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Abstract

We study whether a (Dedekind) cut has a model or not for the
logical space of the logical system MPCL and for relations satisfying
the MPC.1 law. The results depend on whether the quantity system is
well-ordered and has the largest element or not. We apply the results
to show a condition for a consistent subset to have a model. Another
application is an alternative proof for the fact that the MPC.1 law is
a characteristic law of the logical space of MPCL.
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1 Introduction

As proved in [7] and illustrated in [8], each logical system yields a {0, 1}-
valued functional logical space (A,F) in the sense of [6] under certain rea-
sonable conditions, where A is the set of the sentences and F is a set of
mappings of A into {0, 1} induced by the semantics of the logical system.
Meanwhile, let 4 be a relation on the set A∗ of all finite sequences of ele-
ments of A. Then a (Dedekind) cut of A by 4 is a pair (X, Y) of subsets
X, Y of A which satisfies α 64 β for each pair (α,β) of elements α,β of A∗

such that α ⊆ X and β ⊆ Y, where α,β are regarded as subsets of A. Also,
an F-model of the cut (X, Y) is an element f ∈ F which satisfies X ⊆ f−1{1}

and Y ⊆ f−1{0}.
The main purpose of this paper is to study whether the cut (X, Y) has

an F-model or not for the logical space (A,F) of the logical system MPCL
defined in [8] and for relations 4 which satisfy the law introduced and called
the MPC.1 law in [9] and are contained in the validity relation 4F of (A, F).
The results depend on a parameter P of MPCL which is called the quantity
system and defined as a totally ordered commutative monoid; namely they
depend on whether P is well-ordered and has the largest element or not.

The validity relation 4F satisfies the MPC.1 law, and therefore the re-
sults apply to 4F. Furthermore, a subset X of A is consistent if and only if
(X, ∅) is a cut of A by 4F. Also, (X, ∅) has an F-model if and only if X has a
model in a usual sense. Thus we have a condition for a consistent subset to
have a model. We can also apply our results to obtain a condition for a de-
duction system (R,D) to be F-complete. Suppose (R,D) is F-sound. Then
by a general results in [6], (R,D) is F-complete if and only if the deduction
relation 4R,D satisfies a characteristic law of (A, F). As shown in [9], the
MPC.1 law is a characteristic law of (A,F). Our results may be used to
obtain an alternative proof of the fact.

Our method of constructing an F-model of a cut (X, Y) is inspired by
Henkin’s proof [10] of Gödel’s completeness theorem [3]. We first extend
(X, Y) to a cut (X ∪ Z, Y) by a certain subset Z of A (cf. Lemma 5.1). Next
we extend (X ∪ Z, Y) to a cut (P,Q) which is maximal with respect to a
certain order between cuts. Then (P,Q) satisfies conditions such as the ones
described by Lemma 5.5. These conditions enable us to construct an F-
model of (P,Q) (cf. Lemma 5.10). The semantics of MPCL is parameterized
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by a P-valued measure |U| for the sets U of the entities which satisfies the
pigeonhole principle. In constructing an F-model, therefore, we have to
construct such a measure. This is accomplished by using Lemma 5.6 which
is an expression of the pigeonhole principle in terms of (P,Q). This method
is essentially due to [11]. In the course of the construction of an F-model,
we need to deal with occurrences of variables, for the sake of which Lemma
4.19 supplies a concept of alternatives.

In [9], following the method of [11], resolution trees are used in proving
that the MPC.1 law is a characteristic law of MPCL. The advantages of
using (Dedekind) cuts instead of resolution trees are as follows. First, the
cut method yields results not only on characteristic laws (cf. §8) but also on
models (cf. §5) and the classification of the logical space (cf. §7). Secondly,
the F-model which we will construct is ‘larger’ than that constructed by
resolution trees, and it is hoped that this will be used to prove an incom-
pleteness theorem for MPCL like Gödel’s original [4]. Lastly, Lemma 5.4
can have no counterpart in the resolution tree method, and it simplifies an
argument used in resolution trees. On the other hand, the method using
cuts requires different conditions (cf. Assumption 3.1) in comparison with
those in [9].

This paper is organized as follows. Section 2 collects notation, terminol-
ogy and basic facts about logical spaces and logical systems. In Section 3
we define the logical system MPCL. Section 4 introduces the MPC.1 law.
Section 5 is devoted to the proof of the main result of this paper, and deals
with the case where the quantity system is well-ordered and has the largest
element. Section 6 deals with the remaining case. Sections 7 and 8 contain
applications of the main result to the classification and characteristic laws
of the logical space.

2 Preliminaries

The notation and terminology in §2.1–2.4 are due to [6] and [7]. In §2.5 we
argue on the extension of formal languages and its relation to the logical
systems. In §2.6 we define the parallelism relation on a formal language
satisfying the variable operation condition.

2.1 Logical spaces

Let A be a set. A logic on A is a relation R between A∗ and A, where A∗

is the set of all finite sequences of elements of A. A deduction system on
A is a pair (R,D) of a logic R on A and a subset D of A. Here we denote
elements of A∗ by α,β, . . . . When α = a1 · · ·an, we will denote the subset
{a1, . . . , an} of A also by α. A subset B of A is said to be closed under R,
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if the following holds:

α ⊆ B, y ∈ A, α R y =⇒ y ∈ B.

For each X ∈ PA there exists the smallest of the subsets of A which contain
X and are closed under R. We denote it by [X]R and call it the R-closure of
X.1 We define the logic RD by

αRDy ⇐⇒ [α ∪ D]R 3 y

for each α ∈ A∗, y ∈ A. We call RD the D-closure of R. Furthermore, the
deduction relation 4R,D on A∗ is defined by

α 4R,Dβ ⇐⇒ [α ∪ D]R ⊇
∩
y∈β

[{y} ∪ D]R

for each (α,β) ∈ A∗ × A∗.
A logical space is a pair (A, B) of a non-empty set A and a subset B

of PA. We call
∩

B∈B B the B-core. A logic R on A is called a B-logic, if
each B ∈ B is closed under R. There exists the largest B-logic on A by [6,
Theorem 6.1] . Let C be the B-core, Q be the largest logic on A and (R,D)

be a deduction system on A. Then

• (R,D) is said to be B-sound if RD ⊆ Q.

• (R,D) is said to be B-sufficient if Q ⊆ RD.

• (R,D) is said to be B-complete if RD = Q.

• (R,D) is said to be B-core-complete if C = [D]R.

A subset X of A is said to be B-consistent if [X]Q 6= A. A B-model of
a subset X of A is a set B ∈ B − {A} containing X. A B-model of a pair
(X, Y) ∈ PA×PA is an element B ∈ B− {A} satisfying X ⊆ B and Y ⊆ A−B.

Let A be a set and 4 be a relation on A∗. A pair (X, Y) ∈ PA × PA is
called a cut of A by 4, if α 64 β for each α ⊆ X and β ⊆ Y. We say that
(X, Y) is finite if both X and Y are finite sets.

Let (A, B) be a logical space and X be a subset of A. We denote the set
of finite subsets of X by P ′X. Then X is said to be super-covered by B,
if for each Y ∈ P ′X there exists an element B ∈ B such that Y ⊆ B ⊆ X.
Furthermore, B is said to be quasi-finitary, if every subset of A which is
super-covered by B belongs to B. We denote by B∩ the smallest of the ∩-
closed subsets of PA which contain B, and call it the ∩-closure of B.2 Also,
we denote by B∩ the smallest of the subsets of PA which contains B and

1Consult [6, §4].
2The ∩-closure of B exists by [6, Theorem 2.5].
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are ∩-closed and quasi-finitary, and call it the quasi-finitary ∩-closure of
B.3

Logical spaces (A,B) are put into the following three classes.
Class 1. B∩ = B, that is, B is ∩-closed in PA and quasi-finitary.
Class 2. B∩ = B∩ 6= B, that is, B is not ∩-closed in PA and the ∩-closure
B∩ of B is quasi-finitary.
Class 3. B∩ 6= B∩, that is, the ∩-closure B of B in PA is not quasi-finitary.

A B-valued functional logical space is a pair (A,F) of a non-empty
set A and a subset F of A → B, where B is a lattice which has the least
element and the largest element, and is non-trivial in the sense that #B ≥ 2.
For each f ∈ F and each a ∈ A, we define Af,a by

Af,a= {x ∈ A | fx ≥ a},

and we define BF ⊆ PA by

BF =

{
{Af,a| f ∈ F, a ∈ B} if F 6= ∅,
{A} if F = ∅.

Then (A,BF) is a logical space. We say the F-core to mean the BF-core,
the F-logics for the BF-logics, and so on.

Remark 2.1 Let (A,F) be a T-valued functional logical space, where T =

{0, 1}. Then a subset X of A has an F-model if and only if there exists an
element f ∈ F satisfying fx = 1 for each x ∈ X. Also, a pair (X, Y) ∈ PA×PA

has an F-model if and only if there exists an element f ∈ F satisfying fx = 1

for each x ∈ X and fy = 0 for each y ∈ Y.

Let (A,F) be a B-valued functional logical space. We define ~A = A∗×A∗,
denote each element (α,β) of ~A by α → β and call it a sequent. We define
for each f ∈ F the f-validity relation 4f on A∗ by

α 4f β ⇐⇒ inf fα ≤ sup fβ,

and define the F-validity relation 4F on A∗ by

α 4F β ⇐⇒ α 4f β for every f ∈ F.

Then we define a subset ~Af of ~A by ~Af = {α → β ∈ ~A | α 4f β} for
each f ∈ F, and we define ~F ⊆ P~A by ~F = {~Af | f ∈ F}. Thus (~A, ~F) is
a logical space, which we call the sequent logical space accompanying
(A,F). A deduction system (~R, ~D) on ~A is called a characteristic law of
(A,F) if (~R, ~D) is ~F-core-complete. We say that a relation R on A∗ satisfies
a deduction system (~R, ~D) on ~A, if R, as a subset of ~A = A∗ × A∗, is closed
under ~R and contains ~D.

3The quasi-finitary ∩-closure of B exists by [6, Theorem 2.7].
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2.2 Sorted algebras

For each set A and each natural number n, an n-ary operation on A is a
mapping α of a subset D of An into A. The set D is called the domain
of α and denoted by Domα, while the image αD is denoted by Imα. The
number n is called an arity of α, and so if D = ∅, every natural number
is an arity of α. We say that α is total if D = An. A subset B of A

is said to be closed under the operation α if α(a1, . . . , an) ∈ B for each
(a1, . . . , an) ∈ Bn ∩ D. If B is closed under α, the restriction α|Bn∩D of α

to B becomes an operation on B.
An algebra is a set A equipped with a family (αλ)λ∈L of operations on

A. We often identify the operation αλ with its index λ. We sometimes call
A an L-algebra. The algebra (A, (αλ)λ∈L) is said to be total if αλ is total
for every λ ∈ L.

Let (A, (αλ)λ∈L) be an algebra. If a subset B of A is closed under αλ for
each λ ∈ L, then B becomes an algebra equipped with the family (βλ)λ∈L

consisting of restrictions βλ of αλ to B. Such an algebra (B, (βλ)λ∈L) is
called a subalgebra of A. Also, an algebra (A, (αµ)µ∈M) is obtained by
reducing (αλ)λ∈L to (αµ)µ∈M for a subset M of L. Such an algebra will be
called an M-reduct of A.

Let (A, (αλ)λ∈L) be an algebra. For each subset S of A, the intersection
of all subalgebras of A which contain S is the smallest of the subalgebras
of A which contain S. We denote it by [S] and call it the closure of S

or the subalgebra generated by S. Define the subsets Sn (n = 0, 1, . . . )

of A inductively as follows. First S0 = S. Next for each n ≥ 1, Sn is
the set of all elements αλ(a1, . . . , am) with λ ∈ L, (a1, . . . , am) ∈ Dom αλ,
and ai ∈ Sli (i = 1, . . . , m) for some non-negative integers l1, . . . , lm such
that n = 1 +

∑m
i=1 li. Then it is easy to show [S] =

∪
n≥0 Sn. We call

Sn (n = 0, 1, . . . ) the descendants of S.
Two algebras A and B are said to be similar, if (αλ)λ∈L and (βλ)λ∈L

are indexed by the same set L, and αλ and βλ have a common arity for each
λ ∈ L.

Let (A, (αλ)λ∈L) and (B, (βλ)λ∈L) be similar algebras. Then a mapping
f of A into B is called a holomorphism if it satisfies the following two
conditions for all λ ∈ L, where nλ denotes an arity common to αλ and βλ:

• If (a1, . . . , anλ
) ∈ Domαλ, then (fa1, . . . , fanλ

) ∈ Dom βλ

and f(α(a1, . . . , anλ
)) = β(fa1, . . . , fanλ

).

• If (a1, . . . , anλ
) ∈ Anλ and (fa1, . . . , fanλ

) ∈ Dom βλ,
then (a1, . . . , anλ

) ∈ Domαλ.

A bijective holomorphism is called an isomorphism.

f(αλ(a1, . . . , anλ
)) = βλ(fa1, . . . , fanλ

).
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A sorted algebra is an algebra A equipped with an algebra T similar
to A and a holomorphism σ of A into T . We call T and σ the sorter and
the sorting of the sorted algebra A. For each subset S of A and each t ∈ T ,
we define the t-part St of S to be the inverse image {a ∈ S | σa = t} of t in
S by σ.

Let (A, T, σ) and (B, T, τ) be sorted algebras with the same sorter T . Then
a mapping f of A into B is said to be sort-consistent, if it satisfies τf = σ,
or equivalently f(At) ⊆ Bt for all t ∈ T .

A sorted algebra (A, T, σ) is said to be universal or called a USA (uni-
versal sorted algebra) if A has a subset S which satisfies the following
two conditions, the latter being called the universality.

• A = [S].

• If (A ′, T, σ ′) is a sorted algebra and ϕ is a mapping of S into A ′ satis-
fying σ ′ϕ = σ|S, then there exists a sort-consistent holomorphism f of
A into A ′ which extends ϕ.

We call S as above the set of the primes of A. It is known that every
sorted algebra has at most one prime set and that f in the above condition
is uniquely determined by ϕ.

Theorem 2.1 Let S be a set, T be an algebra, and τ be a mapping of S

into T . Then there exists a USA (A, T, σ, S) with σ|S = τ. If (A ′, T, σ ′, S) is
also a USA with σ ′|S = τ, then there exists a sort-consistent isomorphism
of A onto A ′ extending idS.

Proof Consult [7, Theorem 2.1].

Theorem 2.2 Let (A, T, σ, S) be a USA on an algebra (A, (αλ)λ∈L). Then
the algebra is free over S, or S is its basis, in the sense that the following
holds:

1. A = [S].

2. S ∩
∪

λ∈L Im αλ = ∅, that is, no element a ∈ S has an expression
a = αλ(a1, . . . , ak) with λ ∈ L and (a1, . . . , ak) ∈ Domαλ.

3. Each element a ∈ A − S has a unique expression a = αλ(a1, . . . , ak)

with λ ∈ L and (a1, . . . , ak) ∈ Dom αλ, which we call the word form
of a.

If an algebra (A, (αλ)λ∈L) has a basis S, then A is the direct union∐∞
n=0 Sn of the descendants Sn (n = 0, 1, . . . ) of S, and so for each element

a ∈ A, there exists a unique non-negative integer n satisfying a ∈ Sn, which
we call the rank of a and denote by Ranka, and if Ranka ≥ 1, then the
unique word form αλ(a1, . . . , ak) of a satisfies Rank a = 1 +

∑k
j=1 Rankaj.
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Proof Consult [7, Theorem 2.2].

Let (A, T, σ) be a sorted algebra and V be a non-empty set. Define
AV =

∪
t∈T(V → At). Then we can construct a sorted algebra (AV, T, ρ)

as follows. First define the sorting ρ of AV into T by ρb = t for each
b ∈ V → At and each t ∈ T . Then

ρb = σ(bv) (2.1)

for each b ∈ AV and each v ∈ V . Let (αλ)λ∈L and (τλ)λ∈L be the operations
of A and T respectively, and let nλ be an arity of αλ and τλ. For each λ ∈ L,
define the operation βλ on AV as follows. First define the domain of βλ to
be

Dλ =
{
(b1, . . . , bnλ

) ∈ (AV)nλ
∣∣ (ρb1, . . . , ρbnλ

) ∈ Dom τλ

}
.

