′′ exists and is continuous, and ηγ is a local minimizer of Φγ with
Φ′′γ(ηγ) > 0. Then there exists a neighborhood N (ηγ) of ηγ such that for any η0, η ∈ N (ηγ), the following
estimate holds

φ(xδη, y
δ)

φ(xδη0 , y
δ)
≤
(
η

η0

)c(γ)
,

where the constant c(γ) < 1 depends on γ and c(γ) → 1
1+γ as the neighborhood shrinks to ηγ .

Proof. From Theorem 3.2 we have
γγ

(1+γ)1+γ
Fγ

η2 ≥ −(F − ηF ′)γ−1F ′′.

First we recall the identity ηψ′(xδη) + φ′(xδη, y
δ) = 0. At a local minimizer ηγ , we have the relation

γηγψ(xδηγ
) = φ(xδηγ

, yδ), see equation (2), and for any ε > 0, there exists a neighborhood of ηγ , in which
there holds |γηψ(xδη)− φ(xδη, y

δ)| ≤ εφ(xδη, y
δ) by the continuity assumption. Thus the above inequality

simplifies to
γγ

(1+γ)1+γ

(( 1+ε
γ +1)φ)γ

η ≥ φγ−1φ′,

i.e.
c(γ)φη ≥ φ′,

where c(γ) = (1+γ+ε)γ

(1+γ)1+γ < 1 for ε < (1 + γ)[(1 + γ)
1
γ − 1]. Integrating the inequality from η0 to η, we have∫ η

η0

(ln(φ))′dη ≤ c(γ)
∫ η

η0

1
ηdη.

The desired estimate follows directly from this inequality.

Next we turn to the differentiability of the criterion Φγ . Since the existence of D±F (η) are guaranteed
at all η > 0, D±Φγ(η) also exist for all η > 0. Moreover we have the following result.

Theorem 3.3. The inequality D−Φγ(η) ≤ D+Φγ(η) holds if and only if F ′(η) exists.

Proof. Note that D±Φγ(η) = γγ

(1+γ)1+γη2F
γ [(1 + γ)ηD±F − F ]. Then, it is easy to see D−Φγ(η) ≤

D+Φγ(η) is equivalent to D−F (η) ≤ D+F (η). We also know that D+F (η) ≤ D−F (η) holds for all η,
see Lemma 2.3. Therefore the assertion is true.

The following corollary shows an interesting property of the minimizer to the function Φγ .

Corollary 3.1. At a local minimizer ηγ > 0 to the function Φγ , F ′ exists.

Proof. Note that D−Φγ ≤ D+Φγ at a local minimum point.

Let ηγ be a local minimizer of Φγ , and consider a set Γ := {ηγ | 0 ≤ γ}. Corollary 3.1 indicates that
F ′ exists on Γ.

3.2 A posteriori error estimate

In this part, we first recall the so-called Bakushinskĭı’s veto for general heuristic parameter choice rules,
i.e. nonconvergence in the worst-case scenario analysis. Then we provide justifications in terms of a
posteriori error estimates for the special case of quadratic data fitting, i.e. Y is a Hilbert space, in
conjunction with convex variational regularization, i.e. L2-ψ with ψ being a general convex functional.
In particular, we will discuss three cases separately: conventional smoothness regularization; general
convex ψ regularization; and sparsity reconstruction ψ(x) = ‖x‖`1 .

Bakushinskĭı’s veto refers to the fact that, theoretically speaking, all heuristic parameter choice rules,
which do not make use of the knowledge about the exact noise level δ, suffer from nonconvergence
phenomena in the framework of worst-case scenario analysis. This is a consequence of a theorem due to
Bakushinskĭı [1]. To state the theorem, we let G be a mapping from a metric space Y to X.
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Definition 3.1. The function G is termed regularizable in some subset D ⊂ Y if it is defined in this
subset D and the mapping R(y, δ) = Rδ(y) exists, acting from Y to X and such that

lim
δ→0

∆(Rδ, δ, y) = 0, ∀y ∈ D,

where the quantity ∆(Rδ, δ, y) is defined as

∆(Rδ, δ, y) = sup
yδ∈Y,ρY (yδ,y)≤δ

ρX(Rδ(yδ), G(y)).

The theorem reads as follows. For completeness, we include a short proof.

Theorem 3.4 ([1]). The mapping G is regularizable by the mapping R(·), not dependent explicitly on δ,
if and only if G can be extended to all Y and this extension is continuous in D as a mapping defined on
all Y .

Proof. For the sufficiency, we can take R(·) = G on the extension of G on Y and continuous on D ⊂ Y .
For necessity, we need only to show that G is continuous on the domain D. This follows from

lim
δ→0

ρX(Rδ(y), G(y)) = lim
δ→0

ρX(R(y), G(y)) = 0,

by taking yδ = y in Definition 3.1 by observing that y ∈ {ỹ ∈ Y : ρY (ỹ, y) ≤ δ} and that Rδ is independent
of δ. The theorem is finished by the continuity of R(·).

Remark 3.3. Note that in the proof, the condition y ∈ {ỹ ∈ Y : ρY (ỹ, y) ≤ δ} plays an essential role.
This stems from the definition ∆(Rδ, δ, y) = supyδ∈Y,ρY (yδ,y)≤δ ρX(Rδ(yδ), G(y)) in Definition 3.1. It
would be interesting to relax it to ∆̃(Rδ, δ, y) = supyδ∈Y,ρY (yδ,y)=δ ρX(Rδ(yδ), G(y)). It remains unclear
whether Theorem 3.4 still holds under the less restrictive assumption.

Despite the above result, we can still partially justify the proposed criterion by establishing a posteriori
error estimate for the case Y is a Hilbert space, i.e., φ(x, yδ) = 1

2‖Kx − yδ‖2. By a posteriori error
estimate, we mean the distance between the approximate solution xδη∗ and the exact solution x† in terms
of the exact noise level δ, the computable residual δ∗ = ‖Kxδη∗ − yδ‖ and other relevant quantities. We
shall treat the following three cases separately: conventional quadratic regularization, general convex
regularization and sparsity regularization due to their distinct features.

