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On existence of models for the logical system MPCL
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Abstract

We study whether a (Dedekind) cut has a model or not for the
logical space of the logical system MPCL and for relations satisfying
the MPC.1 law. The results depend on whether the quantity system is
well-ordered and has the largest element or not. We apply the results
to show a condition for a consistent subset to have a model. Another
application is an alternative proof for the fact that the MPC.1 law is
a characteristic law of the logical space of MPCL.
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1 Introduction

As proved in [7] and illustrated in [8], each logical system yields a {0,1}-
valued functional logical space (A, JF) in the sense of [6] under certain rea-
sonable conditions, where A is the set of the sentences and JF is a set of
mappings of A into {0, 1} induced by the semantics of the logical system.
Meanwhile, let < be a relation on the set A* of all finite sequences of ele-
ments of A. Then a (Dedekind) cut of A by < is a pair (X,Y) of subsets
X,Y of A which satisfies « £  for each pair («, ) of elements «, 3 of A*
such that « € X and f C Y, where «, 3 are regarded as subsets of A. Also,
an F-model of the cut (X,Y) is an element f € F which satisfies X C {1}
and Y C f~10).

The main purpose of this paper is to study whether the cut (X,Y) has
an F-model or not for the logical space (A,JF) of the logical system MPCL
defined in [8] and for relations < which satisfy the law introduced and called
the MPC.1 law in [9] and are contained in the validity relation <4 of (A, F).
The results depend on a parameter P of MPCL which is called the quantity
system and defined as a totally ordered commutative monoid; namely they
depend on whether P is well-ordered and has the largest element or not.

The validity relation <4 satisfies the MPC.1 law, and therefore the re-
sults apply to <. Furthermore, a subset X of A is consistent if and only if
(X,0) is a cut of A by 5. Also, (X, 0) has an F-model if and only if X has a
model in a usual sense. Thus we have a condition for a consistent subset to
have a model. We can also apply our results to obtain a condition for a de-
duction system (R,D) to be F-complete. Suppose (R,D) is F-sound. Then
by a general results in [6], (R, D) is F-complete if and only if the deduction
relation g p satisfies a characteristic law of (A, JF). As shown in [9], the
MPC.1 law is a characteristic law of (A,JF). Our results may be used to
obtain an alternative proof of the fact.

Our method of constructing an F-model of a cut (X,Y) is inspired by
Henkin’s proof [10] of Gddel’s completeness theorem [3]. We first extend
(X,Y) to a cut (XU Z,Y) by a certain subset Z of A (cf. Lemma 5.1). Next
we extend (XU Z,Y) to a cut (P,Q) which is maximal with respect to a
certain order between cuts. Then (P, Q) satisfies conditions such as the ones
described by Lemma 5.5. These conditions enable us to construct an -
model of (P, Q) (cf. Lemma 5.10). The semantics of MPCL is parameterized



by a P-valued measure |U| for the sets U of the entities which satisfies the
pigeonhole principle. In constructing an F-model, therefore, we have to
construct such a measure. This is accomplished by using Lemma 5.6 which
is an expression of the pigeonhole principle in terms of (P, Q). This method
is essentially due to [11]. In the course of the construction of an F-model,
we need to deal with occurrences of variables, for the sake of which Lemma
4.19 supplies a concept of alternatives.

In [9], following the method of [11], resolution trees are used in proving
that the MPC.1 law is a characteristic law of MPCL. The advantages of
using (Dedekind) cuts instead of resolution trees are as follows. First, the
cut method yields results not only on characteristic laws (cf. §8) but also on
models (cf. §5) and the classification of the logical space (cf. §7). Secondly,
the F-model which we will construct is ‘larger’ than that constructed by
resolution trees, and it is hoped that this will be used to prove an incom-
pleteness theorem for MPCL like Godel’s original [4]. Lastly, Lemma 5.4
can have no counterpart in the resolution tree method, and it simplifies an
argument used in resolution trees. On the other hand, the method using
cuts requires different conditions (cf. Assumption 3.1) in comparison with
those in [9].

This paper is organized as follows. Section 2 collects notation, terminol-
ogy and basic facts about logical spaces and logical systems. In Section 3
we define the logical system MPCL. Section 4 introduces the MPC.1 law.
Section 5 is devoted to the proof of the main result of this paper, and deals
with the case where the quantity system is well-ordered and has the largest
element. Section 6 deals with the remaining case. Sections 7 and 8 contain
applications of the main result to the classification and characteristic laws
of the logical space.

2 Preliminaries

The notation and terminology in §2.1-2.4 are due to [6] and [7]. In §2.5 we
argue on the extension of formal languages and its relation to the logical
systems. In §2.6 we define the parallelism relation on a formal language
satisfying the variable operation condition.

2.1 Logical spaces

Let A be a set. A logic on A is a relation R between A* and A, where A*
is the set of all finite sequences of elements of A. A deduction system on
A is a pair (R, D) of a logic R on A and a subset D of A. Here we denote
elements of A* by «,3,.... When o« = a;--- an, we will denote the subset
{a1,...,an} of A also by «. A subset B of A is said to be closed under R,



if the following holds:
xCB,ye A, «Ry = y € B.

For each X € PA there exists the smallest of the subsets of A which contain

X and are closed under R. We denote it by [X]g and call it the R-closure of
X.! We define the logic RP by

«RPy < [xUDJg3y

for each « € A*, y € A. We call RP the D-closure of R. Furthermore, the
deduction relation g p on A* is defined by

x<rpDP & [xUDJgD ﬂ[{U}UD]R
yep

for each (&, ) € A* x A*.

A logical space is a pair (A, B) of a non-empty set A and a subset B
of PA. We call (g B the B-core. A logic R on A is called a B-logic, if
each B € B is closed under R. There exists the largest B-logic on A by [6,
Theorem 6.1] . Let C be the B-core, Q be the largest logic on A and (R, D)
be a deduction system on A. Then

e (R,D) is said to be B-sound if RP C Q.

e (R,D) is said to be B-sufficient if Q C RP.

e (R, D) is said to be B-complete if RP = Q.

e (R, D) is said to be B-core-complete if C = [D]g.

A subset X of A is said to be B-consistent if [X]qg # A. A B-model of
a subset X of A is a set B € B — {A} containing X. A B-model of a pair
(X,Y) € PA x PA is an element B € B—{A} satisfying X C Band Y C A—B.

Let A be a set and < be a relation on A*. A pair (X,Y) € PA x PA is
called a cut of A by <, if « £ 3 for each &« C X and 3 C Y. We say that
(X,Y) is finite if both X and Y are finite sets.

Let (A, B) be a logical space and X be a subset of A. We denote the set
of finite subsets of X by P’X. Then X is said to be super-covered by B,
if for each Y € P’X there exists an element B € B such that Y C B C X.
Furthermore, B is said to be quasi-finitary, if every subset of A which is
super-covered by B belongs to B. We denote by B the smallest of the N-
closed subsets of PA which contain B, and call it the N-closure of B.2 Also,
we denote by BN the smallest of the subsets of PA which contains B and

! Consult [6, §4].
2The N-closure of B exists by [6, Theorem 2.5].



are N-closed and quasi-finitary, and call it the quasi-finitary N-closure of
B.3
Logical spaces (A, B) are put into the following three classes.
Class 1. BN = B, that is, B is N-closed in PA and quasi-finitary.
Class 2. BM = B" #£ B, that is, B is not N-closed in PA and the N-closure
B of B is quasi-finitary.
Class 3. BN # B", that is, the N-closure B of B in PA is not quasi-finitary.
A B-valued functional logical space is a pair (A,JF) of a non-empty
set A and a subset F of A — B, where B is a lattice which has the least
element and the largest element, and is non-trivial in the sense that #B > 2.
For each f € J and each a € A, we define A¢ ¢ by

Afa={x € Alfx > a},

and we define By C PA by

~ JH{AfdfeF, aeB) if F#£0,
(A} if 7 =0.

Then (A,Bg) is a logical space. We say the F-core to mean the Bg-core,
the F-logics for the Bg-logics, and so on.

Remark 2.1 Let (A, F) be a T-valued functional logical space, where T =
{0,1}. Then a subset X of A has an F-model if and only if there exists an
element f € F satisfying fx = 1 for each x € X. Also, a pair (X,Y) € PAxPA
has an F-model if and only if there exists an element f € F satisfying fx = 1
for each x € X and fy =0 for each y € Y.

Let (A, F) be a B-valued functional logical space. We define A =A* X A*,
denote each element (&, ) of A by &« — P and call it a sequent. We define
for each f € F the f-validity relation < on A* by

x xf P & inffa <supff3,
and define the F-validity relation <5 on A* by
x<xg5p & a=xsp forevery f € F.

Then we define a subset As of A by Af = {fx = B € Al <¢ B} for
each f € F, and we define F C PA by F = {A¢|f € F). Thus (/K,S_':) is
a logical space, which we call the sequent logical space accompanying
(A, F). A deduct1on system (ﬁ 13) on A is called a characteristic law of
(A, F)if (R D) is F-core- -complete. We say that a relation R on A* satisfies
a deductlon system (R D) on A if R, as a subset of A = A* x A*, is closed
under R and contains D.

3The quasi-finitary N-closure of B exists by [6, Theorem 2.7].



2.2 Sorted algebras

For each set A and each natural number n, an n-ary operation on A is a
mapping o« of a subset D of A™ into A. The set D is called the domain
of o and denoted by Dom «, while the image «D is denoted by Im . The
number n is called an arity of «, and so if D = (), every natural number
is an arity of «. We say that o« is total if D = A™ A subset B of A
is said to be closed under the operation « if x(aj,...,a,) € B for each
(at,...,an) € B"ND. If B is closed under «, the restriction o/gnnp of
to B becomes an operation on B.

An algebra is a set A equipped with a family (x))aer of operations on
A. We often identify the operation o) with its index A. We sometimes call
A an L-algebra. The algebra (A, (a))acr) is said to be total if o is total
for every A € L.

Let (A, (ap)aer) be an algebra. If a subset B of A is closed under oy for
each A € L, then B becomes an algebra equipped with the family (Ba)acr
consisting of restrictions B of ) to B. Such an algebra (B, (Ba)act) is
called a subalgebra of A. Also, an algebra (A, (x,)ucm) is obtained by
reducing (o )aer to (otu)uem for a subset M of L. Such an algebra will be
called an M-reduct of A.

Let (A, (aa)acr) be an algebra. For each subset S of A, the intersection
of all subalgebras of A which contain S is the smallest of the subalgebras
of A which contain S. We denote it by [S] and call it the closure of S
or the subalgebra generated by S. Define the subsets S, (n = 0,1,...)
of A inductively as follows. First Sg = S. Next for each n > 1, S, is
the set of all elements ax(ai,...,am) with A € L, (a1,...,am) € Dom a;,
and a; € Sy, (i =1,...,m) for some non-negative integers ly, ...,y such
that n = 1+ > ", 1li. Then it is easy to show [S] = [J,;5oSn. We call
San(n=0,1,...) the descendants of S. B

Two algebras A and B are said to be similar, if (o\)act and (Ba)acL
are indexed by the same set L, and &) and 3 have a common arity for each
A el

Let (A, (oa)acr) and (B, (Ba)acr) be similar algebras. Then a mapping
f of A into B is called a holomorphism if it satisfies the following two
conditions for all A € L, where n) denotes an arity common to o) and Px:

o If (a7,...,an,) € Doma,, then (fay,...,fan,) € Dom x
and f(x(ay,...,an,)) = R(far,...,fan,).

o If (a7,...,an,) € A™ and (faj,...,fan,) € Dom f3,,
then (ay,...,an,) € Dom «x,.

A bijective holomorphism is called an isomorphism.

f((X}\((l],...,(lnA)) = [?))\(fa1,...,fam\).



A sorted algebra is an algebra A equipped with an algebra T similar
to A and a holomorphism o of A into T. We call T and o the sorter and
the sorting of the sorted algebra A. For each subset S of A and eacht € T,
we define the t-part St of S to be the inverse image {a € S| oca =t} of t in
S by o.

Let (A, T, o) and (B, T, T) be sorted algebras with the same sorter T. Then
a mapping f of A into B is said to be sort-consistent, if it satisfies Tf = o,
or equivalently f(A¢) C By for all t € T.

A sorted algebra (A, T, 0) is said to be universal or called a USA (uni-
versal sorted algebra) if A has a subset S which satisfies the following
two conditions, the latter being called the universality.

e A=IS].

e If (A’,T,0') is a sorted algebra and ¢ is a mapping of S into A’ satis-
fying o’ = ofs, then there exists a sort-consistent holomorphism f of
A into A’ which extends ¢.

We call S as above the set of the primes of A. It is known that every
sorted algebra has at most one prime set and that f in the above condition
is uniquely determined by .

Theorem 2.1 Let S be a set, T be an algebra, and T be a mapping of S
into T. Then there exists a USA (A, T, 0,S) with ols = . If (A, T,0’,S) is
also a USA with o'|s = T, then there exists a sort-consistent isomorphism
of A onto A’ extending ids.

Proof Consult [7, Theorem 2.1].

Theorem 2.2 Let (A, T, 0,S) be a USA on an algebra (A, (xa)acr). Then
the algebra is free over S, or S is its basis, in the sense that the following
holds:

1. A=1S].

2. SN Uper Imay = 0, that is, no element a € S has an expression
a=ox(ay,...,ax) with A € L and (ay,...,ax) € Dom x;.

3. Each element a € A — S has a unique expression a = «y(aq,...,ax)
with A € L and (ag,...,ax) € Dom a,, which we call the word form
of a.

If an algebra (A, (oa)acr) has a basis S, then A is the direct union
[ 15 Sn of the descendants Sy, (n =0,1,...) of S, and so for each element
a € A, there exists a unique non-negative integer n satisfying a € Sy, which
we call the rank of a and denote by Rank a, and if Ranka > 1, then the
unique word form «,(aq, ..., ax) of a satisfies Ranka =1+ Z}; Rank a;.
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Proof Consult [7, Theorem 2.2].

Let (A,T,0) be a sorted algebra and V be a non-empty set. Define
AV = Uiet(V — Ay). Then we can construct a sorted algebra (AV, T p)
as follows. First define the sorting p of AY into T by pb = t for each
beV - Airand each t € T. Then

pb = o(bv) (2.1)

for each b € AV and each v € V. Let (ax)act and (Ta)aer be the operations
of A and T respectively, and let n) be an arity of o) and T). For each A € L,
define the operation B on AY as follows. First define the domain of By to
be
D= {(b1,...,bn,) € (AY)™ | (pby,..., pbn,) € DomTy}.

If (by,...,bn,) € D, then (o(byv),...,0(bn,v)) = (pby,...,pbn,) €
DomTy by (2.1), so (byv,...,bn,v) € Domay for each v € V, and we
can define the mapping Ba(b1,...,bn,) of Vinto A by

(Bx(b1,~ .. ,bm))v =o(byv,..., b, V) (2.2)

for each v € V. Furthermore by (2.1)

O—((X}\(b]\), e )bn}\v)) = T}\(G(b]V), R O—(bn;\v)) = T}\(pb1 Yy pbﬂ.}\))

and t = Ta(pby,...,pbn,) is not varied by v € V, hence Ba(b1,...,bn,) €
V — Ay € AVY. Thus B is an operation on AV for each A € L, and so
(AV, (Ba)aerL) becomes an algebra. Furthermore, by (2.1), (2.2) and (2.3),
we have

p(B)\(b])~")b‘n}\)) == b
((X)\(b]\), e abn)\v)) = T?\(pb]) cey prL)\)

with any element v € V, and so p is a holomorphism of A into T. Thus we
have constructed the sorted algebra (AY,T, p), which we call the V-power
of A. Furthermore, it follows from (2.1) and (2.2) that for each v € V the
mapping b — bv of AV into A is a sort-consistent holomorphism, which we
call the projection by v.

