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The logarithms of Dehn twists

Nariya Kawazumi and Yusuke Kuno

Abstract

By introducing an invariant of loops on a compact oriented surface with one
boundary component, we give an explicit formula for the action of Dehn twists on the
completed group ring of the fundamental group of the surface. This invariant can be
considered as “the logarithms” of Dehn twists. The formula generalizes the classical
formula describing the action on the first homology of the surface, and Morita’s
explicit computations of the extended first and the second Johnson homomorphisms.
For the proof we use a homological interpretation of the Goldman Lie algebra in the
framework of Kontsevich’s formal symplectic geometry. As an application, we prove
the action of the Dehn twist of a simple closed curve on the k-th nilpotent quotient
of the fundamental group of the surface depends only on the conjugacy class of the
curve in the k-th quotient.

1 Introduction

Let Σ be a compact oriented C∞-surface of genus g > 0 with one boundary component,
and Mg,1 the mapping class group of Σ relative to the boundary. In other words, Mg,1

is the group of diffeomorphisms of Σ fixing the boundary ∂Σ pointwise, modulo isotopies
fixing the boundary pointwise. Choose a basepoint ∗ on the boundary ∂Σ. The groupMg,1

(faithfully) acts on π = π1(Σ, ∗), hence on the nilpotent quotients of π. For example,Mg,1

acts on the first homology group H1(Σ;Z) ∼= π/[π, π], and this gives rise to the classical
representation

Mg,1 → Sp(2g;Z),

whose kernel is called the Torelli group Ig,1. Looking at the kernel of the action on the
higher nilpotent quotients of π, we obtain a series of normal subgroups ofMg,1, denoted
by Mg,1[k], k ≥ 1, so that Mg,1[1] = Ig,1. More precisely, the group Mg,1[k] consists of
the mapping classes acting trivially on the k-th nilpotent quotient of π (see §7.4).

In this view point, the quotients Mg,1/Mg,1[k] serve as approximations of Mg,1, and
the successive quotientsMg,1[k]/Mg,1[k+1] can be seen as particles of them. A systematic
study of these particles was initiated by Johnson [11] [12]. He introduced a series of group
homomorphisms

τk :Mg,1[k]→ Hom(H,Lk), k ≥ 1,

which induce the injections τk : Mg,1[k]/Mg,1[k + 1] ↪→ Hom(H,Lk), k ≥ 1. Here H
is the first integral homology of the surface and Lk is the degree k-part of the free Lie
algebra generated by H. The homomorphism τk is nowadays called the k-th Johnson
homomorphism. He extensively studied the first and the second Johnson homomorphisms,
and in [13] he proved τ1 gives the free part of the abelianization of Ig,1.
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One of several significant developments which followed the initial works of Johnson is
about extensions of the Johnson homomorphisms to the whole mapping class group. In
[22], Morita showed that the first Johnson homomorphism τ1 extends to the whole group
Mg,1 as a crossed homomorphism, denoted by k̃ ∈ Z1(Mg,1;

1
2
Λ3H). Here, Λ3H is the third

exterior product ofH. He also showed that the extension is unique up to coboundaries. The
arguments in [22] are supported by many explicit computations on Humphreys generators,
which are generators ofMg,1 consisting of several Dehn twists. In [23] [24], Morita further
showed that the second Johnson homomorphism τ2 also extends to the whole Mg,1 as a
crossed homomorphism, and again did many explicit computations.

After the works of Morita, there have been known several studies including Hain [10]
and Day [7] [8] about extensions of the Johnson homomorphisms to the whole mapping
class group. Another approach by using the notion of generalized Magnus expansions is
developed in [14]. Hereafter, let H = H1(Σ;Q). Roughly speaking, a Magnus expansion

in the sense of [14] is an identification θ : Q̂π
∼=→ T̂ as complete augmented algebras, where

Q̂π is the completed group ring of π and T̂ is the completed tensor algebra generated by
H. Once we choose a Magnus expansion θ, then we have an injective homomorphism

T θ :Mg,1 → Aut(T̂ )

called the total Johnson map associated to θ. The map T θ can be understood as a tensor

expression of the action of Mg,1 on the completed group ring of π, since θ : Q̂π
∼=→ T̂ is

an isomorphism. For details, see §2.5. As was clarified in [14], T θ induces θ-dependent
extensions of all the Johnson homomorphisms τk, denoted by τ θk where k ≥ 1, to the whole
mapping class group. τ θk ’s are no longer homomorphisms, and are not crossed homomor-
phisms if k ≥ 2, but satisfy an infinite sequence of coboundary conditions.

Note that the fundamental group π is a free group of rank 2g. Actually the treatment
in [14] is on Aut(Fn), the automorphism group of a free group of rank n, rather than the
mapping class group. As long as we just regard π as a free group, it does not seem a
matter of concern which Magnus expansion we choose. However, recently Massuyeau [20]
introduced the notion of a symplectic expansion, which seems suitable for the study ofMg,1

from the view point of Magnus expansions. A symplectic expansion is a Magnus expansion
of π respecting the fact that π has a particular element corresponding to the boundary of
Σ. For precise definition, see §2.4.

In this paper, we begin a quantitative approach to the topology of Σ and the mapping
class groupMg,1 via a symplectic expansion. The primary theme is the Dehn twist formula
for the total Johnson map associated to a symplectic expansion. As was stated above, Dehn
twists generate the mapping class group Mg,1. We introduce an invariant of loops on Σ,
and derive a formula of the values of T θ on Dehn twists in terms of this invariant. It is
classically known that the action of a Dehn twist on the homology of an oriented surface is
given by transvection. Our formula can be seen as a generalization of this fact. Moreover,
it gives formulas for the extensions τ θk and recovers some computations of Morita on the
extended τ1, and τ2. Behind our proof of the above formula, a close relationship between
the Goldman Lie algebra of Σ and formal symplectic geometry plays a vital role. The
relationship is established via a symplectic expansion, and this is another theme of this
paper keeping pace with the first.
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1.1 Statement of the main results

Let us briefly introduce several notations. The completed tensor algebra T̂ =
∏∞

m=0H
⊗m

has a decreasing filtration of two-sided ideals given by T̂p :=
∏∞

m≥pH
⊗m, for p ≥ 1. For a

Magnus expansion θ, let ℓθ := log θ. Then ℓθ is a map from π to T̂1. Define a linear map
N : T̂1 → T̂1 by N |H⊗p =

∑p−1
m=0 ν

m, for p ≥ 1, where ν : H⊗p → H⊗p is the map induced
from the cyclic permutation. For x ∈ π, let

Lθ(x) :=
1

2
N(ℓθ(x)ℓθ(x)) ∈ T̂2.

It turns out that Lθ(x−1) = Lθ(x), and Lθ(yxy−1) = Lθ(x) for x, y ∈ π. Thus if γ is an

unoriented loop on Σ, Lθ(γ) ∈ T̂2 is well-defined by taking a representative of γ in π. Using

the Poincaré duality, we make an identification T̂1 = H⊗T̂ ∼= Hom(H, T̂ ) and regard Lθ(γ)

as a derivation of T̂ by applications of the Leibniz rule.

Figure 1: the right handed Dehn twist

ℓ

C C

tC(ℓ)

Let C be a simple closed curve on Σ. We denote by tC ∈Mg,1 the right handed Dehn

twist along C (see Figure 1). By the remark above, Lθ(C) ∈ T̂2 is defined. This invariant
turns out to be “the logarithm” of tC :

Theorem 1.1.1 (=Theorem 7.1.1). Let θ be a symplectic expansion and C a simple closed
curve on Σ. Then the total Johnson map T θ(tC) is described as

T θ(tC) = e−L
θ(C). (1.1.1)

Here, the right hand side is the algebra automorphism of T̂ defined by the exponential of
the derivation −Lθ(C).

The formula does not hold for a group-like Magnus expansion which is not symplectic.
It should be remarked here that whether C is non-separating or separating, the formula
holds. Note that (1.1.1) is an equality as filter-preserving automorphisms of T̂ . If we

compute (1.1.1) modulo T̂2, we get the well-known formula for the action on the homology:

tC(X) = X − (X · [C])[C], X ∈ H. (1.1.2)

Here ( · ) is the intersection form on H and [C] is the homology class of C with a fixed
orientation. By computing (1.1.1) modulo higher tensors, we will get formulas of τ θk (tC) in
terms of Lθ(C). These formulas match the computations of the extended τ1 for Humphreys
generators and τ2(tC) for separating C by Morita [21] [22]. See §7.

The classical formula (1.1.2) tells us that the action of tC on H1(Σ;Z) depends only
on the class ±[C]. As an application of Theorem 1.1.1, we get a generalization of this
fact. Let Nk = Nk(π) be the k-th nilpotent quotient of π. We number the indices so that
N1 = πabel ∼= H1(Σ;Z). The mapping class groupMg,1 naturally acts on Nk. Let Nk be
the quotient set of Nk by conjugation and the relation x ∼ x−1. Then any simple closed
curve C defines an element of Nk, which we denote by Ck.
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Theorem 1.1.2 (=Theorem 7.4.1). For each k ≥ 1, the action of tC on Nk depends only
on the class Ck ∈ Nk. If C is separating, it depends only on the class Ck−1 ∈ Nk−1.

1.2 The Goldman Lie algebra and formal symplectic geometry

The key ingredients for our proof of Theorem 1.1.1 are the Goldman Lie algebra of Σ,
see Goldman [9], and its homological interpretation in the framework of formal symplectic
geometry by Kontsevich [17].

The Goldman Lie algebra is a Lie algebra associated to an oriented surface, and re-
garded as an origin of string topology by Chas-Sullivan [5]. It was introduced in [9] as a
universal object for describing the Poisson brackets of coordinate functions on the space
Hom(π,G)/G, using his notation, with a natural symplectic structure. Here π is the fun-
damental group of a closed oriented surface (hence is not our π) and G is a Lie group
satisfying very general conditions.

Let Qπ̂ be the Goldman Lie algebra of Σ. Here, π̂ is the set of conjugacy classes of
π. In §3, we show that Qπ̂ acts on the group ring Qπ as a derivation. Namely, we show
that there is a Lie algebra homomorphism σ : Qπ̂ → Der(Qπ). On the other hand, let

a−g = Derω(T̂ ) be the space of derivations of T̂ killing the symplectic form. This is a
variant of “associative”, one of the three Lie algebras in formal symplectic geometry. In
fact, we have a canonical isomorphism a−g = N(T̂1). For details, see §2.7.

Then we have the following two theorems. The slogan is: a symplectic expansion builds
a bridge between the objects in “surface-side” and “T̂ -side”.

Theorem 1.2.1 (=Theorem 6.3.3). Let θ be a symplectic expansion. Then the map

−λθ : Qπ̂ → N(T̂1) = a−g , x 7→ −Nθ(x)

is a Lie algebra homomorphism. The kernel is the subspace Q1 spanned by the constant
loop 1, and the image is dense in N(T̂1) = a−g with respect to the T̂1-adic topology.

Theorem 1.2.2 (=Theorem 6.4.3). Let θ be a symplectic expansion. Then, for u ∈ Qπ̂
and v ∈ Qπ, we have the equality

θ(σ(u)v) = −λθ(u)θ(v).

Here the right hand side means minus the action of λθ(u) ∈ a−g on the tensor θ(v) ∈ T̂ as
a derivation. In other words, the diagram

Qπ̂ ×Qπ σ−−−→ Qπ

−λθ×θ
y yθ

a−g × T̂ −−−→ T̂ ,

where the bottom horizontal arrow means the derivation, commutes.

In fact, we can derive Theorem 1.1.1 from these two theorems and some care about
convergence. See §6.5. Another application of these theorems will be studied in our
forthcoming paper [16].
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1.3 Organization of the paper

This paper is organized as follows. In section 2 we start by recalling Magnus expansions,
symplectic expansions, and the total Johnson map associated to a Magnus expansion. Then
we introduce the invariant Lθ and prove some properties of it. We close this section by
showing connections to formal symplectic geometry.

In section 3, we look at the Goldman Lie algebra of Σ, and we show that it acts on the
group ring of π as a derivation. We also give a homological interpretation of this action.
In section 5, we construct a counterpart of the story in section 3, in the framework of
formal symplectic geometry. In particular, we give homological interpretations of a−g and

its action on T̂ . To do this we need a (co)homology theory of (complete) Hopf algebras,
to which section 4 is devoted. We mention the relative homology of a pair, cap products,
Kronecker products, and relation to (co)homology of groups.

The theorems in Introduction are proved in sections 6 and 7. In section 6, the stories
in sections 3 and 5 are compared by a symplectic expansion, and Theorems 1.2.1 and 1.2.2
are proved. In section 7 we prove Theorems 1.1.1 and 1.1.2, and derive some formulas of
τ θk (tC), which recover some computations by Morita. Finally in section 8 we consider the
case of the mapping class group of a once punctured surface and derive results similar to
Theorems 1.1.1 and 1.1.2.

In Appendix, partial examples of symplectic expansions are given.

1.4 Conventions

Here we list the conventions of this paper.

1. Let G be a group. For x, y ∈ G, we denote by [x, y] their commutator xyx−1y−1 ∈ G.

2. As usual, we often ignore the distinction between a path and its homotopy class.

3. For continuous paths γ1, γ2 on Σ such that the endpoint of γ1 coincides with the
start point of γ2, their product γ1γ2 means the path traversing γ1 first, then γ2. The
product in the fundamental group is the induced one.

4. Sometimes we omit ⊗ to express tensors. For example, if X, Y, Z ∈ H, then XY Z
means X ⊗ Y ⊗ Z ∈ H⊗3. If u ∈ H⊗k and X ∈ H, then uX means u⊗X ∈ H⊗k+1.

5. Throughout the paper we basically work over Q, although several results hold over
the integers, especially in §3, and it would be possible to present all the main results
with the coefficients in an integral domain including the rationals Q.
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2 Magnus expansions and total Johnson map

2.1 Our surface and mapping class group

As in Introduction, Σ is a compact oriented C∞-surface of genus g > 0 with one boundary
component. We choose a basepoint ∗ on the boundary ∂Σ. The fundamental group π :=
π1(Σ, ∗) is a free group of rank 2g. Let H := H1(Σ;Q) be the first homology group of Σ.
H is naturally isomorphic to H1(π;Q) ∼= πabel ⊗Z Q, the first homology group of π. Here
πabel = π/[π, π] is the abelianization of π. Under this identification, we write

[x] := (x mod [π, π])⊗Z 1 ∈ H, for x ∈ π.
LetMg,1 be the mapping class group of Σ relative to the boundary, namely the group of
orientation-preserving diffeomorphisms of Σ fixing ∂Σ pointwise, modulo isotopies fixing
∂Σ pointwise.

Let ζ ∈ π be a based loop parallel to ∂Σ and going by counter-clockwise manner.
Explicitly, if we take symplectic generators α1, β1, . . . , αg, βg ∈ π as shown in Figure 2,
ζ =

∏g
i=1[αi, βi].

Figure 2: symplectic generators of π for g = 2

α1

β1

α2

β2

∗
ζ

By the classical theorem of Dehn-Nielsen, the natural action ofMg,1 on π = π1(Σ, ∗)
is faithful and we can identifyMg,1 as a subgroup of Aut(π):

Mg,1 = {φ ∈ Aut(π); φ(ζ) = ζ}. (2.1.1)
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2.2 Group ring and tensor algebra

Let Qπ be the group ring of π. It has an augmentation given by ε : Qπ → Q,
∑

i nixi 7→∑
i ni, where ni ∈ Q, xi ∈ π. Let Iπ be the augmentation ideal, namely the kernel of ε.

The powers of Iπ give a decreasing filtration of Qπ. The completed group ring of π, or
more precisely the Iπ-adic completion of Qπ, is

Q̂π := lim←−
m

Qπ/Iπm.

It naturally has a structure of a complete augmented algebra (in the sense of Quillen [25],
Appendix A) with respect to a decreasing filtration given by lim←−m≥p Iπ

p/Iπm, for p ≥ 1.

Let T̂ be the completed tensor algebra generated by H. Namely T̂ =
∏∞

m=0H
⊗m, where

H⊗m is the tensor space of degree m. Choosing a basis for H, it is isomorphic to the ring
of non-commutative formal power series in 2g indeterminates. We can write elements of T̂
uniquely as

u =
∞∑
m=0

um = u0 + u1 + u2 + · · · , um ∈ H⊗m.

The algebra T̂ has an augmentation given by ε : T̂ → Q, u =
∑∞

m=0 um 7→ u0, and it is a
complete augmented algebra with respect to a decreasing filtration

T̂p :=
∏
m≥p

H⊗m, for p ≥ 1.

Both Qπ and T̂ have a structure of (complete) Hopf algebra. For simplicity, we use the
same letters ∆ and ι for the coproducts and the antipodes of both Hopf algebras. In the
case of Qπ, these are given by

∆(x) = x⊗ x, and ι(x) = x−1, for x ∈ π,

and in the case of T̂ , the formulas are

∆(X) = X⊗̂1 + 1⊗̂X, and ι(X) = −X, for X ∈ H.

Here ⊗̂ means the completed tensor product. The Hopf algebra structure of Qπ induces a
structure of a complete Hopf algebra on Q̂π.

By definition the set of group-like elements of T̂ is the set of u ∈ T̂ satisfying ∆(u) =

u⊗̂u, and the set of primitive elements is L̂ := {u ∈ T̂ ; ∆(u) = u⊗̂1 + 1⊗̂u}. As is well-

known, L̂ has a structure of a Lie algebra with the bracket [u, v] := uv − vu. The degree

p-part Lp := L̂ ∩H⊗p is described successively as L1 = H, and Lp = [H,Lp−1] for p ≥ 2.
By the exponential map

exp(u) =
∞∑
n=0

1

n!
un, for u ∈ L̂,

L̂ is bijectively mapped to the set of group-like elements and the inverse is given by the
logarithm

log(u) =
∞∑
n=1

(−1)n−1

n
(u− 1)n.
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Since the set of group-like elements constitutes a group with respect to the multipli-
cation of T̂ , the above bijection endows the underlying set of L̂ with a group structure,
which is described by the Baker-Campbell-Hausdorff series:

u · v = log(exp(u) exp(v)) = u+ v +
1

2
[u, v] +

1

12
[u− v, [u, v]] + · · · , for u, v ∈ L̂.

2.3 Magnus expansion

We recall the notion of a Magnus expansion in our generalized sense. Remark that the
subset 1 + T̂1 constitutes a group with respect to the multiplication of T̂ .

Definition 2.3.1 (Kawazumi [14]). A map θ : π → 1 + T̂1 is called a (Q-valued) Magnus
expansion of π if

(1) θ : π → 1 + T̂1 is a group homomorphism, and

(2) θ(x) ≡ 1 + [x] mod T̂2 for any x ∈ π.

As was shown in [14], Theorem 1.3, any Magnus expansion θ induces the filter-preserving
isomorphism

θ : Q̂π
∼=→ T̂ (2.3.1)

of augmented algebras. Since π is a free group, any Magnus expansion is determined by
its values on free generators of π, hence we have many choices of Magnus expansions (see
also §2.8).

Example 2.3.2. Let α1, β1, . . . , αg, βg ∈ π be symplectic generators (see §2.1) and write
them as x1, . . . , x2g. The Magnus expansion defined by θ(xi) = 1 + [xi], for 1 ≤ i ≤ 2g, is
called the standard Magnus expansion. This is introduced by Magnus [19].

Among all the Magnus expansions, group-like expansions respect the Hopf algebra
structure of Qπ and T̂ . For a Magnus expansion θ, let ℓθ := log θ. Here it should be
remarked the logarithm is defined on the set 1 + T̂1. A priori, ℓθ is a map from π to T̂1.

Definition 2.3.3. A Magnus expansion θ is called group-like if θ(π) is contained in the

set of group-like elements of T̂ , or equivalently, ℓθ(π) ⊂ L̂.

If θ is group-like, (2.3.1) turns out to be the isomorphism of complete Hopf algebras
(see Massuyeau [20], Proposition 2.10). The Magnus expansion of Example 2.3.2 is not
group-like.

Example 2.3.4. Let xi be as the same in Example 2.3.2, then the Magnus expansion
defined by θ(xi) = exp([xi]), for 1 ≤ i ≤ 2g, is group-like because of the Baker-Campbell-
Hausdorff formula.

In fact, by the Baker-Campbell-Hausdorff formula, if ℓθ(x) ∈ L̂ and ℓθ(y) ∈ L̂, then
ℓθ(xy) ∈ L̂. Thus if θ is a Magnus expansion and the values of θ on free generators are all
group-like, then θ is group-like. Hence we also have many choices of group-like expansions.

Example 2.3.5. Bene-Kawazumi-Penner [1] constructed a group-like Magnus expansion
canonically associated to any trivalent marked fatgraph.

9



2.4 Symplectic expansion

So far we have only used the fact that π is a free group. Here we recall the notion of a
symplectic expansion, which is a Magnus expansion respecting the fact that π = π1(Σ, ∗).

Let ω ∈ L2 ⊂ H⊗2 be the symplectic form. Explicitly, ω is given by

ω =

g∑
i=1

AiBi −BiAi,

where α1, β1, . . . , αg, βg are symplectic generators and Ai = [αi], Bi = [βi] ∈ H.

Definition 2.4.1 (Massuyeau [20]). A Magnus expansion θ is called a symplectic expansion
if

1. θ is group-like, and

2. θ(ζ) = exp(ω), or equivalently, ℓθ(ζ) = ω.

Unfortunately, the group-like expansions of Examples 2.3.4 and 2.3.5 are not symplectic.
But symplectic expansions do exist, and they are infinitely many (see §2.8). Here we list
some examples.

Example 2.4.2. Kawazumi [15] constructed a symplectic expansion (with coefficients in
R), called the harmonic Magnus expansion, associated to any triple (C,P0, v) where C is a
marked compact Riemann surface, P0 ∈ C, and v is a non-zero tangent vector at P0. The
construction is transcendental.

Example 2.4.3. Massuyeau [20] constructed a symplectic expansion using the LMO func-
tor.

