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Abstract. This paper is the third of the series concerning the localization of the index
of Dirac-type operators. In our previous papers we gave a formulation of index of Dirac-
type operators on open manifolds under some geometric setting, whose typical example
was given by the structure of a torus fiber bundle on the ends of the open manifolds. We
introduce two equivariant versions of the localization. As an application we give a proof
of Guillemin-Sternberg’s quantization conjecture in the case of torus action.
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1. Introduction

This is the third of the series concerning a localization of the index of elliptic operators.
The localization of integral is a mechanism by which the integral of a differential form on
a manifold becomes equal to the integral of another differential form on a submanifold,
which has been formulated under various geometric settings. The submanifold is either
an open submanifold or a closed submanifold. When it is an open submanifold, the
localization is closely related to some excision formula. When it is a closed submanifold,
the localization is usually obtained by applying some product formula to the normal bundle
of the submanifold after the localization to the open tubular neighborhood.

A typical geometric setting for such localization is given by action of compact Lie
group, and a localization is formulated in terms of the equivariant de Rham cohomology
groups. An example is Duistermaat and Heckman’s formula on a symplectic manifold.
It is formally possible to replace the equivariant de Rham cohomology groups with the
equivariant K cohomology groups, and the resulting localization in terms of the equivariant
K-cohomology groups is known as Atiyah-Segal’s Lefschetz formula of equivariant index.

In our previous papers [3, 4] the geometric setting ensuring our localization is typically
given by the structure of a torus fiber bundle. Under this setting we consider the Riemann-
Roch number or the index of the Dolbeault operator or the Dirac-type operator, associated
to an almost complex structure or a spinc structure, which is twisted by some vector
bundle. We do not assume any global group action. Instead, on the vector bundle, we
assume a family of flat connections of the fibers of the torus bundle. Our setting has
generalized from the setting of a single torus bundle structure to the case that we have a
finite open covering and a family of torus bundle structures on the open sets which satisfy
some compatibility condition. The dimensions of the fibers of the family of torus bundle
structures can vary. This generalization was necessary to formulate a product formula in
a full form [4], and the product formula is used to compute the local contribution in some
examples.

In this paper we introduce the equivariant version of our localization. When a compact
Lie group G acts on everything, it is straightforward to generalize our previous argu-
ment. The index takes values in the character ring R(G) and we have the Riemann-Roch
character. We go further. Suppose two compact Lie group G and K acts on every-
thing simultaneously and assume that their actions are commutative. In this paper we
formulate another type of equivariant version as follows. The main assumption of our
previous papers in our geometric setting was the vanishing of the de Rham cohomology
groups with some local coefficients on each fiber of the torus bundles. Our new set-
ting is given by weaken the assumption. Roughly speaking our new assumption is that
only the G-invariant part of the de Rham cohomology groups vanish. Under this new
weaker assumption, the full G × K-equivariant index is not well defined. Instead only
the G-invariant part of the G×K-equivariant index is well defined as an element of the
character ring of K.

As an application of the latter equivariant version we give a proof of Guillemin-Sternberg’s
quantization conjecture in the case of torus action.
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Our localization is basically a purely topological statement. It would be required to
formulate it as the equality between topological index and analytical index. The definition
of topological index is, however, not given at the present.

In this paper we work in the smooth category. In Section 2 we first describe the orbifold
version of our localization in the previous papers [3, 4]. We give several definitions under
the same names as in the previous papers, though the notions are generalized as well as
the propositions there. In the latter part of Section 2 we introduce group actions and
give our main theorem (Theorem 2.43). In Section 3, as a typical example of our setting,
we explain the construction using an action of a torus G with a simultaneous action of
a compact Lie group K on an almost complex manifold. In Section 4, as a preparation
of the proof of quantization conjecture, we show a vanishing property of the G-invariant
part of the equivariant Riemann-Roch number when G is S1 under some condition. In
Section 5 we give a proof of quantization conjecture for torus action.

2. Equivariant local index

In this section we introduce several versions of indices and describe their localization
theorems. Note that the definitions of compatible fibrations and compatible systems given
in this section are generalized versions of those given in [4].

2.1. Compatible fibration. Let M be a manifold.

Definition 2.1. A compatible fibration on M is a collection of the data {Vα,Fα}α∈A
consisting of an open covering {Vα}α∈A of M and a foliation Fα on Vα with compact
leaves which satisfies the following properties.

(1) The holonomy group of each leaf of Fα is finite.
(2) For each α and β, if a leaf L ∈ Fα has non-empty intersection L ∩ Vβ ̸= ∅, then,

L ⊂ Vβ.

Let {Vα,Fα}α∈A be a compatible fibration on M .

Definition 2.2. An open covering {V ′
α}α∈A of M is said to be admissible if it satisfies

the following conditions

(1) for each α ∈ A, V ′
α ⊂ Vα,

(2) for each α and β all leaves L ∈ Fβ with L ∩ V ′
α ̸= ∅ are contained in V ′

α.

Later we take and fix an admissible open covering satisfying some good property. See
Assumption 2.7.

Suppose there exists an admissible open covering {V ′
α}α∈A ofM . We take and fix it. By

the condition (2) in Definition 2.2 we can restrict the foliation Fα to V ′
α for each α ∈ A.

We set

Fα|V ′
α
= {L ∈ Fα | L ∩ V ′

α ̸= ∅}.

Definition 2.3. A subset C ofM is said to be admissible for {V ′
α} if, on each V ′

α∩C ̸= ∅,
C contains all leaves L ∈ Fα|V ′

α
which intersect with C.

For an admissible subset C we define the foliation Fα|C on C ∩ V ′
α by

Fα|C = {L ∈ Fα|V ′
α
| L ∩ C ̸= ∅}.

Proposition 2.4. Let C be an admissible submanifold for {V ′
α} of M . Then, {C ∩

V ′
α,Fα|C}α is a compatible fibration on C.
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Definition 2.5. A function f :M → R is said to be admissible for {V ′
α} if f is constant

along leaves of Fα|V ′
α
for all α ∈ A.

Definition 2.6. An averaging operation for {V ′
α} is a linear map I : C∞(M) → C∞(M)

which satisfies the following properties.

(1) I(f) is an admissible function for all f ∈ C∞(M).
(2) If f is a constant function, then I(f) = f .
(3) If f is a non-negative function, so is I(f).
(4) There exists an open covering {V ′′

α }α∈A of M which satisfies the following proper-
ties.

• For all α ∈ A we have V ′′
α ⊂ Vα.

• For all α ∈ A if a leaf L ∈ Fα has non-empty intersection L ∩ V ′′
α ̸= ∅, then,

L ⊂ V ′′
α .

• For all f ∈ C∞(M) and x ∈ M there exists some α ∈ A such that x ∈ V ′′
α

and
min
y∈Lα

f(y) ≤ I(f)(x) ≤ max
y∈Lα

f(y),

where Lα ∈ Fα is the leaf which contains x.
(5) Let f :M → R be a smooth function. If supp f is contained in V ′

α for some α ∈ A,
then supp I(f) is also contained in V ′

α.

In the rest of this article we impose the following technical assumptions on {Vα,Fα}α∈A
unless otherwise stated.

Assumption 2.7. (1) The index set A is finite.
(2) There exists an admissible open covering {V ′

α}α∈A of M such that V ′
α ⊂ Vα, and

we fix it. Hereafter we say admissible (resp. an averaging operation) instead of
admissible (resp. an averaging operation) for {V ′

α}.
(3) There is an averaging operation I : C∞(M) → C∞(M).

Remark 2.8. (1) [4, Appendix B] we give a sufficient condition in order that an admissible
open covering as in (2) of Assumption 2.7 exists for the smooth case. Although it would
be true for the orbifold case, we do not pursue it here.
(2) For a torus action with finite isotropy types we can construct a compatible fibration
that satisfies Assumption 2.7 by [4, Proposition 2.12 and Proposition 2.28].

Then, as is shown in [4, Lemma 2.13], we have the following admissible partition of
unity.

Lemma 2.9 (Existence of admissible partition of unity [4, Lemma 2.13]). Let M be a
manifold with a compatible fibration {Vα,Fα}. There is a smooth partition of unity {ρ2α}
subordinate to the open covering M = ∪αV

′
α such that each ρα is admissible.

2.2. Compatible system and strong acyclicity. Let (M, g) be a Riemannian mani-
fold,W a Z/2-graded Cl(TM)-module bundle onM , and V an open subset ofM equipped
with a compatible fibration {Vα,Fα}α∈A. In the rest of this paper we impose the following
conditions on the Riemannian metric g.

Assumption 2.10. Let να = {u ∈ TVα | g(u, v) = 0 for all v ∈ TFα} be the normal
bundle of Fα. Then, g|να is invariant under holonomy, and gives a transverse invariant
metric on να.
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Remark 2.11. The above Riemannian metric is an orbifold version of a compatible
Riemannian metric which is actually used in [4].

Definition 2.12. A compatible system on ({Vα,Fα},W |V ) is a data {Dα}α∈A satisfying
the following properties.

(1) Dα : Γ(W |Vα) → Γ(W |Vα) is an order-one formally self-adjoint differential operator
of degree-one.