2.3 Logical systems

A formal language is a universal sorted algebra (A, T, 0,S) equipped with
subsets C and X # ) of S and a set ' which satisfy the following three
conditions.

e The prime set S is the direct union C II X of C and X.



e Let (Ta)acr be the operations of the sorter T. Then its index set L is
contained in the subset I' U I'X of the free semigroup over I' I S.

e The arity of each operation 1) with A € LN TX is equal to 1.

We call C and X the sets of the constants and variables respectively.
Henceforth, we identify each index A € L N X with the operation Ty, call it
a variable operation, and denote its domain by Tiy.

Let (A, T, 0,S,C, X, T) be a formal language and (ta)acr be the operations
of T. Define M =LNT and let Tapy be the M-reduct of T. Then, a sorted
algebra W is called a denotable world for A, if it satisfies the following
two conditions.

e The sorter of W is equal to Tym.
e W, # () for each t € 0S.

A C-denotation into the denotable world W for A is a mapping ® of
C into W which satisfies ®(C¢) € W, for each t € T. There is at least one
C-denotation. If C = (), then since ) — W = {0} by the set-theoretical defi-
nition of Y — Z, () is the unique C-denotation. Similarly, an X-denotation
into W is a mapping v of X into W which satisfies v(X) C Wy for each t € T.
We denote the set of all X-denotations into W by Vx w. Then Vx w # 0,
and so we can construct the Vx w-power (WVxw Tap, p) of W as described
in §2.2. Let (Ba)acm be the operations of WVxw

An interpretation of the set L N TX of the variable operations on the
denotable world W for A is a mapping Iy which assigns each A € L N Ix
with x € X a mapping

Aw € U(ch—>Wt) - W

teTy

which satisfies
AW(WO'X — Wt) c W?\t

for each t € Ty. We call Ay = Iy(A) the meaning of A on W under the
interpretation Iy. Then we can define the unary operation By on WYxw
for each A € LNTX as follows, and extending the operations of WYXW from
(Br)aem to (Ba)rer, we can construct the sorted algebra (WYxw T p). First
we define, for each pair (x,w) of x € X and w € Wy, the transformation
v — (x/w)v on Vx w by

((e/wiv)y = {‘”" puex
w  ify=x.



We call the transformation (x/w) the redenotation for x by w. Next
we define, for each quadruple (t, @,x,Vv) consisting of t € T € Vx w —
Wy, x € X and v € Vx w, the mapping (p((x/D)v) of Wgy into Wy by

(@((x/Ov))w = @ ((x/W)v) (2.4)

for each w € Wqy. We finally define for each A € LNTX the unary operation
B on WYxW as follows. Suppose A € I'x with x € X. First we define

Dom B)\ = U (nywﬁ Wt).
teTy

Next for each t € Ty and each @ € Vx w — W; we define Br¢ to be the
element of Vx yw — Wy such that

(Br@)v =Aw (@ ((x/O)v))

for each v € Vx, w. Since @ ((x/0)v) € Woyx = Wy and Aw(Wox — Wy) C
Wiy, certainly (Bag)v € Wiy Since Vx w— Wy is the t-part of WVYxw for
each t € T, we have thus constructed the sorted algebra (WYxw T’ p).

Now let @ be a C-denotation into W. Then we can construct a sort-
consistent holomorphism ®* of A into WYxW as follows. First we define the
mapping @ of S = CII X into Vx w— W so that

(pa)v = ®a whenaeC,
M " lva  when a€X

for each v € Vx w. Then ¢Sy C Vxw — W; for each t € T because
®(Cy¢) € Wy and v(Wy) € Wy, and so @ maps S into WYxW and satisfies
p@ = ols. Therefore by the universality of A, there exists a unique sort-
consistent holomorphism of A into WYxW which extends ¢. We call it the
metadenotation determined by ® and denote it by ®*. Since ®* is an
extension of @,

(@*a)y = ®a whenaeC,
"~ |va when a€eX

for each v € Vx w.

A logical system? is a triple (A, W, (Iw)wew) of a formal language
(A, T, 0,S,C, X, T"), a non-empty collection W of denotable worlds for A, and
a family (Iw)wew of interpretations Iy on W € W.

Suppose the logical system (A, W, (Iw/)wew) satisfies the following con-
dition:

e For an element ¢ € T, the ¢-part of A is non-empty, and the ¢-part

W, of each W € W is equal to T = {0, 1}.

“For some other kinds of formalization of a logical system, the reader may consult [2]
for example.
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Then we call ¢ a truth and call the elements of Ay, the ¢p-sentences.

Suppose (A, W, (Iw)wew) is a logical system with a truth ¢. Then we
can construct a non-empty subset F of Ay, — T as follows. Let W €¢ W
be a denotable world and @ be a C-denotation into W. Then since the
metadenotation @ is sort-consistent and the ¢-part Vx w— Wy, of WVxw
is equal to Vx,w— T because Wy, = T, we have ®*(Ay) € Vx,w— T, and
so for each v € Vx w, we obtain the mapping a — (®*a)v of Ay into T.
We define F to be the set of all those mappings obtained from all possible
triples (W, @, v) of denotable worlds W € W and C-denotations @ into W
and v € nyw.

Thus we have seen above that each logical system (A, W, (Iw/)wew) with
a truth ¢ yields the pair (Ag,F) of Ay and the subset F # 0 of Ay — T.
We call (Ag,F) the ¢p-sentential functional logical space associated
with (A, W, (Iw)wew).

2.4 Occurrences and substitutions

Let (A, (oa)acr) be an algebra. If, for two elements a and b of A, there exists
an element A € L such that a = «(...,b,...), then we writeb < a. If b < a
or b = a, we write b < a. If there exists a sequence (bi)i—o,... n (n > 0) of
elements of A such that bo = a,b,, =b and by < by fori=1,...,n, then
we say that b occurs in a and call the sequence an occurrence of b in a.

In the rest of this subsection, let (A, T, 0,S, C,X,T') be a formal language,
and (oz)acr and (Ta)aer be the operations of A and T respectively. Then L
is contained in the set of the formal products of the elements of T'II S. For
each element A of L, let S* denote the set of the elements of S which occur
in A as defined above.

Let a € A and s € S. Then an occurrence (si)i=o,... nof s in a is said
to be free, if {sg,...,sn) NImay = 0 for each A € L such that s € SM If
there exists a free occurrence of s in a, we say that s occurs free in a or
write s < a. For each subset X of S, we define X§ , = {x € X[x < a}. Let
b € A. Then the occurrence (si)i—o,... nof s in a is said to be free from b,
if {sg,...,sn}NIm a) = 0 for each A € L such that (S>‘)fbree # (). We say that
s is free from b in a, if every free occurrence of s in a is free from b.

Let s € S and c € A with os = oc. Then, for each element a of A, we
can define the element a(s/c) of A with o(a(s/c)) = oa by induction on
the rank r of a as follows. If r =0, then a € S, and so we define

o
als/e) = {Z LZ?A?

hence o(a(s/c)) = oa as desired. Suppose r > 1. Then a has a unique

word form o(aq,...,ax) and r is larger than the ranks of aj,...,ay, so
ai(s/c) has already been defined and satisfies o(ai(s/c)) = oa; for i =

11



1,...,k. Since (oai,...,ocay) belongs to Dom Ty, so does (G(a1(s/c)),...,
G(ak(s/c))) hence (ai(s/c),...,ax(s/c)) € Dom oy, and so we define

a if s € SN

{WA(GI(S/C), ai(s/c))  ifs g SN
a(s/c) =

Then even when a(s/c) # a, we have
o(a(s/c)) = o(anlai(s/c),...,ax(s/c)))
=m\(o(ai(s/c)),...,o(ak(s/c))) =Trloay,...,0a) = oa

as desired. The definition of a(s/c) by induction is complete. We call
the transformation a +— a(s/c) on A the substitution of ¢ for s. Since
o(a(s/c)) = oa, the substitution is sort-consistent.

For each subset B of A and element a € A, let B® denote the set of the
elements of B which occur in a. Furthermore define L* ={A € L| (Im o) #
(}. If A € L9, then we say that A occurs in a.

Lemma 2.1 For each element a € A, S% is a finite set.
Proof Consult [7, Lemma 4.1].

Lemma 2.2 If a = a(ay,...,a) €A, then LA ={AJUJS LY. Ifa €S,
then L® = (). For each element a € A, L% is a finite set.

Proof Consult [9, Proposition 1].

Lemma 2.3 If a = aa(ay,...,a) € A, then S§,, = U, S, —SM If
a €S, then S¢_ ={a}.

free

Proof Consult [9, Proposition 1].

Lemma 2.4 If a,b € A and (S}‘)Eee = () for each A € L9, then every element
of S is free from b in a.

Proof Consult [9, Proposition 1].

Lemma 2.5 Let a,b,c € A, s € S and assume that 0s = oc and b =
a(s/c), where (s/c) denotes the substitution of ¢ for s. Then Sfl;ee C Sf.o U
(Sfiee —1s}) and [PCLeULE.

Proof Consult [9, Proposition 1].

Lemma 2.6 Let a € A and s € S. If s « a then s is free from any element
beAin a.
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Proof There is no free occurrence of s in a, so the conclusion is immediate
by the definition. [ |

Lemma 2.7 Let a € A and s € S. Then s is free from s in a, and a(s/s) = a
holds.

Proof Let (si)i—o,... nbe a free occurrence of s in a, if any. If (57‘)f5ree # 0,
then s € S, hence {so,...,sn}NIm oy = . We can prove a(s/s) = a easily
by induction on Rank a. |

Lemma 2.8 Let a € A, s,7 € S, and os = or. Then Le/7 C L2,
Proof By Lemma 2.5, L4s/7 C LTeUL". By Lemma 2.2, L™ = (). |
Lemma 2.9 Leta € A, s, € S, and 0s = or. Then Rank a(s/r) = Rank a.

Proof We use induction on Rank a. If Rank a = 0, then a(s/r) is equal to
either a or r. Hence a(s/r) € S, that is, Rank a(s/r) = 0.

We assume that Ranka > 1. By Theorem 2.2, a has a unique word
form ax(aj,...,ax), and Ranka; < Ranka for j = 1,... k. If s € S,
then a(s/r) = a, hence the conclusion follows. Suppose s ¢ S». Then
a(s/r) = ax(ai(s/r),...,ax(s/r)). Therefore, by the inductive hypothesis,
Ranka(s/r) =1+ Zfﬂ Rank aj(s/v) =1+ ZL] Rank aj(s/r) = Rank a.

|

Lemma 2.10 Let a = ax(aq,...,ax) € A,s €S, and b € A. Then s is free
from b in a if and only if s « a or the following two conditions hold:

1. sis free from bin a; for j =1,... k.
2. (SMP.. =0.

Proof This proof is based essentially on [5, Theorem 3.16.6]. If s ¥ a,
then s is free from b in a by Lemma 2.6. If s < a and s is free from b in a,
then the conditions 1 and 2 hold by [7, Lemma 4.3].

We assume that s < a and that the conditions 1 and 2 hold. In order
to prove that s is free from b in a, we show that {sp,...,snJNImo, =0
for each free occurrence (si)i—o,...n of s in a and each p € L satisfying
(SM)P.. # 0. Since a # s by the uniqueness of the word form of a, we can
assume that so # s1. Then s7 € {ay,...,ayx}, hence (si)i=1,. .. n is a free
occurrence of s in aj for some j € {1,...,k}. By the condition 1, (si)i=1,... n
is free from b in a;. Therefore {s1,...,sn} NIm oy, = . Since A # u by the
condition 2, so = a ¢ Im o, Therefore {so,...,sn}NImo, =0 |

Lemma 2.11 Let a,b,c € A, s,x € S and assume that os = oc. If x € ¢
and x is free from b in a, then x is free from b in a(s/c).
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Proof We use induction on Rank a. First we assume that Ranka = 0,
that is, a € S. If a = s then a(s/c) = ¢, hence the conclusion follows from
Lemma 2.6. If a # s then a(s/c) = a, and the conclusion is immediate.

Next we assume that Rank a > 1. By Theorem 2.2, a has a unique word
form oy(ay,...,ax), and Ranka; < Ranka for j =1,... k. If s € S then
a(s/c) = a, so the conclusion is immediate. Therefore we may assume that
s ¢ SM. Then we have a(s/c) = an(ai(s/c), ..., ax(s/c)).

First we consider the case where x < a. By Theorem 2.10, x is free from
bin a;jforj=1,... kand (S)‘)Eree = (). Then x is free from b in aj(s/c) for
j =1,...,k by the inductive hypothesis. Hence, again by Theorem 2.10, x
is free from b in a(s/c).

Next we consider the case where x « a. If x &« a(s/c) then x is free
from b in a(s/c) by Lemma 2.6, hence we may assume that x < a(s/c).
Furthermore, if x € S* then x %« a(s/c) by Lemma 2.3, so we may assume
in addition that x ¢ S*. Since x < a, it follows that x <& ajforj=1,... k
by Lemma 2.3. Since x &« c, it follows that x &« aj(s/c) by Lemma 2.5.
Therefore, again by Lemma 2.3, x < a(s/c). A contradiction. |

Lemma 2.12 Let a,c € A, s € S and os = oc. If s « a then a(s/c) = a.

Proof We use induction on Rank a. If Ranka =0, then a € S. Since s «
a, it follows that a # s. Therefore a(s/c) = a. Next suppose Ranka > 1.
By Theorem 2.2, a has a unique word form «,(ay,..., ax), and Rank aj <
Rankaforj=1,...,k. Ifs € S then a(s/c) = a. If s ¢ S*, then s & a; for
j=1,...,k by Lemma 2.3. Therefore a(s/c) = ax(ai(s/c),...,ax(s/c)) =
ax(aq,...,ax) = a by the inductive hypothesis. [ |

Lemma 2.13 Let a,be A, r,s € Sand or =0os. If b = a(s/r), r « a and
s is free from 1 in a, then a = b(r/s), s € b and r is free from s in b.

Proof This proof is based on [5, Theorem 3.17.6]. First we prove that
s € b. If r #s, then s « b by Lemma 2.5. If r = s, then b = a by Lemma
2.7, hence s <« b by the assumption.

Next we prove that a = b(r/s) and that r is free from s in b by induction
on Rank a. First we assume that Rank a = 0, that is, a € S. If a = s, then
b = a(s/r) =, hence b(r/s) =s = a. ris free from s in r by the definition.
Suppose a # s. Then b = a(s/r) = a. Since v « a it follows that a # r,
hence a(r/s) = a. v is free from s in a by Lemma 2.6.

Henceforth we assume that Rank a > 1. By Theorem 2.2, a has a unique
word form o(ay,...,ax), and Ranka; < Ranka for j = 1,... k. First
suppose s ¢ S* and r ¢ S*. Then b = a(s/r) = ar(ai(s/r),..., ax(s/1)).
By Lemma 2.3 and Theorem 2.10, v &« aj and s is free from r in a; for
j =1,..., k. By the inductive hypothesis, aj(s/r)(r/s) = ajforj=1,... k.
Therefore b(r/s) = a. 1 is free from s in a;(s/r) for j = 1,...,k by the
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inductive hypothesis. (Sx)free = () because S§_, = {s}. Therefore r is free

from s in b by Theorem 2.10. Next suppose s € S*. Then b = a(s/r) = a.
Since T « a, it follows that a(r/s) = a by Lemma 2.12, and it follows that
T is free from s in b by Lemma 2.6. Finally suppose r € S*. Then, since s
is free from v in a, it follows that s &« a, hence b = a(s/r) = a by Lemma
2.12. Therefore, by the same argument as above, a(r/s) = a and r is free
from s in b. |

2.5 Extension of logical systems

In this subsection we argue on the extension of formal languages and its re-
lation to the logical systems. The following theorem is based on [5, Theorem
4.7.1].