Example 2.4.4. There is a canonical way of associating a symplectic expansion with any
(not necessary symplectic) free generators of π. The construction is purely combinatorial.
The details of this expansion will be given in [18].

2.5 Total Johnson map

We denote by Aut(T̂ ) the set of filter-preserving algebra automorphisms of T̂ , which clearly
constitutes a group. Let θ be a Magnus expansion of π. For φ ∈ Mg,1 we use the same
letter φ for the induced automorphism of π, in view of (2.1.1). As a consequence of the

isomorphism (2.3.1), for each φ ∈Mg,1 there uniquely exists T θ(φ) ∈ Aut(T̂ ) such that

T θ(φ) ◦ θ = θ ◦ φ.

Let |φ| : H → H be the automorphism of H induced by the action of φ on the first

homology of Σ. We also denote by |φ| ∈ Aut(T̂ ) the automorphism induced by |φ|. Then
τ θ(φ) := T θ(φ) ◦ |φ|−1 ∈ Aut(T̂ ) acts on T̂1/T̂2 ∼= H as the identity. Therefore the
restriction of τ θ(φ) to H is uniquely written as

τ θ(φ)|H = 1H +
∞∑
k=1

τ θk (φ),

where τ θk (φ) ∈ Hom(H,H⊗k+1).

10



Definition 2.5.1 ([14]). The automorphism T θ(φ) ∈ Aut(T̂ ) is called the total Johnson
map of φ associated to θ, and τ θk (φ) is called the k-th Johnson map of φ associated to θ.

The group homomorphism
T θ :Mg,1 → Aut(T̂ )

is also called the total Johnson map. It is injective since the natural map π → Q̂π is
injective by the classical fact

∩∞
m=1 Iπ

m = 0. It should be remarked that our use of the
terminology here is different from [14], where τ θ(φ) is called the total Johnson map of φ.

2.6 The invariant Lθ

We introduce an invariant of unoriented loops on Σ associated with a Magnus expansion.

Definition 2.6.1. Define a linear map N : T̂ → T̂ by

N |H⊗p =

p−1∑
m=0

νm, for p ≥ 1,

where ν is the cyclic permutation given by X1X2 · · ·Xp 7→ X2X3 · · ·X1 (Xi ∈ H ), and
N |H⊗0 = 0.

The following lemma will be used frequently.

Lemma 2.6.2. (1) For u, v ∈ T̂ , N(uv) = N(vu).

(2) For u, v, w ∈ T̂ , N([u, v]w) = N(u[v, w]).

(3) For u ∈ T̂1, u ∈ N(T̂1) is equivalent to ν(u) = u.

(4) Under the identification T̂1 ∼= H ⊗ T̂ ,

N(T̂1) = Ker([ , ] : H ⊗ T̂ → T̂ ). (2.6.1)

Proof. The first assertion is clear if u and v are homogeneous, since N(ν(w)) = N(w) for

a homogeneous w ∈ T̂ . The general case follows from bi-linearity. Using (1), we compute

N([u, v]w) = N(uvw − vuw) = N(uvw − uwv) = N(u[v, w]), which proves (2). If u ∈ T̂1
is homogeneous of degree p and ν(u) = u, then u = N(1

p
u) ∈ N(T̂1). This proves (3).

Finally, ν(X ⊗u)−X ⊗u = uX −Xu = −[X, u] for X ⊗u ∈ H ⊗ T̂ . Combining this with
(3), we have (4).

The operator N also appeared in [15]. Using N , we make the following definition.

Definition 2.6.3. Let θ be a Magnus expansion. Define Lθ : π → T̂2 by

Lθ(x) =
1

2
N(ℓθ(x)ℓθ(x)).

The following lemma shows Lθ descends to an invariant for unoriented loops on Σ.

Lemma 2.6.4. For any x, y ∈ π, we have
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(1) Lθ(x−1) = Lθ(x),

(2) Lθ(yxy−1) = Lθ(x).

Proof. The first part follows from ℓθ(x−1) = −ℓθ(x). Since ℓθ(yxy−1) = eℓ
θ(y)ℓθ(x)e−ℓ

θ(y) =
θ(y)ℓθ(x)θ(y−1), we compute

Lθ(yxy−1) =
1

2
N(θ(y)ℓθ(x)θ(y−1)θ(y)ℓθ(x)θ(y−1)) =

1

2
N(θ(y)ℓθ(x)ℓθ(x)θ(y−1))

=
1

2
N(ℓθ(x)ℓθ(x)θ(y−1)θ(y)) =

1

2
N(ℓθ(x)ℓθ(x))

= Lθ(x),

using Lemma 2.6.2 (1). This proves (2).

Let γ be an (un)oriented loop on Σ. In view of Lemma 2.6.4, we can define Lθ(γ) ∈ T̂2
as Lθ(x), where x is a representative of γ in π.

We denote by Lθk the degree k-part of Lθ. In §7, we will compute Lθk for symplectic θ
and small k.

2.7 Formal symplectic geometry

The space N(T̂1) is closely related to formal symplectic geometry. In [17], Kontsevich
introduced three Lie algebras “commutative”, “associative”, and “Lie”. We recall two of
the three, namely “associative” and “Lie”.

First we recall “associative”. By definition, a derivation of T̂ is a linear map D : T̂ → T̂
satisfying the Leibniz rule:

D(u1u2) = D(u1)u2 + u1D(u2), for u1, u2 ∈ T̂ .

The space Der(T̂ ) of the derivations of T̂ has the structure of Lie algebra given by [D1, D2] =

D1◦D2−D2◦D1, D1, D2 ∈ Der(T̂ ). Since T̂ is freely generated by H as a complete algebra,

any derivation of T̂ is uniquely determined by its values on H, and Der(T̂ ) is identified

with Hom(H, T̂ ).

By the Poincaré duality, T̂1 ∼= H ⊗ T̂ is identified with Hom(H, T̂ ):

T̂1 ∼= H ⊗ T̂
∼=→ Hom(H, T̂ ), X ⊗ u 7→ (Y 7→ (Y ·X)u). (2.7.1)

Here ( · ) is the intersection pairing on H = H1(Σ;Q).

Let a−g = Derω(T̂ ) be the Lie subalgebra of Der(T̂ ) consisting of derivations killing the

symplectic form ω. We call such derivations symplectic derivations of T̂ . In view of (2.7.1)
any derivation D is written as

D =

g∑
i=1

Bi ⊗D(Ai)− Ai ⊗D(Bi) ∈ T̂1. (2.7.2)

Since D(ω) =
∑g

i=1[D(Ai), Bi] + [Ai, D(Bi)] we can write

a−g = Ker([ , ] : H ⊗ T̂ → T̂ ) = N(T̂1) (2.7.3)
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(see also (2.6.1)). The Lie subalgebra ag := N(T̂2) is nothing but (the completion of) what
Kontsevich [17] calls ag.

We next recall “Lie”. By definition, a derivation of L̂ is a linear map D : L̂ → L̂
satisfying

D([u1, u2]) = [D(u1), u2] + [u1, D(u2)], for u1, u2 ∈ L̂.
Let lg = Derω(L̂) be the space of derivations of L̂ killing ω ∈ L2. By the same reason as
above, we have

lg = Ker([ , ] : H ⊗ L̂ → L̂). (2.7.4)

lg is a Lie subalgebra of ag.

Lemma 2.7.1. Letm ≥ 1, and X, Y1, . . . , Ym ∈ H. Set u = [Y1, [Y2, [· · · , [Ym−1, Ym] · · · ]]] ∈
Lm. Then

N(X ⊗ u) = X ⊗ u+
m∑
i=1

Yi ⊗ [[Yi+1, · · · [Ym−1, Ym] · · · ], [· · · [[X, Y1], Y2], · · · , Yi−1]].

In particular, we have N(H ⊗ L̂) ⊂ H ⊗ L̂.
Proof. Consider the tensor algebra T ′ generated by the letters X,Y1, . . . , Ym. The oper-
ator N is naturally defined on T ′. There is a homomorphism T ′ → T̂ coming from the
universality of T ′. This homomorphism is compatible with N . Thus it suffices to show the
formula on T ′. Let H ′ be the Q-vector space spanned by X,Y1, . . . , Ym. The formula we
want to show is an equality in H ′⊗m+1. There is a direct sum decomposition

H ′⊗m+1
= X ⊗H ′⊗m ⊕

m⊕
i=1

Yi ⊗H ′⊗m.

Let pX : H ′⊗m+1 → X ⊗ H ′⊗m ∼= H ′⊗m be the projection according to this direct sum
decomposition. Similarly, define pYi , 1 ≤ i ≤ m. Note that for any v ∈ H ′⊗m+1 we have
v = XpX(v) +

∑m
i=1 YipYi(v). Now, set v := N(X ⊗ u). It is clear that pX(v) = u. For

each 1 ≤ i ≤ m, we denote v′ = [Yi+1, · · · [Ym−1, Ym] · · · ]. By Lemma 2.6.2, we compute

v = N(X[Y1, [Y2, · · · , [Yi, v′] · · · ]])
= N([X, Y1][Y2, · · · , [Yi, v′] · · · ])
· · ·
= N(v′′[Yi, v

′])

= N(v′′Yiv
′ − v′′v′Yi) = N(Yiv

′v′′ − Yiv′′v′) = N(Yi[v
′, v′′]),

where v′′ = [· · · [[X,Y1], Y2], · · · , Yi−1]. This shows pYi(v) = [v′, v′′], and completes the
proof.

Lemma 2.7.2.
N(L̂⊗̂L̂) = Ker([ , ] : H ⊗ L̂ → L̂) = lg.

Proof. Using Lemma 2.6.2 (2), we have N(L̂⊗̂L̂) = N(H⊗L̂), and N(H⊗L̂) is contained
in (H ⊗ L̂)∩N(T̂1) by Lemma 2.7.1. Therefore we get N(L̂⊗̂L̂) ⊂ Ker([ , ] : H ⊗ L̂ → L̂)
by (2.6.1). On the other hand, if u ∈ H ⊗ L̂ ⊂ T̂1 is homogeneous of degree p ≥ 2 and

ν(u) = u, then u = N(u/p) ∈ N(H ⊗ L̂) = N(L̂⊗̂L̂). By Lemma 2.6.2 (3)(4), we get the
other inclusion.

Thus, if θ is group-like, our invariant Lθ is considered as a map Lθ : π → lg.
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2.8 The space of symplectic expansions

There are infinitely many Magnus expansions and symplectic expansions. Here we consider
the spaces that parametrize them. Let Θ be the set of Magnus expansions of π, and let
Θsymp ⊂ Θ be the set of symplectic expansions.

Let IA(T̂ ) be the subgroup of Aut(T̂ ) consisting of the automorphisms acting on

T̂1/T̂2 ∼= H as the identity. Let θ and θ′ be Magnus expansions. By [14], Theorem 1.3,

there uniquely exists U = U(θ, θ′) ∈ IA(T̂ ) such that θ′ = U ◦ θ. Conversely, for θ ∈ Θ and

U ∈ IA(T̂ ), U ◦ θ is a Magnus expansion. Thus if we fix θ, Θ is identified with IA(T̂ ) by
θ′ 7→ U(θ, θ′).

The group IA(T̂ ) is identified with its “tangent space” Hom(H, T̂2), by the logarithms:

IA(T̂ )→ Hom(H, T̂2), U 7→ (logU)|H .

Note that logU converges since U acts on T̂1/T̂2 ∼= H as the identity. We can regard

Hom(H, T̂2) as the space of derivations of T̂ with positive degrees. By the Poincaré duality

(2.7.1), Hom(H, T̂2) is identified with H ⊗ T̂2. In this way we have an identification

IA(T̂ ) ∼= H ⊗ T̂2, (2.8.1)

and if we fix θ there is a canonical bijection Θ ∼= IA(T̂ ) ∼= H ⊗ T̂2.

Proposition 2.8.1. The set Θsymp is not empty. Once we choose a symplectic expansion
θ, the restriction of the canonical bijection Θ ∼= H ⊗ T̂2 to Θsymp gives a bijection

Θsymp ∼= Ker([ , ] : H ⊗ L̂2 → L̂).

Here, L̂2 = L̂ ∩ T̂2. (note that this differs from L2 = L̂ ∩H⊗2).

Proof. The examples of symplectic expansions given in §2.4 show that Θsymp is not empty.
Or, see Massuyeau [20] Lemma 2.16. We will prove the latter part.

Suppose θ and θ′ are symplectic. Since both of the two are group-like and θ(ζ) =
θ′(ζ) = ω, the automorphism U = U(θ, θ′) must satisfy

U(H) ⊂ L̂, and U(ω) = ω. (2.8.2)

Conversely for θ ∈ Θsymp and U ∈ IA(T̂ ) satisfying (2.8.2), U ◦ θ is symplectic.

Let U ∈ IA(T̂ ). Under the identification (2.8.1), U(H) ⊂ L̂ is equivalent to (logU)|H ∈
H ⊗ L̂2. Also, U(ω) = ω is equivalent to logU(ω) = 0, where logU acts on L̂ as a

derivation. By (2.7.4), this is equivalent to (logU)|H ∈ Ker([ , ] : H ⊗ L̂2 → L̂). This
completes the proof.

3 The Goldman Lie algebra

In this section, we recall the Goldman Lie algebra [9]. In particular, we show that the
Goldman Lie algebra of Σ acts on the group ring Qπ as a derivation. We will work over
the rationals, but all the statements in this section except Proposition 3.4.3 holds over the
integers.

All of the loops that we consider are piecewise differentiable.
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3.1 The Goldman Lie algebra

Let S be a connected oriented 2-manifold and let π̂(S) = [S1, S] be the set of free homotopy
classes of oriented loops on S. In other words, π̂(S) is the set of conjugacy classes of the
fundamental group of S. Let | | : π1(S) → π̂(S) be the natural quotient map. For a loop
α : S1 → S and a simple point p ∈ α, let αp be the oriented loop α based at p.

Let Qπ̂(S) be the vector space spanned by π̂(S). We first recall the Goldman bracket
on Qπ̂(S). Let α, β be immersed loops in S such that α∪ β : S1 ∪S1 → S is an immersion
with at worst transverse double points. For each intersection p ∈ α ∩ β, the conjunction
αpβp ∈ π1(S, p) is defined. Let ε(p;α, β) ∈ {±1} be the local intersection number of α and
β at p and set

[α, β] :=
∑
p∈α∩β

ε(p;α, β)|αpβp| ∈ Qπ̂(S).

Let 1 ∈ π̂(S) be the homotopy class of the constant loop and let π̂′(S) = π̂(S) \ {1}.

Theorem 3.1.1 (Goldman [9]). The above bracket defines a well-defined linear map

[ , ] : Qπ̂(S)⊗Qπ̂(S)→ Qπ̂(S),

and with respect to this bracket Qπ̂(S) has a structure of Lie algebra. Moreover, Qπ̂′(S) is
an ideal of Qπ̂(S) and Qπ̂(S) = Qπ̂′(S)⊕Q1 is a direct sum decomposition as Lie algebras.

Remark 3.1.2. It is true that [Qπ̂,Qπ̂] ⊂ Qπ̂′. But Goldman’s proof for it [9] pp.294-295
is, unfortunately, not true. In fact, his assertion [α, α−1] = 0 for α ∈ π̂ is not true in general.
If we choose α = α1α2 as in Figure 3, then [α, α−1] = α1α2α1

−1α2
−1 − α2α1α2

−1α1
−1. For

a symplectic expansion θ, we have

Nθ[α, α−1] =
1

3
N([X1, X2][X1, X2][X1, X2]) + higher terms ̸= 0

(see Theorem 1.2.1). Here we denote X1 = [α1] and X2 = [α2] ∈ H. Hence [α, α−1] ̸= 0.

Figure 3: [α, α−1] ̸= 0

p

α1
α2

α−1

α−1+

−

But we can prove [α, α−1] ∈ Qπ̂′ for any α ∈ π̂, as follows. Represent α by a generic
immersion and let α−1 be a generic immersion such that α∪α−1 cobounds a narrow annulus,
as in [9], p.295. Let p be a double point of the loop α. It divides the loop α into two based
loops α1 and α2 with basepoint p as in Figure 3. The two intersection points derived from
p contributes α1α2α1

−1α2
−1 and α2α1α2

−1α1
−1, respectively, with the opposite sign. Then

the following three conditions are equivalent to each other:

1. |α1α2α1
−1α2

−1| = 1 ∈ π̂,

2. α1α2 = α2α1 ∈ π1(S, p),
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3. |α2α1α2
−1α1

−1| = 1 ∈ π̂.

This implies the contributions of the two points cancel, or are in Qπ̂′. Hence we have
[α, α−1] ∈ Qπ̂′. As is observed by Goldman [9] loc.cit., [α, β] ∈ Qπ̂′ if β ̸= α−1. Hence we
obtain [Qπ̂,Qπ̂] ⊂ Qπ̂′. This completes the proof of the second half of Theorem 3.1.1.

3.2 The action on the group ring

Let S be as above, and choose a basepoint ∗ ∈ S. Let α : S1 → S\{∗} be an immersed loop
and β : S1 → S an immersed loop based at ∗, and suppose α ∪ β has at worst transverse
double points. For each intersection p ∈ α ∩ β, let αp and ε(p;α, β) be the same as before
and let β∗p (resp. βp∗) be the path along β from ∗ to p (resp. p to ∗). Then the conjunction
β∗pαpβp∗ ∈ π1(S, ∗) is defined.

Definition 3.2.1. For such α and β, let

σ(α)β :=
∑
p∈α∩β

ε(p;α, β)β∗pαpβp∗ ∈ Qπ1(S, ∗).

Let Der(Qπ1(S, ∗)) be the Lie algebra of the derivations of the group ring Qπ1(S, ∗).

Proposition 3.2.2. This definition of σ gives rise to a well-defined homomorphism

σ : Qπ̂(S \ {∗})→ Der(Qπ1(S, ∗))

of Lie algebras.

Proof. One way to prove that σ is well-defined is to show that σ(α)β is unchanged if α
and β are replaced by one of the standard moves (see Goldman [9], Lemma 5.6). This can
be done by the same argument as Goldman did, so we omit details. Another way to see
this is using our homological interpretation of σ, see Proposition 3.5.2.

To prove that Qπ̂(S \ {∗}) acts on Qπ1(S, ∗) as derivation via σ, it suffices to show
σ(α)(βγ) = (σ(α)β)γ+βσ(α)γ, where α is an immersed loop on S, and β, γ are immersed
based loops on S. We may assume α intersects the conjunction βγ at worst transverse
double points. Then α ∩ (βγ) = (α ∩ β) ∪ (α ∩ γ), and

σ(α)(βγ) =
∑

p∈α∩(βγ)

ε(p;α, βγ)(βγ)∗pαp(βγ)p∗

=
∑
p∈α∩β

ε(p;α, βγ)(βγ)∗pαp(βγ)p∗ +
∑
p∈α∩γ

ε(p;α, βγ)(βγ)∗pαp(βγ)p∗

=
∑
p∈α∩β

ε(p;α, β)β∗pαpβp∗γ +
∑
p∈α∩γ

ε(p;α, γ)βγ∗pαpγp∗

= (σ(α)β)γ + βσ(α)γ.

To prove that σ is a homomorphism of Lie algebras it suffices to show σ([α, β])γ =
σ(α)σ(β)γ− σ(β)σ(α)γ, where α, β are immersed loops on S, and γ is an immersed based
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loop on S. We may assume α ∪ β ∪ γ is an immersion with at worst transverse double
points. We compute

σ(α)σ(β)γ = σ(α)

( ∑
p∈β∩γ

ε(p; β, γ)γ∗pβpγp∗

)
=

∑
p∈β∩γ

ε(p; β, γ)σ(α)γ∗pβpγp∗

=
∑
p∈β∩γ

∑
q∈α∩β

ε(p; β, γ)ε(q;α, β)(γ∗pβpγp∗)∗qαq(γ∗pβpγp∗)q∗

+
∑
p∈β∩γ

∑
r∈α∩γ

ε(p; β, γ)ε(r;α, γ)(γ∗pβpγp∗)∗rαr(γ∗pβpγp∗)r∗, (3.2.1)

and

−σ(β)σ(α)γ = −σ(β)

( ∑
r∈α∩γ

ε(r;α, γ)γ∗rαrγr∗

)
= −

∑
r∈α∩γ

ε(r;α, γ)σ(β)γ∗rαrγr∗

= −
∑
r∈α∩γ

∑
p∈β∩γ

ε(r;α, γ)ε(p; β, γ)(γ∗rαrγr∗)∗pβp(γ∗rαrγr∗)p∗

−
∑
r∈α∩γ

∑
q∈β∩α

ε(r;α, γ)ε(q; β, α)(γ∗rαrγr∗)∗qβq(γ∗rαrγr∗)q∗. (3.2.2)

Then the second term of (3.2.1) and the first term of (3.2.2) cancel and we have

σ(α)σ(β)γ − σ(β)σ(α)γ =
∑
p∈β∩γ

∑
q∈α∩β

ε(p; β, γ)ε(q;α, β)(γ∗pβpγp∗)∗qαq(γ∗pβpγp∗)q∗

+
∑
r∈α∩γ

∑
q∈α∩β

ε(r;α, γ)ε(q;α, β)(γ∗rαrγr∗)∗qβq(γ∗rαrγr∗)q∗.

Here we use ε(q; β, α) = −ε(q;α, β). Now (γ∗pβpγp∗)∗qαq(γ∗pβpγp∗)q∗ = γ∗p|αqβq|pγp∗ for
p ∈ β ∩γ, q ∈ α∩β and (γ∗rαrγr∗)∗qβq(γ∗rαrγr∗)q∗ = γ∗r|αqβq|rγr∗ for r ∈ α∩γ, q ∈ α∩β.
Therefore, we have

σ(α)σ(β)γ − σ(β)σ(α)γ =
∑

x∈(α∪β)∩γ

∑
y∈α∩β

ε(x;α ∪ β, γ)ε(y;α, β)γ∗x|αyβy|xγx∗

= σ

( ∑
y∈α∩β

ε(y;α, β)|αyβy|

)
γ

= σ([α, β])γ.