We first specialize to the Hilbert space setting. More precisely, we consider φ(x, yδ) = 1
2‖Kx − yδ‖2

and ψ(x) = 1
2‖x‖

2 and with η∗ chosen by the proposed criterion. To this end, we adopt the general
framework of reference [13]. Let gη(t) = 1

η+t and rη(t) = 1 − tgη(t) = η
η+t , and let ωµ : (0, ‖K‖2) → R

be such that for all γ ∈ (0, γ0) and t ∈ [0, ‖K‖2], tµ|rγ(t)| ≤ ωµ(γ) holds. Then for 0 < µ ≤ 1, we have
ωµ(η) = ηµ. Moreover, define the source sets Xµ,ρ by Xµ,ρ := {x ∈ X : x = (K∗K)µw, ‖w‖ ≤ ρ}. With
these preliminaries, we are ready to state our first result on a posteriori error estimates.

Theorem 3.5. Assume that the exact solution x† ∈ Xµ,ρ for some 0 < µ ≤ 1. Let η∗ be determined by
criterion Φγ , and δ∗ := ‖yδ −Kxδη∗‖. Then we have

‖x† − xδη∗‖ ≤ C

(
ρ

1
1+2µ +

F (δ
2

1+2µ )
1+γ
2

F (η∗)
1+γ
2

)
max{δ, δ∗}

2µ
1+2µ . (3)

Proof. We decompose the error x† − xδη into

x† − xδη = rη(K∗K)x† + gη(K∗K)K∗(y† − yδ).
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Introducing the source representer w with x† = (K∗K)µw, the interpolation inequality gives

‖rη(K∗K)x†‖ = ‖rη(K∗K)(K∗K)µw‖

≤ ‖(K∗K)
1
2+µrη(K∗K)w‖

2µ
2µ+1 ‖rη(K∗K)w‖

1
2µ+1

= ‖rη(KK∗)Kx†‖
2µ

2µ+1 ‖rη(K∗K)w‖
1

2µ+1

≤ c
(
‖rη(KK∗)yδ‖+ ‖rη(KK∗)(yδ − y†)‖

) 2µ
2µ+1 ‖w‖

1
2µ+1 ,

where the constant c depends only on the maximum of rη over [0, ‖K‖2]. By noting the relation

rη∗(KK∗)yδ = yδ −Kxδη∗ ,

we obtain
‖rη∗(K∗K)x†‖ ≤ c(δ∗ + cδ)

2µ
2µ+1 ρ

1
2µ+1 ≤ c1 max{δ, δ∗}

2µ
2µ+1 ρ

1
2µ+1 .

It remains to estimate the term ‖gη∗(K∗K)K∗(yδ−y†)‖. The standard estimate [13, Theorem 4.2] yields

‖gη∗(K∗K)K∗(yδ − y†)‖ ≤ c δ√
η∗
,

However, by the minimizing property of η∗, we have

F (η∗)1+γ

η∗ ≤ F (η̂)1+γ

η̂

We may take η̂ = δ
2

1+2µ , and then we have

1
η∗

≤ F (δ
2

1+2µ )1+γ

F (η∗)1+γ
1

δ
2

1+2µ

.

Combining the preceding estimates, we arrive at

‖x† − xδη∗‖ ≤ c1 max{δ, δ∗}
2µ

2µ+1 ρ
1

2µ+1 + c
F (δ

2
1+2µ )

1+γ
2

F (η∗)
1+γ
2

δ
2µ

1+2µ

≤ C

(
ρ

1
1+2µ +

F (δ
2

1+2µ )
1+γ
2

F (η∗)
1+γ
2

)
max{δ, δ∗}

2µ
1+2µ .

This shows the desired a posteriori error estimate.

Next we present an a posteriori error estimate for L2-ψ with ψ(x) being convex. We will use the
Bregman distance to measure the error. We shall need the concept of a ψ-minimizing solution.

Definition 3.2. An element x† ∈ X is called a ψ-minimizing solution of Kx† = y† if

ψ(x†) ≤ ψ(x), ∀x ∈ X such that Kx = y†.

Denote the subdifferential of ψ(x) at x† by ∂ψ(x†), i.e. ∂ψ(x†) = {ξ ∈ X∗ : ψ(x) ≥ ψ(x†) + 〈ξ, x −
x†〉,∀x ∈ X}, and the Bregman distance Dξ(x, x†) by

Dξ(x, x†) :=
{
ψ(x)− ψ(x†)− 〈ξ, x− x†〉 : ξ ∈ ∂ψ(x†)

}
.

We shall often omit the subscript ξ in the Bregman distance Dξ(x, x†).
Recall that the optimality condition of xα reads

−K
∗(Kxη − y†)

η
∈ ∂ψ(xη).
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Let xη → x† weakly as η → 0. Then we have

K∗w ∈ ∂ψ(x†),

if the limit limη→0
y†−Kxη

η exits in weak sense. The latter condition does not hold a priori, and it
represents the source condition.

We shall need the following error estimates, which plays the role of a triangle inequality for Bregman
distance.

Lemma 3.1. Let the exact solution x† fulfill the source condition: there exists an w ∈ Y such that
ξ = K∗w with ξ ∈ ∂ψ(x†), and let ξη = K∗(y† −Kxη)/η. Then there holds∣∣Dξ(xδη, x

†)− (Dξη (xδη, xη) +Dξ(xη, x†))
∣∣ ≤ 6‖w‖δ.

Proof. The complete proof of the lemma can be found in [22]. The definition of Bregman distance gives

Dξ(xδη, x
†) = Dξη (xδη, xη) +Dξ(xη, x†) + 〈ξ − ξη, xη − xδη〉

= Dξη
(xδη, xη) +Dξ(xη, x†) + 〈w + (Kxη − y†)/η,K(xη − xδη)〉.