Theorem 2.3 Let (A, T,0,S,C,X,T)and (A, T’,0',S’,C’, X', T') be formal
languages, (A, W, (Iw)wew) and (A/, W' (I}, )wrew’) be logical systems,
and L and L’ be the indices of T and T’ respectively. Assume the following:

1. LC L.

2. A is a subalgebra of the L-reduct of A’.

3. T is the L-reduct of T’.

4. 0 =0'|a.

5. CC C/, XcX.

6. TCr’.

7. WeW, W eW.

8. W is the L N I-reduct of W'.

9. Iw(A) is the restriction of I{,,(A) for each A € LNTX.

Let @ be a C-denotation into W, @’ be a C’-denotation into W', v be
an X-denotation into W, and v’ be an X’-denotation into W’, and assume
that @, v are the restriction of ®’, v/ to C, X, respectively. Then (®*a)v =
(®™*a)v’ for each a € A.

Proof We use induction on Rank a. First we assume that Ranka = 0,
that is, a € S = CUX. If a € C then (®*a)v = ®a = ®'a = (®*a)v’. If
a € X then (®*a)v =va =v'a = (0™ a)v'.

Henceforth we assume that Rank a > 1. Let (ota)acr, () )arers, (Wa)aer
and (w},)arers be the operations of A, A’ W and W', respectively. By
Theorem 2.2, a has a unique word form oy(ay,...,ax), and Ranka; <
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Ranka for j =1,...,k. Assume that A € LNT. Then (®*aj)v = (®"*a;)V’
for j =1,...,k by the inductive hypothesis. Hence

(@*a)v = wr((D*ar)v,..., (P ax)v)
= wr((@*a V', ..., (©®* ax)v)
= (O™ a)v'.

Assume that A € LN TX, that is, A = yx for some v € I' and x € X. Then
a = apaj because «y is unary. The mappings (@*aﬂ((x/D)v) € Weyx —
Weq, and (CD’*aﬂ((x/D)v’) eWwW., — W(’T,a] are defined by (2.4). Since
Wox =W/, and Wsq, =W/, o Dy the assumption, it follows that Weyx —
Woq = WL, — W(’T,m. For each w € Wy, (x/w)v is the restriction
of (x/w)v’, hence (®*ai)((x/w)v) = (®*a;)((x/w)v’) by the inductive
hypothesis. Therefore we have (q)*al)((x/D)v) = (@’*m)((x/D)v’). Let
Ba and B} be the operations indexed by A on the metaworlds WVxw and
W/Vx'w' respectively. Then it follows that

(@*a)v = (BA(D@*ar))v
= Iw(A) ((®*a) ((x/O)v))
= Iy (A) (@™ ay) ((x/ON'))
= (BA(@™an))V’
= (O™ a)v'.

2.6 Parallelism

Let (A, T,0,S,C,X,T) be a formal language, (ox)act and (Ta)acr be the op-
erations of A and T respectively. Assume the following variable operation
condition:

e For each v € T and x,y € X satisfying yx,yy € L and ox = oy, the
operations Tyx and T, on T are equal as mappings.

Remark 2.2 This condition is satisfied by various formal languages includ-
ing those of first-order predicate logic and typed lambda calculus® as well
as MPCL.

A relation R on A is said to be sort-consistent if aRa’ =— oca = oa’
for each a,a’ € A. A congruence relation on A is an equivalence relation
R on A satisfying the following for each A € L.

(ay,...,ax) € Dom «y, N (aj,...,a;) € Domay,
a]-Ra)-’ G=1,...,k) oa(ar,...,ax) Roaa(aj, ..., ap).

5These are treated as examples of logical systems in [7, §5].

16



Recall that A is the direct union [ [}y Sn of the descendants Sy, of S.
We define the sort-consistent equivalence relation ||y, on each Sy inductively,
then we define the relation || to be the union of ||, and call it the parallelism
relation. First we define ||y to be the equality relation. For n > 1, we define
|ln to be the transitive closure of the union of the following two relations
P, 1 and Py .

e aPy ja’if and only if a = aa(ay,...,ax), a’ = ar(a], ..., a;), where
A G.L, (ar,...,ak), (a},...,a;) € Domay, aj,af € Sy, and qj ||y, qj
forj=1,...k.

e aPya’if and only if a = & xa1, a’ = &ya), where y € T, x,y € X,
vx,vYy € L, ox = oy, a; € Dom &y, aj € Dom oy, af = ai(x/y),
y £« aj and x is free from y in a;.%

If aPy1a’, then 0aj = oaj for j = 1,...,k because [|; is sort-consistent.
Hence oa = T)(0ay,...,0ax) = TA(oa],...,0a;) = oa’. If aPy sa’, then
oca; = o(aj(x/y)) = oaj, hence oa = tyx(0a;) = Tyy(oaj) = oa’ by the
variable operation condition. Therefore the relation |, is sort-consistent.
The relation Py, 7is an equivalence relation. The relation Py, ;is symmetric
by Theorem 2.13. Therefore the relation ||, is an equivalence relation.

We say that a is parallel to a’ if a || a’.

Theorem 2.4 The parallelism relation || on A is the smallest of the sort-
consistent congruence relations R on A satisfying

oyxa R otyya(x/y) (2.5)

for each a € A, x,y € X and vy € T such that yx,yy € L, ox = oy,
a € Dom &y, y & a and x is free from y in a.

Proof Let P, 1 and P, ; be as in the definition of the parallelism rela-
tion. As shown in the definition, the parallelism relation is a sort-consistent
equivalence relation.

First we prove that the parallelism relation is a congruence relation. Let

Ael, (ar,...,ax) € Domay, and aj || aj’ forj=1,...,k. Then oa; = Ga]-’
forj =1,...,k, hence (af,...,a;) € Domay. Therefore ap(ay,. .., ax) Pn 1
orla),...,a;), where n = Rankaa(as,...,ax). Hence xp(ag,...,ax) ||
onlal,...,ap).

Next we prove that the parallelism relation satisfies (2.5). Let x,y €
X,vyeTl, vyx,2yy € L, ox = oy, a € Domayx, Yy € a and x is free
from y in a. Since oca € DomT,x and o(a(x/y)) = oa, by the variable
operation condition it follows that o(a(x/y)) € Dom Ty, hence a(x/y) €

5Recall that the variable operations are unary. The definition of the substitution shows
that ca; = o(ai(x/y)). Also recall that Rank a1 = Rank a;(x/y) by Lemma 2.9.
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Dom «. Therefore a,xaPn 2yya(x/y), where n = Rank &y xa. Hence
oyx@ || ayyalx/y).

Finally we prove that the parallelism relation is the smallest in the sense
of Theorem 2.4. Let R be a sort-consistent congruence relation satisfying
(2.5). We assume a || a’ and prove aRa’ by induction on Ranka. Re-
call that Ranka = Ranka’ by the definition of the parallelism relation.
First we assume that Ranka = 0. Then a = a’, hence aRa’ because R
is reflexive. Next we assume that Ranka = n > 1. Then there exist el-

ements by,...,bm € A satisfying by = a, b,y = a’, and bj_1 Py 1b; or
bi1Pn2bi for i = 1,...,m. If bi_1Py 1bi, then b1 = oa(eq, ..., ck),
bi = aalcq,...,¢q) for some A € L, cy,...,ck,¢q,...,¢ € A, and ¢ || ¢

for j = 1,...,k. By the inductive hypothesis, Cch)f for j = 1,...,k.
Therefore bi_1 Rb; because R is a congruence relation. If b;_q P >by, then
bi1 = ayxc, by = xyyc(x/y) for some y € I', x,y € X and ¢ € A such that
Yx, Yy € L, ox = oy, y € ¢ and x is free from y in c. Therefore b;_1Rb;
because R satisfies (2.5). Since R is transitive, aRa’ as required.

3 Logical system MPCL

We define MPC languages, and MPC worlds denotable for an MPC lan-
guage. The interpretation on each MPC world is naturally defined. Thus
the logical system MPCL is defined. The formulation of MPCL is due to

[8].
3.1 Quantities and measures

A quantity system is a set P equipped with a total binary associative and
commutative operation (x,y) +— x +y with the identity element 0 and an
order < which satisfy the following two conditions.

e If elements p,p’,q,q’ € P satisfy p < p’ and q < q’, then p + g <
P’ +q’.
e 0 < p for every element p of P, that is to say, 0 = minP.

The quantity system [P is said to be linear if the order < is linear.

Let (P, 4,0, <) be a quantity system and Q C P. Since IP is a +-algebra,
the subalgebra [Q U {0}] generated by Q U {0} is defined. Then [Q U {0}]
equipped with the restriction of < to it is a quantity system.

Lemma 3.1 Let (P,+,0, <) be a linear quantity system and Q be a finite
subset of P. Then [Q] is well-ordered with respect to <.

Proof Consult [8, Theorem 2.1] or [1, Corollary 1.2].
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Let S be a set and (P, 4,0, <) be a quantity system. Then a P-measure
on S is a mapping X — |X| of PS into P which satisfies the following three
conditions for all X,Y € PS.

e X#0) & X >0.
e XCY = IXI<IVI.
o [ XUY|I<IXI+1Y].

Lemma 3.2 Let S be aset, (P, +, 0, <) be a quantity system, R be a relation
between PS and P, and 0 # 6 € P. Assume the following conditions:

e X = if and only if XRO.

e If XCYand YRa, then XRa.

e If XRa and YRD, then (XUY)R(a+ D).

e For each X € PS, min ({a € IP’\XRCL}U{(’)}) exists.

Then the mapping X — min ({a e PIXRa}U {é}) is a P-measure on S.

Proof Consult [8, Theorem 2.2].

3.2 MPC language

Here we define the formal language of MPCL. First we take arbitrary three
sets S,C, X such that S = CII X and X # 0. Next we take an arbitrary set
K equipped with a specific element 1. We call K the set of cases and in
particular call 7t the nominative case. Next we take two arbitrary distinct
symbols § and ¢ not contained in K, and define T = {§, e JUPK. Next we take a
mapping T of S into T such that the inverse image X, = {x € X|1x = ¢}of ¢ in
X is not empty. Next we take an arbitrary quantity system (PP, +,0, <) with
#P > 1, then let P be a subset of PP. Next we take a copy =P ={—p|p € L}
of the set P such that =BNP = (), and define Q = —PIIP, which we call the
set of the quantifiers. Also we take an arbitrary symbol 0 ¢ Q. Next we
let (ng)jez be a family of non-negative integers indexed by a set §. Finally
we define the nine kinds of operations on T as follows.

1. The family of binary operations ok (k € K).

Dom ok = {e} x {P € PK|k € P}, e 0kP =P —{k}.

2. The family of binary operations k ((r,k) € Q x K).

Domztk = {5, ¢} x {P € PK|k € P}, StkP =¢xkP =P —{k}.

19



3. The three binary operations /\|V and =.

DomA =DomV =Dom= = (PK)2, PAQ=PVQ=P=Q=PUQ.

4. The unary operation ¢.

Dom ¢ = PK, PO =P.

5. The unary operation A.

Dom A = {5, ¢}, ON = e ={m}.

6. The two binary operations M and LI.

Dom M = DombU ={5,¢}%, &Mmn=E&Ln=>5 for each (&,1) € {6, e}%.

7. The unary operation [l.

Dom [ = {5, ¢}, sH=¢D=05s.

8. The family of operations f € §.

Dom f = {e}™, fle,...,e) =¢.

9. The family of unary operations Qx (x € X;).

Dom Qx = {0}, 0 Ox = 5.

We let T be the algebra equipped with the above nine kinds of operations.
Thus we have chosen a set S, an algebra T, and a mapping T of S into T.
Therefore by Theorem 2.1, there exists the USA (A, T, 0,S) with ols = T,
which is unique up to sort-consistent isomorphism. The operations of T and
A are both indexed by the set

L:{6k)xk?/\)\/)é)0’A)I_l’l_l)‘:‘)f)QX‘ke K)XEQ)fG g)X€X€}7
and so if we define
r:{6k,?k,/\,\/,$,<>’A,l_l’U,D,f,Q|kEK’xeg,f63}7

then we may consider that L is contained in the subset 'UT'X of the free semi-
group over ' IIS with LNTX = {Qx|x € X¢}. Therefore (A, T, 0,S,C,X,T)
is a formal language, which we call the MPC language. Its variable oper-
ations Qx (x € X;) are called the nominalizers.
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Since (A, T, 0) is a sorted algebra, A is divided into its t-parts A¢ (t € T),
and since T = {5, ¢} U PK, we have

A=AsUA:U ] Ap,
PePK
so we define
G =AsUA;, H= UAP.
PePK

We call G the set of the nominals and call H the set of the predicates.
For each f € H, we denote by K¢ the element P € PK satisfying f € Ap and
call it the range of f.

Since (A, T, 0) is a sorted algebra, the following also holds on the domains
and images of the operations in the operation system L of A.

1. Domok = A¢ X [Uyepepx Ap for each k € K. If a € A; and f € Ap
with k € P € PK, then aokf € Ap_p.

2. Domrk = G x Jyepepi Ap for each (r,k) € Q x K. If a € G and
f € Ap with k € P € PK, then aAkf € Ap_p.

3. DomA = DomV = Dom= = H% If f € Ap and g € Ag with
P,Q € PK, then fAg,fVg,f=g¢€ Apug.

4. Dom ¢ =H. If f € Ap with P € PK, then f° € Ap.

o

DomA =G, ImA C Appy.

DomM =Doml = G2, ImM C As, ImUI C As.
DomO =G, Im C As.

Domf = (A¢)™, Imf C A for each f € §.

© 0o N >

Dom Ox = Ap, ImQx C Aj for each x € X,.

Assumption 3.1 In this paper we assume the following conditions.
1. The quantity system PP is linear.
2. The range Ky of each predicates f € H is a finite set.
3. The set X, has the same cardinality as A.

4. The set B is the set of the unions of a finite number of intervals of P
on the following list:

(P—=)={xeP[p<xj
(p,al ={x e Plp<x<qj where p, q € P.
(¢—dl ={x e P|x < q},
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For each X € PP, we denote by X° the complement P — X. Then P is closed
under the three set-theoretical operations N, U, o on PP.

Remark 3.1 The condition 3 in Assumption 3.1 implies that X is an in-
finite set. The condition 3 can be satisfied, for example, if X; is an infinite
set and #X. = #S = #L.7 Instead of the condition 3, in [9, p. 2], both A,
and X, are assumed to be enumerable.

Remark 3.2 Let oo denote the largest element of P, provided it exists. By
the conditions 1 and 4 in Assumption 3.1, if an element p of P is connected,
then the endpoints of p are uniquely determined as follows.

e If p € {), P}, then p has no endpoint.

e If p=(p—) and p # oo, then p is the endpoint of p.

o If p=(p,q] and p < q # oo, then p and q are the endpoints of p.
e If p = («qg] and q # oo, then q is the endpoint of p.

This is well-defined because one and only one of the above cases holds. Again
by Assumption 3.1, each p € P is uniquely expressed as the union of a finite
numbers of the distinct connected components. In view of this, we say
that p € P is an endpoint of p € B if p is an endpoint of some connected
component of p. For each a € A and p € P, we say that p occurs in a
if there exist elements p € P and k € K such that p is an endpoint of p,
and pk or —pk occurs in a. We denote by P the set of elements of P which
occur in a. For each subset B of A, we define P? = J 5 P%.

We will use the following abbreviation for quantifiers:

—(+pl, P=(p—), for each p € PP,
=

p
V=0, 0, where 0 = min P.

We use one as an abbreviation for (x 0mxA) Qx, where x is an arbitrary
fixed element of X,.

3.3 MPC worlds

Let (A, T,0,S,C,X,T) be an MPC language defined in §3.2. Here we define
the domain 'W of the denotable worlds for A. Define

M:Lmr:{6k)xk)/\)v?$)O)A)H)I—I’D’f‘k6K)FEQ)fES}7

"By [5, Theorem 3.2.1], if k is an infinite cardinal satisfying #S < k and #L < «, then
#(Sn) < k for each descendants S,, of S, hence #A < k. Related results may be found in
[12] or [13].
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and let Ty be the M-reduct of T.
First we take an arbitrary non-empty set S, and define

W=(S-T)usu | (P—=S) —T).
PePK

We call S the base of W.