(2) Dα contains only the derivatives along leaves of Fα.
(3) The principal symbol σ(Dα) of Dα is given by σ(Dα) = c ◦ pα ◦ ι∗α : T ∗Vα →

End(W |Vα), where ια : TFα → TVα is the natural inclusion from the tangent bun-
dle along leaves of Fα to TVα, pα : T

∗Fα → TFα is the isomorphism induced by
the Riemannian metric and c : TFα → End(W |Vα) is the Clifford multiplication.

(4) For a leaf L ∈ Fα let ũ ∈ Γ(να|L) be a section of να|L parallel along L. ũ acts
on W |L by the Clifford multiplication c(ũ). Then Dα and c(ũ) anti-commute each
other, i.e.

0 = {Dα, c(ũ)} := Dα ◦ c(ũ) + c(ũ) ◦Dα

as an operator on W |L.
The above definitions of the compatible fibration and the compatible system are in-

troduced to avoid dealing with the orbifold singularities directly which come from finite
isotropies of a torus action. The following lemma guarantees that we have an orbifold
chart for each leaf, and analytic estimates for the compatible system holds as in [4, Sec-
tion 4] by considering the pull-back of Dα’s by qL in next Lemma 2.13.

Lemma 2.13. Suppose that F is a foliation on a manifold V and L is a leaf with finite
holonomy group. Take a small open tubular neighborhood VL of L which is a union of

leaves. Then, there is a finite covering qL : ṼL → VL whose covering transformation is
given by the holonomy representation. Moreover, such covering is unique up to isomor-
phism.

Remark 2.14. By taking and fixing a point x ∈ L we can obtain a holonomy repre-
sentation of the fundamental group π1(L, x) of L with the base point x. The covering

qL : ṼL → VL is constructed by using this holonomy representation. By construction the

induced foliation on ṼL is a bundle foliation. The covering qL : ṼL → VL in Lemma 2.13

is characterized by the following condition: The foliation on ṼL is a bundle foliation and

a generic leaf in VL is diffeomorphic to some leaf in ṼL by qL.

Remark 2.15. Suppose that in Lemma 2.13 all holonomy groups of F are finite. By
Lemma 2.13, on a neighborhood of each leaf L the covering qL is determined up to iso-
morphism. But, these coverings depend on the choices of the base points of the holonomy
representations and are not determined canonically. In particular these coverings are not
necessarily patched together globally.

We will use the notations VL, ṼL, and qL in the following definition. We also denote

the projection map of the fiber bundle structure by πL : ṼL → ŨL.

Definition 2.16. A compatible system {Dα}α∈A on ({Vα,Fα},W ) is said to be strongly
acyclic if it satisfies the following conditions.

(1) The Dirac type operator q∗LDα|π−1
L (̃b) has zero kernel for each α ∈ A, leaf L ∈ Fα

and b̃ ∈ ŨL.
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(2) If Vα ∩ Vβ ̸= ∅, then the anti-commutator {Dα, Dβ} is a non-negative operator on
Vα ∩ Vβ.

Remark 2.17. The second condition in Definition 2.16 gives a strong restriction on how
the leaves Lα ∈ Fα and Lβ ∈ Fβ intersect on Vα ∩ Vβ. See [4, Subsection 2.3] for a
concrete example.

2.3. Definition of ind(M,V,W ). One of the main result of [4] is the following theorem.

Theorem 2.18 ([4]). Let (M, g) be a possibly non-compact Riemannian manifold and W
a Z/2-graded Cl(TM)-module bundle on M . Suppose that V is an open set of M that
satisfies the following conditions.

(1) M r V is compact.
(2) V is equipped with a compatible fibration {Vα,Fα}α∈A.
(3) There exists a strongly acyclic compatible system {Dα}α∈A on ({Vα,Fα},W |V ).

Then there exists an integer ind(M,V,W ) = ind(M,V,W, {Vα,Fα}, {Dα}) depending on
the all data such that ind(M,V,W ) has the following properties.

(1) ind(M,V,W ) is invariant under continuous deformations of the data.
(2) If M is closed, then ind(M,V,W ) is equal to the index indD of a Dirac-type

operator D on W .
(3) If V ′ is an admissible open subset of V with complement M r V ′ compact, then

we have

ind(M,V,W ) = ind(M,V ′,W ).

(4) IfM ′ is an open neighborhood ofMrV with V ∩M ′ admissible, then ind(M,V,W )
has the following excision property

ind(M,V,W ) = ind(M ′, V ∩M ′,W |M ′).

(5) Suppose M is a disjoint union M = M1

⨿
M2. Then we have the following sum

formula

ind(M,V,W ) = ind(M1, V ∩M1, ,W |M1) + ind(M2, V ∩M2,W |M2).

(6) We have a product formula for ind(M,V,W ). For the precise statement see [4,
Theorem 5.8]. See also Section 4.2.

In the rest of this paper, for simplicity, we sometimes use the notation ind(M,W ) for
ind(M,V,W ). It would be no confusion since ind(M,V,W ) have the excision property.

Remark 2.19. From the properties 2 and 5 in Theorem 2.18 we can show that ind(M,V,W )
also has the following vanishing property.

(7) If M = V , then we have

ind(M,V,W ) = 0.

The outline of the construction of ind(M,V,W ) is as follows. First we deform (M,V,W )
in order to get the completeness of the Riemannian manifold. Then, we construct a
Fredholm operator on Γ(W ) by perturbing a Dirac-type operator on Γ(W ) with Dα’s.
We define ind(M,V,W ) to be the index of the Fredholm operator.

Here, we extend the argument in [4, Section 4] to our generalized setting. The precise
construction is as follows. Since the argument here is parallel to that in [4, Section 4] we
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omit proofs. See [4, Section 4] for more details. Take a Dirac-type operator D on Γ(W )
and a non-negative real number t ≥ 0. We define the operator Dt acting on Γ(W ) by

(2.1) Dt := D + t
∑
α∈A

ραDαρα,

where {ρ2α}α∈A is an admissible partition of unity subordinate to {Vα}α∈A as in Lemma 2.9.
By [4, Proposition 4.5] Dt is elliptic for all t ≥ 0.

First we give a definition of ind(M,V,W ) for the special case that M has a cylindrical
end V and every data is translationally invariant on the end.

Definition 2.20. Suppose that M has a cylindrical end V = N × (0,∞). The compat-
ible fibration {Vα,Fα} is said to be translationally invariant if there exists a compatible

fibration {Nα, F̂α}α∈A on N such that {Vα,Fα} is the product of {Nα, F̂α}α∈A and the
compatible fibration {(0,∞),F(0,∞)} on (0,∞), where F(0,∞) is the trivial foliation con-
sisting of 0-dimensional leaves.

Definition 2.21. Suppose that M has a cylindrical end V = N × (0,∞) and the com-
patible fibration {Vα,Fα} is translationally invariant. The compatible system {Dα}α∈A
on ({Vα,Fα},W ) is said to be translationally invariant if W |Vα and the operator Dα are
invariant under the translation action of the (0,∞)-dierction for each α ∈ A.

Proposition 2.22. Under the assumption in Theorem 2.18 suppose that M has a cylin-
drical end V = N × (0,∞) and the compatible fibration {Vα,Fα} and the strongly acyclic
compatible system {Dα}α∈A on ({Vα,Fα},W ) are translationally invariant. Then for a
sufficiently large t ≫ 0, the space of L2-solutions of Dts = 0 is finite dimensional and
its super-dimension is independent of a sufficiently large t≫ 0 and any other continuous
deformations of data.

Definition 2.23. In the case of Proposition 2.22 we define the ind(M,V,W ) to be the
super-dimension of the space of L2-solutions of Dts = 0

ind(M,V,W ) := dimkerD0
t ∩ L2(M,W )− dimkerD1

t ∩ L2(M,W )

for a sufficiently large t≫ 0.

For the general end case, we have the following proposition.

Proposition 2.24. For given (M,V,W ) and the compatible fibration {Vα,Fα} and the
strongly acyclic compatible system {Dα}α∈A on ({Vα,Fα},W ) we can deform them to
(M ′, V ′,W ′) so that it has a cylindrical end with a translationally invariant strongly acyclic
compatible system.

Definition 2.25. For the general case we define the ind(M,V,W ) to be ind(M ′, V ′,W ′)
for the deformed data (M ′, V ′,W ′).

Note that ind(M,V,W ) is well-defined, i.e, it does not depend on various choice of the
construction.

To obtain a product formula we need to formulate and define ind(M,V,W ) for a man-
ifold whose end is the total space of a fiber bundle such that both of its base space
and its fiber are manifolds with cylindrical end. A similar generalization is necessary for
indG(M,V,W ) which will be defined in Subsection 2.5. For more details, see [4].

As a corollary of Theorem 2.18 we have a localization theorem. See [4, Theorem 4.21].
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Corollary 2.26. Under the assumption of Theorem 2.18, suppose that there exists an
open covering {Oi}mi=1 of M r V which satisfies the following properties.

(1) {Oi}mi=1 are mutually disjoint.
(2) Each Oi is admissible.