If (b1, . . . , bnλ
) ∈ Dλ, then

(
σ(b1v), . . . , σ(bnλ

v)
)

= (ρb1, . . . , ρbnλ
) ∈

Dom τλ by (2.1), so (b1v, . . . , bnλ
v) ∈ Dom αλ for each v ∈ V , and we

can define the mapping βλ(b1, . . . , bnλ
) of V into A by(

βλ(b1, . . . , bnλ
)
)
v = αλ(b1v, . . . , bnλ

v) (2.2)

for each v ∈ V . Furthermore by (2.1)

σ
(
αλ(b1v, . . . , bnλ

v)
)

= τλ

(
σ(b1v), . . . , σ(bnλ

v)
)

= τλ(ρb1, . . . , ρbnλ
),

(2.3)

and t = τλ(ρb1, . . . , ρbnλ
) is not varied by v ∈ V, hence βλ(b1, . . . , bnλ

) ∈
V → At ⊆ AV. Thus βλ is an operation on AV for each λ ∈ L, and so
(AV, (βλ)λ∈L) becomes an algebra. Furthermore, by (2.1), (2.2) and (2.3),
we have

ρ
(
βλ(b1, . . . , bnλ

)
)

= σ
((

βλ(b1, . . . , bnλ
)
)
v
)

= σ
(
αλ(b1v, . . . , bnλ

v)
)

= τλ(ρb1, . . . , ρbnλ
)

with any element v ∈ V , and so ρ is a holomorphism of AV into T . Thus we
have constructed the sorted algebra (AV, T, ρ), which we call the V-power
of A. Furthermore, it follows from (2.1) and (2.2) that for each v ∈ V the
mapping b 7→ bv of AV into A is a sort-consistent holomorphism, which we
call the projection by v.

2.3 Logical systems

A formal language is a universal sorted algebra (A, T, σ, S) equipped with
subsets C and X 6= ∅ of S and a set Γ which satisfy the following three
conditions.

• The prime set S is the direct union C q X of C and X.
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• Let (τλ)λ∈L be the operations of the sorter T . Then its index set L is
contained in the subset Γ ∪ ΓX of the free semigroup over Γ q S.

• The arity of each operation τλ with λ ∈ L ∩ ΓX is equal to 1.

We call C and X the sets of the constants and variables respectively.
Henceforth, we identify each index λ ∈ L ∩ ΓX with the operation τλ, call it
a variable operation, and denote its domain by Tλ.

Let (A, T, σ, S, C, X, Γ) be a formal language and (τλ)λ∈L be the operations
of T . Define M = L ∩ Γ and let TM be the M-reduct of T . Then, a sorted
algebra W is called a denotable world for A, if it satisfies the following
two conditions.

• The sorter of W is equal to TM.

• Wt 6= ∅ for each t ∈ σS.

A C-denotation into the denotable world W for A is a mapping Φ of
C into W which satisfies Φ(Ct) ⊆ Wt for each t ∈ T . There is at least one
C-denotation. If C = ∅, then since ∅ → W = {∅} by the set-theoretical defi-
nition of Y → Z, ∅ is the unique C-denotation. Similarly, an X-denotation
into W is a mapping v of X into W which satisfies v(Xt) ⊆ Wt for each t ∈ T .
We denote the set of all X-denotations into W by VX,W. Then VX,W 6= ∅,
and so we can construct the VX,W-power (WVX,W , TM, ρ) of W as described
in §2.2. Let (βλ)λ∈M be the operations of WVX,W .

An interpretation of the set L ∩ ΓX of the variable operations on the
denotable world W for A is a mapping IW which assigns each λ ∈ L ∩ Γx

with x ∈ X a mapping

λW ∈

 ∪
t∈Tλ

(Wσx → Wt)

 → W

which satisfies
λW(Wσx → Wt) ⊆ Wλt

for each t ∈ Tλ. We call λW = IW(λ) the meaning of λ on W under the
interpretation IW. Then we can define the unary operation βλ on WVX,W

for each λ ∈ L∩ ΓX as follows, and extending the operations of WVX,W from
(βλ)λ∈M to (βλ)λ∈L, we can construct the sorted algebra (WVX,W , T, ρ). First
we define, for each pair (x,w) of x ∈ X and w ∈ Wσx, the transformation
v 7→ (x/w)v on VX,W by

(
(x/w)v

)
y =

{
vy if y ∈ X − {x},

w if y = x.
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We call the transformation (x/w) the redenotation for x by w. Next
we define, for each quadruple (t,ϕ, x, v) consisting of t ∈ T,ϕ ∈ VX,W →
Wt, x ∈ X and v ∈ VX,W, the mapping ϕ

(
(x/¤)v

)
of Wσx into Wt by(

ϕ
(
(x/¤)v

))
w = ϕ

(
(x/w)v

)
(2.4)

for each w ∈ Wσx. We finally define for each λ ∈ L∩ ΓX the unary operation
βλ on WVX,W as follows. Suppose λ ∈ Γx with x ∈ X. First we define

Domβλ =
∪

t∈Tλ

(VX,W → Wt).

Next for each t ∈ Tλ and each ϕ ∈ VX,W → Wt we define βλϕ to be the
element of VX,W → Wλt such that

(βλϕ)v = λW

(
ϕ

(
(x/¤)v

))
for each v ∈ VX,W. Since ϕ

(
(x/¤)v

)
∈ Wσx → Wt and λW(Wσx → Wt) ⊆

Wλt, certainly (βλϕ)v ∈ Wλt. Since VX,W → Wt is the t-part of WVX,W for
each t ∈ T , we have thus constructed the sorted algebra (WVX,W , T ′, ρ).

Now let Φ be a C-denotation into W. Then we can construct a sort-
consistent holomorphism Φ∗ of A into WVX,W as follows. First we define the
mapping ϕ of S = C q X into VX,W → W so that

(ϕa)v =

{
Φa when a ∈ C,

va when a ∈ X

for each v ∈ VX,W. Then ϕSt ⊆ VX,W → Wt for each t ∈ T because
Φ(Ct) ⊆ Wt and v(Wt) ⊆ Wt, and so ϕ maps S into WVX,W and satisfies
ρϕ = σ|S. Therefore by the universality of A, there exists a unique sort-
consistent holomorphism of A into WVX,W which extends ϕ. We call it the
metadenotation determined by Φ and denote it by Φ∗. Since Φ∗ is an
extension of ϕ,

(Φ∗a)v =

{
Φa when a ∈ C,

va when a ∈ X

for each v ∈ VX,W.
A logical system4 is a triple (A,W, (IW)W∈W) of a formal language

(A, T, σ, S, C, X, Γ), a non-empty collection W of denotable worlds for A, and
a family (IW)W∈W of interpretations IW on W ∈ W.

Suppose the logical system (A,W, (IW)W∈W) satisfies the following con-
dition:

• For an element φ ∈ T , the φ-part of A is non-empty, and the φ-part
Wφ of each W ∈ W is equal to T = {0, 1}.

4For some other kinds of formalization of a logical system, the reader may consult [2]
for example.
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Then we call φ a truth and call the elements of Aφ the φ-sentences.
Suppose (A, W, (IW)W∈W) is a logical system with a truth φ. Then we

can construct a non-empty subset F of Aφ → T as follows. Let W ∈ W

be a denotable world and Φ be a C-denotation into W. Then since the
metadenotation Φ∗ is sort-consistent and the φ-part VX,W → Wφ of WVX,W

is equal to VX,W → T because Wφ = T, we have Φ∗(Aφ) ⊆ VX,W → T, and
so for each v ∈ VX,W, we obtain the mapping a 7→ (Φ∗a)v of Aφ into T.
We define F to be the set of all those mappings obtained from all possible
triples (W,Φ, v) of denotable worlds W ∈ W and C-denotations Φ into W

and v ∈ VX,W.
Thus we have seen above that each logical system (A,W, (IW)W∈W) with

a truth φ yields the pair (Aφ, F) of Aφ and the subset F 6= ∅ of Aφ → T.
We call (Aφ, F) the φ-sentential functional logical space associated
with (A,W, (IW)W∈W).

2.4 Occurrences and substitutions

Let (A, (αλ)λ∈L) be an algebra. If, for two elements a and b of A, there exists
an element λ ∈ L such that a = αλ(. . . , b, . . . ), then we write b ≺ a. If b ≺ a

or b = a, we write b ¹ a. If there exists a sequence (bi)i=0,...,n (n ≥ 0) of
elements of A such that b0 = a, bn = b and bi ¹ bi−1 for i = 1, . . . , n, then
we say that b occurs in a and call the sequence an occurrence of b in a.

In the rest of this subsection, let (A, T, σ, S, C, X, Γ) be a formal language,
and (αλ)λ∈L and (τλ)λ∈L be the operations of A and T respectively. Then L

is contained in the set of the formal products of the elements of Γ q S. For
each element λ of L, let Sλ denote the set of the elements of S which occur
in λ as defined above.

Let a ∈ A and s ∈ S. Then an occurrence (si)i=0,...,n of s in a is said
to be free, if {s0, . . . , sn} ∩ Im αλ = ∅ for each λ ∈ L such that s ∈ Sλ. If
there exists a free occurrence of s in a, we say that s occurs free in a or
write s ¿ a. For each subset X of S, we define Xa

free = {x ∈ X | x ¿ a}. Let
b ∈ A. Then the occurrence (si)i=0,...,nof s in a is said to be free from b,
if {s0, . . . , sn}∩ Im αλ = ∅ for each λ ∈ L such that (Sλ)b

free 6= ∅. We say that
s is free from b in a, if every free occurrence of s in a is free from b.

Let s ∈ S and c ∈ A with σs = σc. Then, for each element a of A, we
can define the element a(s/c) of A with σ(a(s/c)) = σa by induction on
the rank r of a as follows. If r = 0, then a ∈ S, and so we define

a(s/c) =

{
c if a = s,

a if a 6= s,

hence σ(a(s/c)) = σa as desired. Suppose r ≥ 1. Then a has a unique
word form αλ(a1, . . . , ak) and r is larger than the ranks of a1, . . . , ak, so
ai(s/c) has already been defined and satisfies σ(ai(s/c)) = σai for i =
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1, . . . , k. Since (σa1, . . . , σak) belongs to Dom τλ, so does
(
σ(a1(s/c)), . . . ,

σ(ak(s/c))
)

hence (a1(s/c), . . . , ak(s/c)) ∈ Dom αλ, and so we define

a(s/c) =

{
αλ(a1(s/c), . . . , ak(s/c)) if s /∈ Sλ,
a if s ∈ Sλ.

Then even when a(s/c) 6= a, we have

σ(a(s/c)) = σ
(
αλ(a1(s/c), . . . , ak(s/c))

)
= τλ

(
σ(a1(s/c)), . . . , σ(ak(s/c))

)
= τλ(σa1, . . . , σak) = σa

as desired. The definition of a(s/c) by induction is complete. We call
the transformation a 7→ a(s/c) on A the substitution of c for s. Since
σ(a(s/c)) = σa, the substitution is sort-consistent.

For each subset B of A and element a ∈ A, let Ba denote the set of the
elements of B which occur in a. Furthermore define La = {λ ∈ L | (Imαλ)

a 6=
∅}. If λ ∈ La, then we say that λ occurs in a.

Lemma 2.1 For each element a ∈ A, Sa is a finite set.

Proof Consult [7, Lemma 4.1].

Lemma 2.2 If a = αλ(a1, . . . , ak) ∈ A, then La = {λ} ∪
∪k

j=1 Laj . If a ∈ S,
then La = ∅. For each element a ∈ A, La is a finite set.

Proof Consult [9, Proposition 1].

Lemma 2.3 If a = αλ(a1, . . . , ak) ∈ A, then Sa
free =

∪k
j=1 S

aj

free − Sλ. If
a ∈ S, then Sa

free = {a}.

Proof Consult [9, Proposition 1].

Lemma 2.4 If a, b ∈ A and (Sλ)b
free = ∅ for each λ ∈ La, then every element

of S is free from b in a.

Proof Consult [9, Proposition 1].

Lemma 2.5 Let a, b, c ∈ A, s ∈ S and assume that σs = σc and b =

a(s/c), where (s/c) denotes the substitution of c for s. Then Sb
free ⊆ Sc

free ∪
(Sa

free − {s}) and Lb ⊆ La ∪ Lc.

Proof Consult [9, Proposition 1].

Lemma 2.6 Let a ∈ A and s ∈ S. If s 6¿ a then s is free from any element
b ∈ A in a.
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Proof There is no free occurrence of s in a, so the conclusion is immediate
by the definition. ¥

Lemma 2.7 Let a ∈ A and s ∈ S. Then s is free from s in a, and a(s/s) = a

holds.

Proof Let (si)i=0,...,nbe a free occurrence of s in a, if any. If (Sλ)s
free 6= ∅,

then s ∈ Sλ, hence {s0, . . . , sn}∩ Im αλ = ∅. We can prove a(s/s) = a easily
by induction on Ranka. ¥

Lemma 2.8 Let a ∈ A, s, r ∈ S, and σs = σr. Then La(s/r) ⊆ La.

Proof By Lemma 2.5, La(s/r) ⊆ La ∪ Lr. By Lemma 2.2, Lr = ∅. ¥

Lemma 2.9 Let a ∈ A, s, r ∈ S, and σs = σr. Then Ranka(s/r) = Ranka.

Proof We use induction on Ranka. If Ranka = 0, then a(s/r) is equal to
either a or r. Hence a(s/r) ∈ S, that is, Ranka(s/r) = 0.

We assume that Rank a ≥ 1. By Theorem 2.2, a has a unique word
form αλ(a1, . . . , ak), and Rankaj < Ranka for j = 1, . . . , k. If s ∈ Sλ,
then a(s/r) = a, hence the conclusion follows. Suppose s /∈ Sλ. Then
a(s/r) = αλ(a1(s/r), . . . , ak(s/r)). Therefore, by the inductive hypothesis,
Ranka(s/r) = 1 +

∑k
j=1 Rankaj(s/r) = 1 +

∑k
j=1 Rank aj(s/r) = Ranka.

¥

Lemma 2.10 Let a = αλ(a1, . . . , ak) ∈ A, s ∈ S, and b ∈ A. Then s is free
from b in a if and only if s 6¿ a or the following two conditions hold:

1. s is free from b in aj for j = 1, . . . , k.

2. (Sλ)b
free = ∅.

Proof This proof is based essentially on [5, Theorem 3.16.6]. If s 6¿ a,
then s is free from b in a by Lemma 2.6. If s ¿ a and s is free from b in a,
then the conditions 1 and 2 hold by [7, Lemma 4.3].

We assume that s ¿ a and that the conditions 1 and 2 hold. In order
to prove that s is free from b in a, we show that {s0, . . . , sn} ∩ Im αµ = ∅
for each free occurrence (si)i=0,...,n of s in a and each µ ∈ L satisfying
(Sµ)b

free 6= ∅. Since a 6= s by the uniqueness of the word form of a, we can
assume that s0 6= s1. Then s1 ∈ {a1, . . . , ak}, hence (si)i=1,...,n is a free
occurrence of s in aj for some j ∈ {1, . . . , k}. By the condition 1, (si)i=1,...,n

is free from b in aj. Therefore {s1, . . . , sn} ∩ Im αµ = ∅. Since λ 6= µ by the
condition 2, s0 = a /∈ Im αµ. Therefore {s0, . . . , sn} ∩ Im αµ = ∅ ¥

Lemma 2.11 Let a, b, c ∈ A, s, x ∈ S and assume that σs = σc. If x 6¿ c

and x is free from b in a, then x is free from b in a(s/c).
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Proof We use induction on Ranka. First we assume that Rank a = 0,
that is, a ∈ S. If a = s then a(s/c) = c, hence the conclusion follows from
Lemma 2.6. If a 6= s then a(s/c) = a, and the conclusion is immediate.

Next we assume that Rank a ≥ 1. By Theorem 2.2, a has a unique word
form αλ(a1, . . . , ak), and Rankaj < Ranka for j = 1, . . . , k. If s ∈ Sλ then
a(s/c) = a, so the conclusion is immediate. Therefore we may assume that
s /∈ Sλ. Then we have a(s/c) = αλ(a1(s/c), . . . , ak(s/c)).