Next we define the sorting p of W into T = {6, ¢}UPK so that the t-parts
Wi (t € Tm) satisfy Wg =S — T, W, =S, and Wp = (P — S) — T for each
P € PK. In particular Wy = T. We call W5 U W, the set of the entities,
while we call Jpcpx Wp the set of the affairs.

Next we define a family of operations on W indexed by M. The definition
depends on two parameters. The one is an arbitrary P-measure X — |X| on
S. The other is an arbitrary reflexive relation 3 on S, which we call the
basic relation of W. In order to define the operations, we first extend 3 to
the relation between (S — T)US and S by

adb & ab=1

for each a € S — T and each b € S. Next, when s € S and k € P € PK, we
define for each 0 € (P —{k}) — S the element (k/s)0 € P — S by

oL ifleP—{k,
s ifl=k

((k/s)0)L = {

If P = {k}, then (P —{k}) — S = {0}, so we denote (k/s)0 by (k/s). Next
we define —(—p) = p for each p € PB. Thus, if r € P then —xr € =P, while if
r € ~P then —¢ € P. Finally we define the eight kinds of operations on W
as follows.

1. The family of binary operations ok (k € K).

Domok=Sx | ((P—S)—=T).
kePePK

For each s € S and each f € (P — S) — T with k € P € PK, we define
s ok f to be the element of ((P —{k}) — S) — T such that

(s 6k )0 = ((k/s)0)
for each 8 € (P —{k}) — S.
2. The family of binary operations k ((z, k) € Q x K).
Domgk = ((S = T)US) x U (P—S)—=T).

kePePK
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For each s € (S -5 T)US and each f € (P — S) — T with k € P € PK,
we define stk to be the element of ((P —{k}) — S) — T such that

(arkf)0 =1 & {HSES}GHS) f((k/s) ):O}‘ € ifre—P,
(

s
{s €S|ads, f((k/s)0) =1} exr ifreP

for each 8 € (P —{k}) — S. Notice that f((k/s)e) = (sokf)0.

0
0

. The three binary operations /\,V and =.

2
DomA = DomV = Dom = = ( UJ (P—s) HT)) .
PePK

Foreachf e (P —S) - Tandeachg € (Q — S) — T with P,Q € PK,
we define f A\ g,fV g,f= g to be the elements of ((P uQ) — S) — T
such that

(f A g)8 =1(8lp) A (6lq),

(fVg)e =1(8lp) V (6lq),

(f=9)0 =f(6lp) = (6lq)
for each 8 € (PUQ) — S, where A,V and = on the right-hand sides
of the equations are the meet, join, and implication on the Boolean

lattice T defined by a Ab =inf{a,b}, aVb =sup{a,b} and a=b =
sup{l —a,b} for all a,b e T.

. The unary operation ¢.

Dom¢ = | J ((P—S$)—T).
PePK

For each f € (P — S) — T with P € PK, we define f° to be the element
of (P — S) — T such that

()0 = (f6)°

for each 8 € P — S, where ¢ on the right-hand side of the equation is
the complement on the Boolean lattice T defined by a® = 1— a for all
acT.

. The unary operation A.
DomA = (S —> T)uUS.

For each a € (S — T)US, we define a/ to be the element of ({7t} —
S) — T such that
(aN)0 =1 & a3d0m

for each 0 € {mt} — S.
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6. The two binary operations 1, L.
Dom M = DomU = ((S - T)uU S)z.

For each (a,b) € ((S - T)uU S)z, we define aMb and a b to be the
elements of S — T such that

aflbds &= ads and bds,
allbds <= adsor bds

for each s € S.
7. The family of operations f € J.
Dom § = S™.

For each (s1,...,sn) € S™, we define f(s1,...,sn,) to be an arbitrary
element of S.

8. The unary operation [].
DomO = (S —> T)US.

For each a € (S — T) US, we define a™ to be the element of S — T
such that
aPIs = a As

for each s € S.

We let W be the algebra equipped with the above eight kinds of oper-
ations. Then (W, Ty, p) becomes a sorted algebra and satisfies Wy # () for
all t € Tpm. Therefore W is a denotable world for A.

We call the sorted algebras constructed as above the MPC worlds
cognizable by the MPC language (A, T, 0,S,C,X,T") and denote by W the
collection of all such worlds.

3.4 Interpretations of the nominalizers

Let (A, T,0,S,C, X, T") be an MPC language defined in §3.2, and let W be the
collection of the denotable worlds for A defined in §3.3. Following §2.3, here
we define the interpretation Iy of the set L NT'X of the variable operations
on each W € W, and thereby complete the definition of MPCL.

Let A € LNI'X. Since LNI'X consists of the nominalizers, A = Qx for some
x € X¢, and so the domain T, of A on T is equal to {#} and A) = 5. Moreover
Ws =S — T =Wy = Wy. Thus, Iyw(A) = Aw is a mapping of Wsx — W)
into itself, and so we define Ay to be the identity mapping of Wsx — Wj.
Then the domain of the operation fx on WYsW corresponding to the index
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A is equal to Vx w = Wy = Vx w — T, and for each ¢ € Vx w — T we
have [5;\(p S VX’WH W5 = VX,W_> (S — T) with (|37\(p)v = (p((X/D)V) for
each v € Vx w, hence ((qu))v)s = (p((x/s)v) for each s € S.

Since A = Ox (x € X;) and we will denote fr@ by @ Qx, we conclude
that the domain of the nominalizer Qx on WVxW ig equal to Vx w — T, the
image @ Qx of @ € Vx,w — T belongs to Vx w — (S — T), so (¢ Qx)v €
S — T for each v € Vx w, and the following holds for each s € S:

(((pQ.x)v)s = (p((x/s)v). (3.1)

This completes the definition of the logical system MPCL.

3.5 Predicate logical spaces

Let (A, T,0,S,C,X,T) be an MPC language and (A, W, (Iw)wew) be the
logical system MPCL on it. The @-part of each W € W is equal to (§ —
W,.) — T, and is identified with T because () — W, is a singleton. Therefore
(A, W, (Iw)wew) together with the truth () yields the @-sentential functional
logical space (Ag,F) associated with the logical system, as we have seen in
82.3. Notice that ¢ € F if and only if ¢ is a mapping a — (®*a)v for some
MPC world W € W, C-denotation ® into W, and X-denotation v into W.

In this subsection we define another functional logical space. Recall that
H = Upcpk Ap is the set of the predicates of A. Let W € W, @ be a C-
denotation into W, and v be a X-denotation into W. Then, for each f € H,
(@*f)v € W, = (Kf = W) — T. Hence (((D*f)v)(ele) € T for each
0 € K = W,.. We define G to be the set of mappings f — ((CD*f)v)(6|Kf)
obtained from all possible quadruples (W, ®,v,0) of W € W, C-denotations
@ into W, X-denotations v into W, and 6 € K — W,. Thus (H,§) is a T-
valued functional logical space, which we call the predicate logical space
associated with (A, W, (Iw)wew). The G-validity relation <g on H* is
defined by & <g p = infrea ((D*FIV)(Ol,) < supgep ((©*g)v)(Olx,)
for every W € W, C-denotation @ into W, X-denotation f into W, and
e K- W..

If h € Ay, then Olx, € 0 — W,, and since ) — W, is a singleton we
identify ((@*h)v)(@lKh) € T with (®*h)v. Thus (H,§) is an extension of
(Ag,J) in the sense that Ay € H and F = {o@|a, [ @ € G}

Remark 3.3 By Remark 2.1, a pair (X,Y) € PH x PH has a G-model if
and only if there exists a quadruple (W, ®,v,0) of an MPC world W € 'W
denotable for A, a C-denotation @ into W, an X-denotation v into W and
an element 0 € K — W, satisfying ((CD*f)v)(G\Kf) =1 for each f € X and
((CD*g)v)(G\Kg) = 0 for each g € Y. Similarly, a pair (X,Y) € P(Ap) x P(Ay)
has an F-model if and only if there exists a triple (W, ®,v) which satisfies
(O*f)v = 1 for each f € X and (®*g)v = 0 for each g € Y. Moreover,
(X,Y) € P(Apy) x P(Ay) has a §-model if and only if it has an F-model.
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3.6 Structure of MPC worlds

Let (A,T,0,S,C,X,T) be an MPC language and (A, W, (Iw)wew) be the
logical system MPCL on it.

Lemma 3.3 Let W e W, a e W, b € WsUW, and 3 be the basic relation
of W. Then the following holds.

aombA =1 & bIa.

Proof We have aotbA = (bA)(7t/a) by the definition of the operation
om. It follows that (bA)(m/a) = 1 <= bJa by the definition of the
operation A. [

Lemma 3.4 Let (H,G) be the predicate logical space associated with (A
W, (Iw)wew). Then #G > 1.

Proof Let x,y be distinct elements of X,. We construct an MPC world
W € W as follows. Define the base S of W by S = {s1,s2}. We can define
the basic relation 3 so that s; As,. Define a P-measure arbitrarily. Define
the operations f € § arbitrarily. Next we define a C-denotation @ into W
arbitrarily. Finally we define X-denotations v, v’ so that vx = vy = v/x = s
and v'y = s hold. By Lemma 3.3, s107s1/A = 1 if and only if s;13s7. On
the other hand, sy 0ts;/A = 1if and only if sy 3s,. Since the basic relation 3
is reflexive, @*(y omtxA)v = s10ms1A = 1. Since s7 ZAsy, D*(yonxA)' =
s, 07ts1/\ = 0. Therefore, two quadruples (W, ®,v,0) and (W, ®,v’,0) for
an arbitrary 8 € K — S induce two distinct elements of G. |

Theorem 3.1 Let W € W, ® be a C-denotation into W and v be an X-
denotation into W. Then (®*one)v is equal to the largest element 1 of W,
while (CD*(oneD))v is equal to the least element 0 of W.

Proof Consult [8, Theorem 3.19].

Lemma 3.5 Let a € G, p e P, W € W, ® be a C-denotation into W and
v be an X-denotation into W. Then

(0*(apmoneA))v=1< |{s € S|(P*a)vIs}| > p,

where S, 3 and | - | are the base, the basic relation and the P-measure of W,
respectively.

Proof We have (®*(aproneA))v = (0®*a)vpr(d*one)vA, and

(O*a)vpr (D*one)vA =1

= |{s € S| (@*a)vIs, ((D*one)vA)(n/s) =1} >p
& [{s e S|(®P*a)vIs, (D*one)vIs}| >p

& s € S[(P*a)vIs}| >p,
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because (®*one)vds by Theorem 3.1. |

Lemma 3.6 Let f,g € HL W € W, ® be a C-denotation into W and v be
an X-denotation into W. Then the following holds.

(O*(fAg))v=(D*F)v A (D*g)v,

(@*(fV g))v = (D*F)vV (D*g)v,

(@*(f=g))v = (0 flv=(D*g)v,
(@ ) = ((0*F)v)°.

Proof The conclusion follows from the fact that the mapping f — (©*f)v
is a holomorphism with respect to A,V,= and . |

Lemma 3.7 A, = [S¢lg, where [S¢]z is the closure of S; in the §-reduct Az
of A.

Proof Consult [8, §2.2].

Lemma 3.8 Let W € W, @ be a C-denotation into W and v be an X-
denotation into W. Assume that the base of W is equal to A¢, each operation
fe§ on Wis equal to f on A, and that @ and v are the identity mappings
when restricted to C. and X¢, respectively. Then (®*a)v = a for all a € A..

Proof Recall that A = [S¢lz by Lemma 3.7. In order to prove (®*a)v = a,
we use induction on Rank a. First we assume that Ranka = 0, that is,
a €S.. If aeCg then (d*a)v = ®a = a by the assumption for @.
If a € X;, then (®*a)v = va = a by the assumption for v. Next we
assume that Rank a > 1. By the uniqueness of the word form of a, we have
a =f(aj,...,ax), where f € §, (aj,...,ax) € Dom§f and Rank a; < Ranka
for j =1,...,k. Then (®*a;j)v = a; by the inductive hypothesis. Hence,

(@7 a)v =f§((@%ar)v,..., (P ax)v)
=flar,..., k)za.

Lemma 3.9 Let kq,...,kn be distinct elements of K, f € Ky, iy and
0 € {k1,...,kn} = W,. Then the following holds:
fo = (0k0ki)i—1

.....

Proof Consult [8, Corollary 3.5.2].
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3.7 Occurrences in MPC languages

Let (A, T,0,S,C,X,T") be an MPC language satisfying Assumption 3.1 and
(A, W, (Iw)wew) be the logical system MPCL on it.

Lemma 3.10 For each p € L, the following holds.

i 0 ifperl
T x if = 0x.

Proof Recall that L is a subset of the free semigroup over 'lIIS. If u € T,
then only p occurs in u but u ¢ S. If u = Qx, then the only element of S
which occurs in p is x. |

Lemma 3.11 If a,b € A, and x € X, then x is free from b in a.

Proof From Lemma 3.7 it follows that L* C §. By Lemma 3.10, ST =0

for each f € §. Hence x is free from b in a by Lemma 2.4. |
Lemma 3.12 Let p € LNT, (aj,...,an) € Domu, b € A, x € X and x
is free from b in a; (i=1,...,n). Then x is free from b in p(as,...,an).

Proof We have S* = () by Lemma 3.10. Therefore x is free from b in
u(aiy,...,an) by Theorem 2.10. [ ]

Lemma 3.13 For each a € A, P is a finite set.

Proof By Lemma 2.2, L¢ is a finite set. Since each p € P has at most
finite endpoints, P¢ is a finite set. |

Lemma 3.14 Let a,b € A and QK = {ik|r € Q,k € K}. If L*N QK C
LP N 9K, then P C PP,

Proof Let p € P and suppose p € P% Then there exist elements p € P
and k € K such that p is an endpoint of p, and pk or —pk occurs in a. Since
LN OK C LP N AOK, pk or —pk occurs in b. Hence p € PP. |

Lemma 3.15 Let a,a’ € A. If a is parallel to a’, then P® = P®’,

Proof Define a relation R on A by ¢ Rc¢’ if and only if L°N QK = L¢ N QK
and oc = oc’, where QK = {tk|r € Q,k € K}. Then R is sort-consistent.
We prove that R is a congruence relation satisfying (2.5) in Theorem 2.4.

Suppose(a1,...,ak)EDomuandajRaj’forj:1,...,k. Then (as,...,
ax) € Dom p because oa; = Gaj’ forj=1,...,k. Let ¢c = u(ay,...,ax) and
¢’ =u(aj,...,ar). Then we have by Lemma 2.2 L¢ N QK = ({u} N QK) U
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(U}L] L9 A QK) — ((WNaK)U (U}; 19 N QK) — L' NQK. Since (A, T, o)
is a sorted algebra, oc = oc’.

Next suppose f, g € Ay, x,y € X¢, g = f(x/y), y € f and x is free from
y in f. Then g(y/x) = f by Lemma 2.13, hence Lf = L9 by Lemma 2.8.
Let ¢ = fQx and ¢’ = g Qy. Since the nominalizers do not belong to QK,
LN OK =L N QK. By the definition of the nominalizers, oc = oc’.

Therefore, by Theorem 2.4, if a is parallel to a’ then aR a’, in particular
LN QK =LY N OK, hence P* = PY by Lemma 3.14. |

Lemma 3.16 Let a € A, x € X, ¢c € A, and b = a(x/c). Then P? C P2,

Proof By Lemma 2.5, L C L@U LS. For each r € Q and each k € K, by
Lemma 3.7, tk € L€. Hence it follows that if rk occurs in b, it occurs in a.
Therefore PP C P<. [ |

4 MPC.1 relations

Let (A, T,0,S,C,X,T) be an MPC language satisfying Assumption 3.1. In
this section, we introduce the MPC.1 law, and show the properties of the
relations which satisfy the MPC.1 law. The definition of the MPC.1 law is
due to [9].