This completes the proof.

Note that to make Definition 3.2.1 work, we need to delete the basepoint ∗. A simple
illustration of this fact is Figure 4. Here the loops α1 and α2 are homotopic as free
loops on S, but not homotopic as loops on S \ {∗}. Following Definition 3.2.1, we have
σ(α1)γ = αγ − γα, and clearly σ(α2)γ = 0. Hence σ(α1)γ ̸= σ(α2)γ.
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Figure 4: We need to delete the basepoint to define σ.

∗

γ

α1

α2

α

But if S and its basepoint are our Σ and ∗ ∈ ∂Σ, then the inclusion Σ \ {∗} ↪→ Σ is a
homotopy equivalence. Thus Qπ̂(Σ \ {∗}) = Qπ̂(Σ). Writing π̂(Σ) = π̂ for simplicity, we
have a Lie algebra homomorphism

σ : Qπ̂ → Der(Qπ). (3.2.3)

Remark 3.2.3. Let M be a d-dimensional oriented C∞-manifold, and choose a basepoint
∗ ∈ M . We regard S1 = [0, 1]/0 ∼ 1, and denote ΩM = Map((S1, 0), (M, ∗)), the based
loop space of M . The evaluation map ev : ΩM →M , γ 7→ γ(1/2), is a Hurewicz fibration,
whose fiber ev−1(∗) is naturally identified with ΩM×ΩM . The map ρ : ΩM×[0, 1]→ ΩM ,
given by

ρ(γ, s)(t) :=

{
γ(2st), if t ≤ 1/2,
γ(s+ (1− s)(2t− 1)), if t ≥ 1/2,

induces a map of pairs ρ : ΩM × ([0, 1], {0, 1}) → (ΩM,ΩM × ΩM). We define a map
∆′ : H∗(ΩM)→ H∗+1(ΩM,ΩM × ΩM) by the composite

H∗(ΩM)
×[I]→ H∗+1(ΩM × ([0, 1], {0, 1})) ρ∗→ H∗+1(ΩM,ΩM × ΩM),

where [I] ∈ H1([0, 1], {0, 1}) is the fundamental class. In a way similar to Chas-Sullivan
[5], we can define a loop product

• : Hi(L(M \ {∗}))⊗Hj(ΩM,ΩM × ΩM)→ Hi+j−d(ΩM).

Here we denote L(M \ {∗}) = Map(S1,M \ {∗}), the free loop space of M \ {∗}. Let
x : Kx → L(M \ {∗}) be an i-cell, and y : Ky → ΩM a j-cell. We denote by Kx•y a
transversal preimage of the diagonal under the map Kx×Ky → (M \{∗})×M , (kx, ky) 7→
(x(kx)(0), y(ky)(1/2)). The (i+ j − d)-cell x • y : Kx•y → ΩM is defined by

(x • y)(kx, ky) =


y(ky)(2t), if t ≤ 1/4,
x(kx)(2(t− 1/4)), if 1/4 ≤ t ≤ 3/4,
y(ky)(2t− 1), if 3/4 ≤ t.

Taking the composite of the loop product with the map ∆ : H∗(L(M \{∗}))→ H∗+1(L(M \
{∗})) introduced by Chas-Sullivan [5] and the map ∆′, we obtain a map

Hi(L(M \ {∗}))⊗Hj(ΩM)→ Hi+j+2−d(ΩM), u⊗ v 7→ (∆u) • (∆′v).

This coincides with our action σ in the case d = 2 and i = j = 0.
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3.3 Conventions about (co)homology of groups

In the next two subsections, we give a homological interpretation of the Goldman bracket
and the action σ for Σ. To state these we fix some conventions about (co)homology of
groups. We basically follow Brown [3].

Let G be a group and M a left QG-module. For simplicity we use the term G-module
for left QG-module and sometimes write ⊗G instead of ⊗QG. We can always regard M as
a right G-module by setting mg = g−1m (m ∈M, g ∈ G). The homology group H∗(G;M)
is defined by H∗(G;M) := TorQG∗ (M,Q). Namely taking a QG-projective resolution

· · · → F2 → F1 → F0 → Q→ 0

of the trivial G-module Q,
H∗(G;M) = H∗(M ⊗G F∗).

Similarly the cohomology group H∗(G;M) is defined by

H∗(G;M) := Ext∗QG(Q,M) = H∗(HomQG(F∗,M)).

For n ≥ 0, let Fn(G) be the free G-module with QG-basis {[g1|g2| · · · |gn]; gi ∈ G}. The
boundary map ∂n : Fn(G)→ Fn−1(G), n ≥ 1, is given by

∂n([g1|g2| · · · |gn]) = g1[g2| · · · |gn] +
n−1∑
i=1

(−1)i[g1| · · · |gigi+1| · · · gn] + (−1)n[g1| · · · |gn−1],

and ∂0 : F0(G) ∼= QG→ Q is given by the augmentation.
The normalized standard complex, denoted by F n(G), is the quotient of Fn(G) by the

QG-submodule spanned by {[g1|g2| · · · |gn]; gi = 1 for some i}. It gives a QG-projective
resolution of Q. For a G-module M , set Cn(G;M) = M ⊗G F n(G). Of course we have
H∗(C∗(G;M)) = H∗(G;M). The boundary maps of C∗(G;M) in low degrees are given by:

∂1(m⊗ [g]) = g−1m−m ∈M ∼= M [ ];

∂2(m⊗ [g1|g2]) = g−1
1 m⊗ [g2]−m⊗ [g1g2] +m⊗ [g1].

Here ⊗ means ⊗G.
In this paper, we consider the (co)homology of groups of π for various π-modules M .

One way to describe these is to use the normalized complex C∗(π;M), and another way is to
use the following particular resolution. Since π is a free group of rank 2g, the augmentation
ideal Iπ is a free Qπ-module of rank 2g. Thus

0→ Iπ → Qπ ε→ Q→ 0

gives a Qπ-projective resolution of Q. In this view point, the homology group of π is
computed as

H∗(π;M) = H∗(M ⊗Qπ Iπ →M, m⊗ v 7→ ι(v)m).

The canonical isomorphism F 0(π) ∼= Qπ and a Qπ-linear map F 1(π) → Iπ, [x] 7→ x − 1
for x ∈ π, are compatible with the boundary maps of the two resolutions. In particular,
we have a chain-level description of the canonical isomorphism

H1(C∗(π;M))
∼=→ H1(M ⊗Qπ Iπ →M). (3.3.1)
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Finally we mention the relative version of homology of groups. See also §4.5. Let G be
a group and K a subgroup of G, and M a left G-module. Then C∗(K;M) is a subcomplex
of C∗(G;M). We define the relative homology group as the homology of the quotient
complex:

H∗(G,K;M) := H∗(C∗(G;M)/C∗(K;M)).

Note that since C0(G;M) = C0(K;M), any 1-chain of the complex C∗(G;M)/C∗(K;M)
is a cycle.

3.4 Homological interpretation of the Goldman Lie algebra

Let Qπc be the following π-module. As a vector space, Qπc = Qπ, and the π-action is
given by the conjugation: xu := xux−1 for x ∈ π, u ∈ Qπc.

Definition 3.4.1. Define a Q-linear map λ : Qπ → H1(π;Qπc) by λ(x) := x⊗ [x], x ∈ π.
Here we understand H1(π;Qπc) as the homology of C∗(π;Qπc).

We need to verify that this is well-defined, i.e., λ(x) is a cycle.

Lemma 3.4.2. For x, y ∈ π, we have

(1) x⊗ [x] ∈ C1(π;Qπc) is a cycle,

(2) λ(yxy−1) = λ(x) ∈ H1(π;Qπc).

Proof. The first part follows from ∂1(x⊗ [x]) = x−1 ·x−x = x−1xx−x = x−x = 0. For the
second part, note that for any x1, x2 ∈ π, the 1-chain [x1x2] is homologous to x1[x2] + [x1]
since ∂2([x1|x2]) = x1[x2]− [x1x2]+ [x1], and for any x ∈ π, the 1-chain [x−1] is homologous
to −x−1[x] since ∂2([x

−1|x]) = x−1[x]− [1]+ [x−1] = x−1[x] + [x−1]. Therefore, we compute

λ(yxy−1) = yxy−1 ⊗ [yxy−1] ≡ yxy−1 ⊗ (y[xy−1] + [y])

≡ yxy−1 ⊗ (y(x[y−1] + [x]) + [y])

≡ yxy−1 ⊗ (y[x]− yxy−1[y] + [y])

= x⊗ [x] = λ(x).

Here ≡ stands for “homologous”. This proves (2).

By Lemma 3.4.2, λ descends to a map λ : Qπ̂ → H1(π;Qπc). We introduce a π-module
map B : Qπc ⊗ Qπc → Qπ̂ by B(u ⊗ v) = |uv|. Here | | : Qπ → Qπ̂ is the linear map
induced by the projection | | : π → π̂, the action of π on Qπc ⊗Qπc is diagonal, and Qπ̂ is
regarded as a trivial π-module.

Let Sc be the local system on Σ corresponding to the left π-module Qπc. Since Σ is a
K(π, 1)-space, there is a canonical isomorphism H∗(π;Qπc) ∼= H∗(Σ;Sc).

Using the intersection form of the surface, we have the following bilinear form:

( · ) : H1(π;Qπc)×H1(π;Qπc) ∼= H1(Σ;Sc)×H1(Σ;Sc)
→ H0(Σ;Sc ⊗ Sc) ∼= H0(π;Qπc ⊗Qπc).
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Proposition 3.4.3. (1) The sequence

0→ Qπ̂′ λ→ H1(π;Qπc)→ H → 0,

where the map H1(π;Qπc)→ H1(π;Q) = H is induced by the augmentation, is exact
and canonically splits.

(2) For u, v ∈ Qπ̂,
[u, v] = B∗(λ(u) · λ(v)).

Here B∗ : H0(π;Qπc ⊗Qπc)→ H0(π;Qπ̂) = Qπ̂ is the map induced by B.

Proof. For x ∈ π, let Z(x) ⊂ π be the centralizer of x. Then we have a direct decomposition

Qπc =
⊕
|x|∈π̂

Q(π/Z(x))

as left π-modules. Here the action of π on Q(π/Z(x)) is given by the multiplication from
the left: y(z mod Z(x)) = yz mod Z(x). Since the Euler characteristic of Σ is negative,
Z(x) is a cyclic group of infinite order for x ̸= 1. In fact, the centralizer of a hyperbolic
element in PSL2(R) is an abelian subgroup isomorphic to R>0. Using the Shapiro lemma
(see [3], p. 73), we have a canonical decomposition

H1(π;Qπc) =
⊕
|x|∈π̂

H1(π;Q(π/Z(x))) ∼=
⊕
|x|∈π̂

H1(Z(x);Q)

= H1(π;Q)⊕
⊕
|x|∈π̂′

H1(Z(x);Q).

Moreover if x ̸= 1, the cycle λ(x) = x⊗ [x] corresponds to a generator of H1(Z(x);Q) ∼= Q
(note: this part does not hold over the integers; in this case λ(x) corresponds to a non-zero
multiple of a generator of H1(Z(x);Z) ∼= Z). This proves the first part.

Next we proceed to the second part. As in Goldman [9] §2, we regard local systems
as flat vector bundles and their (co)homology as the (co)homology of singular chains with
values in flat vector bundles. Following this description the fiber of Sc at p ∈ Σ is the
group ring Qπ1(Σ, p), and the parallel transport along a path ℓ : [0, 1] → Σ is given by

Qπ1(Σ, ℓ(0))
∼=→ Qπ1(Σ, ℓ(1)), α 7→ ℓ−1αℓ.

Let α be a based loop on Σ. Under the canonical isomorphism H1(π;Qπc) ∼= H1(Σ;Sc),
the 1-cycle α ⊗ [α] ∈ C1(π;Qπc) corresponds the flat section sλ(α) of α

∗Sc over α, whose
value at p ∈ α is just αp ∈ π1(Σ, p) (to be more precise, we need to write p = p(t) for some
t ∈ S1). The homology class of the section sλ(α) in H1(Σ;Sc) depends only on the free
homotopy class of the loop α, because of the homotopy equivalence of twisted homology.
Let β be another free loop on Σ and suppose α and β intersect with at worst transverse
double points. Similarly β ⊗ [β] is regarded as a section sλ(β).

Using the same letter let B : Sc ⊗ Sc → Qπ̂ be the pairing of local systems on Σ
corresponding to the π-module map B. Here Qπ̂ is considered as a trivial local system. For
each p ∈ Σ, this pairing is just the conjunction Qπ1(Σ, p)⊗Qπ1(Σ, p)→ Qπ̂, u⊗ v 7→ |uv|.

By the formula in [9], p.276, we have

B∗(λ(α) · λ(β)) =
∑
p∈α∩β

ε(p;α, β)B(sλ(α)p ⊗ sλ(β)p).
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But since B(sλ(α)p ⊗ sλ(β)p) = |αpβp|, this is nothing but the Goldman bracket [α, β].
This completes the proof.

Remark 3.4.4. It should be remarked that λ is related to Chas-Sullivan’s operator ∆ =
ME [5]. More precisely, let LΣ be the free loop space of the surface Σ, LΣ = Map(S1,Σ).
The evaluation map at 0 ∈ S1 = [0, 1]/0 ∼ 1, ev : LΣ→ Σ, ℓ 7→ ℓ(0), is a Hurewicz fibration
with fiber ΩΣ, the based loop space of Σ. Since Σ is a K(π, 1)-space, the homology group
H∗(ΩΣ;Q) vanishes in positive degree. The 0-th homology groupH0(ΩΣ;Q) constitutes the
local system Sc stated above. Hence we have an isomorphism ev∗ : H∗(LΣ;Q) ∼= H∗(Σ;Sc).
The diagram

H0(LΣ;Q)
∆−−−→ H1(LΣ;Q)∥∥∥ ev∗

y
Qπ̂ λ−−−→ H1(Σ;Sc)

commutes by the definition of ∆ =ME and λ.

3.5 Homological interpretation of the action

Let Qπr (resp. Qπl) be the following π-module. As a vector space, Qπr = Qπl = Qπ,
and the π-action is given by the multiplication from the right (resp. the left): xu := ux−1

(resp. xu := xu) for x ∈ π, and u ∈ Qπr (resp. Qπl).
Let ⟨ζ⟩ be the cyclic subgroup of π generated by ζ. We consider the relative homology

of the pair (π, ⟨ζ⟩).

Definition 3.5.1. Define a Q-linear map ξ : Qπ → H1(π, ⟨ζ⟩;Qπr ⊗ Qπl) by ξ(x) =
(1 ⊗ x) ⊗ [x], x ∈ π. Here we understand H1(π, ⟨ζ⟩;Qπr ⊗ Qπl) as the homology of the
relative complex (see §3.3).

We denote by Qπt the vector space Qπ with the trivial π-action. We introduce a π-
module map C : Qπc ⊗ Qπr ⊗ Qπl → Qπt by C(u ⊗ v ⊗ w) = vuw. Here we consider the
diagonal π-action on Qπc ⊗Qπr ⊗Qπl.

Let Sr, S l, and St be the local system on Σ corresponding to the π-modules Qπr, Qπl,
and Qπt, respectively. Then we have the canonical isomorphism H1(π, ⟨ζ⟩;Qπr ⊗ Qπl) ∼=
H1(Σ, ∂Σ;Sr ⊗ S l), etc.

Using the intersection form of the surface, we have the following bilinear form:

( · ) : H1(π;Qπc)×H1(π, ⟨ζ⟩;Qπr ⊗Qπl) ∼= H1(Σ;Sc)×H1(Σ, ∂Σ;Sr ⊗ S l)
→ H0(Σ;Sc ⊗ Sr ⊗ S l)
∼= H0(π;Qπc ⊗Qπr ⊗Qπl).

Proposition 3.5.2. For u ∈ Qπ̂ and v ∈ Qπ, we have

σ(u)v = C∗(λ(u) · ξ(v)).

Here C∗ : H0(π;Qπc ⊗Qπr ⊗Qπl)→ H0(π;Qπt) = Qπ is the map induced by C.

Proof. The proof is similar to the proof of Proposition 3.4.3. Let α be an immersed loop and
β an immersed based loop. Suppose they intersect with at worst transverse double points.

22



The fiber of the local system Sr (resp. S l) at p ∈ Σ is Qπ(Σ, ∗, p) (resp. Qπ(Σ, p, ∗)).
Here π(Σ, p, q) is the set of homotopy classes of paths from p to q, and Qπ(Σ, p, q) is the
Q-vector space spanned by π(Σ, p, q).

By the canonical isomorphism H1(π, ⟨ζ⟩;Qπr⊗Qπl) ∼= H1(Σ, ∂Σ;Sr⊗S l), the relative
cycle ξ(β) = (1⊗ β)⊗ [β] corresponds to the flat section sξ(β) of β

∗(Sr ⊗S l) whose value
at p ∈ β is just (β∗p⊗ βp∗). Let C : Sc⊗Sr ⊗S l → St be the pairing of local systems on Σ
corresponding to the π-module map C (using the same letter). For each p ∈ Σ, this pairing
is just the conjunction Qπ1(Σ, p)⊗Qπ(Σ, ∗, p)⊗Qπ(Σ, p, ∗)→ Qπ, u⊗ v ⊗ w 7→ vuw.

By the formula in [9], p.276, we have

C∗(λ(α), ξ(β)) =
∑
p∈α∩β

ε(p;α, β)C(sλ(α)p ⊗ sξ(β)p).

But since C(sλ(α)p⊗ sξ(β)p) = β∗pαpβp∗, this equals σ(α)β. This completes the proof.

4 (Co)homology theory for Hopf algebras

In this section, we discuss a general theory of relative homology and cap products for
(complete) Hopf algebras. Theory of cap products on the absolute (co)homology of a
single (complete) Hopf algebra was already discussed in Cartan-Eilenberg [4] Chapter XI.
But, unfortunately, the authors do not find an appropriate reference for cap products on
the relative (co)homology of a pair of (complete) Hopf algebras. In the succeeding sections

these notions relate the Goldman Lie algebra to symplectic derivations of the algebra T̂ .

4.1 The mapping cone of a chain map

We begin by recalling the notion of the mapping cone of a chain map. See, for example, [3]
pp.6-7. Let f : (C∗, d

′) → (D∗, d) be a chain map of chain complexes. The mapping cone
D∗ of C∗−1 of the map f is defined by

(D∗ of C∗−1)n := Dn ⊕ Cn−1, and d′′ :=

(
d f
0 −d′

)
.

Then we have a natural long exact sequence

· · · → Hn(C∗)
f∗→ Hn(D∗)→ Hn(D∗ of C∗−1)→ Hn−1(C∗)→ · · · (exact). (4.1.1)

Lemma 4.1.1. If the chain map f is injective, then the natural projection

ϖ : D∗ of C∗−1 → D∗/f∗C∗, (u, v) 7→ u mod f∗C∗

is a quasi-isomorphism.

Proof. Since f is injective, we have Kerϖ ∼= C∗ o1C∗
C∗−1, so that H∗(Kerϖ) = 0 from

(4.1.1). We have the short exact sequence 0 → Kerϖ → D∗ of C∗−1
ϖ→ D∗/f∗C∗ → 0,

since ϖ is surjective. Hence ϖ is a quasi-isomorphism.

The following lemma will play a fundamental role in this section.
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Lemma 4.1.2. (1) If a chain homotopy Φ: C∗ → D∗+1 connects f to another chain map
g : C∗ → D∗, namely, dΦ + Φd′ = g − f , then the map

h(Φ) :=

(
1 −Φ
0 1

)
: D∗ of C∗−1 → D∗ og C∗−1

is a chain map and a quasi-isomorphism.

(2) Assume another chain homotopy Φ′ : C∗ → D∗+1 connecting f to g is homotopic to
Φ, in other words, there exists a map Ψ: C∗ → D∗+2 satisfying the relation

Φ′
n − Φn = (−1)n(dΨn +Ψn−1d

′) : Cn → Dn+1

for each degree n. Then we have

h(Φ) ≃ h(Φ′) : D∗ of C∗−1 → D∗ og C∗−1.

Proof. By a straightforward computation, h(Φ) is a chain map. It defines a homomorphism
between the long exact sequences (4.1.1). Hence it is a quasi-isomorphism from the five-
lemma. We have(

d g
0 −d′

)(
0 (−1)n−2Ψn−1

0 0

)
+

(
0 (−1)n−3Ψn−2

0 0

)(
d f
0 −d′

)
= h(Φ′)− h(Φ).

This implies the second part of the lemma.

The followings are well-known.

Lemma 4.1.3. Let R be an associative algebra, C∗ a left R-projective chain complex, and
D∗ a left R-acyclic chain complex. Then

(1) For any R-map f : H0(C∗) → H0(D∗), there exists an R-chain map φ : C∗ → D∗
inducing the map f on H0.

(2) If two R-chain maps φ and ψ : C∗ → D∗ satisfy φ∗ = ψ∗ : H0(C∗) → H0(D∗), then
we have a R-chain homotopy φ ≃ ψ : C∗ → D∗.

(3) Moreover, if Φ and Φ′ are R-chain homotopies connecting φ to ψ, then Φ and Φ′ are
chain homotopic to each other. In other words, there exists an R-map Ψ: C∗ → D∗+2

satisfying the relation

Φ′
n − Φn = (−1)n(dΨn +Ψn−1d

′) : Cn → Dn+1

for each n ≥ 0.

Let R′, S ′, R and S be associative algebras, and C ′
∗, D

′
∗, C∗ and D∗ chain complexes

of left R′, S ′, R and S modules, respectively. Suppose

R′ φ−−−→ R

f ′

y f

y
S ′ ψ−−−→ S

and

C ′
∗

φ−−−→ C∗

f ′

y f

y
D′

∗
ψ−−−→ D∗

(4.1.2)
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are a commutative diagram of algebra homomorphisms and a homotopy commutative di-
agram of chain maps, respectively, such that the chain maps f ′, f , φ and ψ respect the
algebra homomorphisms f ′, f , φ and ψ, respectively, and the augmentations. Then we have
a left R′-chain homotopy Θ: C ′

∗ → D∗+1 connecting ψf
′ to fφ. LetM be a right S-module.