Then we have
ind(M,V,W ) =

∑
i

ind(Oi, Oi ∩ V,WOi
).

2.4. Definition of indK(M,V,W ). Let K be a compact Lie group. In this section we
consider the K-equivariant case. First we rigorously describe the assumption on a K-
action since we deal with the orbifold setting. Let (M, g),W , and V be the data satisfying
the assumption (1) in Theorem 2.18. Suppose that there exists an action ofK onM which
preserves all these data.

Definition 2.27. Let {Vα,Fα}α∈A be a compatible fibration on V . {Vα,Fα}α∈A is said
to be K-equivariant if it satisfies the following conditions.

(1) The K-action preserves Vα’s.
(2) The K-action preserves the foliation Fα on Vα. We allow that the K-action sends

a leaf to another leaf.
(3) The K-action preserves the admissible open covering {V ′

α} in (2) of Assump-
tion 2.7.

(4) We can take the averaging operation I in 3 of Assumption 2.7 to be K-equivariant.

Remark 2.28. The condition (4) in Definition 2.27 is realized if on each Vα ∩ Vβ ̸= ∅
Lα ∈ Fα and Lβ ∈ Fβ have non-empty intersection, then, Lα ⊂ Lβ, or Lβ ⊂ Lα.

Definition 2.29. Let {Dα}α∈A be a compatible system on ({Vα,Fα},W ). {Dα}α∈A is
said to be K-equivariant if it satisfies the following conditions.

(1) {Vα,Fα}α∈A is K-equivariant.
(2) For each α ∈ A Dα commutes with the K-action on Γ(W |Vα) given by pull-back.

Let {Vα,Fα}α∈A be a K-equivariant compatible fibration on V and {Dα}α∈A a K-
equivariant strongly acyclic compatible system on ({Vα,Fα},W ).

Proposition 2.30. Suppose that M has a cylindrical end V = N × (0,∞) and the
compatible fibration {Vα,Fα} and the strongly acyclic compatible system {Dα}α∈A on
({Vα,Fα},W ) are translationally invariant. Suppose also that K acts trivially on all
the data on the (0,∞)-factor. Then, ind(M,V,W ) is defined by Definition 2.23 and it
becomes a virtual K-representation. We denote it by indK(M,V,W ).

For the general end case, we have the following proposition.

Proposition 2.31. For given (M,V,W ) and the compatible fibration {Vα,Fα} and the
strongly acyclic compatible system {Dα}α∈A on ({Vα,Fα},W ), we can deform them to
(M ′, V ′,W ′) so that M ′ has a cylindrical end V ′ = N ′ × (0,∞) with a translationally
invariant strongly acyclic compatible system and K acts trivially on all the data on the
(0,∞)-factor.

Definition 2.32. By Proposition 2.30 and Proposition 2.31 we obtain the virtual K-
representation indK(M

′, V ′,W ′). We define the virtual K-representation indK(M,V,W )
to be indK(M

′, V ′,W ′).
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For these data, we obtain an equivariant version of [4, Theorem 4.21] for indK(M,V,W ).

Theorem 2.33. Let (M, g) be a possibly non-compact Riemannian manifold, W a Z/2-
graded Cl(TM)-module bundle on M , and V an open set of M with complement M r V
compact. Let K be a compact Lie group which acts on M preserving all these data. Let
{Vα,Fα}α∈A be a K-equivariant compatible fibration on V and {Dα}α∈A a K-equivariant
strongly acyclic compatible system on ({Vα,Fα},W ). Under the assumption suppose that
there exists an open covering {Oi}mi=1 of M r V which satisfies the following properties.

(1) {Oi}mi=1 are mutually disjoint.
(2) Each Oi is K-invariant.
(3) Each Oi is admissible.

Then we have the following localization formula for indK(M,V,W )

(2.2) indK(M,V,W ) =
∑
i

indK(Oi, Oi ∩ V,WOi
) ∈ R(K),

where R(K) is the representation ring of K.

When another compact Lie group G acts on M that satisfies the same assumption as
that on theK-action in Theorem 2.33 and that commutes with theK-action, ind(M,V,W )
becomes a virtualG×K-representation. In particular, theG-invariant part of ind(M,V,W )
is also a virtual K-representation. Then, by taking the G-invariant part of (2.2), we have
a localization for the G-invariant part of ind(M,V,W ) as the virtual K-representation.
In the next subsection, we introduce another condition on acyclicity of {Dα}α∈A which
is weaker than strongly acyclic condition. Under this weaker acyclic condition we give a
localization formula for the G-invariant part of ind(M,V,W ).

2.5. G-acyclic compatible system and indG(M,V,W ). Let (M, g), W , and V be the
data satisfying the assumption (1) in Theorem 2.18. Suppose that there is an action of
a compact Lie group G on M which preserves all these data. We introduce the notion of
a G-acyclic compatible system. Let {Vα,Fα}α∈A be a G-equivariant compatible fibration
on V . For each (Vα,Fα) let Gα be the subgroup of G consisting of the elements preserving
each leaf of Fα.

Lemma 2.34. Let Lα be a leaf of Fα. Let VLα, ṼLα, and qLα be the data as in Lemma 2.13.

Then, qLα : ṼLα → VLα has the unique structure of Gα-equivariant covering such that for
any generic leaf L′

α ⊂ VLα, the Gα-action preserves q−1
α (L′

α), and the diffeomorphism
qLα|q−1

Lα
(L′

α)
: q−1

Lα
(L′

α) → L′
α is Gα-equivariant.

Proof. From Remark 2.14, ṼLα is identified with the fiber product of the covering L′
α ⊂

VLα → Lα and the projection VLα → Lα. The Gα-action is constructed using the Gα-
action on L′

α and VLα . �
Definition 2.35. Let {Dα}α∈A a G-equivariant compatible system on ({Vα,Fα},W ).
{Dα}α∈A is said to be G-acyclic if it satisfies the following conditions.

(1) The Gα-invariant part ker(q∗LDα|π−1
L (̃b))

Gα is trivial for each α ∈ A, leaf L ∈ Fα

and b̃ ∈ ŨL.
(2) If Vα ∩ Vβ ̸= ∅, then the anti-commutator {Dα, Dβ} restricted on Γ(W |Vα∩Vβ

)G is
a non-negative operator over Vα ∩ Vβ.
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Remark 2.36. A G-equivariant strongly acyclic compatible system is G-acyclic.

Suppose that we have a G-acyclic compatible system {Dα}α∈A on ({Vα,Fα},W ). For
any non-negative real number t ≥ 0, any G-invariant Dirac-type operator D on Γ(W ),
and {Dα}α∈A we consider the perturbation (2.1) in Subsection 2.3. By Assumption (4) in
Definition 2.27 we can take the admissible partition of unity {ρ2α}α∈A to be G-invariant.
Then, the same argument as that used to define ind(M,V,W ) in Subsection 2.3 holds for
the G-invariant part of kerDt.

Proposition 2.37. Under the above assumption suppose that M has a cylindrical end
V = N × (0,∞) and the compatible fibration {Vα,Fα} and the G-acyclic compatible
system {Dα}α∈A on ({Vα,Fα},W ) are translationally invariant. Suppose also that G
acts trivially on all the data on the (0,∞)-factor. Then for a sufficiently large t≫ 0, the
space of G-invariant L2-solutions of Dts = 0 is finite dimensional and its super-dimension
is independent of a sufficiently large t≫ 0 and any other continuous deformations of data.

Definition 2.38. In the case of Proposition 2.37 we define indG(M,V,W ) to be the
super-dimension of the space of G-invariant L2-solutions of Dts = 0

indG(M,V,W ) := dim(kerD0
t )

G ∩ L2(M,W )− dim(kerD1
t )

G ∩ L2(M,W )

for a sufficiently large t≫ 0.

For the general end case, we have the following proposition.

Proposition 2.39. For given (M,V,W ) and the compatible fibration {Vα,Fα} and the G-
acyclic compatible system {Dα}α∈A on ({Vα,Fα},W ) we can deform them to (M ′, V ′,W ′)
so thatM ′ has a cylindrical end V ′ = N ′×(0,∞) with a translationally invariant G-acyclic
compatible system and G acts trivially on all the data on the (0,∞)-factor.

Definition 2.40. For the general case we define indG(M,V,W ) to be indG(M ′, V ′,W ′)
for the deformed data (M ′, V ′,W ′).

Note that indG(M,V,W ) is well-defined, i.e, it does not depend on various choice of
the construction.

For indG(M,V,W ) we have the following localization.

Theorem 2.41. Under the above assumption suppose that there exists an open covering
{Oi}mi=1 of M r V which satisfies the following properties.

(1) {Oi}mi=1 are mutually disjoint.
(2) Each Oi is G-invariant.
(3) Each Oi is admissible.

Then we have

indG(M,V,W ) =
∑
i

indG(Oi, Oi ∩ V,W |Oi
).