4.1 Definition

Recall that G = A5 U A is the set of nominals and H = UPG?K Ap the set
of predicates. We denote by H* the set of all sequences f1 - - - f;, of elements
f1,...,fn of H of arbitrary finite length n > 0. We denote elements of H*
by «,,.... When o« = fy---f, we will denote the subset {fq,...,fn} of H
also by «.

Let < be a relation on H*. We denote by < the intersection of the
restriction of < to H x H and its dual. That is to say, f < g if and only
if f < gand f = g for each f,g € H. We call < an MPC.1 relation if it
satisfies the following MPC.1 law. The collection of the former nine laws
is called the Boolean law:

<, (repetition law)

zz E z ;zz E: } (weakening law)
gzi E z :z: E: } (contraction law)
zigg Zz : zgig iz: } (exchange law)
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x < fy,

fAgxf, fAgxyg, fgxfAg,
fVgi=f, fVgig, fg=fVyg,
fO<xf=9, gxf=9, f=9<f%,
O <, 0.
The remaining twenty six laws are proper to MPCL.
<f = < aokf,

where a € A and k € Ky.

<x0kf =

I\

f,
where x € X,k € Ky, and x &« f.
<f = <oneVrn(fQx)A,

where f € Ay and x € X.
< aomad,

where a € A,.
aAk(bolf) <xbol(aAkf),

(strong cut law)

(conjunction law
(disjunction law

(implication law

)
)
)
(negation law)

(case+ law)
(case— law)

(V+ law)

(= law)

(Q,0 law)

where a € G,be A, fe Hk,le K,k #1, and A € {6}ULQ. Also a € A,

in case A = 0.

fV g) < (a;0ki)izr

.....
v

..........

oUfAg) < (agoki)izt,. mf A (ai0ki)i—ni1,... 10,

omfV(aioki)i=—ns1,...19,

(A law)
(V law)

mf = (a1 0ki)i=nt1,...19, (= law)

where ai,..., a1 € Ag, f,g € H, and kq,...,k are distinct cases such

that kq,...,kn € Kf — Kg,kn+1,...

km € K¢ N Kg, and Ky, ..

Lk €

Kg—Kf (0 <mn <m < 1). Also, (a;0ki)i=1,...1h is an abbreviation for

aq 5](1 (azékz(. .. (aléklh) e ))

where aj,...,an € A, f € H, and k;q,..

a—pkf = apkf,
ap’kf = (apkf)o,
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(O law)

., kn are distinct cases in Kjy.

(— law)
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where a € G,f € H, k € Ky, and p € L.

a(pngkf=<apkfAagkf,
a(puqlkf=apkfVagkf,

where a € G,f € H,k € K¢ and p,q € ‘B.
apkf =< aprn((xokf) Qx)A,
where a € G,f € H,x € X;,p € P,K¢ ={k} and x « f.
aprbA < (aMb)pronel,
where a,b € G, and p € P.
fyoneVr ((f= g) Ox)A < oneVr (g Qx)A,
where f,g € Ap,x € X, and x £ f.
oneVr (((xomal) = (x6kf)) Ox)A < aVkf,
where x € X;,a € G,f € H,K¢f ={k}, and x & a,f.
avVrbA,apkf < bpkf,
where a,b € G,f € H,k € K¢, and p € P.
(aUb)p+gkf < a,pkf,bqgkf,
where a,b € G,f € H,k € K¢, and p,q € P.
oneDﬁkf<,
where f € H,k € K¢, and p € P.
boma/A < admonel,
where a € G and b € A,.

(aMb)A < aAADBA,
(aUb)A < aAVDbA,

(aD)A =< (ar)®,

where a,b € G.
aom (fOx)A =< f(x/a),

where a € Ag,f € Ap,x € X, and x is free from a in f.
oneVm (f Qx)A < f,

where f € Ay and x € X.
This completes the list of the MPC.1 law.
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(N law)
(U law)

(B law)

(A law)

(V,= law)

(V law)

(V, P law)

(L, + law)

(oneH law)

(3 law)

(M law)
(U law)
(O law)

(Q law)

(V— law)



Remark 4.1 Notice that the MPC.1 law is regarded as a deduction system
on H* x H*.

Theorem 4.1 The §-validity relation <g of the predicate logical space
(H,§G) is an MPC.1 relation.

Proof Consult [9, Theorem 2.

4.2 Properties of MPC.1 relations

In this subsection, let < be an MPC.1 relation.

Lemma 4.1 The following holds:
e afgf gy = «,fAgB=<Y.
o afgf =y &= o, fVg,B =Y.

L asB = Paxp,
a =B &= i p.

faxgp & axf=g0B.

faAN-AfL (L (AT ) A,
f1\/---\/fnx (...(f]\/fz)...)\/fn,
applying the operations /A and V on the left-hand side of =.

f1<91»} {ﬁ/\fz#gﬂ\gz,
fa<92 fivfa< g1V

} irrespective of the order of

e u<P = a<fAFOB e VIO x<p.
Proof Consult [9, Lemma 2.1].

Lemma 4.2 Let ay,...,an € Ag, f1,...,fim € H,and k1, ...,k be distinct
cases in K¢, N --- N Ky, . Then the following holds irrespective of the order
of applying the operations /\ and V:

(aoki)i—1, . n(f1 A~ Afp) < (adki)iz1,.. . nf1 A~ Alaoki)iz1,. . nfm,

©y

(generalized A law)
(aoki)i—1, .. n(f1V--- Vi) < (adky)iz1, . nf1V---V(aoki)iz1,  nfm.
(generalized V law)

Proof Consult [9, Lemma 2.2].

Lemma 4.3 Let a € G, f € H, k € K¢ and p1,...,pn € PB. Then the
following holds irrespective of the order of applying the operations A, V:

apinN---Np)kf =<apikfA---Aapnkf, (generalized N law)
a(prU---Uppkf=<xapikfV---Vapnkf, (generalized U law)
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Proof Consult [9, Lemma 2.3].

Lemma 4.4 Let f1,...,fm,91,...,9n € H, &, € H*, a € A; and k € K.
Assume that k belongs to the ranges of f1,...,fm, g1,...,3gn but does not
belong to those of the predicates in « U 3. Then the following holds:

fiofma < g1 gnB
— aokfy,...,a0kf,x<aokgy,...,adkgn, .
(generalized case+ law)

Proof Consult [9, Lemma 2.6].

Lemma 4.5 Let f1,...,fm,d91,...,9n € H, &, € H*, x € X, and k € K.
Assume that k belongs to the ranges of f1,...,fm, g1,...,3gn but does not
belong to those of the predicates in « U 3 and x does not occur free in the
predicates in {f1,...,Tm,91,...,9n} U a U B. Then the following holds:

x0kfy,...,x0kfmn, x <x0kgj,...,x0kgn,p
= f1-- fmax<g1 - gnb. (generalized case— law)

Proof Consult [9, Lemma 2.7].

Lemma 4.6 Let x € X¢, a,by,...,bn € G, &, € (Ap)*, f € H, k € Ky,
P,d1,...,qdn € P, and assume that x does not occur free in the elements
of {a,by,...,bp}UaUP and that p > Y I, q; holds, where if n = 0 then
Y 11 di =0 by definition. Then the following holds:

x0ma, x x xOmb1 A, ..., x0tbrA\, B
= apkf,u<byqikf,..., b Gukf,B. (pigeonhole principle)

Remark 4.2 When n =1 and q7 = p, the following holds:
xomaA g xonmb1A = apkf < bypkf. (4.1)
Proof Consult [9, Lemma 2.8].

Lemma 4.7 Let aj,...,an € A, f € H, and kq,..., k, be distinct cases in
K¢. Then the following holds for every p € &4, where G,, is the symmetric
group on the letters 1,..., n:

(ai 0ki)i=1,... nf < (apiOkpi)i=1,... nf. (permutation law)

}

Proof Consult [9, Lemma 2.9)].

Lemma 4.8 Let aj,...,an € Ag, f,g € H and kq,...,ky, be distinct cases
in KeNKg. If f < g, then (a;0ki)i=1,... nf < (a1 0ki)i=1,... ng-
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Proof Apply the generalized case+ law to f < g, n times. |
Lemma 4.9 Let fq,...,fq € H. Then the following holds:

f
f

LA ANEEVAN
f]v"'\/fn.

17...Th <
1.0 =

n

Proof We prove the first equation by induction on n. If n = 1, the con-
clusion is the repetition law itself. Assume n > 2. We have

| RIS SR S IVANPIPIANS S
by the inductive hypothesis, and
fiN-Af g, i A Afy

by the conjunction law. Applying the strong cut law to the above two
equations, we have the conclusion.
A similar argument holds for the second equation. |

Lemma 4.10 Let a € G, by,...,bn € A, f € H, k,k1,...,kn be distinct
cases in K¢, and A € {0} U Q. Also assume a € A; in case A = 0. Then the
following holds:

aAk ((bi 6ki)i1 nlaAkf). (generalized 9,0 law)

..........

Proof We use induction on n. If n = 0, then the conclusion follows from
the repetition law. Suppose n > 1. We have

aAk ((bi6ki)izz, . nf) = (bi0ki)i—2, . n(aAkf)
by the inductive hypothesis, hence

by oky (aAk ((by0ki)i—z,... nf)) =< (bi6ki)iz,...,

by Lemma 4.8. We have
a Mk ((biOki)it

.....

by the 9,0 law. Applying the strong cut law to the above two equations,
we have the conclusion. |

Lemma 4.11 Let f,g € Hand x € X. If f < g, then (f Qx)A < (g Qx)A.
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Proof Notice that x is free from x in both f and g by Lemma 2.7, and also
that f(x/x) = f and g(x/x) = g. We have

x o7t (f Qx)A =< f,
x 07 (g Qx)A\ =< g

by the Q law. Applying the strong cut law to f < g with the above two
equations, we have

x 07t (f Ox)A < x 07 (g Qx)A.
Since x does not occur free in (f Qx)A nor in (g Qx)A, we have
(fOX)A < (gQOx)A
by the generalized case— law. |

Lemma 4.12 Let aq,...,an € Ag, f,f1,...,fm € H, and kq,...,ky be
distinct cases of K¢ N K¢, N---N Ky, . If f <t Ao Afy then

(ai0ki)iz1,...nf < (aiOki)iz1,.. . nf1 A--- Alaioki)iz1,.. nfm,

while if f <f{V .-V f then

...............

.....

by Lemma 4.8. We have
(aioki)iz1,.. n(f1 A -Afpn) < (ai0ki)iz1,.. . nf1 A Alagoki)i—1,. . nfm

by the generalized A law. Applying the strong cut law to the above two
equations, we have the first conclusion.
A similar argument holds for the second equation. |

Lemma 4.13 Let a1,...,an € Ag, f,g € H, and kq,...,k, be distinct
cases of Ky N Kg. Tf f < g% then (a;0ki)imt,. nf =< ((ai8ki)iz1,...n0)°.
Proof Since f =< g°, we have

(ai0ki)iz1,..nf = (ai0ki)iz1,.. ng®

by Lemma 4.8. We have

4 7 O
(a;i6ki)iz1,... mng¥ = ((ai0ki)iz1,.. ng)
by the ¢ law. Applying the strong cut law to the above two equations, we
have the conclusion. |
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Lemma 4.14 Let aj,...,an € Ae, T € H, Xk, K1, ..., ks be distinct cases of
K¢, and py,...,pm € PB. Then the following holds:

.....

= (ai0ki)i=1,. .,

(ai 0ki)i—1 ,...,n(a (prU---Upm)kf)
=< (ai0ki)i=1,...n(aprkf) V-V (a;0ki)iz=1,... nlapmkf).

.....

Proof Let h = a(pyN---Npm)kf, and hy = ap;kf for j = 1,...,m.
We have h < hy A --- A hy, by the generalized N law. It follows that

Kn =Kp, =+ =Ky, = K¢ —{k}, and that kq,...,ky are distinct cases of
Kh. Therefore we have the first conclusion by Lemma 4.12.
A similar argument holds for the second conclusion. |

Lemma 4.15 Let aj,...,an € Ae, f € H, Xk, K1, ..., ks be distinct cases of
K¢, and p € B. Then the following holds:

n(apkf9),
alapk)®.

(a; 0ki)i=1,... nla—pkf) < (a; 6ki)i—1,. .,

(a;0ki)i=1,... nlap®kf) < ((a;6ki)iz1,. .,

Proof We have a—pkf =< apkf® by the — law, hence we have the first
conclusion by Lemma 4.8.

We have ap°kf = (apkf)? by the o law. It follows that Ky, ...,k are
distinct cases of the ranges of both a p°k f and (apkf)?. Therefore we have
the second conclusion by Lemma 4.13. |

Lemma 4.16 Let a € A, b,c € G. Then the following holds:

aomt(bMec)A < aombA Aaomnch,
aonmt(bUc)A xaombAVaomnch,
aomb A =< (admbA)©,

Proof We have (bMc)A < bAAcA by the M law, hence we have the first
conclusion.

The second conclusion is proved similarly.

We have bHA = (bA)® by the ¢ law, hence we have the third conclusion
by Lemma 4.13. [ |

Lemma 4.17 Let a € G, f € H, x € X, k € K¢ and p € P. Also, let
ai,...,an € Ag and kq,...,kn be the set of distinct cases in K¢ — {k}.
Assume x &« (aj0ki)i—1,... nf. Then the following holds:

,,,,,,,,,, nf)Qx) PrroneA.

Proof Consult [9, Lemma 2.10].
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4.3 Alternative lemma

Let (A, T,0,S,C,X,T") be an MPC language satisfying Assumption 3.1, (A,
W, (Iw)wew) be the logical system MPCL on it, and < be an MPC.1 re-
lation contained in the validity relation <g of the predicate logical space

(H,9).

Lemma 4.18 Let a,b € G, f,g € H, A € {0}UQ and k € KfNKg4. Assume
also a,b € A in case A = 0. If a/A < bA and f < g, then aAkf < bAkg.

Proof (i) First we consider the case where A = 0. In this case a and b
must belong to A.. If a = b, then we have the conclusion aokf =< bokg
by Lemma 4.8. So it suffices to prove that a =b. Assume a # b to deduce
a contradiction. Since aA < bA, we have aomal < aonbA by Lemma
4.8. We construct an MPC world W denotable for A as follows. Define the
base S of W by S = A., let 3 be the equality relation on S, and define a
P-measure arbitrarily. Next we define a C-denotation @ into W such that
O®c = ¢ for each ¢ € C,, and an X-denotation v into W such that vx = x
for each x € X;. Then (®*a)v = a and (®*b)v = b by Lemma 3.8. Since
ada and b Aa, we have (d)*(ac“maﬁ))v =1 and ((D*(a(“mbA))v =0 by
Lemma 3.3. This contradicts that < is contained in <g.

(ii) Next we consider the case where A = p with p € P. Take x € X,
which does not occur free in f nor in g. This can be done because X, is an
infinite set. By the P law and the A law, we have

apkf = (am(x6kf) Qx) prronel, (4.2)
bpkg < (b (xokg) Qx) prroneA. (4.3)

Since f < g, we have x 0k f < x 0k g by Lemma 4.8, hence
((xékf) QX)A = ((xékg) QX)A
by Lemma 4.11. This together with a/A < bA implies
aA A ((xokf) Ox)A < bAA ((xokg) Qx)A
by Lemma 4.1. We have

(al_l (x ok f) QX)A = aA A ((xékf) QX)A,
(b r (xékg)Qx)A = bAA ((xékg)Qx)A

by the M law. Applying the strong cut law to the above three equations, we
have
(am(x6kf) Qx)A =< (b (xokg) Qx)A.