Then it follows that∣∣Dξ(xδη, x
†)− (Dξη (xδη, xη) +Dξ(xη, x†))

∣∣ ≤ (‖w‖+ ‖Kxη − y†‖/η)‖K(xη − xδη)‖.

The proof is completed by observing the bound for ‖Kxη − y†‖/η and ‖K(xη − xδη)‖ [22].

Now we are ready to present another a posteriori error estimate.

Theorem 3.6. Assume that the exact solution x† satisfies the source condition: there exists a w ∈ Y
such that K∗w ∈ ∂ψ(x†). Let δ∗ = ‖Kxη∗ − yδ‖. Then for each η∗ given by the proposed criterion, there
holds

D(xδη∗ , x
†) ≤ C

(
1 +

F (δ)1+γ

F (η∗)1+γ

)
max{δ, δ∗}.

Proof. By Lemma 3.1, we have for any η

D(xδη, x
†) ≤ D(xδη, xη) +D(xη, x†) + 6‖w‖δ.

It suffices to estimate the two terms involving Bregman distance. We first estimate the term D(xη, x†).
To this end, observe by the minimizing property of the xη, i.e.,

1
2‖Kxη − y‖2 + ηψ(xη) ≤ 1

2‖Kx
† − y†‖2 + ηψ(x†) = ηψ(x†),

Collecting the terms and noting the definition of D(xη, x†), we have

1
2‖Kxη − y†‖2 + ηD(xη, x†) ≤ η〈ξ, x− x†〉,

which upon utilizing the source condition gives

1
2‖Kxη − y†‖2 + ηD(xη, x†) ≤ −η〈w,K(xη − x†)〉 ≤ η‖w‖‖K(xη − x†)‖.

Similarly, by the minimizing property of xδη, we have

1
2‖Kx

δ
η − yδ‖2 + ηψ(xδη) ≤ 1

2‖Kxη − yδ‖2 + ηψ(xη).

From the optimality condition of xη to Jη, we have ξ′ = − 1
ηK

∗(Kxη− y†) ∈ ∂ψ(xη). Therefore, we have

1
2‖Kx

δ
η − yδ‖2 + ηD(xδη, xη) ≤ 1

2‖Kxη − yδ‖2 − η〈ξ′, xδη − xη〉
= 1

2‖Kxη − yδ‖2 + 〈Kxη − y†,K(xδη − xη)〉
= 1

2‖Kx
δ
η − yδ‖2 − 1

2‖K(xδη − xη)‖2 − 〈y† − yδ,K(xη − xδη)〉.
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Consequently, we have

1
2‖K(xδη − xη)‖2 + ηD(xδη, xη) ≤ −〈y† − yδ,K(xη − xδη)〉

≤ ‖y† − yδ‖‖K(xη − xδη)‖.
(4)

With the help of these two estimates, we have

D(xη∗ , x†) ≤ ‖w‖‖Kxη∗ − y†‖
≤ ‖w‖(‖K(xη∗ − xδη∗)‖+ ‖Kxδη∗ − yδ‖+ ‖yδ − y†‖)
≤ ‖w‖(2δ + δ∗ + δ) ≤ 4‖w‖max(δ, δ∗).

Next we estimate the term D(xδη, xη). By inequality (4), we have

D(xδη∗ , xη∗) ≤
δ2

2η∗
.

Recalling the minimizing property of η∗, we have for η̂

F (η∗)1+γ

η∗
≤ F (η̂)1+γ

η̂
, i.e.

1
η∗

≤ F (η̂)1+γ

F (η∗)1+γ
1
η̂
.

We may take η̂ = δ and combine the above two inequalities to get

D(xδη∗ , xη∗) ≤
F (δ)1+γ

F (η∗)1+γ
δ

2
.

Now summarizing the three estimates gives

D(xδη∗ , x
†) ≤ C

(
1 +

F (δ)1+γ

F (η∗)1+γ

)
max{δ, δ∗},

with C = max{10‖w‖, 1
2}. This concludes the proof of the theorem.

In case that the regularization functional ψ is uniformly convex functionals, e.g. 1
p‖ · ‖

p
`p and ‖ ·

‖Wk,p(k ≥ 0, p > 1) [3], the above result directly yields a convergence rate in norms. However, the
interesting case of `1 regularization, i.e. X = `2 and ψ(x) = ‖x‖`1 is not covered, as the Bregman
distance can vanish for distinct x and x′. This can be remedied as below. To this end, we recall the
following result [15].

Lemma 3.2. Let X = `2 and ψ(x) = ‖x‖`1 . Assume that the solution x† is sparse and satisfies the
source condition: there exists a w ∈ Y such that K∗w ∈ ∂ψ(x†), and the operator K satisfies for any
finitely supported x1 and x2, there holds Kx1 = Kx2 implies x1 = x2. Then there exist two positive
constants c1 and c2 such that

‖x− x†‖`2 ≤ c1[ψ(x)− ψ(x†)] + c2‖K(x− x†)‖.

We can now state a third a posteriori error estimate.

Theorem 3.7. Assume that the conditions in Lemma 3.2 are satisfied, and η∗ is determined by the
criterion Φγ . Then there exists a constant C > 0 such that

‖xδη∗ − x†‖ ≤ C

(
1 +

F (δ)1+γ

F (η∗)1+γ

)
max{δ, δ∗}.
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Proof. By Lemma 3.2, the definition of Bregman distance D(x, x†), the source condition and the Cauchy-
Schwarz inequality, we have

‖x− x†‖ ≤ c1[ψ(x)− ψ(x†)] + c2‖K(x− x†)‖
= c1D(x, x†) + c1〈ξ, x− x†〉+ c2‖K(x− x†)‖
= c1D(x, x†) + c1〈w,K(x− x†)〉+ c2‖K(x− x†)‖
≤ c1D(x, x†) + (c1‖w‖+ c2)‖K(x− x†)‖.