Remark 2.42. For a G-equivariant strongly acyclic compatible system Theorem 2.41
is a consequence of Theorem 2.33. See Remark 2.36. However, for a general G-acyclic
Theorem 2.41 is not obtained from Theorem 2.33.
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2.6. K-equivariant G-acyclic compatible system and indG
K(M,V,W ). Let (M, g),

W , and V be the data satisfying the assumption (1) in Theorem 2.18. Let G and K be
compact Lie groups. Suppose that there is a G×K-action onM which preserves all these
data. Let {Vα,Fα}α∈A be a G×K-equivariant compatible fibration on V and {Dα}α∈A
a G × K-equivariant compatible system on ({Vα,Fα},W ). Suppose that {Dα}α∈A is
G-acyclic. Then, we have indG(M,V,W ) and it becomes a virtual representation of K.
We denote it by indG

K(M,V,W ). In this case, we have a K-equivariant version of Theo-
rem 2.41.

Theorem 2.43. Under the above assumption suppose that there exists an open covering
{Oi}mi=1 of M r V which satisfies the following properties.

(1) {Oi}mi=1 are mutually disjoint.
(2) Each Oi is G×K-invariant.
(3) Each Oi is admissible.

Then we have

indG
K(M,V,W ) =

∑
i

indG
K(Oi, Oi ∩ V,W |Oi

).

In particular, we have the following corollary.

Corollary 2.44. Under the above assumption suppose that V is equal to M itself. Then
we have

indG
K(M,V,W ) = 0.

3. The case of torus action

Let G be an n-dimensional torus. We endow G with a rational flat Riemannian metric.
Precisely speaking we take a Euclidean metric on the Lie algebra of G such that the
intersection of the integral lattice and the lattice generated by some orthonormal basis is
a sublattice of rank n. We extend the metric to the wholeG. LetH be a closed subgroup of
G. We denote by Ho the identity component of H. Let H⊥ be the orthogonal complement
of Ho defined as the image of the orthogonal complement of the Lie algebra of H by the
exponential map. Since the metric is rational H⊥ is well-defined as a compact connected
subgroup of G and it has only finitely many intersection points H ∩H⊥.

Let K be a compact Lie group. Let V be a smooth manifold equipped with an action of
G×K and a G×K-invariant almost complex structure J . We take and fix a Riemannian
metric g on V which is invariant by the almost complex structure J and the G × K-
action. Let L→ V be a G×K-equivariant Hermitian line bundle over V equipped with
a G × K-invariant Hermitian connection ∇. Note that since ∇ is invariant under the
torus action the restriction of (L,∇) to each G-orbit is a flat line bundle. We denote by
Gx the stabilizer subgroup of G at a point x ∈ V . Let A be the set of subgroups of G
which appears as the identity component of the stabilizer group at some point x ∈ V . We
assume the following four conditions.

(1) Each G-orbit is totally real, i.e., any subspace ξ of the tangent space of the orbit
satisfies ξ ∩ Jξ = 0.

(2) Each G-orbit has positive dimension.
(3) A is a finite set.
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(4) For each x ∈ V there exists an open neighborhood Vx of x such that gVx = Vgx for
all g ∈ G and the restriction of L to G⊥

x -orbit G
⊥
x y has no G⊥

x -invariant nontrivial
parallel sections for all y ∈ Vx.

Note that since each orbit is a torus the last condition is equivalent to the vanishing of
the G⊥

x -invariant part of cohomologies with local coefficient, H∗(G⊥
x y, L|G⊥

x y)
G⊥

x = 0. See
[4, Lemma 2.29] for example. In this section we show that V is equipped with a structure
of K-equivariant G-acyclic compatible system with open subsets parameterized by A.

3.1. G×K-equivariant compatible fibration. Recall that there is a good open covering
with respect to the G-action.

Lemma 3.1 (Existence of a good open covering, Lemma 2.31 in [4]). There exists an
open covering {VH}H∈A of V parameterized by A satisfying the following properties.

(1) Each VH is G-invariant.
(2) For each x ∈ VH we have Go

x ⊂ H.
(3) If VH ∩ VH′ ̸= ∅, then we have H ⊂ H ′ or H ⊃ H ′.
(4) VH ⊂

∪
Go

x=H Vx.

Let {VH}H∈A be the good open covering as in Lemma 3.1. Since each VH is constructed
from an open neighborhood of the closed subset consisting of points whose stabilizer is
equal to H, we may assume that VH is G ×K-invariant. Note that since each VH is an
G-invariant open subset VH has a structure of a foliation FH via the decomposition into
the union of H⊥-orbits. Each leaf of FH is a H⊥-orbit through some point x ∈ VH and
its holonomy group is equal to Gx ∩ H⊥. Note that Gx ∩ H⊥ is a finite group because
Gx is a subgroup of H by the property (2) in Lemma 3.1. Then, {VH ,FH}H∈A is a
G×K-equivariant compatible fibration on V . Note that since the Riemannian metric g
is G-invariant it satisfies the Assumption 2.10.

Remark 3.2. If G is the circle group S1, then the finite set A consists of a single element.
In this case we use the open covering {VH}H∈A consisting of the single open set V .

3.2. K-equivariant G-acyclic compatible system. Now we construct aK-equivariant
G-acyclic compatible system. Let TFH → VH be the tangent bundle along leaves of
FH . Since each G-orbit is totally real we have a canonical injection TFH ⊗R C → TVH
via the almost complex structure on X. Let T ′VH be the orthogonal complement of
TFH ⊗R C in TVH , which is canonically isomorphic to TVH/(TFH ⊗ C). There is a
canonical isomorphism TVH ∼= (TFH ⊗ C) ⊕ T ′VH as Hermitian vector bundles. Using
the isomorphism we have an isomorphism

∧0,•T ∗VH ∼= (∧•T ∗FH ⊗ C)⊗ ∧0,•(T ′VH)
∗.

We define a Z/2-graded Clifford module bundle W by

W := ∧0,•T ∗V ⊗ L.

Note that there is the canonical isomorphism

W |VH
∼= (∧•T ∗FH ⊗ C)⊗ ∧0,•(T ′VH)

∗ ⊗ L|VH
.

Let DH : Γ(W |VH
) → Γ(W |VH

) be the Dirac operator along leaves of FH which is defined
by the de Rham operator with coefficient in L|VH

. Strictly speaking DH is a differential
operator acting on Γ((∧•T ∗FH ⊗ C) ⊗ L|VH

) which is defined by the de Rham operator
along leaves of FH and the Hermitian connection ∇ of L. Since the restriction of T ′VH to
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each leaf of FH has a canonical flat structure induced by the H⊥-action, we can regard
DH as a differential operator acting on Γ((∧•T ∗FH ⊗ C) ⊗ ∧0,•(T ′VH)

∗ ⊗ L|VH
). Then

{DH}H∈A is a G×K-equivariant compatible system on {VH ,FH}H∈A.

Proposition 3.3. The data {DH} is a K-equivariant G-acyclic compatible system on V .

Proof. Suppose that x ∈ V is contained in VH for some H ∈ A. Let H⊥x be the H⊥-

orbit through the point x and Ũx the slice at x with respect to the H⊥-action. We put

Ṽx := H⊥×Ũx. Note that the natural map qx : Ṽx → Vx := H⊥Ũx is a finite covering whose

covering transformation group is equal to Gx∩H⊥. Let πx : Ṽx → Ũx be the projection to

the second factor. The finite covering qx : Ṽx → Vx and the H⊥-bundle πx : Ṽx → Ũx are
the data in Lemma 2.13. In the above setting H⊥ is the subgroup which preserves each
leaf of FH . By our assumption and the property (4) of the good covering {VH} there

exists x′ ∈ V such that x ∈ Vx′ , Gx′ = H and (kerDH)
H⊥

= H∗(G⊥
x′x;L|Gx′ )

G⊥
x′ = 0.

Moreover if VH ∩ VH′ ̸= ∅ and H ′ ⊂ H, then the anti-commutator {DH , DH′} is the
Laplacian on the H⊥-orbit (Lemma 2.35 in [4]). Then we complete the proof. �

3.3. Cotangent bundle case. Let T ∗G be the cotangent bundle of the torus G. Con-
sider the canonical symplectic form ω on T ∗G defined by the canonical 1-form α on T ∗G.
Note that T ∗G has a natural G-action induced by the multiplication of G. We fix a
G-equivariant trivialization T ∗G ∼= G × g∗, where g∗ is the dual of the Lie algebra of G.
Let L be the G-equivariant Hermitian line bundle T ∗G × C over T ∗G with Hermitian
connection ∇ defined by ∇ = d −

√
−1α, where the G-action on the C-factor is trivial.

Let gZ be the integral lattice and g∗Z the weight lattice, i.e.,

gZ = {ξ ∈ g | exp ξ = e ∈ G},
g∗Z = {η∗ ∈ g∗ | ⟨ξ, η∗⟩ ∈ Z ∀ξ ∈ gZ}.

Take an integral weight ξ ∈ g∗Z and define L(ξ) by L(ξ) = L ⊗ ξ, where ξ is the trivial
line bundle equipped with the G-action whose weight is given by ξ. The definition of the
canonical 1-form implies that η ∈ g∗ is in weight lattice g∗Z if and only if the restriction
of (L,∇) to G × {η} is trivially flat. Moreover the proof of [4, Lemma 2.29] shows the
following lemma.