Take y € X, which does not occur free in (a M (xokf) QX)A nor in (b r
(xékg)QX)A. Then

yor (am (x6kf) Qx)A < yom (b (xokg) Qx)A
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by Lemma 4.8, hence we have
(am(x6kf) Qx) prroneA = (b1 (x6kg) Qx) proneA

by the pigeonhole principle or (4.1). Applying the strong cut law to (4.2),
(4.3) and the above equation, we have

apkf < bpkg,

which is the conclusion.
(iii) The case where A = («p] with p € P. We have apkf < bpkg by
the case (ii), hence
(apkf)? = (bpkg)®

by Lemma 4.1. We have
a(—plkf= (apkf),
b(—plkg = (bpkg)?,
by the o law. Applying the strong cut law to the above three equations, we

have
a(«—plkf=xb(-plkg,

which is the conclusion.
(iv) The case where A = (p, q] with p,q € P. We have

apkf=<bpkg
by the case (ii), and
a(—qlkf=<b(«—qlkg
by the case (iii), hence we have
apkfAa(—qglkf=xbpkgAa(—qlkg

by Lemma 4.1. We have

a(p,qlkf=<apkfAa(qlkf,

b(p,qlkg <bpkgAa(—qlkg

by the N law. Applying the strong cut law to the above three equations, we
have

a(p,qlkf=Db(p,qlkg,

which is the conclusion.

(v) The case where A =p € P. Let pq,...,pm be the connected compo-
nents of p. Then, for each i € {1,..., m}, p; is of the form P, (« pl, or (p, ql,
where p,q € P. So we have

apikf=<bpikg
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by the cases (ii)-(iv), hence
apikfV---Vappkf<xbpikgV---Vbpnkg
by Lemma 4.1. We have

apkf =<apikfV.--Vapnkf,
bpkg=xbpikgV---Vbpnkg

by the generalized U law. Applying the strong cut law to the above three
equations, we have

apkf <bpkyg,

which is the conclusion.
(vi) Finally we consider the case where A = —p with p € PB. We have
fO =< g% by Lemma 4.1, hence

clpkf<> = bpkg<>
by the case (v). We have

a—pkf = apkf,

b—pkg = bpkg?®

by the — law. Applying the strong cut law to the above three equations, we
have
a—pkf =<b-pkg,

which is the conclusion. |

Lemma 4.19 If a € A, b € A, and x € X, then there exists an element
a € A parallel to a satisfying the following conditions:

e x is free from b in 4.

e Ifae A, then a=a.

e If a € H, then a < a.

e If a € G, then a/A =< GA.

We call such @ an (x, b)-alternative of a.

Remark 4.3 By the definition of the parallelism relation, a || @ implies
oa = od. In particular, if a € H then @ € H, while if a € G then @ € G.
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Proof We use induction on Rank a. First we assume that Ranka = 0,
that is, a € S. Let @ = a. Then a || @. x is free from b in @ by Lemma 3.11.
By the repetition law, if a € H then a =< @, while if a € G then a/A =< GA.

Henceforth we assume that Rank a > 1. Then, by Theorem 2.2, a has a
unique word form a = u(as,...,an), and Ranka; < Rankafori=1,... n.
For each a; there exists an element @; € A parallel to a; satisfying the
conditions of Lemma 4.19 by the inductive hypothesis.

(i) The case where n € LNT. Let @ = pu(dy,...,dn). Then @ is
parallel to a by Remark 2.4, and x is free from b in @ by Lemma 3.12.

If a € Ag, then p=f € § by Lemma 3.7, so that a = f(ay,...,an) and
a =f(dy,...,dn), hence aj,...,an € A.. We have a; = @; by the inductive
hypothesis, hence f(ay,...,an) =f(dy,..., dn).

Next we will prove that if a € H then a < a@. Here p must be one of
Ak (A e{olu,keK),AV, = 0 and A.

Assume p = Ak where A € {6}U£ and k € K. Then we have a = aj Ak ay
and @ = @y Ak d@», hence a; € G, az € H. We have a1A < 1A and a) < @&
by the inductive hypothesis. Hence aj Ak az < @y Ak & by Lemma 4.18.

Assume p = /\. Then a = a; A az and @ = @y A\ d», hence a;,a; € H.
We have a7 < dy and az < d3 by the inductive hypothesis. Hence ajAa; =<
d1 A\ & by Lemma 4.1. Similar arguments hold when =V or =.

Assume pu = . Then we have a = a? and @ = d7°, hence a; € H. We
have a; =< @y by the inductive hypothesis. Hence a? = @ by Lemma 4.1.

Assume p = A. Then we have a = a1/A and @ = @12, hence a; € G.
By the inductive hypothesis, it is clear that a1A < @1 A.

In what follows we will prove that if a € G then aA =< @/A. Here p must
be one of M, U, and § (f € §).

Assume p = M. Then we have a = aiMay and @ = @3Md», hence a1, ar €
G. We have a1A < 1A and a/A = @A by the inductive hypothesis.
Hence

(11&/\ Cle = (i\]A/\ (i\zﬁ

by Lemma 4.1. We have

(a1 Max))A < aiAN ax,
(@1 MNMa@)A < OIA N GA

by the M law. Applying the strong cut law to the above three equations, we
have (a1 Maz)A = (@1 M dy)A. A similar argument holds when p = L.

Next assume w = [J. Then a = a1D and @ = d\1D, hence a1 € G. We
have a1 A =< dyA by the inductive hypothesis. Hence

(@18)° = (@14)°
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by Lemma 4.1. We have

(aP)A =< (a10)°,
(@&P)A = (@10)°

by the [ law. Applying the strong cut law to the above three equations, we
have (af)A = (¢19)A.

Next assume w =f € §. Then a = f(ay,...,an) and @ = f(dy,..., dn),
hence aj,...,an € A¢. For each 1 € {1,...,n}, we have a; = @; by the
inductive hypothesis. It is clear that f(aj,...,an) = f(dy,..., dn), hence
flar,...,an) A\ < f(dy,...,dn)A by the repetition law.

(ii) The case where p € LNTX. In this case we have a = a7 Qy for
some Yy € X, hence a; € H. By Lemmas 2.1 and 2.2, we can take z € X,
such that z # x,z € b,z & @y, and z ¢ SY for each v € LY. Then, by
Lemma 2.4, y is free from z in dy. Let @ = dy(y/z) Qz, where (y/z) is
the substitution of z for y. From the inductive hypothesis it follows that
ajp || @y, hence a1 Qu || 1 Qy by Remark 2.4. Since z « @y and y is free
from z in dy, we have dy Qyu || d1(y/z) Qz by Remark 2.4. Therefore a || @.
By the inductive hypothesis, x is free from b in dy. Since z # x, it follows
that x <« z, hence x is free from b in d3(y/z) by Lemma 2.11. Since z < b,
we have (SQ"‘)}'}ee = (), hence x is free from b in dY(y/z) Qz by Theorem 2.10.
Finally we will prove that a/A < a@A. We have a; =< @y by the inductive
hypothesis, hence

(a1 Qy)A =< (d1 Qy)A (4.4)
by Lemma 4.11. Since y is free from z in @y, we have

zom (dy Qy)A =< dy(y/z),
zom (dy(y/z) Qz) A =< dy(y/z)

by the Q law. Applying the strong cut law to these two equations, we have
zom (dy Qy)A =< zom (dy(y/z) Qz) A.
Since z does not occur free in (d7 Qy)A nor in (d} (y/z) QZ)A, we have
(d1 Qu)A =< (di(y/z) Qz)A (4.5)

by the generalized case— law. Applying the strong cut law to (4.4) and
(4.5), we have (a1 Qu)A = (dy(y/z) Qz) A, that is, aA < @A, [ |

Lemma 4.20 Let f € Ay, x € X, a € A¢, and g be an (x, a)-alternative of
f. Then aom (f Qx)A =< g(x/a).
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Proof By Lemma 4.19, f < g. Hence we have (f Qx)A = (gQx)A by
Lemma 4.11, and
aom (fOx)A < aom(gQx)A

by Lemma 4.8. Since x is free from a in g by Lemma 4.19, we have
aom (g Qx)A = g(x/a)

by the Q law. Applying the strong cut law to the above two equations, we
have the conclusion. |

5 The existence theorem

Let (A, T,0,S,C,X,T) be an MPC language satisfying Assumption 3.1, (A,
W, (Iw)wew) be the logical system MPCL on it, and < be an MPC.1 re-
lation contained in the validity relation <g of the predicate logical space

(H,9).

Theorem 5.1 Let X, Y C Ay, and (X,Y) be a cut of H by <. Assume
that [PXYY U {0}] is well-ordered and that PX“Y has an upper bound in P.
Furthermore, assume that there exist kK many elements of X, which do not

occur free in the predicates in X UY, where k = #A. Then there exists an
F-model of (X,Y).

Remark 5.1 The assumption on X, in Theorem 5.1 is satisfied, for exam-
ple, if the cut (X,Y) is finite.

Before proving Theorem 5.1, we derive the following corollary.

Corollary 5.1 Assume the quantity system P of A is well-ordered and has
the largest element co. Let (X,Y) be a cut of H by <. Furthermore, assume
that there exist k many elements of X. which do not occur free in the
predicates in X UY, where k = #A. Then there exists a G-model of (X,Y).

Proof Let K’ = [Jpc Kn, and let < be a total order on K’. We can take
distinct elements x € X, (k € K’) which do not occur free in the predicates
in XU Y. This can be done because #K’ < #A.8 For each h € H, we will
define an element h € Ay as follows. The range Ky, is a finite set, so let
k1,...,ky be the set of distinct cases in Ky, satisfying kq > ky > -+ > kq,
and define h = (xx, 6ki)i=1,... 1h. Notice that if Ky = () then h = h. Let
X={f|feX and Y ={g|g € Y}. We will prove that (X,Y) is a cut of H
by <. Assume that there exist elements f1,...,f, € X and g1,...,gn € Y
satisfying f1...fm < g7 ... gn, to deduce a contradiction. The set Um, Kgu

8If f,f' € H, k € K¢, kK’ € K¢/, x,x" € X¢ and k # k', then x6kf and x’ 6k’ f’ are
distinct elements of H. Therefore # (U, Ke) < #A.
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U?:1 Kg; is a finite set, S0 let 1}] be its cardinality. Applying the generalized
case— law N times to f1...fm < d7...dgn, we have f1...fn < g1...9n.
This contradicts that (X,Y) is a cut.

Since P is well-ordered and has the largest element, it is obvious that
[PXY U {0}] is well-ordered and PXYY has an upper bound in P. We may
assume that there exist k many elements of X, which do not occur free in the
predicates in XUY, where k = #A. Therefore, by Theorem 5.1, there exists
an MPC world W € W with a C-denotation @ into W and an X-denotation
v into W satisfying (®*f)v = 1 for each f € X and (®*g)v = 0 for each
g € Y. Define 8 € K — W, so that 0k = (®*xy)v holds for each k € K.
For each h € H, we have h = (xk; 0ki)i=1,...,th € Ay, and by Lemma 3.9 we
have

((D*h)v)(6lk, ) = (6kiOKi)iz1,... (@)
S R
= (O*((xk, 0ki)i=1,...1h))v
= (O®*h)v.

Therefore, if f € X then ((CD*f)V)(e|Kf) = (®*f)v = 1, while if g € Y then
((d*g)v)(8lk,) = (D*g)v = 0. -

The rest of this section is devoted to the proof of Theorem 5.1.

We start the proof by constructing a set Z C Ay as follows. We can
well-order all the sequences (a,bq,...,bw;P,d1,...,dm) such that m > 0,
a,by,...,bm € G, p,q1,..., qm € PXYYU{0}, PeUY™, PP C PXYYU{0} and
p > > %, gi. Let k = #A. Notice that there exist k many such sequences
because #G = #A and #P < #A.? We denote the j-th sequence by D;.
We will define an element h; € Ay for each ordinal j < k inductively as
follows. Suppose hy is defined for each 1 < j. We can take x; € X which
does not occur free in the elements in XU Y U{hy|l < jlU{a,by,...,bm},
where Dj = (a,b1,...,bm;P, q1,...,dm). Then we define h; = f = g, where

f=aprnoneA A (bygimone A)? A+ A (b Gmmone A)°,
g=x0mal A (x;6mb1 A)° A A (x56mbm A)C.
We define Z = {h;|j < k.

Remark 5.2 By the way of the construction of Z, the following condition
holds:

e If a,by,...,bm € G, P,q1,...,dm € PV U {0}, PeU U, Pb C
PXYY U {0} and p > > "1 di, then there exist elements h € Z and

I4X. < #G < #A = #X. by the condition 3 in Assumption 3.1. If p,q € P and
x € X¢, then xprtxA and x quxA are distinct elements of H.
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x € X, satisfying h = f = g, where

f=aprnoneA A (bygimone A A+ A (b Gmmone A)°,
g=x0mal A (x6mb; A A+ A (x 6 A)°.

Remark 5.3 From the way of the construction of Z, it follows that P C
PXUY U {0).

Lemma 5.1 (XUZ,Y) is a cut of H by <.

Proof Assume that (XU Z,Y) is not a cut to deduce a contradiction. Let
n be the smallest integer such that

ahy . < B (5.1)

I

holds for some o« C X, B € Y and some ordinals j;1 < --- < jn. Then n > 1
because (X,Y) is a cut of H by <.

By the way of the construction of h; , there exist a sequence Dj, =
(a,b1,...,bm; P,q1,...,dm) and an element x;j, € X, such that h; =
fjn = Gjn> where

fi, =apmone A A (biqrrone A)° A--- A (b Gmmone A)°,
Gin = X5, 0Ma A A (x5,0mb1 A) A A (x4, 6mbm A)C.

We have

N

fjn’hjn) (52)

by the implication law and Lemma 4.1. We have

N

Gin

o, hy,,.. hy < B, T, (5.4)
by applying the strong cut law to (5.1) and (5.2), and
o hy,, ., 05, <B (5.5)
by applying the strong cut law to (5.1) and (5.3). We have
o, hy X 0mal 5 By, 01 AL X5, 0mTb A

by (5.5) and Lemma 4.1. Since x;, does not occur free in the elements in
aUBU{h;,...,h a,by,...,bmtand p > > T, gi holds, we have

R Jn—1>

o, hj,...,h aprtoneA < B,biqimrone A, ..., b qmmone A

Jn—1>
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by the pigeonhole principle, hence
o, hy, g T B (5.6)
by Lemma 4.1. Applying the strong cut law to (5.4) and (5.6), we have
o, hy, . h B

This contradicts that n is the smallest. |

Lemma 5.2 A partial order < on the set of cuts of H by < is defined by

P; C Py, Q1 C Qp, and

(P1,Q1) < (P2,Q2) = {PP1UQ1 U {0} = PP2YQ {0}

Then the order < is inductive.

Proof Let I be a non-empty set and ((Pi, Qi))iel be totally ordered. Define
P= UiEI Pi, Q = UiEI Qi- Then

p € PPYR U0}

&= p e PPV {0} for some i €1

= p e PPV y{0} for allie L
Assume that « < 3 for some o« C P, # € Q. Then there exists an element
i € I such that « C Py and f € Qy. This contradicts that (P;, Qi) is a cut.

Therefore (P, Q) is a cut, and it is the least upper bound with respect to <.
|

By Lemma 5.2, there exists a <-maximal cut (P, Q) of H by < such that
(XU Z,Y) <(P,Q).

Remark 5.4 By the definition of < and Remark 5.3, XUZ C P, Y C Q
and PPYQ U {0} = PXYY U {0}.

Lemma 5.3 PN Q = (.

Proof Assume that h € PN Q. Since h < h by the repetition law, this
contradicts that (P, Q) is a cut of H by <. [ |

Lemma 5.4 Let f € H, « € H* and assume that Pf C PPYQU{0}. If x C P
and o < f then f € P, while if « C Q and f < « then f € Q.