Now by virtue of Lemma 3.1, we have

‖xδη∗ − x†‖ ≤ c1(D(xδη∗ , xη∗) +D(xη∗ , yδ) + 6‖w‖δ) + (c1‖w‖+ c2)‖K(xδη∗ − x†)‖.

Next we bound each term on the right hand side. First observe

‖K(xδη∗ − x†)‖ ≤ ‖Kxδη∗ − yδ‖+ ‖yδ −Kx†‖ ≤ δ∗ + δ ≤ 2 max{δ, δ∗}.

Then for the term D(xη∗ , x†), we obtain as before

D(xη∗ , x†) ≤ ‖w‖‖K(xη∗ − x†)‖
≤ ‖w‖(‖K(xη∗ − xδη∗)‖+ ‖Kxδη∗ − yδ‖+ δ)

≤ ‖w‖(2δ + δ∗ + δ) ≤ 4‖w‖max{δ, δ∗}.

Finally, for the term D(xδη∗ , xη∗), we proceed as before to obtain

D(xδη∗ , xη∗) ≤
F (δ)1+γ

F (η∗)1+γ
δ

2
.

Now combining the above three estimates gives

D(xδη, x
†) ≤ C

(
1 +

F (δ)1+γ

F (η∗)1+γ

)
max{δ, δ∗},

with C = max{12c1‖w‖+ c2,
c1
2 }. This completes the proof of the theorem.

The preceding three theorems indicate that the approximation xδη∗ with η∗ chosen by the rule Φγ
converges to the exact solution x† at an identical rate for a priori rule and discrepancy principle under
the same source condition [4, 23], so long as the discrepancy δ∗ is of order δ.

4 Numerical algorithm

We propose to compute a minimizer of the function Φγ by the following simple fixed point iteration
algorithm.

Fixed point algorithm

(i) Set k = 0 and choose η0.

(ii) Solve for xk+1 by the Tikhonov regularization method

xk+1 = arg min
x

{
φ(x, yδ) + ηkψ(x)

}
.
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(iii) Update the regularization parameter ηk+1 by

ηk+1 =
1
γ

φ(xk+1, y
δ)

ψ(xk+1)
.

(iv) Check the stopping criterion. If not converged, set k = k + 1 and repeat from Step (ii).

We would like to point out that we have not specified the solver for Tikhonov regularization problems
arising in Step (ii). The problem per se may be approximately solved with an iterative algorithm, which
was adopted in our numerical experiments. Numerically, we have observed that it will not jeopardize the
steady convergence of the fixed point algorithm so long as the the regularization problem is solved with
reasonable accuracy.

The following lemma provides an interesting and practically very important observation on the mono-
tonicity of the sequence {ηk} generated by fixed point algorithm, and the monotonicity is key to the
demonstration of the convergence of the algorithm. We introduce r(η) = φ(xη, yδ)− γηψ(xη).

Lemma 4.1. For any initial guess η0, the sequence {ηk}k generated by the algorithm is monotone.
Moreover, the sequence is monotonically decreasing (increasing) if r(η0) < 0 (r(η0) > 0).

Proof. By the definition of ηk, we have

ηk − ηk−1 = γ−1 φ(xk,y
δ)

ψ(xk) − γ−1 φ(xk−1,y
δ)

ψ(xk−1)

= φ(xk)ψ(xk−1)−φ(xk−1)ψ(xk)
γψ(xk−1)ψ(xk)

= [φ(xk)−φ(xk−1)]ψ(xk−1)+φ(xk−1)[ψ(xk−1)−ψ(xk)]
γψ(xk−1)ψ(xk)

We assume that ηk 6= ηk−1, otherwise it is trivial. Lemma 2.2 indicates that each term is of the same
sign with ηk−1 − ηk−2, and the sequence {ηk}k is monotone. Next observe that if r(η0) > 0, there holds

η1 = φ(xη0 ,y
δ)

γψ(xη0 ) > η0.

The remaining assertion follows from this directly.

Remark 4.1. In the lemma, the uniqueness of the solution xη is not required. The lemma holds for any
xη belongs to the set Mη of minimizers of Jη.

We note that in Lemma 4.4, the sequence can diverge to +∞, i.e. the convergence in general can only
be understood in a generalized sense. Nonetheless, the convergence can be ensured if the initial guess η0
satisfies r(η0) < 0.

Theorem 4.1. Assume that the initial guess η0 satisfies r(η0) < 0. The sequence {ηk}k converges.

Proof. By Lemma 4.1, the sequence {ηk}k is monotonically decreasing, and it is bounded from below by
zero. Therefore, it converges.

Remark 4.2. Assume that F ′′ exists. Then the asymptotic convergence rate r∗ of the algorithm is
dictated by

r∗ := lim
k→∞

η∗−ηk+1
η∗−ηk

= d
dηγ

−1 φ(xη,y
δ)

ψ(xη) |η=η∗ = γ−1 d
dη

[F (η)−ηF ′(η)]
F ′(η) |η=η∗

= γ−1−F ′′(η∗)[η∗F ′(η∗)+F (η∗)−η∗F ′(η∗)]
(F ′(η∗))2

= −γ−1 F
′′(η∗)

ψ(xη∗ )2

[
η∗ψ(xη∗) + φ(xη∗ , yδ)

]
= −F ′′(xη∗ )F (xη∗ )

γψ(xη∗ )2 .

By noting the relation γη∗ψ(xη∗) = φ(xη∗ , yδ) at a critical point η∗, we derive

r∗ = (1 + γ−1)−η
∗F ′′(η∗)
ψ(xη∗ ) .

The monotonicity of the sequence {ηk}k implies that r∗ ≤ 1, however, a precise estimate of the rate r∗ is
still missing. Nonetheless, a fast convergence of the algorithm is always numerically observed.
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Next we examine the descent property of sequence {ηk}k for the function Φγ . This is not evident as
the fixed point algorithm involves only the necessary optimality condition, see equation (2). To simplify
notation, we shall denote by T the operator

T (η) = γ−1 φ(xδ
η,y

δ)

ψ(xδ
η)

.