Then we define a chain map h(φ,Θ, ψ) :=

(
ψ −Θ
0 φ

)
: (M ⊗S′ D′

∗) of ′ (M ⊗R′ C ′
∗−1) →

(M ⊗S D∗)of (M ⊗R C∗−1) by the composite

(M ⊗S′ D′
∗)of ′ (M ⊗R′ C ′

∗−1)

ψ 0
0 1


−→ (M ⊗S D∗)oψf ′ (M ⊗R′ C ′

∗−1)
h(Θ)−→ (M ⊗S D∗)ofφ (M ⊗R′ C ′

∗−1)1 0
0 φ


−→ (M ⊗S D∗)of (M ⊗R C∗−1). (4.1.3)

Here we regard M as a module on which R′, R and S ′ act through the homomorphisms
f ◦ φ = ψ ◦ f ′, f , and ψ, respectively.

Lemma 4.1.4. Assume C ′
∗ is left R′-projective and D∗ acyclic. Then the map

(φ, ψ)∗ := h(φ,Θ, ψ)∗ : H∗((M⊗S′D′
∗)of ′ (M⊗R′C ′

∗−1))→ H∗((M⊗SD∗)of (M⊗RC∗−1))

induced by the chain map h(φ,Θ, ψ) depends only on the homotopy classes of the chain
maps φ and ψ.

Proof. Suppose φ′ : C ′
∗ → C∗ and ψ′ : D′

∗ → D∗ are chain maps homotopic to φ and ψ,
respectively, and Θ′ a chain homotopy connecting ψ′f ′ to fφ′. Take a chain homotopy
Φ: C ′

∗ → C∗+1 connecting φ to φ′, and Ψ: D′
∗ → D∗+1 connecting ψ to ψ′. Then the three

diagrams

(M ⊗S D∗)of (M ⊗R C∗−1)
ψ−−−→ (M ⊗S D′

∗)oψ◦f (M ⊗R C∗−1)∥∥∥ h(Ψ◦f)
y

(M ⊗S D∗)of (M ⊗R C∗−1)
ψ′
−−−→ (M ⊗S D′

∗)oψ′◦f (M ⊗R C∗−1)

(M ⊗S D′
∗)oψ◦f (M ⊗R C∗−1)

h(Θ)−−−→ (M ⊗S D′
∗)of◦φ (M ⊗R C∗−1)

h(Ψ◦f)
y h(f◦Φ)

y
(M ⊗S D′

∗)oψ′◦f (M ⊗R C∗−1)
h(Θ′)−−−→ (M ⊗S D′

∗)of◦φ′ (M ⊗R C∗−1)

(M ⊗S D′
∗)of◦φ (M ⊗R C∗−1)

φ−−−→ (M ⊗S D′
∗)of (M ⊗R C ′

∗−1)

h(f◦Φ)

y ∥∥∥
(M ⊗S D′

∗)of◦φ′ (M ⊗R C∗−1)
φ′
−−−→ (M ⊗S D′

∗)of (M ⊗R C ′
∗−1)

commute up to homotopy. Here the horizontal ψ, ψ′, φ and φ′ mean the chain maps(
ψ 0
0 1

)
,

(
ψ′ 0
0 1

)
,

(
1 0
0 φ

)
and

(
1 0
0 φ′

)
, respectively. In fact, the chain homotopies
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(
Ψ 0
0 1

)
and

(
1 0
0 −Φ

)
induce the homotopy commutativity of the first and the third

diagrams, respectively. The maps Θ + f ◦ Φ and Θ′ + Ψ ◦ f are both chain homotopies
connecting ψ ◦ f to f ◦ φ′. Since C ′

∗ is R′-projective and D∗ acyclic, Lemma 4.1.3 (3)
implies there exists a homotopy connecting Θ + f ◦ Φ to Θ′ + Ψ ◦ f . Hence, by Lemma
4.1.2 (2), we have h(f ◦ Φ)h(Θ) = h(Θ + f ◦ Φ) ≃ h(Θ′ + Ψ ◦ f) = h(Θ′)h(Ψ ◦ f). This
means the homotopy commutativity of the second diagram. Hence we obtain h(φ,Θ, ψ) ≃
h(φ′,Θ′, ψ′) : (M ⊗S′ D′

∗) of ′ (M ⊗R′ C ′
∗−1) → (M ⊗S D∗) of (M ⊗R C∗−1). This proves

the lemma.

Moreover, suppose

R′′ α−−−→ R′

f ′′

y f ′

y
S ′′ β−−−→ S ′

and

C ′′
∗

α−−−→ C ′
∗

f ′

y f

y
D′′

∗
β−−−→ D′

∗

are a commutative diagram and a homotopy commutative diagram as in (4.1.2). Let Ξ be
a chain homotopy connecting βf ′′ to f ′α, and Υ connecting ψβf ′′ to fφα.

Lemma 4.1.5. Assume C ′′
∗ is left R′′-projective and D∗ acyclic. Then we have

h(φ,Θ, ψ)∗h(α,Ξ, β)∗ = h(φα,Υ, ψβ)∗ :

H∗((M ⊗S′′ D′′
∗)of ′′ (M ⊗R′′ C ′′

∗−1))→ H∗((M ⊗S D∗)of (M ⊗R C∗−1)).

Proof. By a straightforward computation, we have h(φ,Θ, ψ)h(α,Ξ, β) = h(φα,Θα +
ψΞ, ψβ) as chain maps. The chain homotopy Θα + ψΞ connects ψβf ′′ to fφα. Hence,
from Lemma 4.1.4, we have h(φα,Υ, ψβ)∗ = h(φα,Θα+ψΞ, ψβ)∗ = h(φ,Θ, ψ)∗h(α,Ξ, β)∗.
This proves the lemma.

4.2 Relative homology of a pair of Hopf algebras

Let S be a (complete) Hopf algebra over Q with the augmentation ε, the antipode ι and
the coproduct ∆. For a left S-module M , we can always regard it as a right S-module by
ms = ι(s)m, s ∈ S, m ∈M . Define the (co)homology groups by H∗(S;M) := TorS∗ (M,Q)
and H∗(S;M) := Ext∗S(Q,M). Here Q means the trivial S-module via the augmentation
map ε. Let P∗

ε→ Q be a left S-projective resolution of the S-module Q. Then they are
given by H∗(S;M) = H∗(M ⊗S P∗) and H

∗(S;M) = H∗(HomS(P∗,M)).
Consider a homomorphism f : R → S of (complete) Hopf algebras. We regard M

as a left R-module through the homomorphism f . Let F∗
ε→ Q be a left R-projective

resolution of Q. By Lemma 4.1.3 (1), we can choose an R-chain map f : F∗ → P∗ which
respects the homomorphism f : R → S and the augmentations. The (co)chain maps f :=
1M⊗f : M⊗RF∗ →M⊗SP∗ and f := Hom(f, 1M) : HomS(P∗,M)→ HomR(F∗,M) define
the induced maps f∗ : H∗(R;M) → H∗(S;M) and f ∗ : H∗(S;M) → H∗(R;M), which are
independent of the choice of the chain map f : F∗ → P∗.

We define the relative homology group H∗(S,R;M) by the homology group of the
mapping cone

H∗(S,R;M) := H∗((M ⊗S P∗)of (M ⊗R F∗−1)),

which we call the relative homology of the pair (S,R) with coefficients in M . It does not
depend on the choice of the resolutions P∗, F∗, and the chain map f . In fact, let P ′

∗ and
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F ′
∗ be other resolutions and f

′ : F ′
∗ → P ′

∗ a chain map respecting the homomorphism f and
the augmentations. By Lemma 4.1.3 (1)(2), we have homotopy equivalences φ : F ′

∗ → F∗
and ψ : P ′

∗ → P∗ respecting the identities 1R and 1S, respectively. Lemma 4.1.3 (2) implies
fφ ≃ ψf ′ : F ′

∗ → P∗. Hence, by Lemma 4.1.4, we obtain a uniquely determined map
(φ, ψ)∗ : H∗((M ⊗S P ′

∗) of ′ (M ⊗R F ′
∗−1)) → H∗((M ⊗S P∗) of (M ⊗R F∗−1)). Homotopy

inverses of φ and ψ induce a uniquely determined map H∗((M ⊗S P∗)of (M ⊗R F∗−1))→
H∗((M ⊗S P ′

∗) of ′ (M ⊗R F ′
∗−1)). It is the inverse of the map (φ, ψ)∗ from Lemmas 4.1.4

and 4.1.5. Hence the relative homology group H∗(S,R;M) is well-defined.
By the sequence (4.1.1), we have a natural exact sequence

· · · → Hn(R;M)
f∗→ Hn(S;M)

j∗→ Hn(S,R;M)
∂∗→ Hn−1(R;M)→ · · · (exact). (4.2.1)

We may choose P0 = S and F0 = R. Then the boundary operator

(
d f
0 −d

)
=
(
d 1

)
: (M⊗S

P1)⊕ (M ⊗R F0) = (M ⊗S P1)⊕M → (M ⊗S P0)⊕ (M ⊗R F−1) =M is surjective. Hence
we have

H0(S,R;M) = 0. (4.2.2)

For a commutative diagram

R′ φ−−−→ R

f ′

y f

y
S ′ ψ−−−→ S

(4.2.3)

of (complete) Hopf algebras, we can take a homotopy commutative diagram of resolutions
as in (4.1.2). By Lemma 4.1.4, it induces a well-defined map

(φ, ψ)∗ : H∗(S
′, R′;M)→ H∗(S,R;M)

for any S-module M . From Lemma 4.1.5 the relative homology of a pair of (complete)
Hopf algebras satisfies a functoriality.

Next consider the coproducts ∆: S → S ⊗ S and ∆: R → R ⊗ R. By the Künneth
formula, P∗ ⊗ P∗ and F∗ ⊗ F∗ are acyclic. We regard them as left S- and left R- chain
complexes by using the coproducts, respectively. In the case where S and R are complete
Hopf algebras, we consider P∗⊗̂P∗ and F∗⊗̂F∗ instead, and assume they are acyclic. In any
cases, by Lemma 4.1.3, we have chain maps ∆: P∗ → P∗ ⊗ P∗ and ∆: F∗ → F∗ ⊗ F∗. By
Lemma 4.1.4, we can define a uniquely determined map

∆∗ := (∆,∆)∗ : H∗(S,R;M)→ H∗((M ⊗S (P∗⊗P∗))of⊗f (M ⊗R (F∗⊗F∗)∗−1)), (4.2.4)

which we call the diagonal map. Consider a commutative diagram of (complete) Hopf al-
gebras as in (4.2.3). Take resolutions P ′

∗ and F ′
∗ over S ′ and R′, respectively. By Lemma

4.1.3, we have chain maps φ : F ′
∗ → F∗ and ψ : P ′

∗ → P∗ respecting the Hopf algebra ho-
momorphisms φ and ψ, respectively, and the augmentations. The homotopy commutative
diagrams

F ′
∗

∆−−−→ F ′
∗ ⊗ F ′

∗
φ⊗φ−−−→ F∗ ⊗ F∗

f ′

y f ′⊗f ′
y f⊗f

y
P ′
∗

∆−−−→ P ′
∗ ⊗ P ′

∗
ψ⊗ψ−−−→ P∗ ⊗ P∗

and

F ′
∗

φ−−−→ F∗
∆−−−→ F∗ ⊗ F∗

f ′

y f

y f⊗f
y

P ′
∗

ψ−−−→ P∗
∆−−−→ P∗ ⊗ P∗
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respect the same commutative diagram (4.2.3). Hence, from Lemma 4.1.5, we obtain the
commutative diagram

H∗(S
′, R′;M)

∆∗−−−→ H∗((M ⊗S′ (P ′
∗ ⊗ P ′

∗))of ′⊗f ′ (M ⊗R′ (F ′
∗ ⊗ F ′

∗)∗−1))

(φ,ψ)∗

y (φ⊗φ,ψ⊗ψ)∗

y
H∗(S,R;M)

∆∗−−−→ H∗((M ⊗S (P∗ ⊗ P∗))of⊗f (M ⊗R (F∗ ⊗ F∗)∗−1)),

(4.2.5)

namely, the naturality of the map in (4.2.4). Here, if Θ is a chain homotopy connecting
ψf ′ to fφ, the vertical map (φ, ψ)∗ is given by h(φ,Θ, ψ), and (φ ⊗ φ, ψ ⊗ ψ)∗ by h(φ ⊗
φ, (fφ)⊗Θ+Θ⊗ (ψf ′), ψ ⊗ ψ) as in (4.1.3).

4.3 Cap products on the relative (co)homology

Now we introduce the cap product on the relative homology of a pair of (complete) Hopf
algebras. In this paper our Poincaré duality is given by H ∼= H∗, X 7→ (Y 7→ Y ·X). This
means our cap product on the surface Σ is given by ⟨[Σ], u∪ v⟩ = ⟨[Σ]∩u, v⟩ for u, v ∈ H∗.
See [14] §5, for details. In other words, we evaluate the cocycle u on the front face of the
cycle [Σ] in the product [Σ] ∩ u. Thus we define our cap product on the Hopf algebra
(co)homology in the following way. We remark our sign convention here is different from
[14] and [1].

Let f : R → S be a homomorphism of (complete) Hopf algebras over Q, M1 and M2

left S-modules, P∗ and F∗ projective resolutions of Q over S and R, respectively, and
f : F∗ → P∗ a chain map respecting the homomorphism f and the augmentations. We
define the cap product

∩ : M1 ⊗R (F∗ ⊗ F∗)⊗ HomS(P∗,M2)→ (M1 ⊗M2)⊗R F∗ (4.3.1)

by ∩(u⊗x⊗y⊗v) = (u⊗x⊗y)∩v := (−1)deg(x⊗y) deg vu⊗v(f(x))⊗y for u ∈M1, x, y ∈ F∗
and v ∈ HomS(P∗,M2). HereM1⊗M2 is regarded as an R-module by the homomorphism f
and the coproduct ∆. In the case R is a complete Hopf algebra, we consider the completed
tensor product M1⊗̂M2 instead. By a straightforward computation, we find out ∩ is a
chain map. In the case where R = S and f = 1S, we have a chain map

∩ : M1 ⊗S (P∗ ⊗ P∗)⊗ HomS(P∗,M2)→ (M1 ⊗M2)⊗S P∗,

which is compatible with the map (4.3.1). Hence we obtain a chain map

(M1 ⊗S (P∗ ⊗ P∗)of⊗f M1 ⊗R (F∗ ⊗ F∗)∗−1) ⊗ HomS(P∗,M2)

→ (M1 ⊗M2)⊗S P∗ of (M1 ⊗M2)⊗R F∗−1

and the induced map

∩ : H∗((M1 ⊗S (P∗ ⊗ P∗)of⊗f M1 ⊗R (F∗ ⊗ F∗)∗−1))⊗H∗(S;M2)→ H∗(S,R;M1 ⊗M2).
(4.3.2)

We have to prove the naturality of the cap product (4.3.2). For the commutative diagram
of (complete) Hopf algebras (4.2.3), choose chain maps φ : F ′

∗ → F∗ and ψ : P ′
∗ → P∗ of

resolutions as in (4.2.5).
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Lemma 4.3.1. For any ξ ∈ H∗((M1 ⊗S′ (P ′
∗ ⊗ P ′

∗)) of⊗f (M1 ⊗R′ (F ′
∗ ⊗ F ′

∗)∗−1)) and
η ∈ H∗(S;M2), we have

(φ, ψ)∗(ξ ∩ ψ∗η) = ((φ, ψ)∗ξ) ∩ η ∈ H∗(S,R;M1 ⊗M2).

Here (φ, ψ)∗ξ in the right hand side means the homology class h(φ ⊗ φ, (fφ) ⊗ Θ + Θ ⊗
(ψf ′), ψ ⊗ ψ)∗ξ.

The lemma in the case where R′ = R, S ′ = S, φ = 1R and ψ = 1S implies that the cap
product is independent of the choice of the resolutions and the chain maps.

Proof. Let u, u′ ∈ M1, x, y ∈ P ′
∗, x

′, y′ ∈ F ′
∗ and v ∈ HomS(P∗,M2). We denote Ξ :=

(fφ)⊗Θ+Θ⊗ (ψf ′). Then, by a straightforward computation, we have

(−1)deg(x′⊗y′) deg v
(
ψ ⊗ ψ −Θ

0 φ

)
((u⊗ x⊗ y, u′ ⊗ x′ ⊗ y′) ∩ (ψ∗v))

−(−1)deg(x′⊗y′) deg v
((

ψ ⊗ ψ −Ξ
0 φ⊗ φ

)
(u⊗ x⊗ y, u′ ⊗ x′ ⊗ y′)

)
∩ v

= (−(−1)deg x′u′ ⊗ (dv)(Θx′)⊗Θy′, (−1)deg vu′ ⊗ (dv)(Θx′)⊗ φy′)
−((−1)deg vu′ ⊗ (vΘ⊗Θ)d(x′ ⊗ y′), u′ ⊗ (vΘ⊗ φ)d(x′ ⊗ y′))

+

(
d f
0 −d

)(
(−1)deg x′u′ ⊗ (vΘx′)⊗Θy′, (−1)deg vu′ ⊗ (vΘx′)⊗ φy′

)
.

If v is a cocycle, and (u ⊗ x ⊗ y, u′ ⊗ x′ ⊗ y′) is a cycle, then the right hand side is
null-homologous. This proves the lemma.

Taking the composite of the map ∩ in (4.3.2) and the diagonal map ∆∗ in (4.2.4), we
obtain the cap product

∩ := ∩ ◦∆∗ : H∗(S,R;M1)⊗H∗(S;M2)→ H∗(S,R;M1 ⊗M2). (4.3.3)

From the naturality of the diagonal map ∆∗ (4.2.5) and Lemma 4.3.1, this is independent
of the choice of resolutions and chain maps. We also obtain the naturality of the cap
product:

Proposition 4.3.2. In the situation of the commutative diagram (4.2.3), let M1 and M2

be left S-modules. For any ξ ∈ H∗(S
′, R′;M1) and η ∈ H∗(S;M2), we have

(φ, ψ)∗(ξ ∩ ψ∗η) = ((φ, ψ)∗ξ) ∩ η ∈ H∗(S,R;M1 ⊗M2).

4.4 Kronecker product

We recall the Kronecker product on the (co)homology of a Hopf algebra. Let S be a
(complete) Hopf algebra over Q, P∗ an S-projective resolution of Q, and M1 and M2 left
S-modules. The Kronecker product on the (co)chain level

⟨ , ⟩ : (M1 ⊗S P∗)⊗ HomS(P∗,M2)→M1 ⊗S M2 (4.4.1)

is defined by ⟨u⊗ x, v⟩ = (−1)deg x deg vu⊗ v(x) for u ∈M1, x ∈ P∗ and v ∈ HomS(P∗,M2).
Since ⟨d(u⊗x), v⟩ = (−1)deg x⟨u⊗x, dv⟩, we have the Kronecker product on the (co)homology
level

⟨ , ⟩ : H∗(S;M1)⊗H∗(S;M2)→M1 ⊗S M2.
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Let ψ : S ′ → S be a homomorphism of (complete) Hopf algebras, P∗ an S ′-projective
resolution of Q, and ψ : P ′

∗ → P∗ a chain map which respects the homomorphism ψ and
the augmentations. Then we have

⟨ψ∗u, v⟩ = ⟨u, ψ∗v⟩ (4.4.2)

for any u ∈ H∗(M1 ⊗S′ P ′
∗) and v ∈ H∗(HomS(P∗,M2)). Hence the Kronecker product is

independent of the choice of the resolution P∗, and has a naturality.

4.5 Homology of a pair of groups

Let G be a group, K a subgroup of G, and M a left QG-module. As was stated in §3.3,
we have H∗(G;M) = H∗(QG;M) and H∗(G;M) = H∗(QG;M). The normalized standard
complex F ∗(G) is a QG-projective resolution of Q. Since the inclusion map C∗(K;M) =
M ⊗QK F ∗(K) → C∗(G;M) = M ⊗QG F ∗(G) is injective, the mapping cone C∗(G;M) o
C∗−1(K;M) is naturally quasi-isomorphic to the quotient complex C∗(G;M)/C∗(K;M)
from Lemma 4.1.1. Hence we have a natural isomorphism

H∗(G,K;M) = H∗(QG,QK;M). (4.5.1)

The standard complex F∗(G) = {Fn(G)} is also a natural QG-projective resolution of
Q, so that it can be used for computing the relative homology H∗(QG,QK;M). The
Alexander-Whitney map

∆: F∗(G)→ F∗(G)⊗ F∗(G)

is a QG-chain map respecting the augmentation maps. See, for example, [3] p.108. Hence
the cap product on the relative homologyH∗(QG,QK;M) of the pair (QG,QK) introduced
in §4.3 coincides with the usual cap product on the relative homology H∗(G,K;M) of the
pair (G,K) via the isomorphism (4.5.1).

On the other hand, consider the classifying spaces BG and BK. We assume BK is
realized as a subspace of BG. Choose a basepoint ∗ ∈ BK. Denote by ∆n the standard
n-simplex, and by S∗(X) the rational singular chain complex of a topological space X. For
any g ∈ G we choose a continuous map ρ(g) : ∆1 → BG satisfying the conditions

1. ρ(g)(0) = ρ(g)(1) = ∗ under the natural identification ∆1 ≈ [0, 1],

2. the based homotopy class of ρ(g) is exactly g ∈ G = π1(BG, ∗), and

3. ρ(k)(∆1) ⊂ BK if k ∈ K.