Proof Assume that « C P, « < f and that f ¢ P to deduce a contradiction.
Since (P, Q) is a maximal cut with respect to < and PPUfIVQ {0} = PPUQU
{0}, it follows that (P U {f}, Q) is not a cut. Hence f3 < v for some 3 C P,
v € Q. Applying the strong cut law to this with & < f, we have a3 < v,
which contradicts that (P, Q) is a cut because o« C P.

A similar argument holds for the latter assertion. |
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Lemma 5.5 Let f,fy,...,f, € H. Then the following holds:
1. IffyA---Afy € P, then fy € P for allie{1,...,n}
2. If fy A~ AfL € Q, then f; € Q for some 1 € {1,...,n}.
3. Iff1V---Vf,eP, then f; € P for someie{l,... nh
4. If fyN\---NfoeQ,then fye Qforallie{l,...,nh
5. If f© € P, then f € Q.
6. If f € Q, then f € P.

Proof 1. Assume that f; ¢ P for some i to deduce a contradiction. Since
(P, Q) is a maximal cut with respect to < and PPUfNQ — PPUQ it follows
that (P U{fi}, Q) is not a cut. Hence fix < 3 for some o« C P,  C Q. We
have f1...fha < B by the weakening law, and f{A---Af, a < by Lemma
4.1. This contradicts that (P, Q) is a cut because f{ A--- Af,, € P.

2. Assume that f; ¢ Q for all 1 to deduce a contradiction. For each 1,
it follows that (P, Q U {f;}) is not a cut. Hence o; < fip; for some «; C P,
Bi € Q. We have f1...fn < f1 A--- Af by Lemma 4.9. By applying the
strong cut law repeatedly, we have o1 ... 00 < f1 A~ AfyB1...Bn, which
contradicts that (P, Q) is a cut because f1 A--- Af, € Q.

3. Assume that f; ¢ P for all 1 to deduce a contradiction. For each 1,
it follows that (P U{fi}, Q) is not a cut. Hence fix; < Pi for some ; C P,
Bi € Q. We have f1V--- VT, < f1...f, by Lemma 4.9. By applying the
strong cut law repeatedly, we have f1V---VfLo1...000 < B1...Bn, which
contradicts that (P, Q) is a cut because f1V---V f, € P.

4. Assume that f; € Q for some i to deduce a contradiction. It follows
that (P, Q U{fi}) is not a cut. Hence & < fi3 for some « C P, B C Q. We
have « < f1...f3 by the weakening law, and « < f1V---Vf, 3 by Lemma
4.1. This contradicts that (P, Q) is a cut because f{ A--- Af, € Q.

5. Assume that f ¢ Q to deduce a contradiction. It follows that (P,Q U
{f}) is not a cut. Hence o < fp for some o« C P, f C Q. By Lemma 4.1 we
have f®x < B, which contradicts that (P, Q) is a cut because ¢ € P.

6. Assume that f € P to deduce a contradiction. It follows that (P U
{f}, Q) is not a cut. Hence fa < B for some o« C P, p € Q. By Lemma 4.1
we have a < OB, which contradicts that (P, Q) is a cut because f® € Q. W

Lemma 5.6 Let a,by,...,by € G and p,qq,...,qm € P. If apmoneA €
P, by qimonel,...,bmdmmoneA € Q and p > > ", gy, then xomaA €
P, xombiA, ..., x0tbA € Q for some x € X,.

Proof Since apmoneA € P, it follows that P¢ C PPUQ C PXUY y {0}
by Remark 5.4. Similarly, P? € PXY U {0} for i = 1,...,m. And also
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P, A1, ..., qm € PXYY U0}, Since p > > "1 i, there exist elements x € X,
and h € Z satisfying h = f = g, where

f=aprnoneA A (bygimone A A+ A (b Gmmone A)°,
g=x0malA A (xmb; A A+ A (x6mbm A)°

by Remark 5.2. Since h € Z C P, it follows that h ¢ Q by Lemma 5.3.
Therefore we have

a<p,h (5.7)

for some x C P, f C Q.
We assume xommal ¢ P to deduce a contradiction. Since (P,Q) is a
maximal cut, we have
o, xomaA < B’

for some &’ C P, B’ C Q. Hence we have
o' xoma < B/, xombiA, ..., xomb A
by the weakening law, and
o', (xSmaA A (x6mbiA)C A (x 3mbmA)°) < B,

that is,

o/,g =B’ (5.8)
by Lemma 4.1. We have

fhxg (5.9)

by the implication law. Applying the strong cut law to (5.7), (5.8) and (5.9),
we have
&, “/)f < B) B/'

Therefore we have
o, o ,aprone A < B,B', b1 qimone A, ..., b gmmone A

by Lemma 4.1. The predicates in the left-hand side are contained in P,
while those in the right-hand side are contained in Q. This contradicts that
(P,Q) is a cut. A similar argument holds when x07tb;A ¢ Q for some
ie{l,...,m}L |

Lemma 5.7 Let a € G. If admoneA € Q, then boraA € Q for all
beA..
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Proof We have boma/A < admone/ by the 3 law. Hence, by Lemma
5.4, we have the conclusion. |

Here we will construct an MPC world W denotable for A. In order to
construct W, it suffices to define the base S, the basic relation 3 on S, the
P-measure |-| on S and the family of operations f € §. Let S = A.. For each
f € §, we define the operation f on W to be the same as on A. We define

the basic relation by
bda & aonbA ¢ Q.

We have =< aoma/\ by the = law. Hence, by Lemmas 5.4 and 5.3,
aoma ¢ Q. Therefore 3 is reflexive.

We define the P-measure as follows. First, for each a € G, we define
S¢ e PS by

S¢={seS|somal ¢ Q}. (5.10)
Next we define a relation R between PS and P by

There exist elements by,...,by, € G and
q1,...,qm € P satisfying

URp & ¢ucym,s,

p=2i;di and

biqimoneA € Q fori=1,...,m.

If m =0, then U, S® =@ and > ™, qi = 0. Therefore RO. If U C V and
VRp, then URp. If URp and VR g, then (UUV)R (p+q). Next we define
an element 6 to be an arbitrary element of P larger than any element of
PXUYU{0}. Such an element exists because PXYY is bounded and oo ¢ PXVY,
For each U € PS, min ({p e PI[URp}U {é}) exists because {p € P|URp} C
[PXYY U {0}] and [PXYY U {0}] is well-ordered. In order to apply Lemma 3.2
to the relation R, we will prove that URO implies U = (). Let UROQ. Then
there exist elements by,...,bmy € G, q1,...,dm € P satisfying the above
conditions. Since Y i, q; = 0, it follows that q; = --- = qm = 0, hence
combiA € Q for all ¢ € A by Lemma 5.7. Therefore U C [J, S% =0 by
(5.10). Thus, by Lemma 3.2, we define the P-measure by

U = min ({p € P|[URpP}U{S}). (5.11)

This completes the construction of W.
Next we define a C-denotation @ into W as follows. For each a € Cg,
we define ®a = a. For each a € Cs, we define ®a € S — T by

(Pa)s=1<&=somal ¢ Q
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for each s € S. For each f € CN H, we define ®f € (K¢ 5 S) — T by
(Of)0 =1 = (0k;i0ki)iz1,..1f € Q

for each 0 € K¢ — S, where K¢ = {kq,...,k} and k;,...,k; are distinct.
The definition of ®f is irrelevant to the ordering of ki,...,k; by virtue of
the repetition law and Lemma 5.5. We define an X-denotation v into W
similarly as follows. For each a € X, we define va = a. For each a € Xg,
we define va € S — T by

(val)s =1 <= somalA ¢ Q
for each s € S. For each f € XN H, we define vf € (Kf = S) = T by
(vf)0 =1 & (Bk{0ki)i—1, . 1f € Q
for each 8 € K¢ — S, where K¢ ={k1,...,k{} and k1, ...,k are distinct.

Remark 5.5 Let f,g € H. If f < g, then (®*f)v = (®*g)v because < is
contained in <g.

Lemma 5.8 Let oo be the largest element of P, if it exists. There exists a
mapping I of LI A into Z>¢ which satisfies the following conditions:

1. Ifpeland (ag,...,an) € Domyu, then I(u(as,...,an)) = In+Ia;+
o+ Tan.

2. If a € {ok, A, flk € K,f € F}IIS, then Ia = 0.

3. Ifae{A\V,=,0,M U0 0Ox|x € X¢}, then Ia =1.
4. If p € P—{oo}, then I(pk) =4 for each k € K.

5 If p € P—{oco}, then I((«p]k) =5 for each k € K.

6. If p is a connected quantifier in P other than those dealt with in (4)
and (5), then I(pk) = 6 for each k € K.

7. If p is a disconnected quantifier in 3, then I(pk) = 7 for each k € K.

8. If ¢ is a quantifier in =3, then I(rk) = 9 for each k € K.
Proof Consult [9].
Lemma 5.9 If a € A,x € X¢, and b € A, then I(a(x/b)) = Ia.

Proof Consult [9].
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Remark 5.6 Let a,b € A. By Remark 2.4, the condition 1 of Lemma 5.8
and Lemma 5.9, it follows that if a is parallel to b, then Ia = Ib.

Lemma 5.10 Suppose W, @ and v are defined as above. For each h € Ay,
if h € P then (®*h)v =1, while if h € Q then (®*h)v = 0.

Proof We use induction on Th defined by Lemma 5.8. By Theorem 2.2,
we can determine 1 > 0, aj,...,a; € Ag, kq,...,kgt € Kand h' € H—
Ukek Im ok satisfying h = (aj 0ki)i—1,...th’. Then, by Lemma 5.8, it follows
that Th = Ih/. Let aj,...,ay ki,...,ki and h' be determined as above
throughout this proof. Also, we write (a;oki)ih’ if there is no ambiguity.
Since h' € H — e Imok, either h' € SN H or h' is one of the word
forms arkf (r € Q), fAg, fVg, f=g, f* and cA. If h' = cA, then
either ¢ € Ss U A, or ¢ is in one of the word forms amb, alUb, a- and
fOx (x € X,).

First we will assume that Th = 0. Then either h’ € SN H or h/ = cA
for some ¢ € Ss U A:. Suppose h/ € SN H. Notice that Ky, = {k1,...,ki}
because h € Ay. We define € Kyyv — S by 0ki =ai fori=1,...,1. Then
we have

(d)*h)\) = ((D*((Cli Cv)ki)ihl))\)
= ((®*ay)v k~) (@*h)v
(aq ) (‘D h' ) (by Lemma 3.8)
=

If h € P, then h ¢ Q by Lemma 5.3, hence (0*h)v = 1. If h € Q, then
(O*h)v = 0. Next suppose h/ = cA for some ¢ € Sy U A,. Then we have
h = ajomcA. We have

(O*h)v = (d)*(cu GTCCA))\)
= (@ ay)vom ((D*c)v)A
= a;om ((@*c)v)A (by Lemma 3.8)

and

a; o7 ((P*c)v)A =1 ((O*c)v) Iy
& arome ¢ Q

by the definition of @ and v. If h € P, then h ¢ Q by Lemma 5.3, hence
(O*h)v=1. If h € Q, then (O*h)v = 0.

Henceforth we will assume that Th > 1. The case where h' = arkf with
r € Q is divided into the cases (i)—(vi) below. The case (i) deals with the
case where ¢ € =, where the case (ii) deals with the case where ¢ € B but
¢ is disconnected. If ¢ € P is connected, then by Assumption 3.1 ¢ is in one
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of the four shapes P, (p,q] with p < q # oo or p = q = 0,!° («p] with
p # o0, and P with p # co. These cases are dealt with by the cases (iii)—(vi)
respectively.

(i) The case where h' = a—pkf with p € . In this case have h =
(aj 0ki)i (a—pkf). Let h = (a;0ki)i (apkf®). By Lemma 4.15 it follows
that h < h. By Remark 5.5, (0*h)v = (®*h)v. By Lemma 5.4, if h € P
then h € P, while if h € Q then h € Q. We have

Th = I(a—pkf) = la+ I(—pk) + If = Ia + 9 + If
>la+7+If+1=Ia+7+1(f%)
> Ta+ I(pk) + I(fO) = I(apk ) = Ih,

hence if h € P then (®*h)v = 1 while if h € Q then (O*h)v = 0 by the
inductive hypothesis. Therefore the conclusion follows.

(ii) The case where h/ = apk f with disconnected p € . In this case we
have h = (aj6ki)i (apkf). Let py,...,pm be the connected components of
p, and hj = (a;0ki); (apjkf) for j =1,..., m. Then Ph C PM By Lemma
4.14 it follows that h < hyV ---V h;y. By Remark 5.5 and Lemma 3.6,
(@*h)v = (@*(hy V-V hy))v = (O*hy)v V- -+ V (@*hpy)v. By Lemmas
5.4 and 5.5, if h € P then h; € P for some j € {1,...,m}, while if h € Q
then hy € Q for all j € {1,...,m}. For each j € {1,..., m}, we have

Th = I(apkf) = Ia + I(pk) + If = Ia + 7 + If
> la+ 6+ If > Ia+ I(pjk) + If = I(apjkf) = Ih;,

hence if h; € P then (®*hj)v = 1 while if h; € Q then (®*h;)v = 0 by the
inductive hypothesis. Therefore the conclusion follows.

(iii) The case where h' = aPkf. Here we have h = (a;0ky); (aPkf).
Let h] = ((116](1)1((161('”, hz = (Cli 6ki)i(a ((— O]kf) Then Ph" - PhU {0}
for j = 1,2. By Lemma 4.14 it follows that h < h;Vh;. By Remark 5.5 and
Lemma 3.6, (O*h)v = ((D*(h1 Vv hz))v = (®*hy)v V (®*h;y)v. By Lemmas
5.4 and 5.5, if h € P then hy € P or hy € P, while if h € Q then hy € Q and
hy € Q. We have

Th = I(aPkf) = Ia + I(Pk) + If = Ia + 6 + If

la+44If > Ia+I(0k) + If = I(a0kf) = Ihy
Ia+5+If > Ia+ I((«+ 0k) + If = I(a (« 0]k f) = Ihy,

hence if hj € P then (®*h;)v = 1 while if h; € Q then (O*h;)v = 0 by the
inductive hypothesis (j = 1,2). Therefore the conclusion follows.

(iv) The case where h/ = a(p,qlkf with p,q € P such that either
pP<q#ooorp=q=0. Here we have h = (a;0k{)i (a (p,qlkf). Let hy; =

1071 this argument @) € 9 is treated as (0,0].
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(aj 0ki)i (apkf), ho = (a;0ki); (a (< qlkf). By Lemma 4.14 it follows that
h =< hy Ahy. By Remark 5.5 and Lemma 3.6, (®O*h)v = (<D*(h1 AN hz))v =
(®*hq)v A (@*hy)v. By Lemmas 5.4 and 5.5, if h € P then hy; € P and
h, € P, while if h € Q then h; € Q or hy, € Q. We have

Th=1I(a(p,qlkf) =Ia+I((p,qlk) + If =Ia+ 6+ If

la+4 + If > Ia+ I(pk) + If = I(apkf) = Ihy
la+54+1If > Ia+ I((«qlk) + If =I(a(+ qlkf) = Thy,

hence if hj € P then (®*h;)v = 1 while if hj € Q then (®*h;)v = 0 by the
inductive hypothesis (j = 1,2). Therefore the conclusion follows.

(v) The case where h' = a («plkf with p € P — {co}. In this case we
have h = (a; 6ki); (a (¢« plkf). Let h = (a; 6kq)i (aPkf). By Lemma 4.15 it
follows that h =< h. By Remark 5.5 and Lemma 3.6, (O*h)v = (CD*HO)V =
(((D*]:L)V)O. By Lemmas 5.4 and 5.5, if h € P then h € Q, while if h € Q
then h € P. We have

ITh=1I(a(«plkf) =Ila+ I((«plk) + If =Ia+5+If
>la+4+1If =la+ [(pk) + If = I[(apkf) = Ih,

hence if h € P then (®*h)v = 1 while if h € Q then (®*h)v = 0 by the
inductive hypothesis. Therefore the conclusion follows.