The next result shows the monotonicity of the operator T .

Lemma 4.2. The operator T is monotone in the sense that if 0 < η0 < η1, then

T (η0) ≤ T (η1). (5)

Proof. By the monotonicity of φ and ψ with respect to η, see Lemma 2.2, we have

φ(xδη0 , y
δ) ≤ φ(xδη1 , y

δ), ψ(xδη0) ≥ ψ(xδη1). (6)

The result now follows directly from the definition of the operator T .

Lemma 4.3. For any η0, the sequence {T kη0}k is either strictly monotone or there exists some k0 such
that {T kη0}k0k=0 is strictly monotone and T kη0 = T k0η0 for all k ≥ k0.

Proof. By Lemma 2.2, the sequence {T kη0}k is always monotone. Without loss of generality, we may
assume that it is monotonically increasing. If the sequence is not strictly monotonically increasing, then
there exists a smallest positive integer k0 ∈ N such that

T k0η0 = T k0+1η0.

Applying the operator T repeated on the identity concludes the proof of the assertion.

We shall also need a “sign-preserving” property of the operator T : the function r(η) cannot vanish
or change sign on the open interval between η0 and the limit η∗ of the sequence {T k(η0)}k.

Lemma 4.4. Let η0 be such that {T k(η0)} converges to η∗. Then the function r(η) can’t vanish or change
sign over the open interval (min(η0, η∗),max(η0, η∗)).

Proof. Without loss of generality we assume that η0 < T (η0), or equivalently r(η0) > 0, as the other case
can be treated similarly. Assume that the assertion is false, i.e. the function r(η) vanishes or changes
sign over the open interval (min(η0, η∗),max(η0, η∗)). Therefore, there exists a η̂ ∈ (η0, η∗) such that
r(η̂) ≤ 0, i.e. T (η̂) ≤ η̂, by Lemma 4.1. Appealing again to Lemmas 4.1 and 4.3, there exists some k ∈ N
such that

T k(η0) ≤ η̂ < T k+1(η0).

However, by Lemma 4.2, we have

η̂ < T k+1(η0) ≤ T (η̂) ≤ T k+2(η0),

which is a contradiction to T (η̂) ≤ η̂.

Now we are in a position to the descent property of the fixed point algorithm.

Theorem 4.2. The sequence {ηk}k is descent for the function Φγ .

Proof. By Theorem 2.1, the function F is monotone. Thus it is almost everywhere differentiable. There-
fore, for almost every η ∈ R+, we have

Φ′γ(η) = γγ

(1+γ)1+γ

Fγ(η)
η2 (−r(η)).
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By Lemma 4.4, the function r(η) remains the same sign over the interval (min(η0, η∗),max(η0, η∗)).
Without loss of generality we may assume the sequence is increasing, i.e. r(η) > 0. By the monotonicity
of the functions φ and ψ, there are at most countable discontinuity points, where Φ′γ has only bounded
jumps, over the interval. Therefore,

Φγ(ηk+1) = Φ(ηk) +
∫ ηk+1

ηk

Φ′γ(η) < Φ(ηk).

This shows the desired the descent property.

Remark 4.3. Under further conditions on the value function F , e.g. the second order derivative F ′′

exists and continuous, then an analogous descent property holds also for the function Ψ.

By the strict descent property of the sequence {ηk} for the function Φγ , we have the next result.

Proposition 4.1. The limit η∗ of a sequence {ηk} by the fixed point algorithm is a critical point of the
function Φγ .

Interestingly, the asymptotic convergence rate r∗ in Remark 4.2 is intimately connected with the
minimizing property of η∗ to Φγ(η), as revealed in the following proposition.

Proposition 4.2. Assume that F ′′ exists. Let η∗ be a critical point to the function Φγ such that Φγ
verifies the second-order derivative test and F ′′(η∗) 6= 0. Then r∗ < 1 if and only if η∗ is a local minimizer.

Proof. The second-order derivative of Φγ(η) at η∗ is computed as

Φ′′γ(η
∗) = γγ

(1+γ)1+γ

Fγ(η∗)
(η∗)2 [γF ′(η∗) + (1 + γ)η∗F ′′(η∗)] > 0.

Lemma 2.2 indicates that F ′(η) = ψ(xδη) is non-increasing with respect to η, thus the function F ′′(η) is
always non-positive. The first term in the square bracket is always positive. Under the assumption that
Φγ verifies the second-order derivative test at extrema and F ′′(η∗) 6= 0, we deduce that a critical point
η∗ is a local minimizer of Φγ(η) if

γF ′(η∗) + (1 + γ)η∗F ′′(η∗) > 0.

By rearranging the terms, we arrive at

r∗ = (1 + γ−1)−η
∗F ′′(η∗)
F ′(η∗) < 1.

The converse follows easily by reversing all the steps.

5 Numerical results

This section presents numerical results for several benchmark linear inverse problems, which are adapted
from Hansen’s package Regularization Tool [16] and range from mild to severe ill-posedness, by non-
smooth Tikhonov formulations, to illustrate features of the new criterion. These are Fredholm integral
equations of the first kind with kernel k(s, t) and solution x(t). The discretized linear system takes the
form Kx = yδ, and is of size 300×300. The regularizing functional is referred to as φ-ψ type, e.g. L1-TV
denotes the one with L1 data-fitting and TV regularization.