Lemma 3.4. We have the following isomorphism between representations of G.

H∗(G× {η}, (L(ξ),∇)|G×{η}) ∼=
{

0 (η /∈ g∗Z)
H∗(G× {η},C)⊗ ξ (η ∈ g∗Z).

Let M be a small G-invariant open neighborhood of the zero section in T ∗G so that
the image of M under the projection T ∗G → g∗ does not contain any non-zero integral
points. Let V the complement of the zero section in M . Consider the natural complex
structure on T ∗G induced from the trivialization of T ∗G and the metric of g, which is
compatible with the symplectic structure. By Lemma 3.4 and the construction in the
previous subsections we have a G-equivariant strongly acyclic compatible system on V for
the Clifford module bundleW (ξ) := ∧0,•T ∗M⊗L(ξ), and we can define the G-equivariant
index indG(M,V,W (ξ)) ∈ R(G). Note that since the G-action on T ∗G is free, we use the
open covering consisting of the single open set V . In [3, Remark 6.10] we give explicit
solutions of the equation Dts = 0 in the case of dimG = 1. Using the explicit description
we have the following, which will be used in the proof of Theorem 5.1.
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Proposition 3.5. If G is the circle group S1, then we have indG(M,V,W (ξ)) = ξ.

Remark 3.6. It is expected that a similar argument is possible to calculate the equi-
variant index for higher dimensional cases. The numerical index is already calculated
in our previous paper [3, Theorem 6.11] and is equal to 1. In the calculation there we
used the embedding T ∗G ⊂ G×G derived from the one-point compactification R → S1.
This compactification, however, is not G-equivariant and hence is not available to the cal-
culation of the equivariant index. Another possible approach to the higher dimensional
case would be to use the product structure G = (S1)n and apply the product formula
of equivariant index. However, it would be necessary to compare the compatible system
given by the product structure with the one given by the G-action on T ∗G. Since we have
not shown such comparizon, this approach is not completed yet. Because the G-action on
H∗(G,C) is trivial, we have at least the next vanishing property of the G-invariant part
from Lemma 3.4 and the vanishing of G-invariant index.

Proposition 3.7. For ξ ̸= 0 we have indG(M,V,W (ξ)) = 0.

4. Vanishing theorem for S1-acyclic compatible systems

In this section we show the vanishing theorem of indS1

K (M,V,W ) for equivariant S1-
acyclic compatible system under the setting in Section 3.

Let K be a compact Lie group. Let M be a smooth manifold equipped with an action
of S1 ×K and S1 ×K-invariant almost complex structure. We take and fix an S1 ×K-
invariant Hermitian metric on M . Suppose that the fixed point set MS1

of the S1-action
is a closed connected submanifold ofM . Let L→M be an S1×K-equivariant Hermitian
line bundle overM equipped with an S1×K-invariant Hermitian connection ∇ such that
the fixed point set LS1

of the S1-action is equal to the image of the zero section of MS1

to L|MS1 . Note that the restriction of (L,∇) to each S1-orbit is a flat line bundle.
In the next subsection we show that there is an S1 ×K-invariant open neighborhood

M ′ of MS1
and a K-equivariant S1-acyclic compatible system on M ′rMS1

. Here we use
the Clifford module bundle W := ∧0,•T ∗M ′ ⊗ L. The main theorem in this section is the
following vanishing theorem.

Theorem 4.1.

indS1

K (M ′,M ′ rMS1

,W ) = 0 ∈ R(K).

4.1. S1-acyclic compatible system. In this subsection we show that there is an open
subset of M on which we have a K-equivariant S1-acyclic compatible system. To show it
we first show the following.

Lemma 4.2. For each x ∈M let (L(x),∇(x)) be the restriction of the pull-back of (L,∇)
to S1 × {x} by the multiplication map S1 ×M → M . There exists an S1 ×K-invariant

open neighborhood M ′ of MS1
such that for a each x ∈ M ′ the S1-invariant part of the

de Rham cohomology with local coefficient H∗(S1 × {x}; (L(x),∇(x)))
S1

is zero.

Proof. For each x ∈MS1
we have the canonical isomorphism

H∗(S1 × {x}; (L(x),∇(x))) ∼= H∗(S1;C)⊗ L(x),

and the S1-invariant part of the right hand side is zero because L(x) is a non-trivial repre-
sentation of S1 by our assumption. By the semi-continuity of the cohomology there exists
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an S1×K-invariant open neighborhood M ′ of MS1
such that H∗(S1×{x}; (L(x),∇(x)))

S1

is zero for all x ∈M ′. �

Using the open subset M ′ obtained in Lemma 4.2 we put V :=M ′ rMS1
. There exist

the structure of a compatible fibration on V and a K-equivariant S1-acyclic compatible
sytem on it as in Section 3.

4.2. Product formula. In this subsection we recall a product formula of local indices,
which we will use in the proof of Theorem 4.1.

Let Y0 be a closed manifold equipped with a K-action and a K-invariant Hermitian
structure. Let L0 → Y0 be a K-equivariant Hermitian line bundle with a K-invariant
Hermitian connection. DefineW0 to beW0 := ∧0,•T ∗Y0⊗L0, which has a natural structure
of a K-equivariant Z/2-graded Clifford module bundle over Y0. Let K1 be a compact Lie
group and Q → Y0 a K-equivariant principal K1-bundle over Y0. Let Y1 be a unitaty
representation of K1 × S1 such that Y S1

1 = {0}. Let R be a 1-dimansional unitary
representation of S1 and L1 the K1 × S1-equivariant line bundle Y1 × R → Y1. Here
K1 acts on R trivially and we consider the product connection on L1. Define W1 by
W1 := ∧0,•T ∗Y1 ⊗ L1, which has a natural structure of K1 × S1-equivariant Z/2-graded
Clifford module bundle over Y1. We put Y := Q×K1 Y1 and W :=W0 ⊗ (Q×K1 W1).

Note that Y1 has a structure of a K-equivariant S1-acyclic compatible system by taking
M ′ = Y1 and MS1

= {0} in Lemma 4.2. Using the product formula [4, Theorem 5.8], we
have the following equality.

Proposition 4.3.

indS1

K (Y,WY ) = indK(Y0,W0 ⊗ (Q×K1 ind
S1

K1
(Y1,W1))).

Remark 4.4. The meaning of the right hand side in the above equality is as follows. As

a character of K1 we write ind
S1

K1
(Y1,W1) as ind

S1

K1
(Y1,W1) = [F0]− [F1], where F0 and F1

are finite dimensionl representations of K1. Then we put

indK(Y0,W0⊗(Q×K1 ind
S1

K1
(Y1,W1))) := indK(Y0,W0⊗(Q×K1F0))−indK(Y0,W0⊗(Q×K1F1)).

4.3. Model of the neighborhood of MS1
. Now we come back to the setting in Sub-

section 4.1. Let ν → MS1
be the normal bundle of MS1

in M ′. Then the fibers of ν are
unitary representation of S1. Since we assume that MS1

is connected they are mutually
isomorphic unitary representations. We take and fix a copy Rν of the unitary represen-
tation of S1 on ν. As in the same way we take and fix a copy RL of the one-dimensional
unitary representation of S1 on L|MS1 .

Let K1 be the group of unitary transformations of Rν which commute with the S1-
action. Let Q → MS1

be the K-equivariant principal K1-bundle whose fiber Qx at
x ∈MS1

is defined by the set of isomorphisms between Rν and νx as S1-representations.
Note that ν is equal to the associated vector bundle Q×K1Rν . Let L0 be theK-equivariant
Hermitian line bundle with connection over MS1

defined by

L0 := HomS1(RL, L|MS1 ).

Note that L0 is abstractly isomorphic to L|MS1 as Hermitian line bundles with connection
but L0 does not have S1-action.
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Let L1 be the K1 × S1-equivariant Hermitian line bundle with connection over Rν

defined by
L1 := Rν ×RL

with the product conneciton. Note that K1 acts trivially on the second factor. Let
(LY ,∇Y ) be the Hermitian line bundle with connection over ν defined by

LY := L0 ⊗ (Q×K1 L1)

and ∇Y is the tensor product connection. Applying Proposition 4.3 for Y0 = MS1
,

Y1 = Rν , Y = ν and the associated Z/2-graded equivariant Clifford module bundles we
have

(4.1) indS1

K (ν,Wν) = indK(M
S1

,W0 ⊗ (Q×K1 ind
S1

K1
(Rν ,W1))).

4.4. Comparison with the model. In this subsection we show the following in the
setting in Subsection 4.1.

Proposition 4.5.

indS1

K (M ′,W |M ′) = indS1

K (ν,Wν).

As as a corollary we have the following by (4.1).

Proposition 4.6.

indS1

K (M ′,W |M ′) = indK(M
S1

,W0 ⊗ (Q×K1 ind
S1

K1
(Rν ,W1))).

To show Proposition 4.5 we construct a one parameter family which connects two K-
equivariant S1-acyclic compatible systems on neighborhoods of νS

1
=MS1

in (ν,Wν) and
(M ′,W |M ′).