First we consider the case where x ¿ a. By Theorem 2.10, x is free from
b in aj for j = 1, . . . , k and (Sλ)b

free = ∅. Then x is free from b in aj(s/c) for
j = 1, . . . , k by the inductive hypothesis. Hence, again by Theorem 2.10, x

is free from b in a(s/c).
Next we consider the case where x 6¿ a. If x 6¿ a(s/c) then x is free

from b in a(s/c) by Lemma 2.6, hence we may assume that x ¿ a(s/c).
Furthermore, if x ∈ Sλ then x 6¿ a(s/c) by Lemma 2.3, so we may assume
in addition that x /∈ Sλ. Since x 6¿ a, it follows that x 6¿ aj for j = 1, . . . , k

by Lemma 2.3. Since x 6¿ c, it follows that x 6¿ aj(s/c) by Lemma 2.5.
Therefore, again by Lemma 2.3, x 6¿ a(s/c). A contradiction. ¥

Lemma 2.12 Let a, c ∈ A, s ∈ S and σs = σc. If s 6¿ a then a(s/c) = a.

Proof We use induction on Ranka. If Ranka = 0, then a ∈ S. Since s 6¿
a, it follows that a 6= s. Therefore a(s/c) = a. Next suppose Rank a ≥ 1.
By Theorem 2.2, a has a unique word form αλ(a1, . . . , ak), and Rankaj <

Ranka for j = 1, . . . , k. If s ∈ Sλ, then a(s/c) = a. If s /∈ Sλ, then s 6¿ aj for
j = 1, . . . , k by Lemma 2.3. Therefore a(s/c) = αλ(a1(s/c), . . . , ak(s/c)) =

αλ(a1, . . . , ak) = a by the inductive hypothesis. ¥

Lemma 2.13 Let a, b ∈ A, r, s ∈ S and σr = σs. If b = a(s/r), r 6¿ a and
s is free from r in a, then a = b(r/s), s 6¿ b and r is free from s in b.

Proof This proof is based on [5, Theorem 3.17.6]. First we prove that
s 6¿ b. If r 6= s, then s 6¿ b by Lemma 2.5. If r = s, then b = a by Lemma
2.7, hence s 6¿ b by the assumption.

Next we prove that a = b(r/s) and that r is free from s in b by induction
on Ranka. First we assume that Rank a = 0, that is, a ∈ S. If a = s, then
b = a(s/r) = r, hence b(r/s) = s = a. r is free from s in r by the definition.
Suppose a 6= s. Then b = a(s/r) = a. Since r 6¿ a it follows that a 6= r,
hence a(r/s) = a. r is free from s in a by Lemma 2.6.

Henceforth we assume that Rank a ≥ 1. By Theorem 2.2, a has a unique
word form αλ(a1, . . . , ak), and Rankaj < Ranka for j = 1, . . . , k. First
suppose s /∈ Sλ and r /∈ Sλ. Then b = a(s/r) = αλ(a1(s/r), . . . , ak(s/r)).
By Lemma 2.3 and Theorem 2.10, r 6¿ aj and s is free from r in aj for
j = 1, . . . , k. By the inductive hypothesis, aj(s/r)(r/s) = aj for j = 1, . . . , k.
Therefore b(r/s) = a. r is free from s in aj(s/r) for j = 1, . . . , k by the
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inductive hypothesis. (Sλ)s
free = ∅ because Ss

free = {s}. Therefore r is free
from s in b by Theorem 2.10. Next suppose s ∈ Sλ. Then b = a(s/r) = a.
Since r 6¿ a, it follows that a(r/s) = a by Lemma 2.12, and it follows that
r is free from s in b by Lemma 2.6. Finally suppose r ∈ Sλ. Then, since s

is free from r in a, it follows that s 6¿ a, hence b = a(s/r) = a by Lemma
2.12. Therefore, by the same argument as above, a(r/s) = a and r is free
from s in b. ¥

2.5 Extension of logical systems

In this subsection we argue on the extension of formal languages and its re-
lation to the logical systems. The following theorem is based on [5, Theorem
4.7.1].

Theorem 2.3 Let (A, T, σ, S, C, X, Γ) and (A ′, T ′, σ ′, S ′, C ′, X ′, Γ ′) be formal
languages, (A,W, (IW)W∈W) and (A ′, W ′, (I ′W′)W′∈W′) be logical systems,
and L and L ′ be the indices of T and T ′ respectively. Assume the following:

1. L ⊆ L ′.

2. A is a subalgebra of the L-reduct of A ′.

3. T is the L-reduct of T ′.

4. σ = σ ′|A.

5. C ⊆ C ′, X ⊆ X ′.

6. Γ ⊆ Γ ′.

7. W ∈ W, W ′ ∈ W ′.

8. W is the L ∩ Γ -reduct of W ′.

9. IW(λ) is the restriction of I ′W′(λ) for each λ ∈ L ∩ ΓX.

Let Φ be a C-denotation into W, Φ ′ be a C ′-denotation into W ′, v be
an X-denotation into W, and v ′ be an X ′-denotation into W ′, and assume
that Φ, v are the restriction of Φ ′, v ′ to C, X, respectively. Then (Φ∗a)v =

(Φ ′∗a)v ′ for each a ∈ A.

Proof We use induction on Ranka. First we assume that Rank a = 0,
that is, a ∈ S = C ∪ X. If a ∈ C then (Φ∗a)v = Φa = Φ ′a = (Φ ′∗a)v ′. If
a ∈ X then (Φ∗a)v = va = v ′a = (Φ ′∗a)v ′.

Henceforth we assume that Rank a ≥ 1. Let (αλ)λ∈L, (α ′
λ′)λ′∈L′ , (ωλ)λ∈L

and (ω ′
λ′)λ′∈L′ be the operations of A,A ′,W and W ′, respectively. By

Theorem 2.2, a has a unique word form αλ(a1, . . . , ak), and Rankaj <
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Ranka for j = 1, . . . , k. Assume that λ ∈ L ∩ Γ . Then (Φ∗aj)v = (Φ ′∗aj)v
′

for j = 1, . . . , k by the inductive hypothesis. Hence

(Φ∗a)v = ωλ((Φ
∗a1)v, . . . , (Φ

∗ak)v)

= ω ′
λ((Φ

′∗a1)v
′, . . . , (Φ ′∗ak)v ′)

= (Φ ′∗a)v ′.

Assume that λ ∈ L ∩ ΓX, that is, λ = γx for some γ ∈ Γ and x ∈ X. Then
a = αλa1 because αλ is unary. The mappings (Φ∗a1)

(
(x/¤)v

)
∈ Wσx →

Wσa1
and (Φ ′∗a1)

(
(x/¤)v ′) ∈ W ′

σ′x → W ′
σ′a1

are defined by (2.4). Since
Wσx = W ′

σ′x and Wσa1
= W ′

σ′a1
by the assumption, it follows that Wσx →

Wσa1
= W ′

σ′x → W ′
σ′a1

. For each w ∈ Wσx, (x/w)v is the restriction
of (x/w)v ′, hence (Φ∗a1)

(
(x/w)v

)
= (Φ ′∗a1)

(
(x/w)v ′) by the inductive

hypothesis. Therefore we have (Φ∗a1)
(
(x/¤)v

)
= (Φ ′∗a1)

(
(x/¤)v ′). Let

βλ and β ′
λ be the operations indexed by λ on the metaworlds WVX,W and

W ′VX ′,W ′ , respectively. Then it follows that

(Φ∗a)v =
(
βλ(Φ

∗a1)
)
v

= IW(λ)
(
(Φ∗a1)

(
(x/¤)v

))
= I ′W′(λ)

(
(Φ ′∗a1)

(
(x/¤)v ′))

=
(
β ′

λ(Φ
′∗a1)

)
v ′

= (Φ ′∗a)v ′.

¥

2.6 Parallelism

Let (A, T, σ, S, C, X, Γ) be a formal language, (αλ)λ∈L and (τλ)λ∈L be the op-
erations of A and T respectively. Assume the following variable operation
condition:

• For each γ ∈ Γ and x, y ∈ X satisfying γx, γy ∈ L and σx = σy, the
operations τγx and τγy on T are equal as mappings.

Remark 2.2 This condition is satisfied by various formal languages includ-
ing those of first-order predicate logic and typed lambda calculus5 as well
as MPCL.

A relation R on A is said to be sort-consistent if aR a ′ =⇒ σa = σa ′

for each a, a ′ ∈ A. A congruence relation on A is an equivalence relation
R on A satisfying the following for each λ ∈ L.

(a1, . . . , ak) ∈ Dom αλ,

aj Ra ′
j (j = 1, . . . , k)

}
=⇒ {

(a ′
1, . . . , a

′
k) ∈ Dom αλ,

αλ(a1, . . . , ak)R αλ(a
′
1, . . . , a

′
k).

5These are treated as examples of logical systems in [7, §5].
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Recall that A is the direct union
∐∞

n=0 Sn of the descendants Sn of S.
We define the sort-consistent equivalence relation ‖n on each Sn inductively,
then we define the relation ‖ to be the union of ‖n and call it the parallelism
relation. First we define ‖0 to be the equality relation. For n ≥ 1, we define
‖n to be the transitive closure of the union of the following two relations
Pn,1 and Pn,2.

• aPn,1a ′ if and only if a = αλ(a1, . . . , ak), a ′ = αλ(a
′
1, . . . , a

′
k), where

λ ∈ L, (a1, . . . , ak), (a ′
1, . . . , a

′
k) ∈ Domαλ, aj, a

′
j ∈ Slj and aj ‖lj a ′

j

for j = 1, . . . , k.

• aPn,2a ′ if and only if a = αγxa1, a ′ = αγya
′
1, where γ ∈ Γ , x, y ∈ X,

γx, γy ∈ L, σx = σy, a1 ∈ Dom αγx, a ′
1 ∈ Dom αγy, a ′

1 = a1(x/y),
y 6¿ a1 and x is free from y in a1.6

If aPn,1a ′, then σaj = σa ′
j for j = 1, . . . , k because ‖lj is sort-consistent.

Hence σa = τλ(σa1, . . . , σak) = τλ(σa ′
1, . . . , σa ′

k) = σa ′. If aPn,2a ′, then
σa1 = σ(a1(x/y)) = σa ′

1, hence σa = τγx(σa1) = τγy(σa ′
1) = σa ′ by the

variable operation condition. Therefore the relation ‖n is sort-consistent.
The relation Pn,1 is an equivalence relation. The relation Pn,2 is symmetric
by Theorem 2.13. Therefore the relation ‖n is an equivalence relation.

We say that a is parallel to a ′ if a ‖ a ′.

Theorem 2.4 The parallelism relation ‖ on A is the smallest of the sort-
consistent congruence relations R on A satisfying

αγxaR αγya(x/y) (2.5)

for each a ∈ A, x, y ∈ X and γ ∈ Γ such that γx, γy ∈ L, σx = σy,
a ∈ Domαγx, y 6¿ a and x is free from y in a.

Proof Let Pn,1 and Pn,2 be as in the definition of the parallelism rela-
tion. As shown in the definition, the parallelism relation is a sort-consistent
equivalence relation.

First we prove that the parallelism relation is a congruence relation. Let
λ ∈ L, (a1, . . . , ak) ∈ Dom αλ, and aj ‖ a ′

j for j = 1, . . . , k. Then σaj = σa ′
j

for j = 1, . . . , k, hence (a ′
1, . . . , a

′
k) ∈ Dom αλ. Therefore αλ(a1, . . . , ak) Pn,1

αλ(a
′
1, . . . , a

′
k), where n = Rankαλ(a1, . . . , ak). Hence αλ(a1, . . . , ak) ‖

αλ(a
′
1, . . . , a

′
k).

Next we prove that the parallelism relation satisfies (2.5). Let x, y ∈
X, γ ∈ Γ , γx, γy ∈ L, σx = σy, a ∈ Dom αγx, y 6¿ a and x is free
from y in a. Since σa ∈ Dom τγx and σ(a(x/y)) = σa, by the variable
operation condition it follows that σ(a(x/y)) ∈ Dom τγy, hence a(x/y) ∈

6Recall that the variable operations are unary. The definition of the substitution shows
that σa1 = σ(a1(x/y)). Also recall that Rank a1 = Rank a1(x/y) by Lemma 2.9.
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Dom αγy. Therefore αγxaPn,2αγya(x/y), where n = Rank αγxa. Hence
αγxa ‖ αγya(x/y).

Finally we prove that the parallelism relation is the smallest in the sense
of Theorem 2.4. Let R be a sort-consistent congruence relation satisfying
(2.5). We assume a ‖ a ′ and prove aR a ′ by induction on Ranka. Re-
call that Ranka = Ranka ′ by the definition of the parallelism relation.
First we assume that Rank a = 0. Then a = a ′, hence aR a ′ because R

is reflexive. Next we assume that Rank a = n ≥ 1. Then there exist el-
ements b0, . . . , bm ∈ A satisfying b0 = a, bm = a ′, and bi−1 Pn,1bi or
bi−1 Pn,2bi for i = 1, . . . , m. If bi−1 Pn,1bi, then bi−1 = αλ(c1, . . . , ck),
bi = αλ(c

′
1, . . . , c

′
k) for some λ ∈ L, c1, . . . , ck, c ′

1, . . . , c
′
k ∈ A, and cj ‖ c ′

j

for j = 1, . . . , k. By the inductive hypothesis, cj R c ′
j for j = 1, . . . , k.

Therefore bi−1 Rbi because R is a congruence relation. If bi−1 Pn,2bi, then
bi−1 = αγxc, bi = αγyc(x/y) for some γ ∈ Γ , x, y ∈ X and c ∈ A such that
γx, γy ∈ L, σx = σy, y 6¿ c and x is free from y in c. Therefore bi−1 Rbi

because R satisfies (2.5). Since R is transitive, aR a ′ as required.

3 Logical system MPCL

We define MPC languages, and MPC worlds denotable for an MPC lan-
guage. The interpretation on each MPC world is naturally defined. Thus
the logical system MPCL is defined. The formulation of MPCL is due to
[8].

3.1 Quantities and measures

A quantity system is a set P equipped with a total binary associative and
commutative operation (x, y) 7→ x + y with the identity element 0 and an
order ≤ which satisfy the following two conditions.

• If elements p, p ′, q, q ′ ∈ P satisfy p ≤ p ′ and q ≤ q ′, then p + q ≤
p ′ + q ′.

• 0 ≤ p for every element p of P, that is to say, 0 = min P.

The quantity system P is said to be linear if the order ≤ is linear.
Let (P, +, 0,≤) be a quantity system and Q ⊆ P. Since P is a +-algebra,

the subalgebra [Q ∪ {0}] generated by Q ∪ {0} is defined. Then [Q ∪ {0}]

equipped with the restriction of ≤ to it is a quantity system.

Lemma 3.1 Let (P, +, 0,≤) be a linear quantity system and Q be a finite
subset of P. Then [Q] is well-ordered with respect to ≤.

Proof Consult [8, Theorem 2.1] or [1, Corollary 1.2].
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Let S be a set and (P,+, 0,≤) be a quantity system. Then a P-measure
on S is a mapping X 7→ |X| of PS into P which satisfies the following three
conditions for all X, Y ∈ PS.

• X 6= ∅ ⇐⇒ |X| > 0.

• X ⊆ Y =⇒ |X| ≤ |Y|.

• |X ∪ Y| ≤ |X| + |Y|.

Lemma 3.2 Let S be a set, (P,+, 0,≤) be a quantity system, R be a relation
between PS and P, and 0 6= ó ∈ P. Assume the following conditions:

• X = ∅ if and only if XR 0.

• If X ⊆ Y and Y Ra, then XR a.

• If XR a and Y Rb, then (X ∪ Y) R (a + b).

• For each X ∈ PS, min
(
{a ∈ P | XR a} ∪ {ó}

)
exists.

Then the mapping X 7→ min
(
{a ∈ P | X Ra} ∪ {ó}

)
is a P-measure on S.

Proof Consult [8, Theorem 2.2].

3.2 MPC language

Here we define the formal language of MPCL. First we take arbitrary three
sets S, C, X such that S = C q X and X 6= 0. Next we take an arbitrary set
K equipped with a specific element π. We call K the set of cases and in
particular call π the nominative case. Next we take two arbitrary distinct
symbols δ and ε not contained in K, and define T = {δ, ε}∪PK. Next we take a
mapping τ of S into T such that the inverse image Xε = {x ∈ X | τx = ε} of ε in
X is not empty. Next we take an arbitrary quantity system (P,+, 0,≤) with
#P > 1, then let P be a subset of PP. Next we take a copy ¬P = {¬p | p ∈ P}

of the set P such that ¬P∩P = ∅, and define Q = ¬PqP, which we call the
set of the quantifiers. Also we take an arbitrary symbol ŏ /∈ Q. Next we
let (nf)f∈F be a family of non-negative integers indexed by a set F. Finally
we define the nine kinds of operations on T as follows.