(vi) The case where h/ = apkf with p € P — {co}. In this case we have
h = (a;0ky)i (apkf). Let g = (a;0ki);f. Take x € X, which does not occur
free in g, and then let ¢ = a M ((x6kg) Qx) and Uc = {s € S|(®*c)vIs}.
By Lemma 4.17 it follows that h < cpmroneA. By Remark 5.5, (0*h)v =
(@*(cprroneA))v. By Lemma 3.5, (O*(cprroneA))v = 1 if and only if
[U¢| > p. Therefore, (®*h)v =1 if and only if [U.| > p.

Suppose h € P. We assume that [U.| < p to deduce a contradiction.
Since p € PXYY, p £ 6. By (5.11), there exist elements by,...,byn € G and
d1,...,qm € P such that U, C U)"; SH . U = Z)"; g; and b; gyroneA €
Q for j =1,...,m. Since h < cprone/, by Lemma 5.4, cptone/A € P.
Since p > |U| = Z]ﬂ;] qj, there exists by Lemma 5.6 an element y € X,
such that yomaA € P and yonmbiA,...,yomrbmA € Q. We have

Ih=I(apkf)=Ila+I(pk)+If=la+4+If=Ia+4+1g
>la+2+1Ig=1Ia+I(MN) + Ig+ I(Qx)
=I(an ((xokg) Qx)) =Ic =1I(y omecA),

hence (®*(y 0rtcA))v = 1 by the inductive hypothesis. By Lemma 3.3 and
Lemma 3.8 it follows that (®*c)v 3y, that is, y € U,. Besides, yomb;A € Q
for j = 1,...,m, hence y ¢ S% by (5.10). This contradicts that U, C

Ui, 89
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Suppose h € Q. We will prove that |U¢] < p. Since h < cpmonel,
by Lemma 5.4, cptone/A € Q. Let s € S and suppose s ¢ S¢. Then
somcA € Q by (5.10). We have

Ih > Ic =1I(somcA),

hence (®*(s 6mtcA))v = 0 by the inductive hypothesis. By Lemma 3.3 and
Lemma 3.8 it follows that (®*c)v As, that is, s ¢ U.. Thus we have
U, C S€. This together with cprtoneA € Q shows that [U¢| < p by (5.11).
(vii) The case where h' = f A g, fV g or f=g with f,g € H. As-
sume that h = (aj0ki)i—1, . 1(f A g). There exists an element p € &
such that K¢ — Kg = {kp1,..., kon}, Kf N Kg = {Kymt1),-- -, Kpm) and that
Kg — Kf = {kp(er”,...,kp]_}. Let hf = (apiékpi]i:h_,,mf, and ]’Lg =
(api0Kpi)i=n+1,...19. By the permutation law and the generalized N law,
it follows that h < h¢ A hg. By Remark 5.5 and Lemma 3.6, (P*h)v =
(@*(hf Ahg))v = (P*he)v A (O*hg)v. By Lemmas 5.4 and 5.5, if h € P
then hy € P and hg € P, while if h € Q then hy € Q or hg € Q. We have

If = Ih¢

Th=I(fA\g)=H+IAN+Ig=If+1+1Ig>
Ig = Thg,

hence if hy € P then (®*hj)v = 1 while if hj € Q then (®*h;)v = 0 by the
inductive hypothesis (j € {f, g}). Therefore the conclusion follows.

Similar arguments hold for the case where h' =fV g or f=g.

(viii) The case where h/ = ¢ with f € H. In this case we have h =
(a;0ki)i (f0). Let h = (ai6ki)if. By the ¢ law, it follows that h =< hO.
By Remark 5.5 and Lemma 3.6, (0*h)v = (CD*(]:LO))V = ((d)*ﬁ)v)o. By
Lemmas 5.4 and 5.5, if h € P then h € Q while if h € Q then h € P. We

have .
Th=(f)=If+10 =If+ 1> If = Ih,

hence if h € P then (®*h)v = 1 while if h € Q then (®*h)v = 0 by the
inductive hypothesis. Therefore the conclusion follows.

(ix) The case where h'/ = (a1 b)A or (a U b)A with a,b € G. Assume
that h' = (amb)A. Then we have h = aj 6t (aMb)A. Let hg = aj 0mwal,
hpy = a; 0mtbA. By Lemma 4.16 it follows that h < hg A hy. By Remark
5.5 and Lemma 3.6, (0*h)v = (®*(hq A hp))v = (P*he)v A (O*hg)v. By
Lemmas 5.4 and 5.5, if h € P then hg € P and hy, € P, while if h € Q then
hq € Q or hy € Q. We have

Ia =1Thq

Th=1I((anb)A)=la+IN+b=1Ia+1+1Ib>
Ib = Thy,

hence if hj € P then (O®*h;j)v = 1 while if hj € Q then (®*hj)v = 0 by
the inductive hypothesis (j € {a,b}). Therefore the conclusion follows. A

similar argument holds when h/ = (a LI b)A.
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(x) The case where h’ = a®¥A with a € G. In this case we have h =
a; 6mabA. Let h = ajoma\. By Lemma 4.16 it follows that h < ho.
By Remark 5.5 and Lemma 3.6, (0*h)v = (©*(h0))v = ((0*h)v)°. By
Lemmas 5.4 and 5.5, if h € P then h € Q while if h € Q then h € P. We

have
Th=1(a"A)=la+I0=1Ia+1>Ila=1Ih,

hence if h € P then (®*h)v = 1 while if h € Q then (®*h)v = 0. Therefore
the conclusion follows.

(xi) The case where h/ = (f Qx)A with f € Ay, x € X,. In this case we
have h = a; o7t (f Qx)A. By Lemma 4.19, there exists an (x, aj)-alternative
g € Ap of f. Let h= g(x/aj). Since f is parallel to g, ph C P" by Lemmas
2.2, 3.15 and 3.16. By Lemma 4.20 it follows that h =< h. By Remark 5.5,
(\@*h)v — (®*h)v. By Lemma 5.4, if h € P then h € P, while if h € Q then

h € Q. By Remark 5.6, If = Ig. We have Ig = I(g(x/a1)) by Lemma 5.9.
Therefore we have

ITh=I((fQx)A) = If + I[(Qx) = If + 1
> If = Ig = I(g(x/a;)) = Ih,

hence if h € P then (®*h)v = 1 while if h € Q then (®*h)v = 0 by the
inductive hypothesis. Therefore the conclusion follows. |

Thus we have completed the proof of Theorem 5.1.

6 The non-existence theorem

Let (A, T,0,S,C,X,T) be an MPC language satisfying Assumption 3.1, (A,
W, (Iw)wew) be the logical system MPCL on it, and < be an MPC.1 re-
lation contained in the validity relation <g of the predicate logical space
(H,9).

In Corollary 5.1 we dealt with the case where P is well-ordered and has
the largest element. The following theorem deals with the remaining case.

Theorem 6.1 Assume that the quantity system P of A is not well-ordered
or does not have the largest element. Then there exists a cut (X,Y) €
P(Ap) x P(Ap) of H by < which has no F-model.

Remark 6.1 By Remark 3.3, the above cut (X,Y) has no G-model either.

Proof We define subsets P, Q of P as follows. If P is not well-ordered, then
let Q be an arbitrary non-empty subset of P which does not have the smallest
element, and let P = {p € P|p < q for every q € Q}. Otherwise (in this case
P does not have the largest element), let P =P and Q = (). Take an element
x € X, arbitrarily, and let X = {x prtoneA |p € P}, Y = {xqmoneA|q € Q}.
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First we will prove that (X,Y) is a cut of H by <. Assume « < f
for some o« C X, f C Y to deduce a contradiction. Then there exist el-

ements p1,...,Pm € P and q1,...,qn € Q satisfying o« = f;...fy and
B =9g1...9n, where f; =xpimmoneA fori=1,...,m and g; = xqjmoneA
for j = 1,...,n. There exists an element r € P such that p; < r for every

ie{l,...,m}and r < gj for every j € {1,...,1n} by the definition of P and
Q. We can assume that r £ 0 because 0 ¢ Q.

We will construct an MPC world W, as follows. Define S = {s} where s
is arbitrary. Let 3 be the identity relation on S. Define the P-measure by
[{s}] =, |0] = 0. Let @ be an arbitrary C-denotation into W;, and v be an
arbitrary X-denotation into W;. We have (®*f;)v =1 and (®*g;)v =0 by
Lemma 3.5. This contradicts that < is contained in <g. Therefore (X,Y) is
a cut of H by <.

Next we will prove that (X,Y) has no F-model. Assume that there exists
a triple (W, ®,v) which satisfies (®*f)v =1 for each f € X and (®*g)v =0
for each g € Y, to deduce a contradiction. Let U, = {s € S|(®*x)vIs},
where S is the base, 3 is the basic relation, and | - | is the P-measure of
W. For each p € P, xprroneA € X, hence (®*(xprroneA))v = 1. There-
fore |Uy] > p by Lemma 3.5. For each q € Q, xqmoneA € X, hence
(@*(xqmoneA))v = 0. Therefore [Uy| < g by Lemma 3.5. If P is not well-
ordered, then this contradicts that Q does not have the smallest element.
Otherwise, this contradicts that P does not have the largest element. |

7 Classification

Let (A, T,0,S,C,X,T) be an MPC language satisfying Assumption 3.1, and
(A, W, (Iw)wew) be the logical system MPCL on it. Recall that the G-
validity relation <g of the predicate logical space (H, §) is an MPC.1 relation
by Theorem 4.1.

In this section we apply the results in §5 and §6 to determine which class
(H, §) belongs to.

Lemma 7.1 For each (f,g) € H x H, there exists an element h € H such
that h =g f, h =g f, and fg =g h. Let o« € H*. Then « =g f for every
element f € H if and only if & <g .

Proof The former assertion holds for h = fV g by the disjunction law.

If x <g , then & <g h for all h € H by the weakening law.

Next we assume that o <g h for all h € H. Then & <g f and & <g ¢
for some f € H. We have ff® <g by the negation law. Applying the strong
cut law to the above three equations, we have « <g . n

Lemma 7.2 Let X C H. Then X is G-inconsistent if and only if there exists
an element o« € H* such that « C H and « <g .
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Proof By [6, Theorems 6.5, 6.7], the largest G-logic is the restriction of
<g.'! Moreover, by [6, Theorem 8.2], X is G-inconsistent if and only if there
exists an element & € H* such that « € H and & <g h for all h € H. Lemma
7.1 shows that o <g h for all h € H if and only if & <g .

|

Lemma 7.3 Let X,Y C H. Then (X,Y) is a cut of H by <g if and only if
X UY? is G-consistent, where YO ={g®|g € Y}.

Proof Suppose (X,Y) is not a cut. Then there exist a sequence o C X and

elements g1,...,dn € Y satisfying &« <9 g7...dgn. Hence ocg§> .. g?l <g by
Lemma 4.1. Therefore XUY? is G-inconsistent by Lemma 7.2. The opposite
direction is proved similarly. |

Lemma 7.4 Let X,Y C H. Then (X, Y) has a G-model if and only if XUY?®
has a G-model, where YO ={g®|g € Y}.

Proof For each f € H, W € W, C-denotation @ into W, X-denotation v
into W and 0 € K — W¢, we have

(@) (Bl,) = ((©*F)v) °(Blx,)
= (((@" V) (Blk,))°
by Lemma 3.6 and the definition of ¢ on W. Hence
((@*F)v)(Blk,) =0 &= ((O*fO)v)(Ol,) =1.
Therefore, a G-model of (X,Y) is a G-model of XU Y?, and vice versa. W

Lemma 7.5 We can obtain an MPC language (A’,T/,0’,S’,C,X’,T") by
extending the set X, to X[. Let (A’,W’ (I{,,)wrewr) be the logical system
MPCL on A’ and (H’,G’) be the predicate logical space associated with
the logical system. Then the G-validity relation <g is the restriction of the
G’-validity relation <g/ to H* x H*. Moreover, let X be a subset of H. Then
X is G-consistent if and only if X is G’-consistent. Also X has a G-model if
and only if X has a §G’-model.

Proof Let L’ be the index set of T. Then L’ = LU{Qx|x € X}, hence
LNT =L'"NT. A and T are the L-reduct of A’ and T’ respectively. By
the definition of the MPC language A’, it follows that 0 = o’|5 and that
X C X’. An MPC world denotable for A is regarded as an MPC world
denotable for A’, and vice versa. Therefore W = W’. For each W € W and
each x € X, Iw(Qx) and I{,(Qx) are the same. Each X-denotation into

"Lemma 7.1 shows that <g satisfies the quasi-disjunction law and the lower quasi-end
law defined in [6].
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W is extended to an X’-denotation into W. For each X’-denotation v’ into
W, the restriction v'|x is an X-denotation into W. Therefore, by Theorem
2.3, it follows that § = {@|n| @ € §’}. This shows that, for each o, p € H*,
x <g P if and only if o g/ .

For each X C H,

X is G-consistent

— « Ag for every o« C X
& o £g for every « C X
&= X is G’-consistent

and

X has a G-model

& X C (p_]l for some @ € §
&= X C ¢ for some ¢’ € G
&= X has a G’-model.

Theorem 7.1 The predicate logical space (H, G§) belongs to Class 2 or 3. It
belongs to Class 2 if and only if the quantity system P of A is well-ordered
and has the largest element.

Proof By [6, Theorem 8.9], (H, ) belongs to Class 1 or 2 if and only if
every G-consistent subset X of H has a §-model. By Lemma 3.4, we have
#G > 1. Hence (H, 9) does not belong to Class 1 by [6, Remark 6.3].
Suppose P is well-ordered and has the largest element. Let X be a G-
consistent subset of H, and k = #A. By virtue of Lemma 7.5, we may
assume that there exists k many elements of X, which do not occur in the
predicates of X. (X,0) is a cut of H by <g by Lemma 7.3. Hence (X, ) has
a §-model by Corollary 5.1. Therefore X has a §-model by Lemma 7.4.
Next suppose P is not well-ordered or does not have the largest element.
Then there exists a cut (X,Y) of H by <g which has no §-model by Theorem
6.1 and Remark 6.1. Hence XUY? is a G-consistent set which has no G-model
by Lemma 7.3 and Lemma 7.4. |

Remark 7.1 An argument similar to the proof of Theorem 7.1 holds for
the (-sentential functional logical space (Ag, F), and it belongs to Class 2 if
and only if the quantity system P of A is well-ordered and has the largest
element.
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8 A characteristic law

Let (A, T,0,S,C,X,T) be an MPC language satisfying Assumption 3.1, (A,
W, (Iw)wew) be the logical system MPCL on it, and (H, §) be the predicate
logical space associated with the logical system.

In this section we apply Theorem 5.1 to show that the MPC.1 law is a
characteristic law of (H,§).

Theorem 8.1 Let (A, F) be a T-valued functional logical space and (l_é, D)
be a deduction system on A, where A = A* x A*. Assume the following:

1. The F-validity relation <5 satisfies (ﬁ, 5)

2. Every finite cut of A by every relation which satisfies (R,D) and is
contained in <4 has an F-model.

Then (ﬁ, [3) together with the weakening law, contraction law, and exchange
law forms a characteristic law of (A, F).

Proof Consult [6, Theorem 7.13].
Theorem 8.2 The MPC.1 law is a characteristic law of (H, §).

Proof The G-validity relation <g satisfies the MPC.1 law by Theorem 4.1.

In view of Theorem 8.1, it suffices to show that every finite cut of H by
every MPC.1 relation contained in <g has a §-model.

Let < be an MPC.1 relation contained in <g and (X,Y) be a finite cut
of H by <. Since (X,Y) is finite, there exist k many elements of X, which
do not occur in the predicates in X UY, where k = #A. By Lemma 3.13 it
follows that PXYY is finite, hence [PXYY U{0)] is well-ordered by Lemma 3.1.
Therefore, by Theorem 5.1, (X,Y) has a G-model. |
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