Unless otherwise specified, the data is contaminated by additive Gaussian noise, i.e. yδi = yi +
maxi{|yi|}εξi, where ξi are standard normal random variables, and ε refers to the relative noise level.
Six noise levels, i.e. ε ∈ {5 × 10−2, 1 × 10−2, 1 × 10−3, 1 × 10−4, 1 × 10−5, 1 × 10−6}, are considered. In
the fixed point algorithm, the initial guess η0 is taken to be 1 × 10−3, and it is stopped if the relative
change of η is smaller than 1× 10−3. The nonsmooth minimization problems arising from L2-TV , L2-`1
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Table 1: Numerical results for Example 1 with different noise levels.
ε δt δb γ ηb eb ηo eo

5e-2 3.12e-1 3.15e-1 5.46e0 1.11e-4 8.74e-2 4.04e-6 2.58e-2
1e-2 6.24e-2 6.23e-2 2.44e0 7.16e-6 1.60e-2 6.25e-7 7.71e-3
1e-3 6.24e-3 6.21e-3 7.68e-1 2.13e-7 4.15e-3 7.20e-8 3.35e-3
1e-4 6.24e-4 6.19e-4 2.41e-1 6.65e-9 1.68e-3 1.68e-9 1.44e-3
1e-5 6.24e-5 6.15e-5 7.58e-2 2.08e-10 5.25e-4 8.29e-11 5.88e-4
1e-6 6.24e-6 1.03e-5 2.50e-2 1.57e-11 2.77e-3 3.91e-11 4.74e-4

and L1-TV formulations are solved by the iteratively reweighted least-squares method. The accuracy of
the reconstruction xη is measured by the relative error e = ‖xδη − x†‖L2/‖x†‖L2 .

Note that as a consequence of Theorem 3.4, heuristic choice rules suffer from nonconvergence. In
particular, the parameter γ in the criteria Φγ and Ψγ should depend on the noise level δ, even though
the dependence can be rather weak. To the best of our knowledge, there is no known rule for choosing an
appropriate value for the parameter γ in the criterion Ψγ since its appearance. To remedy this difficulty,
we propose the following two-step procedure for determining γ.

Two-step procedure

(a) Give γ0 and η0.

(b) Run the fixed point algorithm with γ0 and η0 until convergence, with limit η̃.

(c) Calculate the functional value φ(xδη̃, y
δ).

(d) Set γ as follows

γ = γ0

(
φ(xδη̃, y

δ)
0.05φ(0, yδ)

)d
,

with d = 1
4 and d = 1

2 for L2 and L1 data fitting, respectively. Unless otherwise stated, γ0 = 10.

5.1 L2-H1 with constraint

Example 1 (gravity surveying [16] with nonnegativity constraint). The functions k and x are given by

k(s, t) = 1
4

(
1
16 + (s− t)2

)− 3
2 and x(t) = sin(πt) + 1

2 sin(2πt), respectively, and the integration interval is
[0, 1].

The function x stands for material density, and thus it is natural to enforce nonnegativity constraint.
The constrained optimization problems are solved by built-in MATLAB function quadprog. The problem
is severely ill-posed with a condition number 4.54× 1019.

The numerical results for Example 1 with various noise levels are shown in Table 1. In the table, δt
and δb stand for the true noise level and the one estimated by computing φ(xδη∗ , y

δ). The value for γ
is determined by the two-step procedure. The subscripts b and o respectively denote the result by the
proposed criterion and the optimal one, which is determined by calculating the solution for a range of
regularization parameters and then selecting the one with smallest relative error. Firstly, we observe that
the estimated noise level δb is in excellent agreements with the exact noise level. Secondly, the parameter
γ adapts itself automatically to noise level: its value decreases as the noise level δt decreases. With this
automatic adaption of γ, the regularization parameter determined by the proposed criterion, i.e. ηb, is
close to the optimal one ηo, for all six noise levels under consideration. Consequently, the respective
reconstructions are accurate, and within a factor of three compared to the optimal one. Fig. 1(c) shows
the reconstruction given by the proposed criterion for 5% noise, which is fairly close to the exact one. We

19



10
−10

10
−8

10
−6

10
−4

10
−2

10
−6

10
−4

10
−2

10
0

η

Φ
γ

Ψ
γ

(a) 2 4 6 8 10
10

−8

10
−6

10
−4

10
−2

k

η
k−1

Φ
γ
(η

k−1
)

(b) 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

t

x

numerical

exact

(c)

Figure 1: Numerical results for Example 1 with 5% noise: (a) Φγ v.s. Ψγ with γ = 5.46, (b) convergence
of algorithm, and (c) reconstruction.

Table 2: Numerical results for Example 2 with different noise levels.
ε δt δb γ ηb eb ηo eo

5e-2 2.52e-1 2.51e-1 5.38e0 3.00e-3 2.41e-1 1.75e-4 2.16e-1
1e-2 5.05e-2 5.02e-2 2.40e0 2.64e-4 1.28e-1 7.20e-5 1.12e-1
1e-3 5.05e-3 5.02e-3 7.59e-1 8.31e-6 9.39e-2 8.68e-6 9.39e-2
1e-4 5.05e-4 5.02e-4 2.39e-1 2.63e-7 7.97e-2 1.84e-7 7.95e-2
1e-5 5.05e-5 5.00e-5 7.57e-2 8.27e-9 7.53e-2 5.96e-8 7.36e-2
1e-6 5.05e-6 4.98e-6 2.39e-2 2.61e-10 6.60e-2 1.84e-11 6.32e-2

would like to point out that the reconstruction for fixed γ without automatic adapting tends to oscillate
as the noise level decreases to zero. Therefore, the two-step procedure is necessary.

In Section 3.1, we have analytically compared the proposed criterion with Regińska’s criterion, and
concluded that the former is sharper than the latter. We illustrate this numerically, see Fig. 1(a). The
curve Ψγ is relatively flat in the region [1 × 10−7, 2 × 10−3], although there is a local minimum. In
contrast, the function Φγ has a distinct minimum at 1.11× 10−4. The descent property of sequence {ηk}
for the function Φγ is shown in Fig. 1(b). A rapid and steady convergence of the fixed point algorithm
is also observed: the iterate {ηk} is monotonic and the convergence is numerically achieved within four
iterations. Similar convergence behavior is observed for other noise levels.