This assignment defines a QG-map ρ : F1(G) → S1(EG) and a QK-map ρ : F1(K) →
S1(EK), where EG and EK is the universal covering spaces of BG and BK, respectively.
Since the spaces BG and BK are aspherical, the map ρ extends to a QG-chain map
ρ : F∗(G)→ S∗(EG) and a QK-chain map ρ : F∗(K)→ S∗(EK). Since the map ρ respects
the augmentations, it induces a natural isomorphism

ρ∗ : H∗(G,K;M)→ H∗(BG,BK;M). (4.5.2)

In the right hand side we regard M as the local system on the space BG associated with
the G-module M . From the construction of the map ρ, we have a commutative diagram
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of QG-chain maps

F∗(G)
∆−−−→ F∗(G)⊗ F∗(G)

ρ

y ρ⊗ρ
y

S∗(EG)
∆−−−→ S∗(EG)⊗ S∗(EG),

where the lower ∆ is the Alexander-Whitney map on the singular chain complex. Hence the
cap product on the relative homology H∗(G,K;M) of the pair (G,K) coincides with the
cap product on the relative homology H∗(BG,BK;M) of the pair (BG,BK) of topological
spaces via the isomorphism (4.5.2).

5 (Co)homology theory of T̂ and (T̂ ,Q[[ω]])

Following §4, H∗(T̂ ;M), H∗(T̂ ;M) and H∗(T̂ ,Q[[ω]];M) are defined for any T̂ -module M .
Here Q[[ω]] is the ring of formal power series in the symplectic form ω, which is regarded

as a Hopf subalgebra of T̂ in an obvious way. In this section we describe them in an
explicit way, prove the Poincaré duality for the pair (T̂ ,Q[[ω]]), and give a homological

interpretation of symplectic derivations of the algebra T̂ .

5.1 Explicit description of (co)homology of T̂ and (T̂ ,Q[[ω]])

Let S be a (complete) Hopf algebra over Q. We denote by IS the augmentation ideal of
S, namely, IS := Ker(ε : S → Q), and by ∂ the inclusion map IS ↪→ S. Then P∗(S) :=

(IS
∂→ S) is a left S-resolution of the trivial S-module Q. For a left S-module M we

denote

D∗(S;M) :=M ⊗S P∗(S) = (M ⊗S IS →M ⊗S S), and

D∗(S;M) := HomS(P∗(S),M) = (HomS(IS,M)← HomS(S,M)).

Let f : R → S be a homomorphism of (complete) Hopf algebras. It induces a natural
homomorphism f : IR → IS and natural (co)chain maps f : D∗(R;M) → D∗(S;M) and
f ∗ : D∗(S;M)→ D∗(R;M). The mapping cone D∗(S,R;M) := D∗(S;M)of D∗−1(R;M)

has an acyclic subcomplexM⊗RR =M
1M→ M =M⊗SS. We denote the quotient complex

by D∗(S,R;M), which is given by

D∗(S,R;M) =


M ⊗R IR, if ∗ = 2,
M ⊗S IS, if ∗ = 1,
0, otherwise,

and
∂2 = 1M ⊗ f : D2(S,R;M) =M ⊗R IR→M ⊗S IS = D1(S,R;M).

The natural projection ϖ : D∗(S,R;M)→ D∗(S,R;M) is a quasi-isomorphism.
We call the (complete) Hopf algebra S free, if IS is a left S-free module. For example,

the algebras T̂ , Q[[ω]], Qπ and Q⟨ζ⟩ are free. Then P∗(S) is a left S-projective resolution
of Q. Hence we have

H∗(S;M) = H∗(D∗(S;M)) = H∗(M ⊗S IS
1M⊗∂−→ M ⊗S S) (5.1.1)

H∗(S;M) = H∗(D∗(S;M)) = H∗(HomS(IS,M)
∂∗←− HomS(S,M)) (5.1.2)
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as in (3.3.1). If R is also free, then we have

H∗(S,R;M) = H∗(D∗(S,R;M)) = H∗(M ⊗R IR
1M⊗f−→ M ⊗S IS → 0). (5.1.3)

Lemma 5.1.1. Let S and R be free (complete) Hopf algebras, f : R→ S a homomorphism
of (complete) Hopf algebras, and M a trivial S-module. Then

(1)

H∗(S;M) =


M, if ∗ = 0,
M ⊗ (IS/IS2), if ∗ = 1,
0, otherwise.

(2) If f(IR) ⊂ IS2, then

H∗(S,R;M) =


H1(R;M), if ∗ = 2,
H1(S;M), if ∗ = 1,
0, otherwise.

In particular, ∂∗ : H2(S,R;M)→ H1(R;M) is an isomorphism.

Proof. Since M is a trivial module, 1M ⊗ ∂ : M ⊗S IS → M ⊗S S is a zero map. Hence
H0(S;M) = M and H1(S;M) = M ⊗S IS. The map M ⊗S IS → M ⊗Q (IS/IS2),
u⊗ a 7→ u⊗ (a mod IS2), is a well-defined isomorphism. This proves the first part.

From the assumption f(IR) ⊂ IS2, f∗ : M⊗ (IR/IR2)→M ⊗ (IS/IS2) is a zero map.
Hence the homology exact sequence (4.2.1) implies the second part.

Consider the case S = T̂ and R = Q[[ω]]. The inclusion map i : Q[[ω]] → T̂ is a

homomorphism of complete Hopf algebras. Then we have IS = T̂1 = T̂ ⊗ H as a left T̂ -
module, so thatM⊗SIS =M⊗T̂ T̂⊗H =M⊗H and HomS(IS,M) = HomT̂ (T̂⊗H,M) =
Hom(H,M). Under these isomorphisms, the operators 1M ⊗ ∂ and ∂∗ are given by

∂M : M ⊗H →M, m⊗X 7→ ι(X)m, and

δM : M → Hom(H,M), m 7→ (X 7→ Xm),

respectively. Hence we have

H∗(T̂ ;M) = H∗(M ⊗H
∂M→ M), and (5.1.4)

H∗(T̂ ;M) = H∗(Hom(H,M)
δM←M). (5.1.5)

A similar result holds for R = Q[[ω]]. Under the isomorphism M ⊗R IR =M ⊗Qω =M ,
the boundary operator in D∗(S,R;M) is given by

dM : M →M ⊗T̂ T̂1 =M ⊗H, m 7→ m⊗ ω =

g∑
i=1

−(Aim)⊗Bi + (Bim)⊗ Ai.

Hence we have
D∗(T̂ ,Q[[ω]];M) = (M

dM→ M ⊗H → 0). (5.1.6)

Now we recall the space H and its dual H∗ are identified by the map

ϑ : H
∼=→ H∗, X 7→ (Y 7→ Y ·X),
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as in (2.7.1), and introduce the isomorphisms

ϑ : D1(T̂ ,Q[[ω]];M) =M ⊗H
∼=→ H∗ ⊗M = D1(T̂ ;M), m⊗X 7→ −ϑ(X)⊗m,

ϑ : D2(T̂ ,Q[[ω]];M) =M
∼=→M = D0(T̂ ;M), m 7→ −m.

It is easy to check they constitute a chain map up to sign, and induce an isomorphism of
cochain complexes

ϑ : D2−∗(T̂ ,Q[[ω]];M)
∼=→ D∗(T̂ ;M). (5.1.7)

Hence we have an isomorphism H2−∗(T̂ ,Q[[ω]];M) ∼= H∗(T̂ ;M). In the next subsection
we interpret this isomorphism as a certain kind of the Poincaré duality.

5.2 Poincaré duality for the pair (T̂ ,Q[[ω]])

We begin by introducing the fundamental class [L̂] ∈ H2(T̂ ,Q[[ω]];Q), which is a counter-
part of the fundamental class [Σ] ∈ H2(Σ, ∂Σ;Q) of the surface Σ. For R = Q[[ω]], we have
IR/IR2 = Q[[ω]]ω/Q[[ω]]ω2 = Qω. By Lemma 5.1.1(1), we have H1(Q[[ω]];Q) = Qω ∼= Q.

Since i(IR) ⊂ IS2 for S = T̂ , the connecting homomorphism ∂∗ : H2(S,R;Q)→ H1(R;Q)
is an isomorphism from Lemma 5.1.1 (2). We define

[L̂] := −∂∗−1(ω) ∈ H2(T̂ ,Q[[ω]];Q), (5.2.1)

which spans H2(T̂ ,Q[[ω]];Q) ∼= Q and is represented by (0,−ω) in D2(T̂ ,Q[[ω]];Q) =

0 ⊕ Q ⊗Q[[ω]] Q[[ω]]ω. We call it the fundamental class of the pair (T̂ ,Q[[ω]]). We have a

certain kind of the Poincaré duality with respect to this fundamental class [L̂].

Proposition 5.2.1. The cap product by the fundamental class [L̂] gives an isomorphism

[L̂]∩ : H∗(T̂ ;M)
∼=→ H2−∗(T̂ ,Q[[ω]];M)

for any left T̂ -module M . In particular, the cochain map ϑ in (5.1.7) induces the inverse

of the map [L̂]∩.

Proof. We begin by computing the diagonal map (4.2.4)

∆∗ : H∗(T̂ ,Q[[ω]];M)→ H∗((M ⊗S (P∗⊗̂P∗))oi⊗i (M ⊗R (F∗⊗̂F∗)∗−1)) (5.2.2)

explicitly. Here we write simply P∗ = P∗(T̂ ) and F∗ = P∗(Q[[ω]]). It should be remarked

the completed tensor product P∗(T̂ )⊗̂P∗(T̂ ) given by

(T̂1⊗̂T̂1
∂2→ T̂1⊗̂T̂ ⊕ T̂ ⊗̂T̂1

∂1→ T̂ ⊗̂T̂ )
u 7→ (−u, u)

(v, w) 7→ v + w

is acyclic. We construct a chain map ∆: P∗(T̂ )→ P∗(T̂ )⊗̂P∗(T̂ ) respecting the coproduct

∆ as follows. In degree 0 we define ∆: P0(T̂ ) = T̂ → (P∗(T̂ )⊗̂P∗(T̂ ))0 = T̂ ⊗̂T̂ by the

coproduct ∆ itself. In degree 1 we define ∆(X) := (X⊗̂1, 1⊗̂X) ∈ T̂1⊗̂T̂ ⊕ T̂ ⊗̂T̂1 =
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(P∗(T̂ )⊗̂P∗(T̂ ))1 for X ∈ H, and extend it to the whole T̂1 = T̂ ⊗ H as a left T̂ -

homomorphism. Since X⊗̂1 + 1⊗̂X = ∆(X) ∈ T̂ ⊗̂T̂ , this map ∆ is a T̂ -chain map.
We define a Q[[ω]]-chain map ∆: P∗(Q[[ω]])→ P∗(Q[[ω]])⊗̂P∗(Q[[ω]]) in a similar way. We
have ∆(ω) = (ω⊗̂1, 1⊗̂ω) for ω ∈ Q[[ω]]ω = P1(Q[[ω]]). Then the (homotopy commuta-
tive) diagram

P∗(Q[[ω]])
∆−−−→ P∗(Q[[ω]])⊗̂P∗(Q[[ω]])

i

y i⊗i
y

P∗(T̂ )
∆−−−→ P∗(T̂ )⊗̂P∗(T̂ )

does not commute. If we denote

ω̂ :=

g∑
i=1

Ai⊗̂Bi −Bi⊗̂Ai ∈ T̂1⊗̂T̂1,

then
∆i(ω) = (ω⊗̂1− ω̂, ω̂ + 1⊗̂ω) = (i⊗ i)∆(ω) + ∂2ω̂.

This means the Q[[ω]]-homomorphism

Φ: P∗(Q[[ω]])→ (P∗(Q[[ω]])⊗̂P∗(Q[[ω]]))∗+1

defined by Φ|P0 = 0 and (Φ|P1)(ω) = −ω̂ satisfies the relation (i ⊗ i)∆ − ∆i = dΦ + Φd.

Hence the diagonal map (5.2.2) is given by h(∆,Φ,∆) =

(
∆ −Φ
0 ∆

)
. In particular, the

homology class ∆∗[L̂] is represented by the cycle(
∆ −Φ
0 ∆

)(
0
−ω

)
=

(
−ω̂

(−ω⊗̂1, −1⊗̂ω)

)
∈ (M ⊗S (P∗⊗̂P∗))oi⊗i (M ⊗R (F∗⊗̂F∗)∗−1).

By the explicit definition of the cap product (4.3.1), we have

(∆∗[L̂]) ∩m = (0,−m⊗ ω)

(∆∗[L̂]) ∩ v =

(
g∑
i=1

−v(Ai)⊗Bi + v(Bi)⊗ Ai,
g∑
i=1

Aiv(Bi)−Biv(Ai)

)

form ∈M = D0(T̂ ;M) and v ∈ HomT̂ (T̂1,M) = D1(T̂ ;M). Henceϖ◦((∆∗[L̂])∩) : D∗(T̂ ;M)→
D2−∗(T̂ ,Q[[ω]];M) is exactly the inverse of the map ϑ (5.1.7). This proves the proposi-
tion.

In a way similar to the surface Σ we can introduce the intersection form

( · ) : H1(T̂ ;M1)⊗H1(T̂ ,Q[[ω]];M2)→M1 ⊗T̂ M2, u⊗ v 7→ ⟨u, ([L̂]∩)−1v⟩ (5.2.3)

for any left T̂ -modules M1 and M2. Here ⟨ , ⟩ is the Kronecker product (4.4.1). Under the
identifications (5.1.4) and (5.1.6), the intersection form coincides with the pairing

( · ) : M1⊗H⊗M2⊗H →M1⊗T̂ M2, m1⊗X1⊗m2⊗X2 7→ (X1 ·X2)m1⊗m2. (5.2.4)
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In fact, we have ⟨m1⊗X1, ϑ(m2⊗X2)⟩ = −⟨m1⊗X1, ϑ(X2)⊗m2⟩ = (X1 ·X2)m1⊗m2. The

inclusion homomorphism j∗ : H1(T̂ ;M1) → H1(T̂ ,Q[[ω]];M1) is induced by the composite

H1(T̂ ;M1) ↪→M1 ⊗H � H1(T̂ ,Q[[ω]];M1). Hence the intersection form

( · ) : H1(T̂ ;M1)⊗H1(T̂ ;M2)→M1 ⊗T̂ M2, u⊗ v 7→ ⟨u, ([L̂]∩)−1j∗v⟩

also coincides with the pairing (5.2.4).
In the succeeding subsections we use these intersections to give a homological interpre-

tation of the Lie algebras a−g and lg and symplectic derivations of the algebra T̂ .

5.3 Homological interpretation of a−g and lg

The space H acts on the spaces T̂ and L̂ by Xu := [X, u] and Xv := [X, v] for X ∈ H,

u ∈ T̂ and v ∈ L̂, respectively. This action extends to the whole algebra T̂ . In fact, we
introduce an action of the algebra T̂ ⊗̂T̂ on the space T̂ by

C ′ : (T̂ ⊗̂T̂ )⊗ T̂ → T̂ , (v′⊗̂v′′)⊗ u 7→ v′uι(v′′)

for u, v′, v′′ ∈ T̂ . The space T̂ is a left T̂ ⊗̂T̂ -module by the map C ′. We have C ′(∆(X1 · · ·Xn)⊗
u) = [X1, [X2, [· · · [Xn, u] · · · ]]] for Xi ∈ H and u ∈ T̂ . Hence the action

T̂ ⊗ T̂ → T̂ , v ⊗ u 7→ C ′((∆v)⊗ u)

is exactly an extension of the action of H stated above. We denote by T̂ c and L̂c the
left T̂ -modules defined by this action. In particular, if v ∈ T̂ is group-like, we have
C ′((∆v) ⊗ u) = vuι(v). Hence these modules correspond to the Qπ-modules Qπc and

LieQ̂π
c
, respectively. We denote by T̂ c1 the T̂ -submodule of T̂ c whose underlying subspace

is T̂1.
As was stated in (2.7.3), the Lie algebra a−g = Derω(T̂ ) is identified with Ker([ , ] : H⊗

T̂ → T̂ ) = N(T̂1), and the Lie algebra lg = Derω(L̂) with Ker([ , ] : H⊗L̂ → L̂) = N(L̂⊗̂L̂).
Hence, from (5.1.4), we obtain

a−g = N(T̂1) = H1(T̂ ; T̂
c), (5.3.1)

ag = N(T̂2) = H1(T̂ ; T̂
c
1 ), and (5.3.2)

lg = N(L̂⊗̂L̂) = H1(T̂ ; L̂c). (5.3.3)

The brackets on the Lie algebras a−g and lg can be interpreted as intersection forms on
the homology introduced in (5.2.3). We introduce a map

B : T̂ c ⊗T̂ T̂
c → N(T̂1) = a−g , u⊗ v 7→ N(uv),

which is well-defined, since N([u,X]v) = N(u[X, v]) for X ∈ H (Lemma 2.6.2 (2)).
For positive integers n and m, by a straightforward computation, we have

Lemma 5.3.1.

[N(X1 · · ·Xn), N(Y1 · · ·Ym)]
= N((N(X1 · · ·Xn))(Y1 · · ·Ym))
= −B(N(X1 · · ·Xn) ·N(Y1 · · ·Ym))

= −
n∑
i=1

m∑
j=1

(Xi · Yj)N(Xi+1 · · ·XnX1 · · ·Xi−1Yj+1 · · ·YmY1 · · ·Yj−1)
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for Xi, Yj ∈ H. Here the bracket [ , ] is that as derivations of T̂ , and (N(X1 · · ·Xn))(Y1 · · ·Ym)
is the action of N(X1 · · ·Xn) on the tensor Y1 · · ·Ym as a derivation. The third term is

minus the pairing ( · ) in (5.2.4) of N(X1 · · ·Xn) and N(Y1 · · ·Ym) ∈ T̂ ⊗H applied by the
map B.

Hence we obtain

Proposition 5.3.2. Under the identifications (5.3.1) and (5.3.3), the brackets on the Lie
algebras a−g and lg coincide with minus the intersection forms

−B( · ) : H1(T̂ ; T̂
c)⊗H1(T̂ ; T̂

c)→ N(T̂1) = a−g , and

−B( · ) : H1(T̂ ; L̂c)⊗H1(T̂ ; L̂c)→ N(L̂ ⊗ L̂) = lg,

respectively.

5.4 Homological interpretation of symplectic derivations of T̂

In order to interpret symplectic derivations of the algebra T̂ , we introduce three left T̂ -
modules T̂ r, T̂ l and T̂ t, which correspond to the left Qπ-modules Qπr, Qπl and Qπt. As
vector spaces these three modules are the same T̂ . The action of the algebra T̂ is given by
the multiplication

u(vr) := vrι(u), u(vl) := uvl, and u(vt) := ε(u)vt

for u ∈ T̂ , vr ∈ T̂ r, vl ∈ T̂ l and vt ∈ T̂ t. Denote by T the tensor algebra of H, T :=⊕∞
n=0H

⊗n. We define a map ξ : T → (T̂ r⊗̂T̂ l)⊗T̂ T̂1 by

ξ(u) := 1⊗ (1⊗ (1− ε))(∆u) = 1⊗ (∆u− u⊗ 1)

for u ∈ T . In this expression, we regard (T̂ r⊗̂T̂ l)⊗T̂ T̂1 as the natural quotient of (T̂ r⊗̂T̂ l)⊗
T̂1. Then we have

Lemma 5.4.1.

ξ(X1 · · ·Xn) =
n∑
i=1

(X1 · · ·Xi−1 ⊗Xi+1 · · ·Xn)⊗T̂ Xi

for n ≥ 1 and Xi ∈ H.

Proof. First note that T̂⊗T̂ acts on (T̂ r⊗̂T̂ l)⊗T̂1 from the right, by (u⊗v⊗w)(x⊗y) = u⊗
vx⊗wy, and this action is compatible with the quotient map (T̂ r⊗̂T̂ l)⊗T̂1 → (T̂ r⊗̂T̂ l)⊗T̂ T̂1.
In the below, 1⊗ (∆w − w ⊗ 1)(1⊗Xn) means the result of the application of 1⊗Xn to
1⊗ (∆w − w ⊗ 1) with respect to this action, etc.

We prove the lemma by induction on n ≥ 1. If n = 1, we have ξ(X1) = 1⊗(∆X1−X1⊗
1) = 1⊗ 1⊗X1. Suppose n ≥ 2. Denote w := X1 · · ·Xn−1. By the inductive assumption,
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we compute

1⊗ (∆w − w ⊗ 1)(1⊗Xn) =
n−1∑
i=1

X1 · · ·Xi−1 ⊗Xi+1 · · ·Xn−1 ⊗XiXn

= −
n−1∑
i=1

(∆Xi)(X1 · · ·Xi−1 ⊗Xi+1 · · ·Xn−1)⊗Xn

= −
n−1∑
i=1

(Xi ⊗ 1 + 1⊗Xi)(X1 · · ·Xi−1 ⊗Xi+1 · · ·Xn−1)⊗Xn

=
n−1∑
i=1

(X1 · · ·Xi ⊗Xi+1 · · ·Xn−1)⊗Xn − (X1 · · ·Xi−1 ⊗Xi · · ·Xn−1)⊗Xn

= X1 · · ·Xn−1 ⊗ 1⊗Xn − 1⊗X1 · · ·Xn−1 ⊗Xn = w ⊗ 1⊗Xn − 1⊗ w ⊗Xn.

Hence we have 1 ⊗ (∆w)(1 ⊗ Xn) = w ⊗ 1 ⊗ Xn. Using the inductive assumption again,
we compute

ξ(wXn) = 1⊗ (∆(wXn)− wXn ⊗ 1)

= 1⊗ (∆w(Xn ⊗ 1 + 1⊗Xn)− wXn ⊗ 1)

= 1⊗ (∆w − w ⊗ 1)(Xn ⊗ 1) + 1⊗ (∆w)(1⊗Xn)

=
n−1∑
i=1

X1 · · ·Xi−1 ⊗Xi+1 · · ·Xn−1Xn ⊗Xi +X1 · · ·Xn−1 ⊗ 1⊗Xn

=
n∑
i=1

X1 · · ·Xi−1 ⊗Xi+1 · · ·Xn ⊗Xi.