1. The family of binary operations ŏk (k ∈ K).

Dom ŏk = {ε} × {P ∈ PK | k ∈ P}, ε ŏk P = P − {k}.

2. The family of binary operations xk ((x, k) ∈ Q × K).

Dom xk = {δ, ε} × {P ∈ PK | k ∈ P}, δ xkP = ε xkP = P − {k}.
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3. The three binary operations ∧,∨ and ⇒.

Dom ∧ = Dom ∨ = Dom⇒ = (PK)2, P ∧ Q = P ∨ Q = P ⇒ Q = P ∪ Q.

4. The unary operation ♦.

Dom♦ = PK, P♦ = P.

5. The unary operation 4.

Dom4 = {δ, ε}, δ4 = ε4 = {π}.

6. The two binary operations u and t.

Domu = Domt = {δ, ε}2, ξ u η = ξ t η = δ for each (ξ, η) ∈ {δ, ε}2.

7. The unary operation ¤.

Dom ¤ = {δ, ε}, δ¤ = ε¤ = δ.

8. The family of operations f ∈ F.

Dom f = {ε}nf , f(ε, . . . , ε) = ε.

9. The family of unary operations Ωx (x ∈ Xε).

Dom Ωx = {∅}, ∅Ωx = δ.

We let T be the algebra equipped with the above nine kinds of operations.
Thus we have chosen a set S, an algebra T , and a mapping τ of S into T .
Therefore by Theorem 2.1, there exists the USA (A, T, σ, S) with σ|S = τ,
which is unique up to sort-consistent isomorphism. The operations of T and
A are both indexed by the set

L = {ŏk, xk,∧, ∨,⇒, ♦,4,u,t, ¤, f,Ωx | k ∈ K, x ∈ Q, f ∈ F, x ∈ Xε},

and so if we define

Γ = {ŏk, xk,∧, ∨, ⇒,♦,4,u,t, ¤, f,Ω | k ∈ K, x ∈ Q, f ∈ F},

then we may consider that L is contained in the subset Γ∪ΓX of the free semi-
group over Γ q S with L ∩ ΓX = {Ωx | x ∈ Xε}. Therefore (A, T, σ, S, C, X, Γ)

is a formal language, which we call the MPC language. Its variable oper-
ations Ωx (x ∈ Xε) are called the nominalizers.
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Since (A, T, σ) is a sorted algebra, A is divided into its t-parts At (t ∈ T),
and since T = {δ, ε} ∪ PK, we have

A = Aδ ∪ Aε ∪
∪

P∈PK

AP,

so we define

G = Aδ ∪ Aε, H =
∪

P∈PK

AP.

We call G the set of the nominals and call H the set of the predicates.
For each f ∈ H, we denote by Kf the element P ∈ PK satisfying f ∈ AP and
call it the range of f.

Since (A, T, σ) is a sorted algebra, the following also holds on the domains
and images of the operations in the operation system L of A.

1. Dom ŏk = Aε ×
∪

k∈P∈PKAP for each k ∈ K. If a ∈ Aε and f ∈ AP

with k ∈ P ∈ PK, then a ŏk f ∈ AP−{k}.

2. Dom xk = G ×
∪

k∈P∈PKAP for each (x, k) ∈ Q × K. If a ∈ G and
f ∈ AP with k ∈ P ∈ PK, then a λk f ∈ AP−{k}.

3. Dom ∧ = Dom ∨ = Dom ⇒ = H2. If f ∈ AP and g ∈ AQ with
P,Q ∈ PK, then f ∧ g, f ∨ g, f ⇒ g ∈ AP∪Q.

4. Dom ♦ = H. If f ∈ AP with P ∈ PK, then f♦ ∈ AP.

5. Dom4 = G, Im4 ⊆ A{π}.

6. Domu = Domt = G2, Imu ⊆ Aδ, Imt ⊆ Aδ.

7. Dom ¤ = G, Im ¤ ⊆ Aδ.

8. Dom f = (Aε)
nf , Im f ⊆ Aε for each f ∈ F.

9. Dom Ωx = A∅, Im Ωx ⊆ Aδ for each x ∈ Xε.

Assumption 3.1 In this paper we assume the following conditions.

1. The quantity system P is linear.

2. The range Kf of each predicates f ∈ H is a finite set.

3. The set Xε has the same cardinality as A.

4. The set P is the set of the unions of a finite number of intervals of P
on the following list:

(p→) = {x ∈ P | p < x},
(p, q] = {x ∈ P | p < x ≤ q}, where p, q ∈ P.
(← q] = {x ∈ P | x ≤ q},
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For each X ∈ PP, we denote by X◦ the complement P − X. Then P is closed
under the three set-theoretical operations ∩,∪, ◦ on PP.

Remark 3.1 The condition 3 in Assumption 3.1 implies that Xε is an in-
finite set. The condition 3 can be satisfied, for example, if Xε is an infinite
set and #Xε = #S = #L.7 Instead of the condition 3, in [9, p. 2], both Aε

and Xε are assumed to be enumerable.

Remark 3.2 Let ∞ denote the largest element of P, provided it exists. By
the conditions 1 and 4 in Assumption 3.1, if an element p of P is connected,
then the endpoints of p are uniquely determined as follows.

• If p ∈ {∅, P}, then p has no endpoint.

• If p = (p→) and p 6= ∞, then p is the endpoint of p.

• If p = (p, q] and p < q 6= ∞, then p and q are the endpoints of p.

• If p = (← q] and q 6= ∞, then q is the endpoint of p.

This is well-defined because one and only one of the above cases holds. Again
by Assumption 3.1, each p ∈ P is uniquely expressed as the union of a finite
numbers of the distinct connected components. In view of this, we say
that p ∈ P is an endpoint of p ∈ P if p is an endpoint of some connected
component of p. For each a ∈ A and p ∈ P, we say that p occurs in a

if there exist elements p ∈ P and k ∈ K such that p is an endpoint of p,
and pk or ¬pk occurs in a. We denote by Pa the set of elements of P which
occur in a. For each subset B of A, we define PB =

∪
a∈B Pa.

We will use the following abbreviation for quantifiers:

p = ¬(← p], p = (p→), for each p ∈ P,

∀ = 0, ∃ = 0, where 0 = min P.

We use one as an abbreviation for (x ŏπ x4) Ωx, where x is an arbitrary
fixed element of Xε.

3.3 MPC worlds

Let (A, T, σ, S, C, X, Γ) be an MPC language defined in §3.2. Here we define
the domain W of the denotable worlds for A. Define

M = L ∩ Γ = {ŏk, xk,∧, ∨, ⇒,♦,4,u,t, ¤, f | k ∈ K, x ∈ Q, f ∈ F},

7By [5, Theorem 3.2.1], if κ is an infinite cardinal satisfying #S ≤ κ and #L ≤ κ, then
#(Sn) ≤ κ for each descendants Sn of S, hence #A ≤ κ. Related results may be found in
[12] or [13].
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and let TM be the M-reduct of T .
First we take an arbitrary non-empty set S, and define

W = (S → T) ∪ S ∪
∪

P∈PK

(
(P → S) → T

)
.

We call S the base of W.
Next we define the sorting ρ of W into T = {δ, ε}∪PK so that the t-parts

Wt (t ∈ TM) satisfy Wδ = S → T, Wε = S, and WP = (P → S) → T for each
P ∈ PK. In particular W∅ = T. We call Wδ ∪ Wε the set of the entities,
while we call

∪
P∈PKWP the set of the affairs.

Next we define a family of operations on W indexed by M. The definition
depends on two parameters. The one is an arbitrary P-measure X 7→ |X| on
S. The other is an arbitrary reflexive relation ∃ on S, which we call the
basic relation of W. In order to define the operations, we first extend ∃ to
the relation between (S → T) ∪ S and S by

a∃b ⇐⇒ ab = 1

for each a ∈ S → T and each b ∈ S. Next, when s ∈ S and k ∈ P ∈ PK, we
define for each θ ∈ (P − {k}) → S the element (k/s)θ ∈ P → S by

(
(k/s)θ

)
l =

{
θl if l ∈ P − {k},
s if l = k.

If P = {k}, then (P − {k}) → S = {∅}, so we denote (k/s)θ by (k/s). Next
we define ¬(¬p) = p for each p ∈ P. Thus, if x ∈ P then ¬x ∈ ¬P, while if
x ∈ ¬P then ¬x ∈ P. Finally we define the eight kinds of operations on W
as follows.

1. The family of binary operations ŏk (k ∈ K).

Dom ŏk = S ×
∪

k∈P∈PK

(
(P → S) → T

)
.

For each s ∈ S and each f ∈ (P → S) → T with k ∈ P ∈ PK, we define
s ŏk f to be the element of

(
(P − {k}) → S

) → T such that

(s ŏk f)θ = f
(
(k/s)θ

)
for each θ ∈ (P − {k}) → S.

2. The family of binary operations xk ((x, k) ∈ Q × K).

Dom xk =
(
(S → T) ∪ S

)
×

∪
k∈P∈PK

(
(P → S) → T

)
.
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For each s ∈ (S → T)∪ S and each f ∈ (P → S) → T with k ∈ P ∈ PK,
we define s xk f to be the element of

(
(P − {k}) → S

) → T such that

(a xk f)θ = 1 ⇐⇒ {∣∣{s ∈ S
∣∣ a∃ s, f

(
(k/s)θ

)
= 0

}∣∣ ∈ ¬x if x ∈ ¬P,∣∣{s ∈ S
∣∣ a∃ s, f((k/s)θ) = 1

}∣∣ ∈ x if x ∈ P

for each θ ∈ (P − {k}) → S. Notice that f
(
(k/s)θ

)
= (s ŏk f)θ.

3. The three binary operations ∧,∨ and ⇒.

Dom ∧ = Dom∨ = Dom ⇒ =

( ∪
P∈PK

(
(P → S) → T)

)2

.

For each f ∈ (P → S) → T and each g ∈ (Q → S) → T with P,Q ∈ PK,
we define f ∧ g, f ∨ g, f ⇒g to be the elements of

(
(P ∪ Q) → S

) → T
such that

(f ∧ g)θ = f(θ|P) ∧ (θ|Q),
(f ∨ g)θ = f(θ|P) ∨ (θ|Q),
(f ⇒ g)θ = f(θ|P) ⇒ (θ|Q)

for each θ ∈ (P ∪ Q) → S, where ∧,∨ and ⇒ on the right-hand sides
of the equations are the meet, join, and implication on the Boolean
lattice T defined by a ∧ b = inf {a, b}, a ∨ b = sup {a, b} and a ⇒b =

sup {1 − a, b} for all a, b ∈ T.

4. The unary operation ♦.

Dom ♦ =
∪

P∈PK

(
(P → S) → T).

For each f ∈ (P → S) → T with P ∈ PK, we define f♦ to be the element
of (P → S) → T such that

(f♦)θ = (fθ)♦

for each θ ∈ P → S, where ♦ on the right-hand side of the equation is
the complement on the Boolean lattice T defined by a♦ = 1−a for all
a ∈ T.

5. The unary operation 4.

Dom4 = (S → T) ∪ S.

For each a ∈ (S → T) ∪ S, we define a4 to be the element of ({π} →
S) → T such that

(a4)θ = 1 ⇐⇒ a∃ θπ

for each θ ∈ {π} → S.
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6. The two binary operations u,t.

Domu = Domt =
(
(S → T) ∪ S

)2.

For each (a, b) ∈
(
(S → T) ∪ S

)2, we define a u b and a t b to be the
elements of S → T such that

a u b∃ s ⇐⇒ a∃ s and b∃ s,

a t b∃ s ⇐⇒ a∃ s or b∃ s

for each s ∈ S.

7. The family of operations f ∈ F.

Dom f = Snf .

For each (s1, . . . , sn) ∈ Snf , we define f(s1, . . . , snf
) to be an arbitrary

element of S.

8. The unary operation ¤.

Dom ¤ = (S → T) ∪ S.

For each a ∈ (S → T) ∪ S, we define a¤ to be the element of S → T
such that

a¤∃ s ⇐⇒ a 6 ∃ s

for each s ∈ S.

We let W be the algebra equipped with the above eight kinds of oper-
ations. Then (W,TM, ρ) becomes a sorted algebra and satisfies Wt 6= ∅ for
all t ∈ TM. Therefore W is a denotable world for A.

We call the sorted algebras constructed as above the MPC worlds
cognizable by the MPC language (A, T, σ, S, C, X, Γ) and denote by W the
collection of all such worlds.

3.4 Interpretations of the nominalizers

Let (A, T, σ, S, C, X, Γ) be an MPC language defined in §3.2, and let W be the
collection of the denotable worlds for A defined in §3.3. Following §2.3, here
we define the interpretation IW of the set L ∩ ΓX of the variable operations
on each W ∈ W, and thereby complete the definition of MPCL.

Let λ ∈ L∩ΓX. Since L∩ΓX consists of the nominalizers, λ = Ωx for some
x ∈ Xε, and so the domain Tλ of λ on T is equal to {∅} and λ∅ = δ. Moreover
Wδ = S → T = Wσx → W∅. Thus, IW(λ) = λW is a mapping of Wσx → W∅
into itself, and so we define λW to be the identity mapping of Wσx → W∅.
Then the domain of the operation βλ on WVX,W corresponding to the index
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λ is equal to VX,W → W∅ = VX,W → T, and for each ϕ ∈ VX,W → T we
have βλϕ ∈ VX,W → Wδ = VX,W → (S → T) with (βλϕ)v = ϕ

(
(x/¤)v

)
for

each v ∈ VX,W, hence
(
(βλϕ)v

)
s = ϕ

(
(x/s)v

)
for each s ∈ S.

Since λ = Ωx (x ∈ Xε) and we will denote βλϕ by ϕΩx, we conclude
that the domain of the nominalizer Ωx on WVX,W is equal to VX,W → T, the
image ϕΩx of ϕ ∈ VX,W → T belongs to VX,W → (S → T), so (ϕΩx)v ∈
S → T for each v ∈ VX,W, and the following holds for each s ∈ S:(

(ϕΩx)v
)
s = ϕ

(
(x/s)v

)
. (3.1)

This completes the definition of the logical system MPCL.

3.5 Predicate logical spaces

Let (A, T, σ, S, C, X, Γ) be an MPC language and (A, W, (IW)W∈W) be the
logical system MPCL on it. The ∅-part of each W ∈ W is equal to (∅ →
Wε) → T, and is identified with T because ∅ → Wε is a singleton. Therefore
(A,W, (IW)W∈W) together with the truth ∅ yields the ∅-sentential functional
logical space (A∅,F) associated with the logical system, as we have seen in
§2.3. Notice that ϕ ∈ F if and only if ϕ is a mapping a 7→ (Φ∗a)v for some
MPC world W ∈ W, C-denotation Φ into W, and X-denotation v into W.

In this subsection we define another functional logical space. Recall that
H =

∪
P∈PKAP is the set of the predicates of A. Let W ∈ W, Φ be a C-

denotation into W, and v be a X-denotation into W. Then, for each f ∈ H,
(Φ∗f)v ∈ WKf

= (Kf → Wε) → T. Hence
(
(Φ∗f)v

)
(θ|Kf

) ∈ T for each
θ ∈ K → Wε. We define G to be the set of mappings f 7→ (

(Φ∗f)v
)
(θ|Kf

)

obtained from all possible quadruples (W,Φ, v, θ) of W ∈ W, C-denotations
Φ into W, X-denotations v into W, and θ ∈ K → Wε. Thus (H,G) is a T-
valued functional logical space, which we call the predicate logical space
associated with (A, W, (IW)W∈W). The G-validity relation 4G on H∗ is
defined by α 4G β ⇐⇒ inff∈α

(
(Φ∗f)v

)
(θ|Kf

) ≤ supg∈β

(
(Φ∗g)v

)
(θ|Kg

)

for every W ∈ W, C-denotation Φ into W, X-denotation f into W, and
θ ∈ K → Wε.

If h ∈ A∅, then θ|Kh
∈ ∅ → Wε, and since ∅ → Wε is a singleton we

identify
(
(Φ∗h)v

)
(θ|Kh

) ∈ T with (Φ∗h)v. Thus (H,G) is an extension of
(A∅,F) in the sense that A∅ ⊆ H and F = {ϕ|A∅ | ϕ ∈ G}.