Let Y ′ be an S1 ×K-invariant tubular neighborhood of νS
1
in ν. We may assume the

exponential map ϕ : Y ′ → M ′ is a diffeomorphism. Let g′M ′ (resp. J ′
M ′) be the pull back

of the Riemannanian metric gM ′ (resp. the almost complex structure JM ′) on M ′ by ϕ.
On the other hand there is a Riemannian metric gY ′ and a compatible almost complex
strucutre JY ′ on ν induced by the one in TM . Note that g′M ′ (resp. J ′

M ′) coincides with

gY ′ (resp. JY ′) on the zero section νS
1
=MS1

.
For t ∈ [0, 1] we define a family (gt, Jt, Lt,∇t) on Y

′ which connects (g′M ′ , J ′
M ′ , ϕ∗L|M ′ , ϕ∗∇|M ′)

and (gY ′ , JY ′ , LY |Y ′ ,∇Y |Y ′). The Riemannian metric gt is defined by gt := tg′M ′+(1−t)gY ′ .
Note that for each y ∈ Y ′ the set of almost complex structures of TyY

′ which are compat-
ible with gt is a closed submanifold of End(TY ′)y. We can take Y ′ small enough so that
the endmorphism J ′

t := tJ ′
M ′ + (1 − t)JY ′ is contained in a small normal disk bundle of

the above closed submanifold with respect to the metric gt, and there exists the unique
compatible almost complex structure (Jt)y which minimizes the distance from (J ′

t)y in
End(TY ′)y. Then Jt = {(Jt)y}y∈Y ′ is the reqiured family of almost complex structures
on Y ′ compatible with gt. Let ϕt : Y

′ →M ′ be the map defined by ϕt(v) := ϕ(tv), which

connects the projection ϕ0 : Y
′ →MS1

and the exponential map ϕ1 = ϕ : Y ′ →M ′. Using
this family of maps we put (Lt,∇t) := ϕ∗

t (L,∇)|M ′ . We denote the Hermitian manifold Y ′

with the Hermitian structure (gt, Jt) by Yt. Then we have a family of S1 ×K-equivariant
Z/2-graded Clifford module bundle Wt defined by Wt := ∧0,•T ∗Yt ⊗ Lt.

Lemma 4.7. For each (y, t) ∈ Y ×[0, 1] let (L(y,t),∇(y,t)) be the restriction of the pull-back
of (L×[0, 1],∇) to S1×{(y, t)} by the multiplication map S1×Y ×[0, 1] → Y ×[0, 1]. There

exixts an S1×K-invariant open neighborhood Y ′′ of Y S1
in νS

1
such that for each (y, t) ∈
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(Y ′′rY S1
)×[0, 1] the S1-invariant part of the de Rham cohomology H∗(S1; (L(y,t),∇(y,t)))

S1

is zero.

Proof. This lemma follows from Lemma 4.2 for M := Y ′ × [0, 1]. �
Proof of Proposition 4.5. By Lemma 4.7 and the same construction in Lemma 3.3 we have
a one parameter family of K-equivariant S1-acyclic system on Y ′′. Then the poropsition
follows from the defomation invariance of the index and the exicition prpoerty. �

4.5. Key proposition. Recall the data K1, R and (Y1, L1) considered in Subsection 4.2.
In the next subsection we will show the following proposition which is a special case of
Theorem 4.1.

Proposition 4.8.

indS1

K1
(Y1,W1) = 0.

Theorem 4.1 can be proved by using Proposition 4.8 as follows.

Proof of Thereom 4.1 assuming Proposition 4.8. By taking Y1 = Rν in Proposition 4.8

we have indS1

K (M ′,W |M ′) = 0 by Proposition 4.6. �

4.6. Proof of the key proposition:one-dimensional case. In this subsection we give
the proof of Proposition 4.8 in the case of dimY1 = 1. All the following construction can
be carried out K1-equivariantly. We fix an isomorpshim z : Y1 → C as Hermitian vector
spaces. Define w : Y1 r {0} → C/2π

√
−1Z, σ : Y1 r {0} → R and θ : Y1 r {0} → R/2πZ

by w = log z = σ +
√
−1θ. Let Y ′

1 be a manifold Y1 whose complex structure is given
by z and Kähler metric is given by |dz| =

√
2 on σ < −1 and |dw| =

√
2 on σ > 1.

Let D′ be the Dolbeault operator on W ′
1 = ∧0,•T ∗Y ′

1 ⊗ R1. We consider an S1-acyclic
comptible sytem on V := {σ > 0} defined by S1-orbits and the de Rham operator D′

V

along fibers. Note that as in Remark 3.2 we use the open covering consisting of the single
open set V to define the structure of a compatible fibration. Fix a positive number ρ∞.
Let ρ : R → [0,∞) be a non-negative smooth function such that ρ(t) = 0 for t < 0 and
ρ(t) = ρ∞ for t≫ 0. For t ≥ 0 we define a self adjoint elliptic operator D′

t by

D′
t := D′ + tρD′

V : Γ(W ′) → Γ(W ′).

Lemma 4.9. For all t ≥ 0 a section s ∈ Γ(W ′) satisfies D′
ts = 0 and limσ→∞ s = 0 if

and only of s = 0.

Proof. We first give the proof for t = 0. If s ∈ Γ(W ′) is a degree zero section such that
D′s = 0 and limσ→∞ s = 0, then s is a bounded holomorphic section, and hence s = 0.
Note that if a degree one section s of W satisfies D′s = 0, then s has a form s = f(z̄)dz̄
for some anti-holomorphic function f . We show that if s = f(z̄)dz̄ satisfies limσ→∞ s = 0,
then s = 0. Since we have s = f(z̄)dz̄ = f(z̄)z̄dw̄ and s converges to zero at infinity,
f(z̄)z̄ converges to zero at infinity. We put u := e−w = 1/z and h(u) := f(z)z. Then h(u)
has zero of order at least one at u = 0, and hence,

s = f(z̄)dz̄ =
h(ū)

ū
dū

is an anti-holomorphic 1-form on the one point compactification P1 of Y ′ by Riemann’s
removable singularity theorem. Then we have s = 0.
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We reduce the case t > 0 to the case t = 0. Let σ̂ be a smooth increasing function on
σ such that σ̂(σ) = σ for σ < 0 and

dσ̂

dσ
= 1 + tρ(σ).

Let ẑ : Y1 → C be a coordinate function defined by

ẑ = eŵ, ŵ = σ̂ +
√
−1θ.

Let Y ′′ be a manifold Y1 whose complex structure is given by ẑ and Kähler metric is given
by |dẑ| =

√
2 on σ < −1 and |dŵ| =

√
2 on σ > 1. Let D′′ be the Dolbeault operator

on W ′′
1 = ∧0,•T ∗Y ′′ ⊗ R1. Since Kähler structures of Y ′ and Y ′′ can be identified on

{σ < 0}, W ′ and W ′′ can be also identified on {σ < 0}. We extend this isomorphism as
ϕ : W ′ → W ′′ by defining 1 7→ 1 on the degree zero part and w̄ 7→ ŵ on the degree one
part. By the direct computation one can check that

(1 + tρ)D′′ = ϕ ◦D′
t ◦ ϕ−1.

Then D′
ts = 0 and limσ→∞ s = 0 if and only if D′′(ϕ(s)) = 0 and limσ→∞ ϕ(s) = 0. From

the above argument for t = 0 we have ϕ(s) = 0 and hence s = 0. �

Using Lemma 4.9 Proposition 4.8 can be proved as follows.

Proof of Proposition 4.8. By the deformation invariance of local indices we have ind(Y1,W1) =
ind(Y ′

1 ,W
′
1). Note that ind(Y ′

1 ,W
′
1) is defined as the super-dimension of the space of L2-

solutions of the equation D′
ts = 0. On the other hand any L2-solution of D′

ts = 0 satisfies
the boundary condition limσ→∞ s = 0, and hence, we have ind(Y ′

1 ,W
′
1) = 0 by Lemma 4.9.

In particular we have indS1

K (Y1,W1) = 0. �

4.7. Proof of the key proposition:general case. In this subsection we give the proof
of Proposition 4.8 for general Y1. Since we assume Y S1

1 = {0} we have the decomposition
of Y1 into the positive weight part E+ and the negative weight part E− as a representation
of S1,

Y1 = E+ ⊕ E−.

Define a unitarty representation E of S1 by

E := E+ ⊕ C⊕ E−,

where we consider the trivial S1-action on C. Now we define a C∗-action on E as follows:
C∗ acts by the complexification of the S1-action on E+ , the complexifiction of the S1-
action defined by g 7→ g−1 on E− and the standard multiplication of weight 1 on C. Note
that all weights of the C∗-action on E are positive and the C∗-action commutes with the
S1-action. The quotient space

Z := (E r {0})/C∗

is a weighted projective space with the induced K1 × S1-action.

Lemma 4.10. (1) We have

H0,i(Z,OZ) = 0 (i > 0)

for the structure sheaf OZ of Z.
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(2) Let R be a non-trivial 1-dimensional representation of K1 × S1. Then for WZ =
∧0,•T ∗Z ⊗R we have

indS1

K1
(Z,WZ) = 0 ∈ R(K1).