This completes the induction.

From this lemma, the map ξ is a graded homomorphism of degree 0. Hence it extends
to the whole T̂ and induces a map

ξ : T̂ → (T̂ r⊗̂T̂ l)⊗T̂ T̂1 = D1(T̂ ,Q[[ω]]; T̂ r⊗̂T̂ l)→ H1(T̂ ,Q[[ω]]; T̂ r⊗̂T̂ l),

which corresponds to the map in Definition 3.5.1. Consider the map

C : T̂ c ⊗T̂ (T̂ r⊗̂T̂ l)→ T̂ t, w ⊗ u⊗ v 7→ uwv,

which is well-defined, since C(Xw⊗ u⊗ v) + C(w⊗X(u⊗ v)) = u(Xw−wX)v− uXwv+
uwXv = 0 for any X ∈ H. Then we have

Lemma 5.4.2.
C(w · ξ(u)) = (ϑw)(u) ∈ T̂

for any w ∈ T̂ c ⊗ H and u ∈ T̂ . Here ϑ : T̂ c ⊗ H → H∗ ⊗ T̂ c, m ⊗ Y 7→ −(ϑY ) ⊗m, is
the map given in (5.1.7). The right hand side means the action of ϑw on the tensor u as
a derivation.
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Proof. It suffices to prove the lemma for u = X1 · · ·Xn, Xi ∈ H, w = m⊗ Y , m ∈ T̂ c and
Y ∈ H. From Lemma 5.4.1,

C(w · ξ(u)) = C

(
(m⊗ Y ) ·

n∑
i=1

X1 · · ·Xi−1 ⊗Xi+1 · · ·Xn ⊗Xi

)

=
n∑
i=1

(Y ·Xi)C(m⊗X1 · · ·Xi−1 ⊗Xi+1 · · ·Xn)

= −
n∑
i=1

(Xi · Y )(X1 · · ·Xi−1mXi+1 · · ·Xn)

=
n∑
i=1

X1 · · ·Xi−1ϑ(m⊗ Y )(Xi)Xi+1 · · ·Xn = (ϑw)(u).

This proves the lemma.

Hence we obtain

Proposition 5.4.3. Under the identification (5.3.1) and the map ξ : T̂ → H1(T̂ ,Q[[ω]]; T̂ r⊗̂T̂ l),
the action of the Lie algebra a−g on the algebra T̂ as derivations coincides with minus the
intersection form

−C( · ) : H1(T̂ ; T̂
c)⊗H1(T̂ ,Q[[ω]]; T̂ r⊗̂T̂ l)→ T̂ t = T̂ .

In other words, we have
C(w · ξ(u)) = −w(u)

for any w ∈ H1(T̂ ; T̂
c) and u ∈ T̂ .

6 Comparison via a symplectic expansion

In this section we prove Theorems 1.2.1 and 1.2.2 in Introduction.

6.1 Comparison via a Magnus expansion

Let Fn = ⟨x1, . . . , xn⟩ be a free group of rank n ≥ 1 with standard generators x1, . . . , xn, T̂

the completed tensor algebra of the rational homology group H1(Fn;Q), and θ : Fn → T̂ a
Magnus expansion of Fn as in Definition 2.3.1. Then θ induces an algebra homomorphism
θ : QFn → T̂ . We regard a left T̂ -module M as a left QFn-module via θ.

Lemma 6.1.1. For any right T̂ -module M1 and left T̂ -module M2, θ induces isomorphisms

θ∗ : H∗(Fn;M1)
∼=→ TorT̂∗ (M1,Q), and

θ∗ : Ext∗
T̂
(Q,M2)

∼=→ H∗(Fn;M2).

In particular, if θ is group-like, then we have isomorphisms θ∗ : H∗(Fn;M1)
∼=→ H∗(T̂ ;Q)

and θ∗ : H∗(T̂ ;M2)
∼=→ H∗(Fn;M2).
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Proof. There exists a filter-preserving automorphism U of the algebra T̂ , such that θ(xi) =
U(1 + [xi]) for any 1 ≤ i ≤ n (see [14], Theorem 1.3). Since {[xi]}ni=1 ⊂ H1(Fn;Q)

is a free basis of the left T̂ -module T̂1, the set {θ(xi) − 1}ni=1 is also a free basis of T̂1.

Hence we have a decomposition M1 ⊗T̂ T̂1 =
⊕n

i=1M1 ⊗ (θ(xi) − 1). On the other hand,
by using Fox’ free differential, we find out {xi − 1}ni=1 is a free basis of the left Qπ-
module IFn. This implies a decomposition M1 ⊗QFn IFn =

⊕n
i=1M1 ⊗ (xi − 1). Hence we

obtain an isomorphism of chain complexes θ∗ : D∗(QFn;M1) ∼= M1 ⊗T̂ P∗(T̂ ), and so the

isomorphism θ∗ : H∗(Fn;M1) ∼= TorT̂∗ (M1,Q). A similar argument holds for Ext∗
T̂
(Q,M2)

and H∗(Fn;M2).

Let θ : π → T̂ be a symplectic expansion of the fundamental group π of the surface Σ.
Then the restriction of θ to the subgroup ⟨ζ⟩ is a Magnus expansion of the infinite cyclic
group ⟨ζ⟩. Hence, from Lemma 6.1.1 and the five-lemma, we obtain

Corollary 6.1.2. Let θ be a symplectic expansion of the fundamental group π of the surface
Σ. Then the algebra homomorphism θ induces an isomorphism

θ∗ : H∗(π, ⟨ζ⟩;M)
∼=→ H∗(T̂ ,Q[[ω]];M)

for any left T̂ -module M . Here we write simply θ∗ for (θ, θ)∗.

6.2 Symplectic expansion

Hereafter suppose θ is a symplectic expansion of the fundamental group π. Then we have
a commutative diagram of (complete) Hopf algebras

Q⟨ζ⟩ θ−−−→ Q[[ω]]

i

y i

y
Qπ θ−−−→ T̂ .

(6.2.1)

As was proved in Lemma 6.1.1 and Corollary 6.1.2, we have isomorphisms

θ∗ : H∗(π;M)
∼=→ H∗(T̂ ;M),

θ∗ : H∗(T̂ ;M)
∼=→ H∗(π;M), and

θ∗ : H∗(π, ⟨ζ⟩;M)
∼=→ H∗(T̂ ,Q[[ω]];M)

for any left T̂ -module M . Now we have

Lemma 6.2.1.
θ∗[Σ] = [L̂] ∈ H2(T̂ ,Q[[ω]];Q).

Proof. In the commutative diagram

H2(Σ, ∂Σ;Q) H2(π, ⟨ζ⟩;Q)
θ∗−−−→ H2(T̂ ,Q[[ω]];Q)

∂∗

y ∂∗

y ∂∗

y
H1(∂Σ;Q) H1(⟨ζ⟩;Q)

θ∗−−−→ H1(Q[[ω]];Q),
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the fundamental class [Σ] is mapped to −[ζ] ∈ H1(⟨ζ⟩;Q). In fact, the loop ζ goes around
the boundary ∂Σ in the opposite direction. Since θ is a symplectic expansion, we have
−θ∗[ζ] = −ω = ∂∗[L̂] ∈ H1(Q[[ω]];Q). This implies θ∗[Σ] = [L̂], as was to be shown.

Hence, by Proposition 4.3.2,

Corollary 6.2.2. We have a commutative diagram

H1(π;M)
θ∗←−−− H1(T̂ ;M)

[Σ]∩
y [L̂]∩

y
H1(π, ⟨ζ⟩;M)

θ∗−−−→ H1(T̂ ,Q[[ω]];M)

for any left T̂ -module M .

Here it should be remarked the cap product on the pair of spaces (Σ, ∂Σ) coincides
with that on the pair of Hopf algebras (Qπ,Q⟨ζ⟩) from what we proved in §4.5. Thus the
intersection form on the pair (T̂ ,Q[[ω]]) is directly related to that on the surface Σ.

Proposition 6.2.3. For any left T̂ -modules M1 and M2, we have a commutative diagram

H1(π;M1)⊗H1(π, ⟨ζ⟩;M2)
( · )−−−→ M1 ⊗Qπ M2

θ∗⊗θ∗

y y
H1(T̂ ;M1)⊗H1(T̂ ,Q[[ω]];M2)

( · )−−−→ M1 ⊗T̂ M2.

6.3 “Completion” of the Goldman Lie algebra

Recall the map λ : Qπ̂ → H1(π;Qπc) in §3.4, whose kernel is the subspace Q1 spanned by
the constant loop 1 = |1| ∈ π̂. Since the group π is free, the map

H∗(θ) : H1(π;Qπc)→ H1(π; T̂
c)

induced by the injection θ : Qπc → T̂ is injective. As was proved in Lemma 6.1.1,
θ∗ : H1(π; T̂

c)→ H1(T̂ ; T̂
c) is an isomorphism. Let λθ be the composite

λθ : Qπ̂
λ→ H1(π;Qπc)

H∗(θ)→ H1(π; T̂ )
θ∗→ H1(T̂ ; T̂

c) = N(T̂1) = a−g .

From what we showed above, the kernel of λθ is the subspace Q1.
In order to describe the map λθ explicitly, we introduce some notation around the

algebra T̂ . Let N̂ : T̂ → T̂1 be the map defined by N̂ |H⊗0 = 0 and N̂ |H⊗n = 1
n
N |H⊗n =∑n−1

i=0
1
n
νi for n ≥ 1. Clearly we have N̂ |N(T̂1)

= 1N(T̂1)
. We denote by χ the composite

χ : T̂ c ⊗T̂ T̂1 = T̂ c ⊗H ↪→ T̂1.

We have χ(Ker(T̂ c ⊗T̂ T̂1
1⊗∂→ T̂ c ⊗T̂ T̂ )) = N(T̂1). Let Φ: T̂ → L̂ be the map defined

by Φ(X1 · · ·Xn) = [X1, [· · · [Xn−1, Xn] · · · ]] for Xi ∈ H, n ≥ 1. We have Φ(u) = nu and

[u,Φ(v)] = Φ(uv) for any u ∈ L̂ ∩ H⊗n and v ∈ T̂1. See [26] Part I, Theorem 8.1, p.28.
1
n
Φ|H⊗n is exactly the Dynkin idempotent.
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Lemma 6.3.1. We have
N̂χ(u⊗ v) = N̂(uΦ(v))

for any u ∈ T̂ and v ∈ T̂1.
Proof. It suffices to prove the lemma for v ∈ H⊗q by induction on q ≥ 1. If q = 1, then
N̂χ(u⊗ v) = N̂(uv) = N̂(uΦ(v)). Suppose q ≥ 2 and v ∈ H⊗q−1. For any X ∈ H we have
N̂χ(u ⊗ Xv) = N̂χ([u,X] ⊗ v) = N̂([u,X]Φ(v)) = N̂(u[X,Φ(v)]) = N̂(uΦ(Xv)). This
completes the induction.

Lemma 6.3.2. For any x ∈ π, we have

λθ(x) = Nθ(x) = N(θ(x)− 1) ∈ N(T̂1) = a−g .

Proof. The homology class λ(x) = x ⊗ [x] ∈ H1(π;Qπc) is represented by x ⊗ (x − 1) ∈
Qπc⊗Qπ Iπ = D1(Qπ;Qπc). Hence λθ(x) = χθ∗H∗(θ)(x⊗ (x− 1)) = χθ∗(θ(x)⊗ (x− 1)) =
χ(θ(x)⊗θ(x−1)). Since [ℓθ(x), θ(x)] = 0, we have θ(x)⊗θ(x−1) =

∑∞
k=1

1
k!
θ(x)⊗ℓθ(x)k =

θ(x)⊗ ℓθ(x) ∈ T̂ c ⊗T̂ T̂1.
Clearly we have Nℓθ(x) = [x] = N̂Φℓθ(x). We denote by ℓθp(x) ∈ Lp = L̂ ∩ H⊗p the

degree p-part of ℓθ(x) ∈ L̂. For n ≥ 2, we have

nN̂(ℓθ(x)n−1Φℓθ(x))

=
n∑
i=1

∑
p1,··· ,pn

N̂(ℓθpi+1
(x) · · · ℓθpn(x)ℓ

θ
p1
(x) · · · ℓθpi−1

(x)Φℓθpi(x))

=
n∑
i=1

∑
p1,··· ,pn

pi
p1 + · · ·+ pn

N(ℓθpi+1
(x) · · · ℓθpn(x)ℓ

θ
p1
(x) · · · ℓθpi−1

(x)ℓθpi(x))

=
n∑
i=1

∑
p1,··· ,pn

pi
p1 + · · ·+ pn

N(ℓθp1(x) · · · ℓ
θ
pn(x)) =

∑
p1,··· ,pn

N(ℓθp1(x) · · · ℓ
θ
pn(x))

= N(ℓθ(x)n).

Hence, by Lemma 6.3.1, we have

λθ(x) = χ(θ(x)⊗ ℓθ(x)) = N̂χ(θ(x)⊗ ℓθ(x))

= N̂(Φℓθ(x)) +
∞∑
k=1

1

(k + 1)!
(k + 1)N̂(ℓθ(x)kΦℓθ(x))

= Nℓθ(x) +
∞∑
k=1

1

(k + 1)!
N(ℓθ(x)k+1) = N(θ(x)− 1).

This proves the lemma.

With respect to the T̂1-adic topology, the image of the map θ : Qπ → T̂ is dense in the
space T̂ . Clearly the map N : T̂ → N(T̂1) is a continuous surjection. Hence the image of

the map λθ : Qπ̂ → N(T̂1) is dense in N(T̂1). Summing up Propositions 3.4.3 (2), 5.3.2,
6.2.3 and Lemma 6.3.2, we have a commutative diagram

(Qπ̂)⊗2 λ⊗2

−−−→ (H1(π;Qπc))⊗2 (θ∗◦H∗(θ))⊗2

−−−−−−−→ (H1(T̂ ; T̂
c))⊗2 (a−g )

⊗2

[ , ]

y B∗( · )

y B( · )

y −[ , ]

y
Qπ̂ Qπ̂ λθ−−−→ N(T̂1) a−g .
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This means the map −λθ : Qπ̂ → N(T̂1) = a−g is a Lie algebra homomorphism. Hence we
obtain

Theorem 6.3.3. For any symplectic expansion θ of the fundamental group π of the surface
Σ, the map

−Nθ : Qπ̂ → N(T̂1) = a−g , x 7→ −Nθ(x)

is a Lie algebra homomorphism. The kernel is the subspace Q1 spanned by the constant
loop 1, and the image is dense in N(T̂1) = a−g with respect to the T̂1-adic topology.

By this theorem, we may regard the formal symplectic geometry a−g as a completion of
the Goldman Lie algebra Qπ̂′. In our forthcoming paper [16] we use this idea to compute
the center of the Goldman Lie algebra of an oriented surface of infinite genus.

6.4 Geometric interpretation of symplectic derivations

In this subsection we show the action of a−g on the algebra T̂ as symplectic derivations can
be interpreted as the action σ of the Goldman Lie algebra Qπ̂ on the group ring Qπ in a
geometric way. In order to prove it, we need to prepare some lemmas.

Lemma 6.4.1. If u ∈ T̂ is group-like, namely, u satisfies ∆(u) = u⊗̂u, then we have

ξ(u) = (1⊗̂u)⊗ (u− 1) ∈ (T̂ r⊗̂T̂ l)⊗T̂ T̂1.

Proof. When u is given by u =
∑∞

k=0 uk, uk ∈ H⊗k, we denote u≤m :=
∑m

k=0 uk ∈ T for
any m ≥ 1. Then we have ξ(u) ≡ ξ(u≤m) ≡ 1⊗u≤m⊗ (u≤m−1) ≡ (1⊗̂u)⊗ (u−1) modulo

the elements ∈ (T̂ r⊗̂T̂ l) ⊗T̂ T̂1 whose degree are greater than m. Since we can choose m
arbitrarily, we obtain ξ(u) = (1⊗̂u)⊗ (u− 1). This proves the lemma.

Lemma 6.4.2. We have a commutative diagram

Qπ ξ−−−→ H1(π, ⟨ζ⟩;Qπr ⊗Qπl)

θ

y θ∗◦H∗(θ)

y
T̂

ξ−−−→ H1(T̂ ,Q[[ω]]; T̂ r⊗̂T̂ l).

Here H∗(θ) : H1(π, ⟨ζ⟩;Qπr ⊗ Qπl) → H1(π, ⟨ζ⟩; T̂ r⊗̂T̂ l) is the map induced by θ : Qπr ⊗
Qπl → T̂ r⊗̂T̂ l.

Proof. For any x ∈ π, θ(x) is group-like, so that, from Lemma 6.4.1, ξθ(x) = (1⊗̂θ(x)) ⊗
(θ(x) − 1) = θ∗((1⊗̂θ(x)) ⊗ [x]) = θ∗H∗(θ)((1 ⊗ x) ⊗ [x]) = θ∗H∗(θ)ξ(x). This proves the
lemma.

The main result in this subsection is

Theorem 6.4.3. Let θ be a symplectic expansion of the fundamental group π of the surface
Σ. Then, for u ∈ Qπ̂ and v ∈ Qπ, we have the equality

θ(σ(u)v) = −λθ(u)θ(v).
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Here the right hand side means minus the action of λθ(u) ∈ a−g on the tensor θ(v) ∈ T̂ as
a derivation. In other words, the diagram

Qπ̂ ×Qπ σ−−−→ Qπ

−λθ×θ
y yθ

a−g × T̂ −−−→ T̂ ,

(6.4.1)

where the bottom horizontal arrow means the derivation, commutes.

Proof. From the definition of the two C’s we have a commutative diagram

Q̂π
c
⊗Qπ (Qπr ⊗Qπl) C−−−→ Q̂π

t

θ⊗θ⊗θ
y θ

y
T̂ c ⊗T̂ (T̂ r⊗̂T̂ l) C−−−→ T̂ t.

(6.4.2)

By Propositions 3.5.2, 6.2.3 and Lemma 6.4.2, we have

θ(σ(u)v) = θC∗(λ(u) · ξ(v)) = C((θ∗H∗(θ)λ(u)) · (θ∗H∗(θ)ξ(v))) = C(λθ(u) · ξθ(v)),

which equals −λθ(u)θ(v) from Proposition 5.4.3. Hence we obtain θ(σ(u)v) = −λθ(u)θ(v).
This completes the proof of the theorem.

6.5 The key formula

Recall from §3 the map | · | : Qπ → Qπ̂ and define σ : Qπ×Qπ → Qπ by σ(u, v) = σ(|u|)v.

Lemma 6.5.1. For integers p, q ≥ 1, we have

σ(Iπp × Iπq) ⊂ Iπp+q−2.

Proof. Since θ−1(T̂p) = Iπp, it suffices to show the following: if u ∈ Iπp and v ∈ Iπq,

then θ(σ(u, v)) ∈ T̂p+q−2. By Lemma 6.3.2 and Theorem 6.4.3, θ(σ(u, v)) = −λθ(u)θ(v) =
(Nθ(u))θ(v). On the other hand, we have Nθ(u) ∈ T̂p and θ(v) ∈ T̂q, by assumption.

Hence (Nθ(u))θ(v) ∈ T̂p+q−2.

By this lemma, we see that σ naturally extends to σ : Q̂π× Q̂π → Q̂π and the diagram

Q̂π × Q̂π σ−−−→ Q̂π

−λθ×θ
y yθ

a−g × T̂ −−−→ T̂ ,

(6.5.1)

which is an extension of the diagram (6.4.1), commutes. Let f(x) be a power series in

x− 1. Then for x ∈ π, N(θ(f(x)) ∈ a−g = N(T̂1) is defined. For example, if f(x) = log x,
then N(θ(f(x))) = N(ℓθ(x)) = [x], as we have seen in the proof of Lemma 6.3.2.

Let f(x) = (log x)2. Then N(θ(f(x))) = N(ℓθ(x)ℓθ(x)) = 2Lθ(x). Therefore, from
(6.5.1) we obtain the following key formula which will derive Theorem 1.1.1.

43



Theorem 6.5.2. For x, y ∈ π,

θ(σ((log x)2)y) = −2Lθ(x)θ(y).

As an immediate consequence, we have the following:

Corollary 6.5.3. Let α be a free loop and β a based loop on Σ. Suppose α∩ β = ∅. Then
Lθ(α)θ(β) = Lθ(α)ℓθ(β) = 0.

Proof. By assumption, σ(αn)β = 0 for each n ≥ 0, hence σ((logα)2)β = 0. Using Theorem
6.5.2, we have Lθ(α)θ(β) = 0. Since ℓθ(β) = log θ(β) and Lθ(α) is a derivation, we also
have Lθ(α)ℓθ(β) = 0.

7 Proof of the main results

In this section we prove Theorems 1.1.1 and 1.1.2 in Introduction, and derive some formulas
of τ θk (tC), which matches the computations by Morita.

Let us recall some notations. As in §6.3, we denote by ℓθp(x) ∈ Lp = L̂∩H⊗p the degree

p-part of ℓθ(x) ∈ L̂ for x ∈ π. Further we denote

Lθ(x) =
∞∑
i=2

Lθi (x), Lθi (x) ∈ H⊗i.

Then we have

Lθi (x) =
1

2
N

(
i−1∑
p=1

ℓθp(x)ℓ
θ
i−p(x)

)
.

Lθ(x) and Lθi (x) are regarded as a derivation of the algebra T̂ , and if θ is group-like, they
belong to lg (see §2.7).

7.1 The logarithms of Dehn twists

Theorem 7.1.1. Let θ be a symplectic expansion and C a simple closed curve on Σ. Then
the total Johnson map T θ(tC) is described as

T θ(tC) = e−L
θ(C).

Here, the right hand side is the algebra automorphism of T̂ defined by the exponential of
the derivation −Lθ(C).

Let us give an orientation on C and denote by [C] ∈ H its homology class. Then the
square of Lθ2(C) = [C][C] acts on H trivially. See Lemma 7.6.1 and Proposition 7.7.1.