Remark 3.3 By Remark 2.1, a pair (X, Y) ∈ PH × PH has a G-model if
and only if there exists a quadruple (W,Φ, v, θ) of an MPC world W ∈ W

denotable for A, a C-denotation Φ into W, an X-denotation v into W and
an element θ ∈ K → Wε satisfying

(
(Φ∗f)v

)
(θ|Kf

) = 1 for each f ∈ X and(
(Φ∗g)v

)
(θ|Kg

) = 0 for each g ∈ Y. Similarly, a pair (X, Y) ∈ P(A∅)×P(A∅)
has an F-model if and only if there exists a triple (W,Φ, v) which satisfies
(Φ∗f)v = 1 for each f ∈ X and (Φ∗g)v = 0 for each g ∈ Y. Moreover,
(X, Y) ∈ P(A∅) × P(A∅) has a G-model if and only if it has an F-model.
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3.6 Structure of MPC worlds

Let (A, T, σ, S, C, X, Γ) be an MPC language and (A, W, (IW)W∈W) be the
logical system MPCL on it.

Lemma 3.3 Let W ∈ W, a ∈ Wε, b ∈ Wδ∪Wε and ∃ be the basic relation
of W. Then the following holds.

a ŏπb4 = 1 ⇐⇒ b∃a.

Proof We have a ŏπb4 = (b4)(π/a) by the definition of the operation
ŏπ. It follows that (b4)(π/a) = 1 ⇐⇒ b∃a by the definition of the
operation 4. ¥

Lemma 3.4 Let (H,G) be the predicate logical space associated with (A,

W, (IW)W∈W). Then #G > 1.

Proof Let x, y be distinct elements of Xε. We construct an MPC world
W ∈ W as follows. Define the base S of W by S = {s1, s2}. We can define
the basic relation ∃ so that s1 6 ∃ s2. Define a P-measure arbitrarily. Define
the operations f ∈ F arbitrarily. Next we define a C-denotation Φ into W

arbitrarily. Finally we define X-denotations v, v ′ so that vx = vy = v ′x = s1

and v ′y = s2 hold. By Lemma 3.3, s1 ŏπ s14 = 1 if and only if s1∃ s1. On
the other hand, s2 ŏπ s14 = 1 if and only if s1∃ s2. Since the basic relation ∃
is reflexive, Φ∗(y ŏπ x4)v = s1 ŏπ s14 = 1. Since s1 6 ∃ s2, Φ∗(y ŏπ x4)v ′ =

s2 ŏπ s14 = 0. Therefore, two quadruples (W,Φ, v, θ) and (W,Φ, v ′, θ) for
an arbitrary θ ∈ K → S induce two distinct elements of G. ¥

Theorem 3.1 Let W ∈ W, Φ be a C-denotation into W and v be an X-
denotation into W. Then (Φ∗one)v is equal to the largest element 1 of Wδ,
while

(
Φ∗(one¤)

)
v is equal to the least element 0 of Wδ.

Proof Consult [8, Theorem 3.19].

Lemma 3.5 Let a ∈ G, p ∈ P, W ∈ W, Φ be a C-denotation into W and
v be an X-denotation into W. Then(

Φ∗(a pπone4)
)
v = 1 ⇐⇒ |{s ∈ S | (Φ∗a)v∃ s}| > p,

where S, ∃ and | · | are the base, the basic relation and the P-measure of W,
respectively.

Proof We have
(
Φ∗(a pπone4)

)
v = (Φ∗a)v pπ (Φ∗one)v4, and

(Φ∗a)v pπ (Φ∗one)v4 = 1⇐⇒ |{s ∈ S | (Φ∗a)v∃ s,
(
(Φ∗one)v4

)
(π/s) = 1}| > p⇐⇒ |{s ∈ S | (Φ∗a)v∃ s, (Φ∗one)v∃ s}| > p⇐⇒ |{s ∈ S | (Φ∗a)v∃ s}| > p,
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because (Φ∗one)v∃ s by Theorem 3.1. ¥

Lemma 3.6 Let f, g ∈ H, W ∈ W, Φ be a C-denotation into W and v be
an X-denotation into W. Then the following holds.(

Φ∗(f ∧ g)
)
v = (Φ∗f)v ∧ (Φ∗g)v,(

Φ∗(f ∨ g)
)
v = (Φ∗f)v ∨ (Φ∗g)v,(

Φ∗(f ⇒ g)
)
v = (Φ∗f)v⇒ (Φ∗g)v,

(Φ∗f♦)v =
(
(Φ∗f)v

)♦
.

Proof The conclusion follows from the fact that the mapping f 7→ (Φ∗f)v
is a holomorphism with respect to ∧, ∨, ⇒ and ♦. ¥

Lemma 3.7 Aε = [Sε]F, where [Sε]F is the closure of Sε in the F-reduct AF

of A.

Proof Consult [8, §2.2].

Lemma 3.8 Let W ∈ W, Φ be a C-denotation into W and v be an X-
denotation into W. Assume that the base of W is equal to Aε, each operation
f ∈ F on W is equal to f on A, and that Φ and v are the identity mappings
when restricted to Cε and Xε, respectively. Then (Φ∗a)v = a for all a ∈ Aε.

Proof Recall that Aε = [Sε]F by Lemma 3.7. In order to prove (Φ∗a)v = a,
we use induction on Ranka. First we assume that Rank a = 0, that is,
a ∈ Sε. If a ∈ Cε, then (Φ∗a)v = Φa = a by the assumption for Φ.
If a ∈ Xε, then (Φ∗a)v = va = a by the assumption for v. Next we
assume that Rank a ≥ 1. By the uniqueness of the word form of a, we have
a = f(a1, . . . , ak), where f ∈ F, (a1, . . . , ak) ∈ Dom f and Rankaj < Ranka

for j = 1, . . . , k. Then (Φ∗aj)v = aj by the inductive hypothesis. Hence,

(Φ∗a)v = f((Φ∗a1)v, . . . , (Φ
∗ak)v)

= f(a1, . . . , ak) = a.

¥

Lemma 3.9 Let k1, . . . , kn be distinct elements of K, f ∈ K{k1,...,kn} and
θ ∈ {k1, . . . , kn} → Wε. Then the following holds:

fθ = (θki ŏki)i=1,...,nf.

Proof Consult [8, Corollary 3.5.2].
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3.7 Occurrences in MPC languages

Let (A, T, σ, S, C, X, Γ) be an MPC language satisfying Assumption 3.1 and
(A,W, (IW)W∈W) be the logical system MPCL on it.

Lemma 3.10 For each µ ∈ L, the following holds.

Sµ =

{
∅ if µ ∈ Γ,

x if µ = Ωx.

Proof Recall that L is a subset of the free semigroup over Γ q S. If µ ∈ Γ ,
then only µ occurs in µ but µ /∈ S. If µ = Ωx, then the only element of S
which occurs in µ is x. ¥

Lemma 3.11 If a, b ∈ Aε and x ∈ Xε, then x is free from b in a.

Proof From Lemma 3.7 it follows that La ⊆ F. By Lemma 3.10, Sf = ∅
for each f ∈ F. Hence x is free from b in a by Lemma 2.4. ¥

Lemma 3.12 Let µ ∈ L ∩ Γ , (a1, . . . , an) ∈ Dom µ, b ∈ Aε, x ∈ Xε and x

is free from b in ai (i = 1, . . . , n). Then x is free from b in µ(a1, . . . , an).

Proof We have Sµ = ∅ by Lemma 3.10. Therefore x is free from b in
µ(a1, . . . , an) by Theorem 2.10. ¥

Lemma 3.13 For each a ∈ A, Pa is a finite set.

Proof By Lemma 2.2, La is a finite set. Since each p ∈ P has at most
finite endpoints, Pa is a finite set. ¥

Lemma 3.14 Let a, b ∈ A and QK = {xk | x ∈ Q, k ∈ K}. If La ∩ QK ⊆
Lb ∩ QK, then Pa ⊆ Pb.

Proof Let p ∈ P and suppose p ∈ Pa. Then there exist elements p ∈ P

and k ∈ K such that p is an endpoint of p, and pk or ¬pk occurs in a. Since
La ∩ QK ⊆ Lb ∩ QK, pk or ¬pk occurs in b. Hence p ∈ Pb. ¥

Lemma 3.15 Let a, a ′ ∈ A. If a is parallel to a ′, then Pa = Pa′
.

Proof Define a relation R on A by c R c ′ if and only if Lc∩QK = Lc′ ∩QK

and σc = σc ′, where QK = {xk | x ∈ Q, k ∈ K}. Then R is sort-consistent.
We prove that R is a congruence relation satisfying (2.5) in Theorem 2.4.

Suppose (a1, . . . , ak) ∈ Dom µ and aj Ra ′
j for j = 1, . . . , k. Then (a1, . . . ,

ak) ∈ Domµ because σaj = σa ′
j for j = 1, . . . , k. Let c = µ(a1, . . . , ak) and

c ′ = µ(a ′
1, . . . , a

′
k). Then we have by Lemma 2.2 Lc ∩ QK = ({µ} ∩ QK) ∪
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(∪k
j=1 Laj ∩ QK

)
= ({µ}∩QK)∪

(∪k
j=1 L

a′
j ∩ QK

)
= Lc′∩QK. Since (A, T, σ)

is a sorted algebra, σc = σc ′.
Next suppose f, g ∈ A∅, x, y ∈ Xε, g = f(x/y), y 6¿ f and x is free from

y in f. Then g(y/x) = f by Lemma 2.13, hence Lf = Lg by Lemma 2.8.
Let c = fΩx and c ′ = g Ωy. Since the nominalizers do not belong to QK,
Lc ∩ QK = Lc′ ∩ QK. By the definition of the nominalizers, σc = σc ′.

Therefore, by Theorem 2.4, if a is parallel to a ′ then a Ra ′, in particular
La ∩ QK = La′ ∩ QK, hence Pa = Pa′

by Lemma 3.14. ¥

Lemma 3.16 Let a ∈ A, x ∈ Xε, c ∈ Aε, and b = a(x/c). Then Pb ⊆ Pa.

Proof By Lemma 2.5, Lb ⊆ La ∪ Lc. For each x ∈ Q and each k ∈ K, by
Lemma 3.7, xk /∈ Lc. Hence it follows that if xk occurs in b, it occurs in a.
Therefore Pb ⊆ Pa. ¥

4 MPC.1 relations

Let (A, T, σ, S, C, X, Γ) be an MPC language satisfying Assumption 3.1. In
this section, we introduce the MPC.1 law, and show the properties of the
relations which satisfy the MPC.1 law. The definition of the MPC.1 law is
due to [9].

4.1 Definition

Recall that G = Aδ ∪ Aε is the set of nominals and H =
∪

P∈PKAP the set
of predicates. We denote by H∗ the set of all sequences f1 · · · fn of elements
f1, . . . , fn of H of arbitrary finite length n ≥ 0. We denote elements of H∗

by α,β, . . . . When α = f1 · · · fn, we will denote the subset {f1, . . . , fn} of H

also by α.
Let 4 be a relation on H∗. We denote by ³ the intersection of the

restriction of 4 to H × H and its dual. That is to say, f ³ g if and only
if f 4 g and f < g for each f, g ∈ H. We call 4 an MPC.1 relation if it
satisfies the following MPC.1 law. The collection of the former nine laws
is called the Boolean law:

f 4 f, (repetition law)

α 4 β =⇒ fα 4 β,

α < β =⇒ fα < β,

}
(weakening law)

ffα 4 β =⇒ fα 4 β,

ffα < β =⇒ fα < β,

}
(contraction law)

αfgβ 4 γ =⇒ αgfβ 4 γ,

αfgβ < γ =⇒ αgfβ < γ,

}
(exchange law)
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α 4 fγ,

fβ 4 δ

}
=⇒ αβ 4 γδ, (strong cut law)

f ∧ g 4 f, f ∧ g 4 g, fg 4 f ∧ g, (conjunction law)

f ∨ g < f, f ∨ g < g, fg < f ∨ g, (disjunction law)

f♦ 4 f ⇒ g, g 4 f ⇒ g, f ⇒g 4 f♦g, (implication law)

ff♦ 4 , ff♦ < . (negation law)

The remaining twenty six laws are proper to MPCL.

4 f =⇒ 4 a ŏk f, (case+ law)

where a ∈ Aε and k ∈ Kf.

4 x ŏk f =⇒ 4 f, (case− law)

where x ∈ Xε, k ∈ Kf, and x 6¿ f.

4 f =⇒ 4 one ∀π (fΩx)4, (∀+ law)

where f ∈ A∅ and x ∈ Xε.
4 a ŏπa4, (= law)

where a ∈ Aε.
a λk (b ŏl f) ³ b ŏl (aλk f), (Q, ŏ law)

where a ∈ G,b ∈ Aε, f ∈ H, k, l ∈ Kf, k 6= l, and λ ∈ {ŏ} ∪ Q. Also a ∈ Aε

in case λ = ŏ.

(ai ŏki)i=1,...,l(f ∧ g) ³ (ai ŏki)i=1,...,mf ∧ (ai ŏki)i=n+1,...,lg, (∧ law)
(ai ŏki)i=1,...,l(f ∨ g) ³ (ai ŏki)i=1,...,mf ∨ (ai ŏki)i=n+1,...,lg, (∨ law)
(ai ŏki)i=1,...,l(f ⇒ g) ³ (ai ŏki)i=1,...,mf ⇒ (ai ŏki)i=n+1,...,lg, (⇒ law)

where a1, . . . , al ∈ Aε, f, g ∈ H, and k1, . . . , kl are distinct cases such
that k1, . . . , kn ∈ Kf − Kg, kn+1, . . . , km ∈ Kf ∩ Kg, and km+1, . . . , kl ∈
Kg − Kf (0 ≤ n ≤ m ≤ l). Also, (ai ŏki)i=1,...,lh is an abbreviation for
a1 ŏk1 (a2 ŏk2 (. . . (al ŏklh) . . . )).

(ai ŏki)i=1,...,n(f♦) ³
(
(ai ŏki)i=1,...,nf

)♦
, (♦ law)

where a1, . . . , an ∈ Aε, f ∈ H, and k1, . . . , kn are distinct cases in Kf.

a ¬pk f ³ a pk f♦, (¬ law)

a p◦k f ³ (a pk f)♦, (◦ law)
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where a ∈ G, f ∈ H, k ∈ Kf, and p ∈ P.

a (p ∩ q)k f ³ a pk f ∧ a qk f, (∩ law)
a (p ∪ q)k f ³ a pk f ∨ a qk f, (∪ law)

where a ∈ G, f ∈ H, k ∈ Kf and p, q ∈ P.

apk f ³ a pπ
(
(x ŏk f) Ωx

)
4, (P law)

where a ∈ G, f ∈ H, x ∈ Xε, p ∈ P, Kf = {k} and x 6¿ f.

a pπ b4 ³ (a u b)pπ one4, (4 law)

where a, b ∈ G, and p ∈ P.

f, one ∀π
(
(f ⇒ g)Ωx

)
4 4 one ∀π (gΩx)4, (∀,⇒ law)

where f, g ∈ A∅, x ∈ Xε, and x 6¿ f.

one ∀π
((

(x ŏπa4)⇒ (x ŏk f)
)
Ωx

)
4 4 a∀k f, (∀ law)

where x ∈ Xε, a ∈ G, f ∈ H,Kf = {k}, and x 6¿ a, f.

a∀πb4, a pk f 4 bpk f, (∀,P law)

where a, b ∈ G, f ∈ H, k ∈ Kf, and p ∈ P.

(a t b) p + qk f 4 a, pk f, b qk f, (t,+ law)

where a, b ∈ G, f ∈ H, k ∈ Kf, and p, q ∈ P.

one¤ pk f 4 , (one¤ law)

where f ∈ H, k ∈ Kf, and p ∈ P.

b ŏπa4 4 a ∃πone4, (∃ law)

where a ∈ G and b ∈ Aε.

(a u b)4 ³ a4 ∧ b4, (u law)
(a t b)4 ³ a4 ∨ b4, (t law)

(a¤)4 ³ (a4)♦, (¤ law)

where a, b ∈ G.
a ŏπ (fΩx)4 ³ f(x/a), (Ω law)

where a ∈ Aε, f ∈ A∅, x ∈ X, and x is free from a in f.

one ∀π (fΩx)4 4 f, (∀− law)

where f ∈ A∅ and x ∈ Xε.
This completes the list of the MPC.1 law.
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Remark 4.1 Notice that the MPC.1 law is regarded as a deduction system
on H∗ × H∗.