5.2 L2-TV

Example 2 (TV reconstruction, adapted from shaw [16]). The functions k and x are given by k(s, t) =
(cos s+cos t)

(
sinu
u

)2
with u(s, t) = π(sin s+sin t) and x(t) = χ[−π

6 ,
π
6 ] with χ being the indicator function,

respectively and the integration interval is [−π
2 ,

π
2 ].

The problem is severely ill-posed with a condition number 4.19×1020. The exact solution x is piecewise
constant, and thus TV regularization is deemed suitable. The numerical results are summarized in Table
2. Again the estimated noise level δb represents an excellent approximation to the exact one δt. The
accuracy eb of the reconstructions improves as the noise level δt decreases, and it is comparable with the
optimal one. The reconstructed profile remains accurate and stable for ε up to 5%, see Fig. 2(c). Note
that it exhibits typical stair-casing effect of TV regularization.

For the L2-TV formulation, the criterion Ψγ has only an ambiguous local minimum, see Fig. 2(a). The
curve is very flat over a wide range, which can potentially cause numerical problems to some algorithms
for locating the minimum with gradient-type algorithm. In sharp contrast, the proposed criterion still
has a very distinct minimum. This numerically validates the theoretical results in Section 3.1. A fast and
steady convergence of the fixed point algorithm is again observed, and the convergence is reached within
four iterations. Therefore, it is computationally very efficient. Numerically, we found that at Step (b) of
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Figure 2: Numerical results for Example 2 with 5% noise: (a) Φγ v.s. Ψγ with γ = 5.38, (b) convergence
of algorithm, and (c) reconstruction.

Table 3: Numerical results for Example 3.
ε δt δb γ ηb eb ηo eo

5e-2 2.74e-2 2.69e-2 5.70e-1 2.63e-3 6.39e-1 8.11e-4 5.99e-1
1e-2 5.49e-3 5.36e-3 2.55e-1 2.33e-4 4.61e-1 3.39e-4 4.59e-1
1e-3 5.49e-4 5.33e-4 8.01e-2 7.38e-6 3.94e-1 1.00e-5 3.90e-1
1e-4 5.49e-5 5.31e-5 2.49e-2 2.36e-7 1.98e-1 2.95e-9 1.32e-1
1e-5 5.49e-6 5.27e-6 7.30e-3 7.92e-9 3.37e-2 3.09e-10 1.32e-2
1e-6 5.49e-7 4.75e-7 3.66e-2 1.28e-11 2.91e-3 1.76e-10 2.18e-3

the two-step procedure, there is no need to let the fixed point algorithm run to convergence. One or two
fixed point iterations would suffice the goal of adapting the parameter γ.

5.3 L2-`1

Example 3 (Sparse reconstruction, adapted from phillips [16]). Let ϕ(t) =
[
1 + cos πt3

]
χ|t−s|<3, and

S = [−3,−2.96]∪[0.6, 0.64]∪[3, 3.04]. The functions k and x are given by k(s, t) = ϕ(s−t) and x(t) = χS,
respectively, and the integration interval is [−6, 6].

The problem is mildly ill-posed with a condition number 2.14 × 108. The exact solution consists of
three small spikes and has a sparse representation with respect to pixel basis, and thus `1 regularization
is suitable. For this problem, γ0 is set to 1. The numerical results are show in Table 3 and Fig 3. The
numerical solution shows the feature of sparsity-promoting `1 regularization: the locations of the all three
small spikes are perfectly detected, and the retrieved magnitudes are acceptable taking into account the
large amount of noise.

Again, the criterion Ψγ is very flat over some region, whereas the criterion Φγ exhibits a clear local
minimum over there. The algorithm converges steadily and quickly within six iterations for all five noise
levels, and function Φγ decreases monotonically as the iteration proceeds.

5.4 L1-TV

Example 4 (Deblurring 1D image). The functions k and x are given by k(s, t) = 1
4
√

2π
e−

(s−t)2

0.0032 χ|s−t|<0.15

and x(t) = χ[.34,.66], respectively, and the integration interval is [0, 1].

The problem is mildly ill-posed with a condition number 7.35×107. The data is corrupted by additive
random valued impulsive noise as follows

yδi =
{
yi + σmξi, with probability q,
yi, with probability 1− q,
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Figure 3: Numerical results for Example 3 with 5% noise: (a) Φγ v.s. Ψγ with γ = 5.70 × 10−1, (b)
convergence of algorithm, and (c) reconstruction.

Table 4: Numerical results for Example 4.
(ε, q) δt δb γ ηb eb ηo eo

(0.1,0.3) 1.74e-2 1.74e-2 1.06e1 8.25e-4 4.37e-7 1.84e-3 7.66e-8
(0.3,0.3) 5.22e-2 5.22e-2 1.78e1 1.47e-3 9.25e-8 1.84e-3 7.68e-8
(0.5,0.3) 8.69e-2 8.69e-2 2.24e1 1.95e-3 7.59e-8 1.84e-3 7.68e-8
(0.7,0.3) 1.22e-1 1.22e-1 2.57e1 2.37e-3 8.84e-8 1.84e-3 7.68e-8
(0.9,0.3) 1.56e-1 1.56e-1 2.81e1 2.79e-3 1.14e-7 1.84e-3 7.68e-8
(1.0,0.1) 5.86e-2 5.86e-2 1.83e1 1.61e-3 6.10e-8 5.96e-4 3.95e-8
(1.0,0.2) 1.32e-1 1.32e-1 2.57e1 2.58e-3 1.20e-7 9.10e-4 8.72e-8
(1.0,0.3) 1.74e-1 1.74e-1 2.91e1 3.00e-3 1.28e-7 1.84e-3 7.68e-8
(1.0,0.4) 2.35e-1 2.34e-1 3.17e1 3.66e-3 1.57e-1 1.00e-2 1.48e-1
(1.0,0.5) 3.27e-1 3.27e-1 3.50e1 4.69e-3 1.98e-2 2.81e-3 1.26e-2
(1.0,0.6) 3.77e-1 3.77e-1 3.68e1 5.12e-3 8.26e-2 2.72e-2 7.96e-2

where ξi is the standard Gaussian random variable, the constant σm := εmax1≤i≤100 |yi|. The L1

data fidelity and TV regularization are adopted to cope with the impulsive nature of the noise and to
reconstruct piecewise constant solutions, respectively.