Proof. (1) The first statement follows from the negativity of the canonical bundle detT ∗Z
of Z and the Bochner trick. We can show the negativity by the following (standard)
argument. Let LE be the trivial line bundle E × C with a C∗-action and the product
holomorphic structure. Here C∗ acts by weight one on the fiber C. Let S1 be the unit
circle in C∗. We define a S1-invariant Hermitian structure on LE by |v|2 := e−πr2 |v|2
for a constant section with value v ∈ C, where r : E → R is the distance from the
origin of E. Combining with the holomorphic structure and this Hermitian structure of
LE we have the S1-invariant Hermitian connection ∇E on LE whose (0, 1)-part coincides
with the Dolbeault operator of LE and the curvature form coincides with the symplectic
form on E. Since the S1-action on E lifts to (LE,∇), the S1-action is Hamiltonian. Let
µ : E →

√
−1R be its moment map. Note that µ is proper because all weights of the

S1-action are positive. In this setting the complex quotient Z can be identified with the
symplectic quotient µ−1(0)/S1. In particular Z is a Kähler manifold with the induced
prequantizing line bundle (LZ ,∇Z), and we have an isomorphic as holomorphic Hermitian
line bundles

detTZ ∼= (E r {0})×C∗ detE ∼= Ld
Z ,

where d > 0 is the weight of S1-action on detE. Since LZ is positive, the canonical bundle
detT ∗Z is negative.

(2) Let R be a non-trivial 1-dimensional representation of K1 × S1. Since the Kähler
structure of Z is K1 × S1-equivariant we have a K1 × S1-equivariant isomorphism

H0,i(Z,OZ ⊗R) ∼= H0,i(Z,OZ)⊗R

for i ≥ 0. By the first statement and the Hodge theory we have

indK1×S1(Z,WZ) =
∑
i

(−1)iH0,i(Z,OZ ⊗R) = R ∈ R(K1 × S1).

Since R is a non-trivial representaion of S1 we have indS1

K1
(Z,WZ) = 0. �

Note that we have a decomposition of the fixed point set ZS1
as

ZS1

= Z− ⊔ Z0 ⊔ Z+,

where we put Z− := (E+ r {0})/C∗, Z0 := (C r {0})/C∗ and Z+ := (E− r {0})/C∗.

Then by the localization formula Theorem 2.43, indS1

K1
(Z,WZ) is equal to the sum of the

contribution from Z−, Z0 and Z+:

indS1

K1
(Z,WZ) = ind− + ind0 + ind+.

By definition the contribution ind0 from Z0 is equal to indS1

K1
(Y1,W1) and hence we have

indS1

K1
(Y1,W1) = −(ind− + ind+)

from Lemma 4.10. Then we can show Proposition 4.8 as follows.
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Proof of Proposition 4.8. It is enough to show ind− = ind+ = 0.

(0) If the complex codimension ofMS1
inM is 1, then we have indS1

K (M ′,M ′rMS1
) = 0

by the product formula (Propostion 4.3) and Proposition 4.9.
(1) If E− = 0, then we have ind− = 0 and the codimension of Z+ is one. In this case

we have ind+ = 0 from the above case (0).
(2) If E+ = 0, we have ind− = ind+ = 0 as in the same way for (1).
(3) In the general case note that all the weights of the S1-action on the normal direction

on Z− are positive. By (1) and the product formula we have ind− = 0. As in the same
way we have ind+ = 0 by (2) and the product formula. �

5. Localization of equivariant Riemann-Roch numbers

Let (M,ω) be a closed prequantized symplectic manifold with prequantizing line bundle
(L,∇). Let G be a torus and K a compact Lie group. Suppose that G×K acts effectively
on (M,ω) and the G×K-action on M lifts to L preserving ∇ and the Hermitian metric
of L. Then, the action is Hamiltonian and each G-orbit is an isotropic torus in M . We
denote the moment map for G-action associated with the lift by µG :M → g∗. We assume
that 0 ∈ g∗ is a regular value of µ.

For these data one can define theG×K equivariant Riemann-Roch numberRRG×K(M,L)
as the index of the Dolbeault operator whose coefficient is in L. We denote its G-invariant
part by RRG

K(M,L). Note that RRG
K(M,L) is an element of the character ring R(K) of

K.
On the other hand we have the quotient space MG = µ−1

G (0)/G, the symplectic reduc-
tion of M at 0. Since we assume that 0 is a regular value MG is a closed symplectic
orbifold and has the natural induced K-action and the K-equivariant prequantizing line
bundle (LG,∇G) = (L|µ−1

G (0),∇|µ−1
G (0))/G. In this section we show the following theorem

by induction on dimension of G.

Theorem 5.1.
RRG

K(M,L) = RRK(MG, LG) ∈ R(K).

As a special case we have a proof of Guillemin-Sternberg conjecture for the torus action.

Theorem 5.2 ([2, 6, 5, 9, 10, 11, 13, 14], etc.).

RRG(M,L) = RR(MG, LG) ∈ Z.

Remark 5.3. The Guillemin-Sternberg conjecture itself is valid not only for a torus but
also for a compact Lie group.

5.1. Acyclic compatible system and local Riemann-Roch number.

Definition 5.4 (L-acyclic point and (L,G)-acyclic point). A point ξ ∈ µG(M) is called
L-acyclic if the restriction of (L,∇) to each orbit in µ−1(ξ) does not have any non-trivial
parallel sections. If the restriction does not have any non-trivial G-invariant parallel
sections, then we call ξ a (L,G)-acyclic point.

Remark 5.5. Since each G-orbit is an isotropic torus, by [4, Lemma 2.29] and the Hodge
theory, a point η ∈ g∗ is L-acyclic if and only if, for each orbit O which is contained in
µ−1
G (η), the de Rham operator on O with coefficients in L|O has zero kernel. As in the

similar way, η ∈ g∗ is (L,G)-acyclic if and only if the G-invariant part of the de Rham
operator on the orbit is trivial.
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Let gZ be the integral lattice and g∗Z the weight lattice of G.

Proposition 5.6. Non L-acyclic points are contained in g∗Z.

Proof. First let us recall that the moment map associated to the lift of the G-action on
(M,ω) to (L,∇) is defined by the following equality

(5.1)
d

dt

∣∣∣
t=0
ψexp−tξ ◦ s ◦ φexp tξ = ∇Xξ

s− 2π
√
−1 ⟨µG, ξ⟩ s

for ξ ∈ g and s ∈ Γ(L), where φg denotes the G-action on M and ψg denotes the lift of
φg to L for g ∈ G.

Let η∗ ∈ g∗ be a non L-acyclic point and O a non L-acyclic orbit that is contained in
µ−1
G (η∗). Then, there exists a non-trivial parallel section which we denote by s ∈ Γ(L|O).

For arbitrary element ξ ∈ gZ and x ∈ O, by (5.1) we have

d

dt
ψexp−tξ ◦ s ◦ φexp tξ(x) = −2π

√
−1 ⟨η∗, ξ⟩ψexp−tξ ◦ s ◦ φexp tξ(x).

This implies that

ψexp−tξ ◦ s ◦ φexp tξ(x) = e−2π
√
−1t⟨η∗,ξ⟩s(x).

Since ξ ∈ gZ, by putting t = 1, we have

s(x) = ψexp−ξ ◦ s ◦ φexp ξ(x) = e−2π
√
−1⟨η∗,ξ⟩s(x).

Then, ⟨η∗, ξ⟩ must be in Z. �

Remark 5.7. There exist the following three conditions which are related to acyclicity
on a G-invariant open subset V ′ of M .

(1) Every point in µG(V
′) is L-acyclic.

(2) µG(V
′) does not contain any integral points.

(3) The compatible system on V ′ is acyclic.

Neither the condition (1) nor (3) implies (2) because there may exist a lattice point
without non-zero parallel section on its fiber. The condition (2) implies (1) by Prop 5.6.
The condition (3) implies (1) because if everyH⊥-orbit does not have any non-zero parallel
sections, then every G-orbit does not have. Conversely neither the condition (1) nor (2)
implies (3). When G = S1, the conditions (1) and (3) are equivalent because A consists
of the single element {e}. In this case, since the action of G on H∗(G,C) is trivial,
two conditions (1)′(L,G)-acyclicity and (3)′G-acyclicity are also equivalent. Note that
only the condition (3) (resp. (3)′) is our sufficient condition to define the index (resp.
G-invariant index), and we only use it.