Theorem 4.1 The G-validity relation 4G of the predicate logical space
(H,G) is an MPC.1 relation.

Proof Consult [9, Theorem 2].

4.2 Properties of MPC.1 relations

In this subsection, let 4 be an MPC.1 relation.

Lemma 4.1 The following holds:

• αfgβ 4 γ ⇐⇒ α, f ∧ g, β 4 γ.

• αfgβ < γ ⇐⇒ α, f ∨ g, β < γ.

•
{

α 4 fβ ⇐⇒ f♦α 4 β,

α < fβ ⇐⇒ f♦α < β.

• fα 4 gβ ⇐⇒ α 4 f⇒ g, β.

• f1 ∧ · · · ∧ fn ³ (. . . (f1 ∧ f2) . . . ) ∧ fn,

f1 ∨ · · · ∨ fn ³ (. . . (f1 ∨ f2) . . . ) ∨ fn,

}
irrespective of the order of

applying the operations ∧ and ∨ on the left-hand side of ³.

• f1 4 g1,

f2 4 g2

}
=⇒ {

f1 ∧ f2 4 g1 ∧ g2,

f1 ∨ f2 4 g1 ∨ g2.

• α 4 β ⇐⇒ α 4 f ∧ f♦, β ⇐⇒ f ∨ f♦, α 4 β.

Proof Consult [9, Lemma 2.1].

Lemma 4.2 Let a1, . . . , an ∈ Aε, f1, . . . , fm ∈ H, and k1, . . . , kn be distinct
cases in Kf1

∩ · · · ∩ Kfm
. Then the following holds irrespective of the order

of applying the operations ∧ and ∨:

(a ŏki)i=1,...,n(f1 ∧ · · · ∧ fm) ³ (a ŏki)i=1,...,nf1 ∧ · · · ∧ (a ŏki)i=1,...,nfm,

(generalized ∧ law)
(a ŏki)i=1,...,n(f1 ∨ · · · ∨ fm) ³ (a ŏki)i=1,...,nf1 ∨ · · · ∨ (a ŏki)i=1,...,nfm.

(generalized ∨ law)

Proof Consult [9, Lemma 2.2].

Lemma 4.3 Let a ∈ G, f ∈ H, k ∈ Kf and p1, . . . , pn ∈ P. Then the
following holds irrespective of the order of applying the operations ∧,∨:

a (p1 ∩ · · · ∩ pn)k f ³ a p1k f ∧ · · · ∧ a pnk f, (generalized ∩ law)
a (p1 ∪ · · · ∪ pn)k f ³ a p1k f ∨ · · · ∨ a pnk f, (generalized ∪ law)

33



Proof Consult [9, Lemma 2.3].

Lemma 4.4 Let f1, . . . , fm, g1, . . . , gn ∈ H, α,β ∈ H∗, a ∈ Aε and k ∈ K.
Assume that k belongs to the ranges of f1, . . . , fm, g1, . . . , gn but does not
belong to those of the predicates in α ∪ β. Then the following holds:

f1 · · · fmα 4 g1 · · ·gnβ

=⇒ a ŏk f1, . . . , a ŏk fm, α 4 a ŏk g1, . . . , a ŏk gn, β.

(generalized case+ law)

Proof Consult [9, Lemma 2.6].

Lemma 4.5 Let f1, . . . , fm, g1, . . . , gn ∈ H, α,β ∈ H∗, x ∈ Xε and k ∈ K.
Assume that k belongs to the ranges of f1, . . . , fm, g1, . . . , gn but does not
belong to those of the predicates in α ∪ β and x does not occur free in the
predicates in {f1, . . . , fm, g1, . . . , gn} ∪ α ∪ β. Then the following holds:

x ŏk f1, . . . , x ŏk fm, α 4 x ŏk g1, . . . , x ŏk gn, β

=⇒ f1 · · · fmα 4 g1 · · ·gnβ. (generalized case− law)

Proof Consult [9, Lemma 2.7].

Lemma 4.6 Let x ∈ Xε, a, b1, . . . , bn ∈ G, α,β ∈ (A∅)
∗, f ∈ H, k ∈ Kf,

p, q1, . . . , qn ∈ P, and assume that x does not occur free in the elements
of {a, b1, . . . , bn} ∪ α ∪ β and that p ≥

∑n
i=1 qi holds, where if n = 0 then∑n

i=1 qi = 0 by definition. Then the following holds:

x ŏπa4, α 4 x ŏπ b14, . . . , x ŏπ bn4, β

=⇒ apk f, α 4 b1 q1k f, . . . , bnqnk f, β. (pigeonhole principle)

Remark 4.2 When n = 1 and q1 = p, the following holds:

x ŏπa4 4 x ŏπ b14 =⇒ a pk f 4 b1 pk f. (4.1)

Proof Consult [9, Lemma 2.8].

Lemma 4.7 Let a1, . . . , an ∈ Aε, f ∈ H, and k1, . . . , kn be distinct cases in
Kf. Then the following holds for every ρ ∈ Sn, where Sn is the symmetric
group on the letters 1, . . . , n:

(ai ŏki)i=1,...,nf ³ (aρi ŏkρi)i=1,...,nf. (permutation law)

Proof Consult [9, Lemma 2.9].

Lemma 4.8 Let a1, . . . , an ∈ Aε, f, g ∈ H and k1, . . . , kn be distinct cases
in Kf ∩ Kg. If f 4 g, then (ai ŏki)i=1,...,nf 4 (ai ŏki)i=1,...,ng.
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Proof Apply the generalized case+ law to f 4 g, n times. ¥

Lemma 4.9 Let f1, . . . , fn ∈ H. Then the following holds:

f1 . . . fn 4 f1 ∧ · · · ∧ fn,

f1 . . . fn < f1 ∨ · · · ∨ fn.

Proof We prove the first equation by induction on n. If n = 1, the con-
clusion is the repetition law itself. Assume n ≥ 2. We have

f1 . . . fn−1 4 f1 ∧ · · · ∧ fn−1

by the inductive hypothesis, and

f1 ∧ · · · ∧ fn−1, fn 4 f1 ∧ · · · ∧ fn

by the conjunction law. Applying the strong cut law to the above two
equations, we have the conclusion.

A similar argument holds for the second equation. ¥

Lemma 4.10 Let a ∈ G, b1, . . . , bn ∈ Aε, f ∈ H, k, k1, . . . , kn be distinct
cases in Kf, and λ ∈ {ŏ} ∪ Q. Also assume a ∈ Aε in case λ = ŏ. Then the
following holds:

aλk
(
(bi ŏki)i=1,...,nf

)
³ (bi ŏki)i=1,...,n(aλk f). (generalized Q, ŏ law)

Proof We use induction on n. If n = 0, then the conclusion follows from
the repetition law. Suppose n ≥ 1. We have

aλk
(
(bi ŏki)i=2,...,nf

)
³ (bi ŏki)i=2,...,n(a λk f)

by the inductive hypothesis, hence

b1 ŏk1

(
aλk

(
(bi ŏki)i=2,...,nf

))
³ (bi ŏki)i=1,...,n(aλk f)

by Lemma 4.8. We have

aλk
(
(bi ŏki)i=1,...,nf

)
³ b1 ŏk1

(
aλk

(
(bi ŏki)i=2,...,nf

))
by the Q, ŏ law. Applying the strong cut law to the above two equations,
we have the conclusion. ¥

Lemma 4.11 Let f, g ∈ H and x ∈ Xε. If f 4 g, then (fΩx)4 4 (gΩx)4.
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Proof Notice that x is free from x in both f and g by Lemma 2.7, and also
that f(x/x) = f and g(x/x) = g. We have

x ŏπ (fΩx)4 ³ f,

x ŏπ (g Ωx)4 ³ g

by the Ω law. Applying the strong cut law to f 4 g with the above two
equations, we have

x ŏπ (fΩx)4 4 x ŏπ (gΩx)4.

Since x does not occur free in (fΩx)4 nor in (gΩx)4, we have

(fΩx)4 4 (gΩx)4

by the generalized case− law. ¥

Lemma 4.12 Let a1, . . . , an ∈ Aε, f, f1, . . . , fm ∈ H, and k1, . . . , kn be
distinct cases of Kf ∩ Kf1

∩ · · · ∩ Kfm
. If f ³ f1 ∧ · · · ∧ fm then

(ai ŏki)i=1,...,nf ³ (ai ŏki)i=1,...,nf1 ∧ · · · ∧ (ai ŏki)i=1,...,nfm,

while if f ³ f1 ∨ · · · ∨ fm then

(ai ŏki)i=1,...,nf ³ (ai ŏki)i=1,...,nf1 ∨ · · · ∨ (ai ŏki)i=1,...,nfm.

Proof Suppose f ³ f1 ∧ · · · ∧ fm. Then we have

(ai ŏki)i=1,...,nf ³ (ai ŏki)i=1,...,n(f1 ∧ · · · ∧ fm)

by Lemma 4.8. We have

(ai ŏki)i=1,...,n(f1 ∧ · · ·∧ fm) ³ (ai ŏki)i=1,...,nf1 ∧ · · ·∧ (ai ŏki)i=1,...,nfm

by the generalized ∧ law. Applying the strong cut law to the above two
equations, we have the first conclusion.

A similar argument holds for the second equation. ¥

Lemma 4.13 Let a1, . . . , an ∈ Aε, f, g ∈ H, and k1, . . . , kn be distinct
cases of Kf ∩ Kg. If f ³ g♦ then (ai ŏki)i=1,...,nf ³

(
(ai ŏki)i=1,...,ng

)♦.

Proof Since f ³ g♦, we have

(ai ŏki)i=1,...,nf ³ (ai ŏki)i=1,...,ng♦

by Lemma 4.8. We have

(ai ŏki)i=1,...,ng♦ ³
(
(ai ŏki)i=1,...,ng

)♦

by the ♦ law. Applying the strong cut law to the above two equations, we
have the conclusion. ¥
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Lemma 4.14 Let a1, . . . , an ∈ Aε, f ∈ H, k, k1, . . . , kn be distinct cases of
Kf, and p1, . . . , pm ∈ P. Then the following holds:

(ai ŏki)i=1,...,n(a (p1 ∩ · · · ∩ pm)k f)

³ (ai ŏki)i=1,...,n(a p1k f) ∧ · · · ∧ (ai ŏki)i=1,...,n(a pmk f),

(ai ŏki)i=1,...,n(a (p1 ∪ · · · ∪ pm)k f)

³ (ai ŏki)i=1,...,n(a p1k f) ∨ · · · ∨ (ai ŏki)i=1,...,n(a pmk f).

Proof Let h = a (p1 ∩ · · · ∩ pm)k f, and hj = a pjk f for j = 1, . . . ,m.
We have h ³ h1 ∧ · · · ∧ hm by the generalized ∩ law. It follows that
Kh = Kh1

= · · · = Khm
= Kf − {k}, and that k1, . . . , kn are distinct cases of

Kh. Therefore we have the first conclusion by Lemma 4.12.
A similar argument holds for the second conclusion. ¥

Lemma 4.15 Let a1, . . . , an ∈ Aε, f ∈ H, k, k1, . . . , kn be distinct cases of
Kf, and p ∈ P. Then the following holds:

(ai ŏki)i=1,...,n(a ¬pk f) ³ (ai ŏki)i=1,...,n(a pk f♦),

(ai ŏki)i=1,...,n(a p◦k f) ³
(
(ai ŏki)i=1,...,n(a pk f)

)♦
.

Proof We have a ¬pk f ³ a pk f♦ by the ¬ law, hence we have the first
conclusion by Lemma 4.8.

We have a p◦k f ³ (a pk f)♦ by the ◦ law. It follows that k1, . . . , kn are
distinct cases of the ranges of both a p◦k f and (a pk f)♦. Therefore we have
the second conclusion by Lemma 4.13. ¥

Lemma 4.16 Let a ∈ Aε, b, c ∈ G. Then the following holds:

a ŏπ (b u c)4 ³ a ŏπb4 ∧ a ŏπ c4,

a ŏπ (b t c)4 ³ a ŏπb4 ∨ a ŏπ c4,

a ŏπ b¤4 ³ (a ŏπb4)♦.

Proof We have (bu c)4 ³ b4∧ c4 by the u law, hence we have the first
conclusion.

The second conclusion is proved similarly.
We have b¤4 ³ (b4)♦ by the ♦ law, hence we have the third conclusion

by Lemma 4.13. ¥

Lemma 4.17 Let a ∈ G, f ∈ H, x ∈ Xε, k ∈ Kf and p ∈ P. Also, let
a1, . . . , an ∈ Aε and k1, . . . , kn be the set of distinct cases in Kf − {k}.
Assume x 6¿ (ai ŏki)i=1,...,nf. Then the following holds:

(ai ŏki)i=1,...,n(a pk f) ³
(
a u

(
x ŏk (ai ŏki)i=1,...,nf

)
Ωx

)
pπone4.

Proof Consult [9, Lemma 2.10].
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4.3 Alternative lemma

Let (A, T, σ, S, C, X, Γ) be an MPC language satisfying Assumption 3.1, (A,

W, (IW)W∈W) be the logical system MPCL on it, and 4 be an MPC.1 re-
lation contained in the validity relation 4G of the predicate logical space
(H,G).

Lemma 4.18 Let a, b ∈ G, f, g ∈ H, λ ∈ {ŏ}∪Q and k ∈ Kf∩Kg. Assume
also a, b ∈ Aε in case λ = ŏ. If a4 ³ b4 and f ³ g, then aλk f ³ bλk g.

Proof (i) First we consider the case where λ = ŏ. In this case a and b

must belong to Aε. If a = b, then we have the conclusion a ŏk f ³ b ŏk g

by Lemma 4.8. So it suffices to prove that a = b. Assume a 6= b to deduce
a contradiction. Since a4 ³ b4, we have a ŏπa4 ³ a ŏπb4 by Lemma
4.8. We construct an MPC world W denotable for A as follows. Define the
base S of W by S = Aε, let ∃ be the equality relation on S, and define a
P-measure arbitrarily. Next we define a C-denotation Φ into W such that
Φc = c for each c ∈ Cε, and an X-denotation v into W such that vx = x

for each x ∈ Xε. Then (Φ∗a)v = a and (Φ∗b)v = b by Lemma 3.8. Since
a∃a and b 6 ∃a, we have

(
Φ∗(a ŏπ a4)

)
v = 1 and

(
Φ∗(a ŏπb4)

)
v = 0 by

Lemma 3.3. This contradicts that 4 is contained in 4G.
(ii) Next we consider the case where λ = p with p ∈ P. Take x ∈ Xε

which does not occur free in f nor in g. This can be done because Xε is an
infinite set. By the P law and the 4 law, we have

a pkf ³
(
a u (x ŏk f) Ωx

)
pπone4, (4.2)

bpkg ³
(
b u (x ŏk g) Ωx

)
pπ one4. (4.3)

Since f ³ g, we have x ŏk f ³ x ŏk g by Lemma 4.8, hence(
(x ŏk f) Ωx

)
4 ³

(
(x ŏk g)Ωx

)
4

by Lemma 4.11. This together with a4 ³ b4 implies

a4 ∧
(
(x ŏk f)Ωx

)
4 ³ b4 ∧

(
(x ŏk g) Ωx

)
4

by Lemma 4.1. We have(
a u (x ŏk f) Ωx

)
4 ³ a4 ∧

(
(x ŏk f)Ωx

)
4,(

b u (x ŏk g) Ωx
)
4 ³ b4 ∧

(
(x ŏk g) Ωx

)
4

by the u law. Applying the strong cut law to the above three equations, we
have (

a u (x ŏk f) Ωx
)
4 ³

(
b u (x ŏk g)Ωx

)
4.