The numerical results for the problem are summarized in Table 4. The two parameters in the noise
model, i.e. the magnitude ε and the corruption percentage q, exert dramatically different effects on the
reconstruction. The corruption percentage q has a profound effect on the reconstruction accuracy: the
error e is reduced by an order of two as q decreases from 0.6 to 0.1. With q fixed at 0.3, the reconstruction
accuracy remains almost unchanged as the corruption magnitude ε increases from 0.1 to 0.9. This is in
stark contrast with preceding L2 data fitting. The exceedingly high accuracy is attributed to the fact that
L1 data fitting functional can detects the noise sites and encourages exact data fitting at remaining ones.
This has been previously observed, see e.g. reference [10] for detailed numerical demonstrations in the
context of L1-L2 functional and [7] and references therein for theoretical investigations. For the L1-TV
functional [7], η plays the role of a characteristic parameter, and at some specific values the profile of
the solution undergoes sudden transition. This explains the observation that even though there is some
discrepancy between the regularization parameters by the proposed criterion and the optimal ones, the
accuracy of the reconstructions remains very close to each other. Moreover, the estimated noise level is
always very accurate. The numerical reconstruction for (ε, q) = (1.0, 0.6) is shown in Fig. 4(c), which
approximates excellently the exact one.

The criterion Ψγ for the problem is nonsmooth, see Fig. 4(a). This is attributed to the fact that
the Tikhonov functional is not strictly continuous and there can exist multiple minimizers, and then
the functions φ(xη, yδ) and ψ(xη) can have discontinuity points. Consequently, the criterion Ψγ can
be discontinuous, and thus ill-defined. In addition, it is very flat over a range, which causes numerical
inconveniences. However, the proposed criterion Φγ is based on the value function F (η), which is always
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Figure 4: Numerical results for Example 4 with (1.0, .6): (a) Φγ v.s. Ψγ with γ = 3.68 × 101, (b)
convergence of algorithm, and (c) reconstruction.
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Figure 5: Numerical results for Example 5 with δ = 2.00 × 10−2: (a) Φγ v.s. Ψγ with γ = 4.79 × 10−1

and (b) convergence of algorithm.

continuous irrespective of the uniqueness of minimizer to the functional Jη. Thus the function Φγ is
always smoother than Ψγ . Moreover, it still exhibits a distinct minimum. A steady and fast convergence
of the fixed point algorithm is also observed, and the descent property of the iteration for the criterion
Φγ remains true, see Fig. 4(b), which corroborates Theorem 4.2.

5.5 L2-elastic net

Example 5 (2D image deblurring). This is the blur example from Regularization toolbox [16]. We set
the parameters N=50, band=5 and sigma=5. The true solution is shown in Fig. 6(a).

The problem is mildly ill-posed with a condition number 5.83 × 1012. We employed the so-called
elastic-net regularization [35], i.e. ψ(x) = ‖x‖`1 + ρ

2‖x‖
2
`2 , with a fixed ρ = 1 × 10−3. Elastic net

regularization stabilizes the `1-norm regularization, and statistically favors a grouping effect, see [35],
and thus it is deemed suitable for identifying the group structure. For this example, γ0 is set to 1. The
nonsmooth optimization problem is solved by a Newton type method.

The numerical results are shown in Figs. 5 and 6. The value of γ determined by the two step
procedure is 4.79 × 10−1. Firstly, we observe that the criterion Ψγ varies little over the range [1.0 ×
10−4, 1.0 × 10−2], whereas the criterion Φγ has a distinct minimum. Secondly, the proposed algorithm
converges very steadily and rapidly, and three to four iterations of the algorithm can yield a very good
approximation. The estimated noise level is δb = 1.76×10−2, which slightly under-estimates the exact one
δt = 2.00×10−2. The regularization parameter determined by the proposed criterion is ηb = 6.30×10−4,
and it is smaller than the optimal value ηo = 2.15 × 10−2. In terms of visual inspection, these two
reconstructions can identity the group structure clearly and are close to each other and thus represent
reasonable reconstructions. However, the reconstruction of the cross by the proposed criterion is clearly
better than the optimal one, i.e. xo. The comparison is also explicitly indicated by the respective
reconstruction errors, i.e. eb = 1.05 and eo = 7.68× 10−1. This example clearly illustrates the optimality
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Figure 6: (a) The exact solution x†, (b) the reconstruction xb by the proposed criterion and (c) the
reconstruction xo with the smallest error eo, obtained by sampling 50 values of η.

of the proposed criterion and the fixed point algorithm for high-dimensional problems.

6 Conclusions

We have proposed, analyzed and implemented a new criterion for choosing the regularization parameter
in nonsmooth Tikhonov regularization. Firstly, we established some properties of the minimum value
function, especially differentiability properties. The new criterion is solely defined in terms of the value
function. The proposed criterion is analytically compared with an existing criterion due to Regińska. In
particular, it is shown that the former is numerically more amenable in case both are well-defined as the
minimizers are more sharply located. A posteriori error estimates were derived to partially justify the
algorithm. An effective fixed point algorithm is suggested, and its monotonically convergence is inves-
tigated. In particular, the monotonicity and descent property of the iterates for the proposed criterion
were established, and a local linear convergence of algorithm was also shown. Numerical results of five
regularizing formulations, i.e. L2-H1 with constraint, L2-TV , L2-`1, L1-TV and elastic net regulariza-
tion, for several benchmark examples are presented to illustrate its salient features. The numerical results
indicate that the proposed rule is effective in that it can deliver acceptable results, which are comparable
with the optimal choice, and the algorithm merits a fast and steady convergence.
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