Let V be a G×K-invariant open subset of M . We fix a G×K-invariant ω-compatible
almost complex structure on V . As in Subsection 3.1 V has a structure of G × K-
equivariant compatible fibration with the open covering {VH}H∈A parameterized by the
set of subgroups of G which appear as the identity components of the stabilizers of the G-
action. Consider the Z/2-graded Clifford module bundle WL = ∧0,•T ∗V ⊗ L|V . Suppose
that there is a G ×K-invariant open subset V ′ of V such that the family of Dirac type
operators along leaves {DH} constructed as in Subsection 3.2 defines a G×K-equivariant
acyclic (resp. G-acyclic) compatible system. Using these data we have the equivariant
local index indG×K(V, V

′,WL) ∈ R(G×K) (resp. indG
K(V, V

′,WL) ∈ R(K)).
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Definition 5.8 (Equivariant Riemann-Roch number). For the above data we define the
equivariant Riemann-Roch numberRRG×K(V, V

′, L) ∈ R(G×K) by puttingRRG×K(V, V
′, L) =

indG×K(V, V
′,WL). As in the similar way when {Dα} is G-acyclic the G-invariant part

of the Riemann-Roch number RRG
K(V, V

′, L) ∈ R(K) is defined by RRG
K(V, V

′, L) =
indG

K(V, V
′,WL).

5.2. Proof of Theorem 5.1: S1-case. We first show Theorem 5.1 in the case of dimG =
1. We use the results in Section 2.

For each lattice point k ∈ g∗Z we can take a small G×K-invariant open neighborhood Vk
of the compact set µ−1

G (k) so that the image of the complement µG(Vkrµ−1
G (k)) consists of

L-acyclic points. The proof of Proposition 5.6 implies that if k is not equal to 0, then the
image of the complement of the fixed point set µG(Vkrµ−1

G (k)G) consists of (L,G)-acyclic
points.

Lemma 5.9.
RRG

K(M,L) = RRG
K(V0, V0 r µ−1

G (0), L|V0) ∈ R(K).

Proof. By Proposition 5.6 the complement M r µ−1
G (g∗Z) has a structure of G × K-

equivariant strongly acyclic compatible system and RRG×K(M,L) is equal to the sum
of equivariant local Riemann-Roch numbers RRG×K(Vk, Vk r µ−1

G (k), L|Vk
). Moreover if

k ̸= 0, then Vk r µ−1
G (k)G has a structure of K-equivariant G-acyclic compatible system

we have the equality for the G-invariant part,

RRG
K(M,L) = RRG

K(V0, V0 r µ−1
G (0), L|V0) +

∑
k∈g∗Zr{0}

RRG
K(Vk, Vk r µ−1

G (k)G, L|Vk
).

On the other hand we have

RRG
K(Vk, Vk r µ−1

G (k)G, L|Vk
) = 0

for k ̸= 0 by Theorem 4.1, and hence, we complete the proof. �
Now we identify the neighborhood V0 of µ−1

G (0). Let T ∗G be the cotangent bundle of
G with the prequantizing line bundle L(0) as in Subsection 3.3, where 0 ∈ g∗Z corresponds
to the one dimensional trivial representation of G.

Lemma 5.10. There is a G × K-equivariant symplectomorphism between small open
neighborhoods of µ−1

G (0) in M and the zero section in µ−1
G (0) ×G T ∗G(∼= µ−1

G (0) × g∗).
Moreover this symplectomorphism lifts to a G×K-equivariant isomorphism between pre-
quantizing line bundles over them.

This lemma follows from the following general proposition, which is a generalization of
Darboux’s theorem ([8]).

Proposition 5.11. Let H be a compact Lie group acting on symplectic manifolds (Mi, ωi)
for i = 0, 1. We assume each (Mi, ωi) has a H-equivariant prequantizing line bundle
(Li,∇i) . Suppose that there is a compact manifold N with the following properties.

(1) There is an embedding ιi : N ↪→Mi.
(2) Normal bundles νιi(N) of ιi(N) inMi are H-equivariantly isomorphic to each other.
(3) The collections of data ι∗i (ωi, Li,∇i) are H-equivariantly isomorphic.

Then there is a H-invariant neighborhood Ui of ιi(N) and H-equivariant diffeomorphism
ϕ : U1 → U2 such that
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(1) The following diagram commutes.

U1

ϕ // U2

N

ι1

``AAAAAAAA ι2

>>}}}}}}}}

(2) The diffeomorphism ϕ lifts to a H-equivariant isomorphisms between (ωi, Li,∇i).

Proof. For i = 0, 1 consider the associated principal U(1)-bundle with connection 1-form
(Pi, αi) of (Li,∇i). Then the proposition follows from G × U(1)-equivariant Morser’s
argument for contact manifold Pi with contact 1-form αi for submanifold ιi(N). Here the
U(1)-action comes from that of the structure of a principal bundle. �

Note that µ−1
G (0) → µ−1

G (0)/G = MG has a structure of a principal G-bundle (in
the sense of orbifold), and µ−1

G (0) ×G T
∗G has the structure of a product of compatible

fibrations in the sense of Subsection 4.2. Here the compatible fibration onMG is the trivial
one (all leaves are a point) and the one on T ∗G is induced by the induced G-action. Since
the symplectomorphism in Lemma 5.10 is G-equivariant and preserves the prequantizing
line bundles, we have the following.

Lemma 5.12. The symplectomorphism in Lemma 5.10 induces an isomorphism between
two acyclic compatible systems.

We take V0 to be the open neighborhood as in Lemma 5.10. Then by Proposition 3.5
and the product formula (Proposition 4.3), we have

RRG
K(V0, V0 r µ−1

G (0), L|V0) = RRK(MG, LG)

and hence by Lemma 5.9 we complete the proof of Theorem 5.1 in the case of dimG = 1.

Remark 5.13. The argument in this subsection implies that Theorem 5.1 holds in the
case that M is not necessarily closed. Let (M,ω) be a prequantized symplectic manifold
with prequantizing line bundle (L,∇). We do not assume that M is closed. Let G be
the circle group S1 and K a compact Lie group. Suppose that G×K acts effectively on
(M,ω) and the G×K-action onM lifts to L preserving ∇ and the Hermitian metric of L.
We assume that the corresponding moment map µG of the G-action is a proper map and
0 is its regular value. Suppose that there is a G-invariant open subset V of M such that
the complement M r V is a compact neighborhood of µ−1

G (0) and the image µG(M r V )
does not contain any non-zero integral point. Under the above assumptions we have the
equivariant index RRG×K(M,V, L). As in the same way in the proof of Lemma 5.9 and
by Lemma 5.12, we have

RRG
K(M,V, L) = RRK(MG, LG),

where MG is the symplectic reduction of M at 0 and LG is the induced prequantizing line
bundle on MG. Note that since µG is proper MG is a closed symplectic orbifold.

On the other hand, whenM is not necessarily compact, Vergne [15] formulated a version
of quantization conjecture for general compact Lie group G in terms of transversally
elliptic operator [1], which is proved by Ma and Zhang [7] and Tian and Zhang [12]. We
expect that there is a relation between our G-invariant index RRG

K(M,V, L) and the index
of the transversally elliptic operator for the case of torus action. We, however, do not
know the precise relation.
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5.3. Proof of Theorem 5.1: general case. To show Theorem 5.1 by induction on
dimG we have to choose an appropriate circle subgroup as follows.

Lemma 5.14. There exists a compact connected 1 dimensional subgroup H of G such
that the induced moment map µH = ι∗H ◦ µG :M → h∗ has 0 as its regular value, where h
is the Lie algebra of H and ιH : h → g is the natural inclusion.

Proof. Let A be the set of all subgroups of G which appear as a stabilizer of G-action on
M . Since M is compact A is a finite set and the image of the fixed point set µG(M

G) is
a finite set which does not contain 0, and we can choose a one-dimensional subspace h in
g which satisfies the following conditions.

(1) h is generated by rational vectors.

(2) hr {0} does not intersect with
∪

G′∈Ar{G}

Lie G′ in g.

(3) µG(M
G) does not intersect with ker ι∗H .

We define H as the one-dimensional connected subgroup of G which is defined as the
image of h by the exponential map. Note that by the above first condition H is a compact
subgroup of G, and we have MH = MG from the second condition. Since H is a one-
dimensional subgroup x ∈M is a critical point of µH = ι∗H ◦ µG if and only if it is a fixed
point x ∈ MH = MG. By the last condition for h, we have that 0 is a regular value of
µH . �
Proof of Theorem 5.1. We show the theorem by induction on dimG. As in the previous
subsection we proved in the case of dimG = 1. We take a one-dimensional connected
subgroup H of G as in Lemma 5.14 and a complementary subtorus G′. According to this
decomposition we have a decomposition of the moment map µG as µG = µH ⊕µG′ :M →
g∗ = h∗ ⊕ (g′)∗. Let µ̄G′ : µ−1

H (0)/H → (g′)∗ be the induced moment map with respect to
the induced G′-action. Since the natural projection µ−1

G (0) = (µG′|µ−1
H (0))

−1(0) → µ̄−1
G′ (0)

is a submersion and 0 is a regular value of µG and µH , 0 is also a regular value of µ̄G′ .
Then we can prove Theorem 5.1 inductively as follows:

RRG
K(M,L) = (RRH

K(M,L))G
′

= (RRK(MH , LH))
G′

= RRK((MH)G′ , (LH)G′)

= RRK(MG, LG).

Here the second equality follows from the facts thatH is one-dimensional and 0 is a regular
value of µH , and the third equality follows from the facts that G′ is m − 1-dimensional
and 0 is a regular value of µ̄G′ . �
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