Take y ∈ Xε which does not occur free in
(
a u (x ŏk f)Ωx

)
4 nor in

(
b u

(x ŏk g) Ωx
)
4. Then

y ŏπ
(
a u (x ŏk f)Ωx

)
4 ³ y ŏπ

(
b u (x ŏk g)Ωx

)
4
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by Lemma 4.8, hence we have(
a u (x ŏk f) Ωx

)
pπone4 ³

(
b u (x ŏk g) Ωx

)
pπone4

by the pigeonhole principle or (4.1). Applying the strong cut law to (4.2),
(4.3) and the above equation, we have

a pkf ³ bpkg,

which is the conclusion.
(iii) The case where λ = (←p] with p ∈ P. We have a pk f ³ bpkg by

the case (ii), hence
(a pk f)♦ ³ (bpkg)♦

by Lemma 4.1. We have

a (← p]k f ³ (a pk f)♦,

b (← p]kg ³ (bpkg)♦,

by the ◦ law. Applying the strong cut law to the above three equations, we
have

a (←p]k f ³ b (← p]kg,

which is the conclusion.
(iv) The case where λ = (p, q] with p, q ∈ P. We have

apk f ³ bpkg

by the case (ii), and
a (← q]k f ³ b (←q]kg

by the case (iii), hence we have

a pk f ∧ a (←q]k f ³ bpkg ∧ a (← q]kg

by Lemma 4.1. We have

a (p, q]k f ³ a pk f ∧ a (← q]k f,

b (p, q]kg ³ bpkg ∧ a (← q]kg

by the ∩ law. Applying the strong cut law to the above three equations, we
have

a (p, q]k f ³ b (p, q]kg,

which is the conclusion.
(v) The case where λ = p ∈ P. Let p1, . . . , pm be the connected compo-

nents of p. Then, for each i ∈ {1, . . . , m}, pi is of the form p, (← p], or (p, q],
where p, q ∈ P. So we have

a pik f ³ b pik g
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by the cases (ii)-(iv), hence

a p1k f ∨ · · · ∨ a pmk f ³ b p1kg ∨ · · · ∨ b pmkg

by Lemma 4.1. We have

a pk f ³ a p1k f ∨ · · · ∨ a pmk f,

b pkg ³ b p1kg ∨ · · · ∨ b pmk g

by the generalized ∪ law. Applying the strong cut law to the above three
equations, we have

a pk f ³ b pkg,

which is the conclusion.
(vi) Finally we consider the case where λ = ¬p with p ∈ P. We have

f♦ ³ g♦ by Lemma 4.1, hence

a pk f♦ ³ b pkg♦

by the case (v). We have

a ¬pk f ³ a pk f♦,

b¬pkg ³ b pkg♦

by the ¬ law. Applying the strong cut law to the above three equations, we
have

a ¬pk f ³ b¬pkg,

which is the conclusion. ¥

Lemma 4.19 If a ∈ A, b ∈ Aε and x ∈ Xε, then there exists an element
â ∈ A parallel to a satisfying the following conditions:

• x is free from b in â.

• If a ∈ Aε, then a = â.

• If a ∈ H, then a ³ â.

• If a ∈ G, then a4 ³ â4.

We call such â an (x, b)-alternative of a.

Remark 4.3 By the definition of the parallelism relation, a ‖ â implies
σa = σâ. In particular, if a ∈ H then â ∈ H, while if a ∈ G then â ∈ G.
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Proof We use induction on Ranka. First we assume that Rank a = 0,
that is, a ∈ S. Let â = a. Then a ‖ â. x is free from b in â by Lemma 3.11.
By the repetition law, if a ∈ H then a ³ â, while if a ∈ G then a4 ³ â4.

Henceforth we assume that Rank a ≥ 1. Then, by Theorem 2.2, a has a
unique word form a = µ(a1, . . . , an), and Rankai < Rank a for i = 1, . . . , n.
For each ai there exists an element âi ∈ A parallel to ai satisfying the
conditions of Lemma 4.19 by the inductive hypothesis.

(i) The case where µ ∈ L ∩ Γ . Let â = µ(â1, . . . , ân). Then â is
parallel to a by Remark 2.4, and x is free from b in â by Lemma 3.12.

If a ∈ Aε, then µ = f ∈ F by Lemma 3.7, so that a = f(a1, . . . , an) and
â = f(â1, . . . , ân), hence a1, . . . , an ∈ Aε. We have ai = âi by the inductive
hypothesis, hence f(a1, . . . , an) = f(â1, . . . , ân).

Next we will prove that if a ∈ H then a ³ â. Here µ must be one of
λk (λ ∈ {ŏ} ∪ Q, k ∈ K), ∧,∨, ⇒, ♦ and 4.

Assume µ = λk where λ ∈ {ŏ}∪Q and k ∈ K. Then we have a = a1 λka2

and â = â1 λk â2, hence a1 ∈ G, a2 ∈ H. We have a14 ³ â14 and a2 ³ â2

by the inductive hypothesis. Hence a1 λka2 ³ â1 λk â2 by Lemma 4.18.
Assume µ = ∧. Then a = a1 ∧ a2 and â = â1 ∧ â2, hence a1, a2 ∈ H.

We have a1 ³ â1 and a2 ³ â2 by the inductive hypothesis. Hence a1∧a2 ³
â1 ∧ â2 by Lemma 4.1. Similar arguments hold when µ = ∨ or ⇒.

Assume µ = ♦. Then we have a = a♦
1 and â = â1

♦, hence a1 ∈ H. We
have a1 ³ â1 by the inductive hypothesis. Hence a♦

1 ³ â1
♦ by Lemma 4.1.

Assume µ = 4. Then we have a = a14 and â = â14, hence a1 ∈ G.
By the inductive hypothesis, it is clear that a14 ³ â14.

In what follows we will prove that if a ∈ G then a4 ³ â4. Here µ must
be one of u,t, ¤ and f (f ∈ F).

Assume µ = u. Then we have a = a1ua2 and â = â1uâ2, hence a1, a2 ∈
G. We have a14 ³ â14 and a24 ³ â24 by the inductive hypothesis.
Hence

a14 ∧ a24 ³ â14 ∧ â24

by Lemma 4.1. We have

(a1 u a2)4 ³ a14 ∧ a24,

(â1 u â2)4 ³ â14 ∧ â24

by the u law. Applying the strong cut law to the above three equations, we
have (a1 u a2)4 ³ (â1 u â2)4. A similar argument holds when µ = t.

Next assume µ = ¤. Then a = a¤
1 and â = â1

¤, hence a1 ∈ G. We
have a14 ³ â14 by the inductive hypothesis. Hence

(a14)♦ ³ (â14)♦
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by Lemma 4.1. We have

(a¤
1 )4 ³ (a14)♦,

(â1
¤)4 ³ (â14)♦

by the ¤ law. Applying the strong cut law to the above three equations, we
have (a¤

1 )4 ³ (â1
¤)4.

Next assume µ = f ∈ F. Then a = f(a1, . . . , an) and â = f(â1, . . . , ân),
hence a1, . . . , an ∈ Aε. For each i ∈ {1, . . . , n}, we have ai = âi by the
inductive hypothesis. It is clear that f(a1, . . . , an) = f(â1, . . . , ân), hence
f(a1, . . . , an)4 ³ f(â1, . . . , ân)4 by the repetition law.

(ii) The case where µ ∈ L ∩ ΓX. In this case we have a = a1 Ωy for
some y ∈ Xε, hence a1 ∈ H. By Lemmas 2.1 and 2.2, we can take z ∈ Xε

such that z 6= x, z 6¿ b, z 6¿ â1, and z /∈ Sν for each ν ∈ Lâ1 . Then, by
Lemma 2.4, y is free from z in â1. Let â = â1(y/z) Ωz, where (y/z) is
the substitution of z for y. From the inductive hypothesis it follows that
a1 ‖ â1, hence a1 Ωy ‖ â1 Ωy by Remark 2.4. Since z 6¿ â1 and y is free
from z in â1, we have â1 Ωy ‖ â1(y/z)Ωz by Remark 2.4. Therefore a ‖ â.
By the inductive hypothesis, x is free from b in â1. Since z 6= x, it follows
that x 6¿ z, hence x is free from b in â1(y/z) by Lemma 2.11. Since z 6¿ b,
we have (SΩz)b

free = ∅, hence x is free from b in â1(y/z) Ωz by Theorem 2.10.
Finally we will prove that a4 ³ â4. We have a1 ³ â1 by the inductive
hypothesis, hence

(a1 Ωy)4 ³ (â1 Ωy)4 (4.4)

by Lemma 4.11. Since y is free from z in â1, we have

z ŏπ (â1 Ωy)4 ³ â1(y/z),

z ŏπ
(
â1(y/z) Ωz

)
4 ³ â1(y/z)

by the Ω law. Applying the strong cut law to these two equations, we have

z ŏπ (â1 Ωy)4 ³ z ŏπ
(
â1(y/z)Ωz

)
4.

Since z does not occur free in (â1 Ωy)4 nor in
(
â1(y/z) Ωz

)
4, we have

(â1 Ωy)4 ³
(
â1(y/z) Ωz

)
4 (4.5)

by the generalized case− law. Applying the strong cut law to (4.4) and
(4.5), we have (a1 Ωy)4 ³

(
â1(y/z) Ωz

)
4, that is, a4 ³ â4. ¥

Lemma 4.20 Let f ∈ A∅, x ∈ Xε, a ∈ Aε, and g be an (x, a)-alternative of
f. Then a ŏπ (fΩx)4 ³ g(x/a).
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Proof By Lemma 4.19, f ³ g. Hence we have (fΩx)4 ³ (gΩx)4 by
Lemma 4.11, and

a ŏπ (fΩx)4 ³ a ŏπ (gΩx)4

by Lemma 4.8. Since x is free from a in g by Lemma 4.19, we have

a ŏπ (g Ωx)4 ³ g(x/a)

by the Ω law. Applying the strong cut law to the above two equations, we
have the conclusion. ¥

5 The existence theorem

Let (A, T, σ, S, C, X, Γ) be an MPC language satisfying Assumption 3.1, (A,

W, (IW)W∈W) be the logical system MPCL on it, and 4 be an MPC.1 re-
lation contained in the validity relation 4G of the predicate logical space
(H,G).

Theorem 5.1 Let X, Y ⊆ A∅, and (X, Y) be a cut of H by 4. Assume
that [PX∪Y ∪ {0}] is well-ordered and that PX∪Y has an upper bound in P.
Furthermore, assume that there exist κ many elements of Xε which do not
occur free in the predicates in X ∪ Y, where κ = #A. Then there exists an
F-model of (X, Y).

Remark 5.1 The assumption on Xε in Theorem 5.1 is satisfied, for exam-
ple, if the cut (X, Y) is finite.

Before proving Theorem 5.1, we derive the following corollary.

Corollary 5.1 Assume the quantity system P of A is well-ordered and has
the largest element ∞. Let (X, Y) be a cut of H by 4. Furthermore, assume
that there exist κ many elements of Xε which do not occur free in the
predicates in X ∪ Y, where κ = #A. Then there exists a G-model of (X, Y).

Proof Let K ′ =
∪

h∈HKh, and let C be a total order on K ′. We can take
distinct elements xk ∈ Xε (k ∈ K ′) which do not occur free in the predicates
in X ∪ Y. This can be done because #K ′ ≤ #A.8 For each h ∈ H, we will
define an element h̄ ∈ A∅ as follows. The range Kh is a finite set, so let
k1, . . . , kl be the set of distinct cases in Kh satisfying k1 B k2 B · · · B kl,
and define h̄ = (xki

ŏki)i=1,...,lh. Notice that if Kh = ∅ then h̄ = h. Let
X̄ = {f̄ | f ∈ X} and Ȳ = {ḡ | g ∈ Y}. We will prove that (X̄, Ȳ) is a cut of H

by 4. Assume that there exist elements f1, . . . , fm ∈ X and g1, . . . , gn ∈ Y

satisfying f̄1 . . . f̄m 4 ḡ1 . . . ḡn, to deduce a contradiction. The set
∪m

i=1 Kfi
∪

8If f, f ′ ∈ H, k ∈ Kf, k ′ ∈ Kf ′ , x, x ′ ∈ Xε and k 6= k ′, then x ŏk f and x ′ ŏk ′ f ′ are
distinct elements of H. Therefore #(

S

f∈H
Kf) ≤ #A.
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∪n
j=1 Kgj

is a finite set, so let N be its cardinality. Applying the generalized
case− law N times to f̄1 . . . f̄m 4 ḡ1 . . . ḡn, we have f1 . . . fm 4 g1 . . . gn.
This contradicts that (X, Y) is a cut.

Since P is well-ordered and has the largest element, it is obvious that
[PX̄∪Ȳ ∪ {0}] is well-ordered and PX̄∪Ȳ has an upper bound in P. We may
assume that there exist κ many elements of Xε which do not occur free in the
predicates in X̄∪ Ȳ, where κ = #A. Therefore, by Theorem 5.1, there exists
an MPC world W ∈ W with a C-denotation Φ into W and an X-denotation
v into W satisfying (Φ∗f̄)v = 1 for each f̄ ∈ X̄ and (Φ∗ḡ)v = 0 for each
ḡ ∈ Ȳ. Define θ ∈ K → Wε so that θk = (Φ∗xk)v holds for each k ∈ K ′.
For each h ∈ H, we have h̄ = (xki

ŏki)i=1,...,lh ∈ A∅, and by Lemma 3.9 we
have (

(Φ∗h)v
)
(θ|Kh

) = (θki ŏki)i=1,...,l(Φ
∗h)v

=
(
(Φ∗xki

)v ŏki

)
i=1,...,l

(Φ∗h)v

=
(
Φ∗((xki

ŏki)i=1,...,lh
))

v

= (Φ∗h̄)v.

Therefore, if f ∈ X then
(
(Φ∗f)v

)
(θ|Kf

) = (Φ∗f̄)v = 1, while if g ∈ Y then(
(Φ∗g)v

)
(θ|Kg

) = (Φ∗ḡ)v = 0. ¥

The rest of this section is devoted to the proof of Theorem 5.1.
We start the proof by constructing a set Z ⊆ A∅ as follows. We can

well-order all the sequences (a, b1, . . . , bm;p, q1, . . . , qm) such that m ≥ 0,
a, b1, . . . , bm ∈ G, p, q1, . . . , qm ∈ PX∪Y∪{0}, Pa∪

∪m
i=1 Pbi ⊆ PX∪Y∪{0} and

p ≥
∑m

i=1 qi. Let κ = #A. Notice that there exist κ many such sequences
because #G = #A and #P ≤ #A.9 We denote the j-th sequence by Dj.
We will define an element hj ∈ A∅ for each ordinal j < κ inductively as
follows. Suppose hl is defined for each l < j. We can take xj ∈ Xε which
does not occur free in the elements in X ∪ Y ∪ {hl | l < j} ∪ {a, b1, . . . , bm},
where Dj = (a, b1, . . . , bm;p, q1, . . . , qm). Then we define hj = f ⇒ g, where

f = apπone4 ∧ (b1 q1πone4)♦ ∧ · · · ∧ (bmqmπone4)♦,

g = xj ŏπ a4 ∧ (xj ŏπ b14)♦ ∧ · · · ∧ (xj ŏπ bm4)♦.

We define Z = {hj | j < κ}.

Remark 5.2 By the way of the construction of Z, the following condition
holds:

• If a, b1, . . . , bm ∈ G, p, q1, . . . , qm ∈ PX∪Y ∪ {0}, Pa ∪
∪m

i=1 Pbi ⊆
PX∪Y ∪ {0} and p ≥

∑m
i=1 qi, then there exist elements h ∈ Z and

9#Xε ≤ #G ≤ #A = #Xε by the condition 3 in Assumption 3.1. If p, q ∈ P and
x ∈ Xε , then x pπ x4 and x qπ x4 are distinct elements of H.
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x ∈ Xε satisfying h = f ⇒ g, where

f = a pπone4 ∧ (b1 q1πone4)♦ ∧ · · · ∧ (bmqmπone4)♦,

g = x ŏπa4 ∧ (x ŏπ b14)♦ ∧ · · · ∧ (x ŏπ bm4)♦.

Remark 5.3 From the way of the construction of Z, it follows that PZ ⊆
PX∪Y ∪ {0}.

Lemma 5.1 (X ∪ Z, Y) is a cut of H by 4.

Proof Assume that (X ∪ Z, Y) is not a cut to deduce a contradiction. Let
n be the smallest integer such that

α, hj1 , . . . , hjn 4 β (5.1)

holds for some α ⊆ X, β ⊆ Y and some ordinals j1 < · · · < jn. Then n ≥ 1

because (X, Y) is a cut of H by 4.
By the way of the construction of hjn , there exist a sequence Djn =

(a, b1, . . . , bm; p, q1, . . . , qm) and an element xjn ∈ Xε such that hjn =

fjn ⇒ gjn , where

fjn = a pπone4 ∧ (b1 q1πone4)♦ ∧ · · · ∧ (bmqmπone4)♦,

gjn = xjn ŏπ a4 ∧ (xjn ŏπ b14)♦ ∧ · · · ∧ (xjn ŏπ bm4)♦.