Recall from §2.5 that T θ(tC) = τ θ(tC) ◦ |tC |. Let X ∈ H. Modulo T̂2, we compute

|tC |X ≡ τ θ(tC) ◦ |tC |X = T θ(tC)X = e−L
θ(C)X ≡ X − Lθ2(C)X = X − (X · [C])[C].

Namely,
|tC |X = X − (X · [C])[C], X ∈ H.
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This is nothing but the classical formula as stated in Introduction (1.1.2).
A simple closed curve C on Σ is called non-separating (resp. separating) if Σ \ C is

connected (resp. not connected). The proof of Theorem 7.1.1 is divided into two cases
according to whether C is separating or not. We take symplectic generators suitable to C
and compute Lθ(C)θ(xi), hence e

−Lθ(C)θ(xi) by using Theorem 6.5.2 where xi is one of the
generators. Next we observe this value coincides with T θ(tC)θ(xi) = θ(tC(xi)). Together

with the fact that {θ(xi)}i generates T̂ as a complete algebra, we will get the conclusion.

7.2 Non-separating case

Suppose C is non-separating. We take symplectic generators α1, β1, . . . , αg, βg such that
|α1| is homotopic to C as unoriented loops. Then the action of tC on π is given by

tC(αi) = αi, 1 ≤ i ≤ g,

tC(β1) = β1α1,

tC(βi) = βi, 2 ≤ i ≤ g.

(7.2.1)

Lemma 7.2.1. Notations are as above. Then
Lθ(C)θ(αi) = 0, 1 ≤ i ≤ g,

Lθ(C)θ(β1) = −θ(β1)ℓθ(α1),

Lθ(C)θ(βi) = 0, 2 ≤ i ≤ g.

Proof. Since C∩αi = ∅ for 1 ≤ i ≤ g and C∩βi = ∅ for 2 ≤ i ≤ g, we have Lθ(C)θ(αi) = 0
for 1 ≤ i ≤ g and Lθ(C)θ(βi) = 0 for 2 ≤ i ≤ g by Corollary 6.5.3.

It remains to prove Lθ(C)θ(β1) = −θ(β1)ℓθ(α1). We have

σ(αn1 )β1 = nβ1α
n
1 , for n ≥ 0.

Thus for m ≥ 0, we compute

σ((α1 − 1)m)β1 =
m∑
n=0

(−1)m−n
(
m

n

)
σ(αn1 )β1 =

m∑
n=1

(−1)m−nn

(
m

n

)
β1α

n
1

= mβ1α1(α1 − 1)m−1. (7.2.2)

Here we use n
(
m
n

)
= m

(
m−1
n−1

)
. This implies if f(α1) is a power series in α1 − 1, then

σ(f(α1))β1 = β1α1f
′(α1), where f

′(α1) is the derivative of f(α1). If f(α1) = (logα1)
2,

then α1f
′(α1) = 2 logα1. Therefore, σ((logα1)

2)β1 = 2β1 logα1.
Substituting this into Theorem 6.5.2, we have

Lθ(C)θ(β1) = −
1

2
θ(σ((logα1)

2)β1) = −θ(β1 logα1) = −θ(β1)ℓθ(α1).

This completes the proof.

Proof of Theorem 7.1.1 for non-separating C. By Lemma 7.2.1, we have e−L
θ(C)θ(αi) =

θ(αi) for 1 ≤ i ≤ g, and e−L
θ(C)θ(βi) = θ(βi) for 2 ≤ i ≤ g. Also Lemma 7.2.1 implies

Lθ(C)iθ(β1) = (−1)iθ(β1)ℓθ(α1)
i for i ≥ 0. Hence

e−L
θ(C)θ(β1) =

∞∑
i=0

(−1)i 1
i!
Lθ(C)iθ(β1) = θ(β1)

∞∑
i=0

1

i!
ℓθ(α1)

i = θ(β1)θ(α1) = θ(β1α1).
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On the other hand, (7.2.1) implies that the total Johnson map T θ(tC) satisfies T
θ(tC)(θ(αi)) =

θ(αi) for 1 ≤ i ≤ g, T θ(tC)(θ(β1)) = θ(β1α1), and T
θ(tC)(θ(βi)) = θ(βi) for 2 ≤ i ≤ g.

In summary, the values of e−L
θ(C) and T θ(tC) coincide on {θ(αi), θ(βi)}i. Since {θ(αi), θ(βi)}i

generates T̂ as a complete algebra, this shows the equality e−L
θ(C) = T θ(tC) ∈ Aut(T̂ ).

This completes the proof of Theorem 7.1.1 for the case C is non-separating.

7.3 Separating case

Suppose C is separating. We take symplectic generators α1, β1, . . . , αg, βg such that C is

homotopic to |γh| as unoriented loops, where γh =
∏h

i=1[αi, βi] for some h. Then the action
of tC on π is given by 

tC(αi) = γ−1
h αiγh, 1 ≤ i ≤ h,

tC(αi) = αi, h+ 1 ≤ i ≤ g,

tC(βi) = γ−1
h βiγh, 1 ≤ i ≤ h,

tC(βi) = βi, h+ 1 ≤ i ≤ g.

(7.3.1)

Lemma 7.3.1. Notations are as above. Then

Lθ(C)θ(αi) =

{
[ℓθ(γh), θ(αi)], if 1 ≤ i ≤ h,

0, if h+ 1 ≤ i ≤ g, and

Lθ(C)θ(βi) =

{
[ℓθ(γh), θ(βi)], if 1 ≤ i ≤ h,

0, if h+ 1 ≤ i ≤ g.

Proof. Suppose i ≥ h + 1. Since C ∩ αi = C ∩ βi = ∅ if i ≥ h + 1, we have Lθ(C)θ(αi) =
Lθ(C)θ(βi) = 0 by Corollary 6.5.3.

Suppose i ≤ h. Then we have

σ(γnh )αi = −nγnhαi + nαiγ
n
h , for n ≥ 0.

By a computation similar to (7.2.2), we get

σ((γh − 1)m)αi = mαiγh(γh − 1)m−1 −mγh(γh − 1)m−1αi

for m ≥ 0. This implies if f(γh) is a power series in γh−1, then σ(f(γh))αi = αiγhf
′(γh)−

γhf
′(γh)αi. Therefore, σ((log γh)

2)αi = 2(αi log γh − (log γh)αi).
Substituting this into Theorem 6.5.2, we have

Lθ(C)θ(αi) = −θ(αi log γh − (log γh)αi) = [ℓθ(γh), θ(αi)].

The proof of Lθ(C)θ(βi) = [ℓθ(γh), θ(βi)] is similar. This completes the proof.

Proof of Theorem 7.1.1 for separating C. By Lemma 7.3.1, we have e−L
θ(C)θ(αi) = θ(αi)

and e−L
θ(C)θ(βi) = θ(βi) if i ≥ h + 1. Suppose i ≤ h. By Corollary 6.5.3, we have

Lθ(C)ℓθ(γh) = 0. Combining this with Lemma 7.3.1, we have Lθ(C)mθ(αi) = ad(ℓθ(γh))
mθ(αi)

for m ≥ 0. Hence we have

e−L
θ(C)θ(αi) =

∞∑
m=0

1

m!
ad(−ℓθ(γh))mθ(αi) = e−ℓ

θ(γh)θ(αi)e
ℓθ(γh) = θ(γ−1

h αiγh).
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Similarly we have e−L
θ(C)θ(βi) = θ(γ−1

h βiγh) for i ≤ h.
On the other hand (7.3.1) implies that T θ(tC)θ(αi) = θ(γ−1

h αiγh), T
θ(tC)θ(βi) =

θ(γ−1
h βiγh) for 1 ≤ i ≤ h, and T θ(tC)θ(αi) = θ(αi), T

θ(tC)θ(βi) = θ(βi) for h+ 1 ≤ i ≤ g.

In summary the values of e−L
θ(C) and T θ(tC) coincide on {θ(αi), θ(βi)}i. As the proof

for non-separating C, this leads to the equality e−L
θ(C) = T θ(tC). This completes the proof

of Theorem 7.1.1 for the case C is separating.

7.4 Action on the nilpotent quotients

Let Γk = Γk(π), k ≥ 1 be the lower central series of π. Namely Γ1 = π, and define Γk
successively by Γk = [Γk−1, π] for k ≥ 2. For k ≥ 0, the k-th nilpotent quotient of π is
defined as the quotient group Nk = Nk(π) = π/Γk+1. Note that N1 = π/[π, π] is nothing
but the abelianization of π. Since any automorphism of π preserves Γk, the mapping class
groupMg,1 naturally acts on Nk for each k.

Let θ be a (not necessary symplectic) Magnus expansion of π. For each k ≥ 1 we have

θ−1(1 + T̂k) = Γk. (7.4.1)

See Bourbaki [2] ch.2, §5, no.4, Theorem 2. Therefore, θ induces an injective homomor-

phism θ : Nk → (1+ T̂1)/(1+ T̂k+1). Note that 1+ T̂k+1 is a normal subgroup of 1+ T̂1. By

post-composing the natural injection (1 + T̂1)/(1 + T̂k+1) ↪→ T̂ /T̂k+1, we get an injection

θ : Nk → T̂ /T̂k+1. (7.4.2)

Since the total Johnson map T θ(φ) of φ ∈ Mg,1 is filter-preserving, it naturally induces a

filter-preserving automorphism of the quotient algebra T̂ /T̂k+1. Using the same letter we
denote it by T θ(φ). By construction the injection (7.4.2) is compatible with the action of
Mg,1: we have T θ(φ) ◦ θ(x) = θ ◦ φ(x) for any x ∈ Nk.

For a group G, let G be the quotient set of G by conjugation and the relation g ∼ g−1,
g ∈ G. Let C be a simple closed curve on Σ. Choose any x ∈ π such that x is freely
homotopic to C as unoriented loops. Then the element of π represented by x is independent
of the choice of x. For each k ≥ 0, let Ck ∈ Nk be the image of this element under the
natural surjection π → Nk.

Theorem 7.4.1. For each k ≥ 1, the action of tC on Nk depends only on the class
Ck ∈ Nk. If C is separating, it depends only on the class Ck−1 ∈ Nk−1.

Proof. Fix a symplectic expansion θ. By Theorem 7.1.1, we have T θ(tC) = e−L
θ(C) ∈

Aut(T̂ ). Remark that the action of e−L
θ(C) on T̂ /T̂k+1 depends only on L

θ
i (C), 2 ≤ i ≤ k+1.

Pick x ∈ π such that x is freely homotopic to C as unoriented loops. Let x′ ∈ π
such that x−1x′ ∈ Γk+1. By (7.4.1), it follows that ℓθi (x) = ℓθi (x

′) for 1 ≤ i ≤ k. Since
Lθ(C) = Lθ(x) = 1

2
N(ℓθ(x)ℓθ(x)), this observation together with Lemma 2.6.4 shows that

Lθi (C), 2 ≤ i ≤ k + 1, depend only on the class Ck ∈ Nk. This proves the first part.
If C is separating, x ∈ Γ2 hence ℓθ1(x) = 0. Thus if x′ ∈ Γ2 is a representative of

another separating simple closed curve C ′, satisfying x−1x′ ∈ Γk, then L
θ
i (x) = Lθi (x

′) for
2 ≤ i ≤ k + 1. Therefore, Lθi (C), 2 ≤ i ≤ k + 1 depend only on the class Ck−1 ∈ Nk−1.
This completes the proof.
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This theorem is a generalization of the following well-known facts: 1) the action of tC
on N1 = H1(Σ;Z) depends only on the class ±[C]; 2) if C is separating, then tC belongs
to the Johnson kernel Kg,1 =Mg,1[2], the subgroup of the mapping classes acting on N2

as the identity.

7.5 The formula of τ θk (tC) for separating C

In the rest of this section we derive formulas of the k-th Johnson map (see Definition 2.5.1)
of tC with associated to a symplectic expansion from Theorem 7.1.1. For simplicity, we
often write Lθ(C) = L, Lθk(C) = Lk, etc.

In this subsection we treat the case of separating curves.

Theorem 7.5.1. Let θ be a symplectic expansion and C a separating simple closed curve
on Σ. Then for k ≥ 1, the k-th Johnson map τ θk (tC) is given by

τ θk (tC) =
∑

1≤n≤[k/2]

(−1)n

n!

∑
(m1,...,mn),mi≥4,
m1+···+mn=2n+k

Lm1 · · ·Lmn .

For example, we have τ θ1 (tC) = 0, and

τ θ2 (tC) = −L4;

τ θ3 (tC) = −L5;

τ θ4 (tC) = −L6 +
1

2
L2

4;

τ θ5 (tC) = −L7 +
1

2
(L4L5 + L5L4);

τ θ6 (tC) = −L8 +
1

2
(L4L6 + L2

5 + L6L4)−
1

6
L3

4.

Here, L2
4 is the composition L4 ◦ L4 : H → H⊗3 → H⊗5, etc.

Proof. Since C is separating, |tC | = id hence τ θ(tC) = T θ(tC), and Lθ2(C) = Lθ3(C) = 0.
Thus, Lθ(C) = L4 + L5 + · · · . For X ∈ H, the degree k + 1-part of L(C)nX is equal to∑

(m1,...,mn),mi≥4,
m1+···+mn=2n+k

Lm1 · · ·LmnX.

In particular if n > [k/2], the degree k+1-part of L(C)nX is zero. By Theorem 7.1.1, the
conclusion follows.

Remark 7.5.2. In [21] Proposition 1.1, Morita computed τ2(tC) for separating C, and
our formula τ θ2 (tC) = −Lθ4 coincides with his formula. In fact, we have tC ∈ Kg,1 as we
remarked at the end of §7.4, and τ θ2 (tC) does not depend on the choice of θ.
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7.6 Computations of Lθ
k(x) for small k

Compared with the separating case, the non-separating case is more complicated since
Lθ2(C) ̸= 0 for non-separating C. So far we don’t have a complete formula of τ θk (tC), k ≥ 1
for non-separating C, and in this paper we only give formulas of τ θ1 (tC) and τ

θ
2 (tC). Even

in these cases, we need considerable computations. This subsection is a preparation for
the computations.

Let ΛkH be the k-th exterior product of H. We can realize ΛkH as a subspace of H⊗k

by the embedding

ΛkH → H⊗k, X1 ∧ · · · ∧Xk 7→
∑
σ∈Sk

sign(σ)Xσ(1) ⊗ · · · ⊗Xσ(k).

Note that Λ2H = L2 and X ∧ Y = [X, Y ].

Lemma 7.6.1. Let θ be a group-like expansion. Then for each x ∈ π,

(1) Lθ2(x) = [x][x],

(2) Lθ3(x) = [x] ∧ ℓθ2(x) ∈ Λ3H.

Proof. For simplicity, we write ℓθ = ℓ. Since ℓ1(x) = [x], we have Lθ2(x) =
1
2
N([x][x]) =

[x][x]. By Lemma 2.6.2, Lθ3(x) =
1
2
N([x]ℓ2(x) + ℓ2(x)[x]) = N([x]ℓ2(x)).

Now we claim that if X ∈ H and u ∈ Λ2H then N(Xu) = X ∧ u. In fact, if u =
Y ∧ Z = Y Z − ZY for some Y, Z ∈ H, then

N(Xu) = N(XY Z −XZY ) = XY Z + Y ZX + ZXY −XZY − ZY X − Y XZ
= X ∧ Y ∧ Z = X ∧ u.

This proves the claim, hence proves (2).

Let θ and θ′ be symplectic expansions. As we saw in §2.8, there uniquely exists U =
U(θ, θ′) ∈ IA(T̂ ) such that θ′ = U ◦ θ, U(H) ⊂ L̂, and U(ω) = ω. The restriction of U to
H is uniquely written as

U |H = 1H +
∞∑
k=1

uk, uk ∈ Hom(H,Lk+1).

Lemma 7.6.2. Notations are as above.

(1) By the Poincaré duality (2.7.1) we regard uk ∈ H⊗Lk+1. Then u1 ∈ Λ3H ⊂ H⊗L2.

(2) For x ∈ π, we have

ℓθ
′

2 (x) = ℓθ2(x) + u1([x]);

ℓθ
′

3 (x) = ℓθ3(x) + u1(ℓ
θ
2(x)) + u2([x]).

Here, u1(ℓ
θ
2(x)) means (1⊗ u1 + u1 ⊗ 1)ℓθ2(x).
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Proof. Modulo T̂4, we compute

ω = U(ω) =

g∑
i=1

U(Ai)U(Bi)− U(Bi)U(Ai)

≡
g∑
i=1

(Ai + u1(Ai))(Bi + u1(Bi))− (Bi + u1(Bi))(Ai + u1(Ai))

≡ ω +

g∑
i=1

(Aiu1(Bi) + u1(Ai)Bi −Biu1(Ai)− u1(Bi)Ai)

By the same reason as the discussion in §2.8, this implies u1 ∈ Ker([ , ] : H ⊗ L2 → L3).
Also, we have Ker([ , ] : H ⊗ L2 → L3) = Λ3H. In fact, if u ∈ Ker([ , ] : H ⊗ L2 → L3)
then ν(u) = u by Lemma 2.6.2, thus u = 1

3
(u + ν(u) + ν2(u)). This shows u ∈ Λ3H. The

other inclusion follows from the Jacobi identity. This proves the first part.
Again modulo T̂4, we compute

ℓθ
′
(x) ≡ U([x] + ℓθ2(x) + ℓθ3(x))

≡ [x] + u1([x]) + u2([x])

+ℓθ2(x) + u1(ℓ
θ
2(x)) + ℓθ3(x).

This proves (2).

Corollary 7.6.3. Notations are the same as Lemma 7.6.2. For x ∈ π, we have

(1) Lθ
′

3 (x)− Lθ3(x) = [x] ∧ u1([x]),

(2) Lθ
′

4 (x)−Lθ4(x) = N([x]u1(ℓ
θ
2(x))+N([x]u2([x]))+N(ℓθ2(x)u1([x]))+

1

2
N(u1([x])u1([x])).

Proof. The first part is clear from Lemmas 7.6.1 and 7.6.2. The second part follows from

Lθ4(x) = N([x]ℓθ3(x)) +
1

2
N(ℓθ2(x)ℓ

θ
2(x))

and Lemma 7.6.2.

7.7 The formulas of τ θ1 (tC) and τ θ2 (tC) for non-separating C

Let C be a non-separating simple closed curve on Σ. As we did in §7.2, we take symplectic
generators α1, β1, . . . , αg, βg such that |α1| is freely homotopic to C as unoriented loops.
In this situation, Massuyeau [20], Example 2.19 gave a partial example of a symplectic

expansion θ0 whose values of ℓθ
0
(α1) and ℓ

θ0(β1) modulo T̂5 are as follows:

ℓθ
0

(α1) ≡ A1 +
1

2
[A1, B1] +

−1
12

[B1, [A1, B1]] +
1

24
[A1, [A1, [A1, B1]]];

ℓθ
0

(β1) ≡ B1 −
1

2
[A1, B1] +

1

12
[A1, [A1, B1]] +

1

4
[B1, [A1, B1]]

− 1

24
[B1, [B1, [B1, A1]]]. (7.7.1)

Here, A1 = [α1] and B1 = [β1].
Note that our conventions about symplectic generators and symplectic expansions are

different from Massuyeau [20], Definition 2.15. Therefore (7.7.1) equals the equations of
[20], Example 2.19, only up to sign.
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Proposition 7.7.1. Let θ be a symplectic expansion and C a non-separating simple closed
curve on Σ. Let Lk = Lθk(C). We regard them as derivations of T̂ . Then L2

2 = L2L3 =

L3L2 = 0 on H. In particular, as linear endomorphisms of T̂ , Ln+1
2 |H⊗n = 0 and L2L3 =

L3L2.

Proof. We take symplectic generators as above. Since L2 = A2
1, L

2
2(X) = (X ·A1)L2A1 = 0

for X ∈ H. Therefore, L2
2 = 0 on H.

Let θ0 be a symplectic expansion of (7.7.1). By Lemma 7.6.1 (2) we have Lθ
0

3 (C) =
1
2
A1 ∧ A1 ∧B1 = 0. Thus L2L3 = L3L2 = 0 for θ0.

Let θ′ be another symplectic expansion and let U = U(θ0, θ′). We need to show Lθ
′

2 L
θ′
3 =

Lθ
′

3 L
θ′
2 = 0 on H. If U = id, this is true by what we have shown. Therefore, the proposition

follows from Corollary 7.6.3 (1) and the following lemma.

Lemma 7.7.2. Let L2 = A2
1 and let L′′

3 = A1 ∧ u1(A1), where u1 ∈ Λ3H. We regard them

as derivations of T̂ . Then L2L
′′
3 = L′′

3L2 = 0 on H.

Proof. For simplicity we write A1, B1, . . . , Ag, Bg = X1, . . . , X2g. By linearity, it suffices to
prove the lemma when u1 is of the form u1 = Xi ∧Xj ∧Xk with i ̸= j ̸= k ̸= i. Note that
for Y ∈ H we have

u1(Y ) = (Y ·Xi)Xj ∧Xk + (Y ·Xj)Xk ∧Xi + (Y ·Xk)Xi ∧Xj.

We divide the argument in two cases. First suppose none of Xi, Xj, and Xk are equal to
B1. Then u1(A1) = 0 hence L′′

3 = 0. Therefore L2L
′′
3 = L′′

3L2 = 0.
Next suppose Xi = B1. Then Xj, Xk ̸= B1, and we have u1(A1) = Xj ∧ Xk, hence

L′′
3 = A1 ∧Xj ∧Xk. Since L2A1 = L2Xj = L2Xk = 0, it follows that L2L

′′
3Y = 0 for any

Y ∈ H. Since L′′
3A1 = 0, L′′

3L2Y = (Y · A1)L
′′
3A1 = 0 for any Y ∈ H. This completes the

proof.

Theorem 7.7.3. Let θ be a symplectic expansion and C a non-separating simple closed
curve on Σ. Then we have

τ θ1 (tC) = −Lθ3(C). (7.7.2)

Proof. For X ∈ H, we have

τ θ(tC)X = T θ(tC)(|tC |−1X) = e−L(X + L2X).

Thus τ θ1 (tC)X is equal to the degree two-part of e−L(X + L2X). Modulo T̂3, we compute

e−L(X + L2X) ≡ X + L2X − L2(X + L2X)− L3(X + L2X) = X − L3X,

using Proposition 7.7.1. This completes the proof.

This theorem is compatible with the computation by Morita [22], Proposition 4.2. One
reason for the choice of our convention about the Poincaré duality (2.7.1) is to make our
formula compatible with his computation.

We next compute τ θ2 (tC) for non-separating C.

Proposition 7.7.4. Let θ be a symplectic expansion and C a non-separating curve on Σ.
Let Lk = Lθk. We regard them as derivations of T̂ . Then L2L2L2L4 = L2L2L4L2 = 0, and
2L2L4L2 = L2L2L4 on H.
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Proof. Let θ0 be a symplectic expansion of (7.7.1). We first prove the proposition for
θ = θ0. We have L2 = Lθ

0

2 (C) = A2
1, and

Lθ
0

4 (C) = N(A1ℓ
θ0

3 (α1)) +
1

2
N(ℓθ

0

2 (α1)ℓ
θ0

2 (α1))

= − 1

12
N(A1[B1, [A1, B1]]) +

1

8
N([A1, B1][A1, B1])

= − 1

12
N([A1, B1][A1, B1]]) +

1

8
N([A1, B1][A1, B1])

=
1

24
N([A1, B1][A1, B1]]).

Here we use Lemma 2.6.2.
As we did in the proof of Lemma 7.7.2, we write A1, B1, . . . , Ag, Bg = X1, . . . , X2g. For

simplicity, we write Lθ
0

k (C) = L0
k. If i ≥ 3, clearly we have L0

4Xi = L0
2Xi = 0. By a direct

computation, we have

L0
4X1 = L0

4A1 = −
1

24
[A1, [A1, B1]],

L0
4X2 = L0

4B1 = −
1

24
[B1, [A1, B1]].

From these we conclude L0
2L

0
4X1 = 0 and L0

2L
0
2L

0
4X2 = 0. It follows that L0

2L
0
2L

0
4 =

L0
2L

0
4L

0
2 = 0 on H, hence L0

2L
0
2L

0
2L

0
4 = L0

2L
0
2L

0
4L

0
2 = 0 and 2L0

2L
0
4L

0
2 = L0

2L
0
2L

0
4(= 0) on H.

The proposition is proven for θ = θ0.
We next consider the general case. Let θ′ be another symplectic expansion and U =

U(θ0, θ′). Let L2 = A2
1 and L

′′
4 = Lθ

′
4 (C)−Lθ

0

4 (C). It suffices to prove L3
2L

′′
4 = L2

2L
′′
4L2 = 0,

and 2L2L
′′
4L2 = L2

2L
′′
4 on H.

By Corollary 7.6.3 (2), we have

L′′
4 = N(A1u1(ℓ

θ0

2 (α1))) +N(A1u2(A1))

+N(ℓθ
0

2 (α1)u1(A1)) +
1

2
N(u1(A1)u1(A1)).

Since ℓθ
0

2 (α1) =
1
2
[A1, B1], we compute

N(A1u1(ℓ
θ0

2 (α1))) +N(ℓθ
0

2 (α1)u1(A1))

=
1

2
N(A1([A1, u1(B1)] + [u1(A1), B1])) +

1

2
N([A1, B1]u1(A1)) = 0

using Lemma 2.6.2. Therefore,

L′′
4 = N(A1u2(A1)) +

1

2
N(u1(A1)u1(A1)).

Since u2(A1) ∈ L3 and u1 ∈ Λ3H, it follows that L′′
4 ∈ H⊗4 is a linear combination of

monomials in Xi’s with the number of the occurrences of B1 = X2 at most two. By this
observation we have L3

2L
′′
4 = L2

2L
′′
4L2 = 0 on H.

It remains to prove the assertion 2L2L
′′
4L2 = L2

2L
′′
4 on H. Let L′′′

4 = 1
2
N(u1(A1)u1(A1)).

Since u1 ∈ Λ3H, L′′′
4 is a linear combination of monomials in Xi’s with no occurrence of X2.

It follows that 2L2L
′′′
4 L2 = L2

2L
′′′
4 = 0 on H. Now the assertion follows from the following

lemma.
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Lemma 7.7.5. Let u ∈ L3, X ∈ H and set LX = X2, L4 = N(Xu). We regard LX and

L4 as a derivation of T̂ . Then 2LXL4LX = L2
XL4 on H.

Proof. By linearity, we may assume that u = [Y1, [Y2, Y3]] where Yi ∈ H. For Z ∈ H,

L4Z = (Z ·X)[Y1, [Y2, Y3]]− (Z · Y1)[X, [Y2, Y3]] + (Z · Y2)[Y3, [X, Y1]]− (Z · Y3)[Y2, [X, Y1]]

(see Lemma 2.7.1). Using this, we have

L2
XL4Z = 2(Z ·X)(Y1 ·X) {(Y2 ·X)[X, [X, Y3]] + (Y3 ·X)[X, [Y2, X]]}

by a direct computation. On the other hand, we compute

LXL4LXZ = (Z ·X)LXL4(X)

= (Z ·X)LX(−(X · Y1)[X, [Y2, Y3]] + (X · Y2)[Y3, [X, Y1]]− (X · Y3)[Y2, [X, Y1]])
= (Z ·X){−(X · Y1)((Y2 ·X)[X, [X,Y3]] + (Y3 ·X)[X, [Y2, X]])

+(X · Y2)(Y3 ·X)[X, [X,Y1]]− (X · Y3)(Y2 ·X)[X, [X, Y1]]}
= (Z ·X)(Y1 ·X){(Y2 ·X)[X, [X,Y3]] + (Y3 ·X)[X, [Y2, X]]}.

This proves the lemma.

Theorem 7.7.6. Let θ be a symplectic expansion and C a non-separating simple closed
curve on Σ. Then we have

τ θ2 (tC) = −L4 +
1

2
[L2, L4] +

1

2
L2

3. (7.7.3)

Proof. Let X ∈ H. Modulo T̂4, we compute

LX ≡ L2X + L3X + L4X,

LLX ≡ L2(L2X + L3X + L4X) + L3(L2X + L3X) + L4L2X

= L2L4X + L3L3X + L4L2X,

LLLX ≡ L2L2L4X + L2L3L3X + L2L4L2X = L2L2L4X + L2L4L2X,

LLLLX ≡ L2L2L2L4X + L2L2L4L2X = 0, and

L(L2X) ≡ L4L2X,

LL(L2X) ≡ L2L4L2X,

LLL(L2X) ≡ 0.

Here we use Proposition 7.7.1 and the first part of Proposition 7.7.4. Note that L2L3L3X =
L3L2L3X = 0. Therefore, the degree 4-part of τ θ(tC)X = e−L(X + L2X) is equal to

−L4X−L4L2X +
1

2
(L2L4X +L3L3X +L4L2X)+

1

2
L2L4L2X−

1

6
(L2L2L4X +L2L4L2X).

Using the second part of Proposition 7.7.4, the formula follows.

8 The case of Mg,∗

We close this paper by deriving similar results for the mapping class group of a once
punctured surface. Let Σg be a closed oriented C∞-surface of genus g. Choose a basepoint
∗′ ∈ Σg and let π1(Σg) = π1(Σg, ∗′).
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8.1 The mapping class group Mg,∗

LetMg,∗ be the mapping class group of Σg relative to ∗′, namely the group of orientation-
preserving diffeomorphisms of Σg fixing ∗′, modulo isotopies fixing ∗′. By the theorem of
Dehn-Nielsen, we have a natural identification

Mg,∗ = Aut+(π1(Σg)), (8.1.1)

where + means acting on H2(π1(Σg);Z) ∼= Z as the identity.
We take a small disk D around ∗′ and fix an identification

Σg \ Int(D) ∼= Σ.

We can extend any diffeomorphism of Σ to a diffeomorphism of Σg by defining the extension
as the identity on D. In this way we have a natural surjective homomorphism

Mg,1 →Mg,∗. (8.1.2)

For simplicity let us write Autζ(π) = {φ ∈ Aut(π);φ(ζ) = ζ} (see (2.1.1)). We have
a natural surjection from π = π1(Σ, ∗) to π1(Σg) = π1(Σg, ∗′). This naturally induces a
homomorphism Autζ(π)→ Aut+(π1(Σg)). This map is compatible with (2.1.1) and (8.1.1).
Namely, the diagram

Mg,1 −−−→ Mg,∗

∼=
y ∼=

y
Autζ(π) −−−→ Aut+(π1(Σg))

commutes.

8.2 Action on the competed group ring of π1(Σ)

Let N be the two-sided ideal of T̂ generated by ω, and T̂ /N the quotient algebra. It

naturally inherits a decreasing filtration (T̂ /N )p, p ≥ 1 and a structure of complete Hopf

algebra from T̂ . We denote by ϖ the projection T̂ → T̂ /N .
If θ is a symplectic expansion of π, θ(ζ) = exp(ω) ∈ 1 + N . Thus it induces a group

homomorphism θ : π1(Σg)→ 1 + (T̂ /N )1.

Lemma 8.2.1. Let θ be a symplectic expansion of π. Then the induced map

θ : Q̂π1(Σg)→ T̂ /N (8.2.1)

is an isomorphism of complete Hopf algebras. Here Q̂π1(Σg) is the completed group ring
of π1(Σg), namely the completion of Qπ1(Σg) by the augmentation ideal.

Proof. It is clear that (8.2.1) is a homomorphism of complete Hopf algebras. Consider the
following commutative diagram:

Q̂π θ−−−→∼= T̂y yϖ
Q̂π1(Σg)

θ−−−→ T̂ /N

(8.2.2)
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Let η be the inverse of the isomorphism θ : Q̂π → T̂ . Then η(ω) = log ζ, which is mapped to

zero under the map Q̂π → Q̂π1(Σg). Therefore, η induces a morphism η : T̂ /N → Q̂π1(Σg).
We claim η is the inverse of θ. Since the diagram (8.2.2) commutes and η = θ−1, it suffices
to show the surjectivities of the horizontal arrows in (8.2.2). The surjectivity of ϖ is clear.
To show the surjectivity of the left horizontal arrow, we can use the criterion of Quillen
[25] Appendix A, Proposition 1.6. This completes the proof.

The isomorphism (8.2.1) leads to the definition of a counterpart of the total Johnson

map T θ : Mg,1 → Aut(T̂ ). Let Aut(T̂ /N ) be the group of the filter-preserving algebra

automorphisms of T̂ /N . Let φ ∈ Mg,∗. As a consequence of (8.2.1) there uniquely

exists T
θ
(φ) ∈ Aut(T̂ /N ) such that T

θ
(φ) ◦ θ = θ ◦ φ. In this way we have the group

homomorphism

T
θ
:Mg,∗ → Aut(T̂ /N ).

It is known that
∩∞
m=1 Iπ1(Σg)

m = 0, where Iπ1(Σg) is the augmentation ideal. See, for
example, Chen [6] p.193, Corollary 1 and p.197, Corollary 4. It follows that the natural

map π1(Σg)→ Q̂π1(Σg) is injective, so is the homomorphism T
θ
.

Let φ ∈ Mg,1. Since θ is symplectic, T θ(φ)(ω) = T θ(φ)(ℓθ(ζ)) = ℓθ(φ(ζ)) = ℓθ(ζ) = ω.

This shows T θ(φ) ∈ Aut(T̂ ) preserves N . By construction, we have

ϖ ◦ T θ(φ) = T
θ
(φ) ◦ϖ, (8.2.3)

where φ ∈Mg,∗ is the image of φ by (8.1.2).
Let C be a simple closed curve on Σg \{∗′}. Then tC , the Dehn twist along C, is defined

as an element ofMg,∗. Since Σ is a deformation retract of Σg \ {∗′}, we can regard C as a
simple closed curve on Σ. Thus, tC is also defined as an element ofMg,1. By (8.2.3), we
have

ϖ ◦ T θ(tC) = T
θ
(tC) ◦ϖ.

Also, Lθ(C) ∈ T̂2 is well-defined. Since Lθ(C) ∈ lg (see §2.7), Lθ(C)ω = 0. Therefore,

Lθ(C) preserves N and it defines a derivation of T̂ /N . We denote it by L
θ
(C). By

construction, we have ϖ ◦ Lθ(C) = L
θ
(C) ◦ϖ and moreover,

ϖ ◦ e−Lθ(C) = e−L
θ
(C) ◦ϖ.

By Theorem 7.1.1, we have T
θ
(tC) ◦ϖ = e−L

θ
(C) ◦ϖ and since ϖ is surjective, T

θ
(tC) =

e−L
θ
(C). In summary, we have proved the following theorem.

Theorem 8.2.2. Let θ be a symplectic expansion and C a simple closed curve on Σg \{∗′}.
Let tC ∈Mg,∗ be the Dehn twist along C. Then

T
θ
(tC) = e−L

θ
(C).

Here the right hand side is the algebra automorphism of T̂ /N defined by the exponential of

the derivation −Lθ(C).
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8.3 Action on Nk(π1(Σg))

Finally we prove a result similar to Theorem 7.4.1.
Let C be a simple closed curve on Σg \ {∗′}. As we saw in §8.2, we can regard C as a

simple closed curve on Σ. As we did in §7.4, for each k ≥ 0, Ck ∈ Nk = Nk(π) is defined.
For each k ≥ 0, letNk(π1(Σg)) be the k-th nilpotent quotient of π1(Σg), defined similarly

to Nk = Nk(π). The mapping class groupMg,∗ naturally acts on Nk(π1(Σg)).

Theorem 8.3.1. For each k ≥ 1, the action of tC on Nk(π1(Σg)) depends only on Ck ∈ Nk.
If C is separating, it depends only on Ck−1 ∈ Nk−1.

Proof. Let Nk(π) → Nk(π1(Σg)) be the natural surjection. This map is compatible with
(8.1.2) and the actions of the two mapping class groups on the nilpotent quotients. The
result follows from Theorem 7.4.1.

9 Appendix: Examples of symplectic expansions

We show first few terms of the symplectic expansion associated to symplectic generators
given by the method mentioned in Example 2.4.4. As the reader might notice from the
below, this symplectic expansion has a certain kind of symmetry. For details, see [18].

The case of genus 1. For simplicity, write α1 = α, β1 = β and A1 = A, B1 = B. Then,
there is a symplectic expansion θ of the following form: modulo T̂6,

ℓθ(α) ≡ A+
1

2
[A,B] +

1

12
[B, [B,A]]− 1

8
[A, [A,B]] +

1

24
[A, [A, [A,B]]]

− 1

720
[B, [B, [B, [B,A]]]]− 1

288
[A, [A, [A, [A,B]]]]− 1

288
[A, [B, [B, [B,A]]]]

− 1

288
[B, [A, [A, [A,B]]]] +

1

144
[[A,B], [B, [B,A]]] +

1

128
[[A,B], [A, [A,B]]];

ℓθ(β) ≡ B − 1

2
[A,B] +

1

12
[A, [A,B]]− 1

8
[B, [B,A]] +

1

24
[B, [B, [B,A]]]

− 1

720
[A, [A, [A, [A,B]]]]− 1

288
[B, [B, [B, [B,A]]]]− 1

288
[B, [A, [A, [A,B]]]]

− 1

288
[A, [B, [B, [B,A]]]]− 1

144
[[A,B], [A, [A,B]]]− 1

128
[[A,B], [B, [B,A]]].

The case of genus 2. There is a symplectic expansion θ of the following form: modulo
T̂5,

ℓθ(α1) ≡ A1 +
1

2
[A1, B1]

+
1

12
[B1, [B1, A1]]−

1

8
[A1, [A1, B1]]−

1

4
[A1, [A2, B2]]

+
1

24
[A1, [A1, [A1, B1]]]−

1

10
[[A1, B1], [A2, B2]] +

1

40
[A1, [B1, [A2, B2]]]

+
1

40
[A1, [B2, [A2, B2]]] +

1

40
[A1, [A1, [A2, B2]]] +

1

40
[A1, [A2, [A2, B2]]];
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ℓθ(β1) ≡ B1 −
1

2
[A1, B1]

+
1

12
[A1, [A1, B1]]−

1

8
[B1, [B1, A1]]−

1

4
[B1, [A2, B2]]

+
1

24
[B1, [B1, [B1, A1]]] +

1

10
[[A1, B1], [A2, B2]] +

1

40
[B1, [A1, [A2, B2]]]

+
1

40
[B1, [A2, [A2, B2]]] +

1

40
[B1, [B1, [A2, B2]]] +

1

40
[B1, [B2, [A2, B2]]];

ℓθ(α2) ≡ A2 +
1

2
[A2, B2]

+
1

12
[B2, [B2, A2]]−

1

8
[A2, [A2, B2]] +

1

4
[A2, [A1, B1]]

+
1

24
[A2, [A2, [A2, B2]]]−

1

10
[[A1, B1], [A2, B2]]−

1

40
[A2, [B2, [A1, B1]]]

− 1

40
[A2, [B1, [A1, B1]]]−

1

40
[A2, [A2, [A1, B1]]]−

1

40
[A2, [A1, [A1, B1]]];

ℓθ(β2) ≡ B2 −
1

2
[A2, B2]

+
1

12
[A2, [A2, B2]]−

1

8
[B2, [B2, A2]] +

1

4
[B2, [A1, B1]]

+
1

24
[B2, [B2, [B2, A2]]] +

1

10
[[A1, B1], [A2, B2]]−

1

40
[B2, [A2, [A1, B1]]]

− 1

40
[B2, [A1, [A1, B1]]]−

1

40
[B2, [B2, [A1, B1]]]−

1

40
[B2, [B1, [A1, B1]]].
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[18] Y. Kuno, A combinatorial construction of symplectic expansions, preprint,
arXiv:1009.2219 (2010)

[19] W. Magnus, Beziehungen zwischen Gruppen und Idealen in einem speziellen Ring,
Math. Ann. 111, 259-280 (1935)

[20] G. Massuyeau, Infinitesimal Morita homomorphisms and the tree-level of the LMO
invariant, preprint, arXiv:0809.4629 (2008)

[21] S. Morita, Casson’s invariant for homology 3-spheres and characterictic classes of
surface bundles I, Topology 28, 305-323 (1989)

[22] S. Morita, The extension of Johnson’s homomorphism from the Torelli group to the
mapping class group, Invent. Math. 111, 197-224 (1993)

[23] S. Morita, A linear representation of the mapping class group of orientable surfaces
and characteristic classes of surface bundles, in: Proceedings of the 37th Taniguchi
Symposium on Topology and Teichmüller Spaces, Finland, July 1995, World Scientific,
Singapore, 159-186 (1996)

[24] S. Morita, Structure of the mapping class group and symplectic representation theory,
in: Essays on Geometry and Related Topics, vols. 1,2, in: Monogr. Enseign. Math.
38, Enseignement Math. Geneva, 577-596 (2001)

[25] D. Quillen, Rational homotopy theory, Ann. Math. 90, 205-295 (1969)

58



[26] J. -P. Serre, Lie algebras and Lie groups, Lecture Notes in Mathematics 1500,
Springer-Verlag, Berlin (2006)

Nariya Kawazumi
Department of Mathematical Sciences,
University of Tokyo,
3-8-1 Komaba Meguro-ku Tokyo 153-8914 JAPAN
E-mail address: kawazumi@ms.u-tokyo.ac.jp

Yusuke Kuno
Department of Mathematics,
Graduate School of Science,
Hiroshima University,
1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526 JAPAN
E-mail address: kunotti@hiroshima-u.ac.jp

59



Preprint Series, Graduate School of Mathematical Sciences, The University of Tokyo

UTMS

2010–1 Norikazu Saito: Error analysis of a conservative finite-element approximation
for the Keller-Segel system of chemotaxis.

2010–2 Mourad Bellassoued and Masahiro Yamamoto: Carleman estimate with sec-
ond large parameter for a second order hyperbolic operators in a Riemannian
manifold.

2010–3 Kazufumi Ito, Bangti Jin and Tomoya Takeuchi: A regularization parameter
for nonsmooth Tikhonov regularization.

2010–4 Tomohiko Ishida: Second cohomology classes of the group of C1-flat diffeomor-
phisms of the line.

2010–5 Shigeo Kusuoka: A remark on Malliavin Calculus : Uniform Estimates and
Localization.

2010–6 Issei Oikawa: Hybridized discontinuous Galerkin method with lifting operator.

2010–7 Hitoshi Kitada: Scattering theory for the fractional power of negative Laplacian.

2010–8 Keiju- Sono: The matrix coefficients with minimal K-types of the spherical and
non-spherical principal series representations of SL(3, R).

2010–9 Taro Asuke: On Fatou-Julia decompositions.

2010–10 Yusaku Tiba: The second main theorem of hypersurfaces in the projective space.

2010–11 Hajime Fujita , Mikio Furuta and Takahiro Yoshida: Torus fibrations and
localization of index III – equivariant version and its applications.

2010–12 Nariya Kawazumi and Yusuke Kuno: The logarithms of Dehn twists.

The Graduate School of Mathematical Sciences was established in the University of
Tokyo in April, 1992. Formerly there were two departments of mathematics in the Uni-
versity of Tokyo: one in the Faculty of Science and the other in the College of Arts and
Sciences. All faculty members of these two departments have moved to the new gradu-
ate school, as well as several members of the Department of Pure and Applied Sciences
in the College of Arts and Sciences. In January, 1993, the preprint series of the former
two departments of mathematics were unified as the Preprint Series of the Graduate
School of Mathematical Sciences, The University of Tokyo. For the information about
the preprint series, please write to the preprint series office.

ADDRESS:
Graduate School of Mathematical Sciences, The University of Tokyo
3–8–1 Komaba Meguro-ku, Tokyo 153-8914, JAPAN
TEL +81-3-5465-7001 FAX +81-3-5465-7012