We have

4 fjn , hjn , (5.2)
gjn 4 hjn . (5.3)

by the implication law and Lemma 4.1. We have

α, hj1 , . . . , hjn−1
4 β, fjn (5.4)

by applying the strong cut law to (5.1) and (5.2), and

α, hj1 , . . . , hjn−1
, gjn 4 β (5.5)

by applying the strong cut law to (5.1) and (5.3). We have

α, hj1 , . . . , hjn−1
, xjn ŏπ a4 4 β, xjn ŏπ b14, . . . , xjn ŏπ bm4

by (5.5) and Lemma 4.1. Since xjn does not occur free in the elements in
α ∪ β ∪ {hj1 , . . . , hjn−1

, a, b1, . . . , bm} and p ≥
∑m

i=1 qi holds, we have

α, hj1 , . . . , hjn−1
, a pπone4 4 β, b1 q1π one4, . . . , bmqmπone4
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by the pigeonhole principle, hence

α, hj1 , . . . , hjn−1
, fjn 4 β (5.6)

by Lemma 4.1. Applying the strong cut law to (5.4) and (5.6), we have

α, hj1 , . . . , hjn−1
4 β.

This contradicts that n is the smallest. ¥

Lemma 5.2 A partial order ≤ on the set of cuts of H by 4 is defined by

(P1,Q1) ≤ (P2,Q2) ⇐⇒ {
P1 ⊆ P2, Q1 ⊆ Q2, and
PP1∪Q1 ∪ {0} = PP2∪Q2 ∪ {0}.

Then the order ≤ is inductive.

Proof Let I be a non-empty set and
(
(Pi,Qi)

)
i∈I

be totally ordered. Define
P =

∪
i∈I Pi, Q =

∪
i∈I Qi. Then

p ∈ PP∪Q ∪ {0}⇐⇒ p ∈ PPi∪Qi ∪ {0} for some i ∈ I⇐⇒ p ∈ PPi∪Qi ∪ {0} for all i ∈ I.

Assume that α 4 β for some α ⊆ P, β ⊆ Q. Then there exists an element
i ∈ I such that α ⊆ Pi and β ⊆ Qi. This contradicts that (Pi,Qi) is a cut.
Therefore (P,Q) is a cut, and it is the least upper bound with respect to ≤.

¥

By Lemma 5.2, there exists a ≤-maximal cut (P,Q) of H by 4 such that
(X ∪ Z, Y) ≤ (P,Q).

Remark 5.4 By the definition of ≤ and Remark 5.3, X ∪ Z ⊆ P, Y ⊆ Q

and PP∪Q ∪ {0} = PX∪Y ∪ {0}.

Lemma 5.3 P ∩ Q = ∅.

Proof Assume that h ∈ P ∩ Q. Since h 4 h by the repetition law, this
contradicts that (P,Q) is a cut of H by 4. ¥

Lemma 5.4 Let f ∈ H, α ∈ H∗ and assume that Pf ⊆ PP∪Q∪ {0}. If α ⊆ P

and α 4 f then f ∈ P, while if α ⊆ Q and f 4 α then f ∈ Q.

Proof Assume that α ⊆ P, α 4 f and that f /∈ P to deduce a contradiction.
Since (P,Q) is a maximal cut with respect to ≤ and PP∪{f}∪Q∪ {0} = PP∪Q∪
{0}, it follows that (P ∪ {f},Q) is not a cut. Hence fβ 4 γ for some β ⊆ P,
γ ⊆ Q. Applying the strong cut law to this with α 4 f, we have αβ 4 γ,
which contradicts that (P,Q) is a cut because α ⊆ P.

A similar argument holds for the latter assertion. ¥
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Lemma 5.5 Let f, f1, . . . , fn ∈ H. Then the following holds:

1. If f1 ∧ · · · ∧ fn ∈ P, then fi ∈ P for all i ∈ {1, . . . , n}.

2. If f1 ∧ · · · ∧ fn ∈ Q, then fi ∈ Q for some i ∈ {1, . . . , n}.

3. If f1 ∨ · · · ∨ fn ∈ P, then fi ∈ P for some i ∈ {1, . . . , n}.

4. If f1 ∧ · · · ∧ fn ∈ Q, then fi ∈ Q for all i ∈ {1, . . . , n}.

5. If f♦ ∈ P, then f ∈ Q.

6. If f♦ ∈ Q, then f ∈ P.

Proof 1. Assume that fi /∈ P for some i to deduce a contradiction. Since
(P,Q) is a maximal cut with respect to ≤ and PP∪{fi}∪Q = PP∪Q, it follows
that (P ∪ {fi},Q) is not a cut. Hence fiα 4 β for some α ⊆ P, β ⊆ Q. We
have f1 . . . fnα 4 β by the weakening law, and f1∧ · · ·∧fnα 4 β by Lemma
4.1. This contradicts that (P,Q) is a cut because f1 ∧ · · · ∧ fn ∈ P.

2. Assume that fi /∈ Q for all i to deduce a contradiction. For each i,
it follows that (P,Q ∪ {fi}) is not a cut. Hence αi 4 fiβi for some αi ⊆ P,
βi ⊆ Q. We have f1 . . . fn 4 f1 ∧ · · · ∧ fn by Lemma 4.9. By applying the
strong cut law repeatedly, we have α1 . . . αn 4 f1 ∧ · · ·∧ fnβ1 . . . βn, which
contradicts that (P,Q) is a cut because f1 ∧ · · · ∧ fn ∈ Q.

3. Assume that fi /∈ P for all i to deduce a contradiction. For each i,
it follows that (P ∪ {fi},Q) is not a cut. Hence fiαi 4 βi for some αi ⊆ P,
βi ⊆ Q. We have f1 ∨ · · · ∨ fn 4 f1 . . . fn by Lemma 4.9. By applying the
strong cut law repeatedly, we have f1 ∨ · · ·∨ fnα1 . . . αn 4 β1 . . . βn, which
contradicts that (P,Q) is a cut because f1 ∨ · · · ∨ fn ∈ P.

4. Assume that fi /∈ Q for some i to deduce a contradiction. It follows
that (P,Q ∪ {fi}) is not a cut. Hence α 4 fiβ for some α ⊆ P, β ⊆ Q. We
have α 4 f1 . . . fnβ by the weakening law, and α 4 f1∨ · · ·∨fnβ by Lemma
4.1. This contradicts that (P,Q) is a cut because f1 ∧ · · · ∧ fn ∈ Q.

5. Assume that f /∈ Q to deduce a contradiction. It follows that (P,Q ∪
{f}) is not a cut. Hence α 4 fβ for some α ⊆ P, β ⊆ Q. By Lemma 4.1 we
have f♦α 4 β, which contradicts that (P,Q) is a cut because f♦ ∈ P.

6. Assume that f /∈ P to deduce a contradiction. It follows that (P ∪
{f},Q) is not a cut. Hence fα 4 β for some α ⊆ P, β ⊆ Q. By Lemma 4.1
we have α 4 f♦β, which contradicts that (P,Q) is a cut because f♦ ∈ Q. ¥

Lemma 5.6 Let a, b1, . . . , bm ∈ G and p, q1, . . . , qm ∈ P. If a pπone4 ∈
P, b1 q1πone4, . . . , bmqmπ one4 ∈ Q and p ≥

∑m
i=1 qi, then x ŏπa4 ∈

P, x ŏπ b14, . . . , x ŏπ bm4 ∈ Q for some x ∈ Xε.

Proof Since a pπone4 ∈ P, it follows that Pa ⊆ PP∪Q ⊆ PX∪Y ∪ {0}

by Remark 5.4. Similarly, Pbi ⊆ PX∪Y ∪ {0} for i = 1, . . . , m. And also
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p, q1, . . . , qm ∈ PX∪Y ∪ {0}. Since p ≥
∑m

i=1 qi, there exist elements x ∈ Xε

and h ∈ Z satisfying h = f ⇒ g, where

f = a pπone4 ∧ (b1 q1πone4)♦ ∧ · · · ∧ (bmqmπone4)♦,

g = x ŏπa4 ∧ (x ŏπ b14)♦ ∧ · · · ∧ (x ŏπ bm4)♦

by Remark 5.2. Since h ∈ Z ⊆ P, it follows that h /∈ Q by Lemma 5.3.
Therefore we have

α 4 β, h (5.7)

for some α ⊆ P, β ⊆ Q.
We assume x ŏπa4 /∈ P to deduce a contradiction. Since (P,Q) is a

maximal cut, we have
α ′, x ŏπ a4 4 β ′

for some α ′ ⊆ P, β ′ ⊆ Q. Hence we have

α ′, x ŏπ a4 4 β ′, x ŏπ b14, . . . , x ŏπ bm4

by the weakening law, and

α ′, (x ŏπa4 ∧ (x ŏπ b14)♦ ∧ (x ŏπ bm4)♦) 4 β ′,

that is,

α ′, g 4 β ′ (5.8)

by Lemma 4.1. We have

f, h 4 g (5.9)

by the implication law. Applying the strong cut law to (5.7), (5.8) and (5.9),
we have

α,α ′, f 4 β,β ′.

Therefore we have

α,α ′, a pπone4 4 β,β ′, b1 q1πone4, . . . , bmqmπ one4

by Lemma 4.1. The predicates in the left-hand side are contained in P,
while those in the right-hand side are contained in Q. This contradicts that
(P,Q) is a cut. A similar argument holds when x ŏπ bi4 /∈ Q for some
i ∈ {1, . . . , m}. ¥

Lemma 5.7 Let a ∈ G. If a∃π one4 ∈ Q, then b ŏπa4 ∈ Q for all
b ∈ Aε.
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Proof We have b ŏπa4 4 a∃πone4 by the ∃ law. Hence, by Lemma
5.4, we have the conclusion. ¥

Here we will construct an MPC world W denotable for A. In order to
construct W, it suffices to define the base S, the basic relation ∃ on S, the
P-measure | · | on S and the family of operations f ∈ F. Let S = Aε. For each
f ∈ F, we define the operation f on W to be the same as on A. We define
the basic relation by

b∃a ⇐⇒ a ŏπb4 /∈ Q.

We have 4 a ŏπa4 by the = law. Hence, by Lemmas 5.4 and 5.3,
a ŏπa4 /∈ Q. Therefore ∃ is reflexive.

We define the P-measure as follows. First, for each a ∈ G, we define
Sa ∈ PS by

Sa = {s ∈ S | s ŏπ a4 /∈ Q}. (5.10)

Next we define a relation R between PS and P by

UR p ⇐⇒


There exist elements b1, . . . , bm ∈ G and
q1, . . . , qm ∈ P satisfying
U ⊆

∪m
i=1 Sbi ,

p =
∑m

i=1 qi, and
bi qiπone4 ∈ Q for i = 1, . . . , m.

If m = 0, then
∪m

i=1 Sbi = ∅ and
∑m

i=1 qi = 0. Therefore ∅R0. If U ⊆ V and
V R p, then URp. If UR p and V Rq, then (U∪V) R (p+q). Next we define
an element ó to be an arbitrary element of P larger than any element of
PX∪Y∪ {0}. Such an element exists because PX∪Y is bounded and ∞ /∈ PX∪Y.
For each U ∈ PS, min

(
{p ∈ P | UR p} ∪ {ó}

)
exists because {p ∈ P | UR p} ⊆

[PX∪Y ∪ {0}] and [PX∪Y ∪ {0}] is well-ordered. In order to apply Lemma 3.2
to the relation R, we will prove that U R0 implies U = ∅. Let UR 0. Then
there exist elements b1, . . . , bm ∈ G, q1, . . . , qm ∈ P satisfying the above
conditions. Since

∑m
i=1 qi = 0, it follows that q1 = · · · = qm = 0, hence

c ŏπ bi4 ∈ Q for all c ∈ Aε by Lemma 5.7. Therefore U ⊆
∪m

i=1 Sbi = ∅ by
(5.10). Thus, by Lemma 3.2, we define the P-measure by

|U| = min
(
{p ∈ P | UR p} ∪ {ó}

)
. (5.11)

This completes the construction of W.
Next we define a C-denotation Φ into W as follows. For each a ∈ Cε,

we define Φa = a. For each a ∈ Cδ, we define Φa ∈ S → T by

(Φa)s = 1 ⇐⇒ s ŏπ a4 /∈ Q
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for each s ∈ S. For each f ∈ C ∩ H, we define Φf ∈ (Kf → S) → T by

(Φf)θ = 1 ⇐⇒ (θki ŏki)i=1,...,lf /∈ Q

for each θ ∈ Kf → S, where Kf = {k1, . . . , kl} and k1, . . . , kl are distinct.
The definition of Φf is irrelevant to the ordering of k1, . . . , kl by virtue of
the repetition law and Lemma 5.5. We define an X-denotation v into W

similarly as follows. For each a ∈ Xε, we define va = a. For each a ∈ Xδ,
we define va ∈ S → T by

(va)s = 1 ⇐⇒ s ŏπ a4 /∈ Q

for each s ∈ S. For each f ∈ X ∩ H, we define vf ∈ (Kf → S) → T by

(vf)θ = 1 ⇐⇒ (θki ŏki)i=1,...,lf /∈ Q

for each θ ∈ Kf → S, where Kf = {k1, . . . , kl} and k1, . . . , kl are distinct.

Remark 5.5 Let f, g ∈ H. If f ³ g, then (Φ∗f)v = (Φ∗g)v because 4 is
contained in 4G.

Lemma 5.8 Let ∞ be the largest element of P, if it exists. There exists a
mapping I of L q A into Z≥0 which satisfies the following conditions:

1. If µ ∈ L and (a1, . . . , an) ∈ Dom µ, then I(µ(a1, . . . , an)) = Iµ+ Ia1+

· · · + Ian.

2. If a ∈ {ŏk,4, f | k ∈ K, f ∈ F} q S, then Ia = 0.

3. If a ∈ {∧, ∨,⇒, ♦,u,t, ¤, Ωx | x ∈ Xε}, then Ia = 1.

4. If p ∈ P − {∞}, then I(pk) = 4 for each k ∈ K.

5. If p ∈ P − {∞}, then I((← p]k) = 5 for each k ∈ K.

6. If p is a connected quantifier in P other than those dealt with in (4)
and (5), then I(pk) = 6 for each k ∈ K.

7. If p is a disconnected quantifier in P, then I(pk) = 7 for each k ∈ K.

8. If x is a quantifier in ¬P, then I(xk) = 9 for each k ∈ K.

Proof Consult [9].

Lemma 5.9 If a ∈ A, x ∈ Xε, and b ∈ Aε, then I(a(x/b)) = Ia.

Proof Consult [9].
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Remark 5.6 Let a, b ∈ A. By Remark 2.4, the condition 1 of Lemma 5.8
and Lemma 5.9, it follows that if a is parallel to b, then Ia = Ib.

Lemma 5.10 Suppose W, Φ and v are defined as above. For each h ∈ A∅,
if h ∈ P then (Φ∗h)v = 1, while if h ∈ Q then (Φ∗h)v = 0.

Proof We use induction on Ih defined by Lemma 5.8. By Theorem 2.2,
we can determine l ≥ 0, a1, . . . , al ∈ Aε, k1, . . . , kl ∈ K and h ′ ∈ H −∪

k∈K Im ŏk satisfying h = (ai ŏki)i=1,...,lh
′. Then, by Lemma 5.8, it follows

that Ih = Ih ′. Let a1, . . . , al, k1, . . . , kl and h ′ be determined as above
throughout this proof. Also, we write (ai ŏki)ih

′ if there is no ambiguity.
Since h ′ ∈ H −

∪
k∈K Im ŏk, either h ′ ∈ S ∩ H or h ′ is one of the word

forms a xk f (x ∈ Q), f ∧ g, f ∨ g, f ⇒ g, f♦ and c4. If h ′ = c4, then
either c ∈ Sδ ∪ Aε or c is in one of the word forms a u b, a t b, a¤ and
fΩx (x ∈ Xε).

First we will assume that Ih = 0. Then either h ′ ∈ S ∩ H or h ′ = c4
for some c ∈ Sδ ∪ Aε. Suppose h ′ ∈ S ∩ H. Notice that Kh′ = {k1, . . . , kl}

because h ∈ A∅. We define θ ∈ Kh′ → S by θki = ai for i = 1, . . . , l. Then
we have

(Φ∗h)v =
(
Φ∗((ai ŏki)i h ′))v

=
(
(Φ∗ai)v ŏki

)
i
(Φ∗h ′)v

= (ai ŏki)i (Φ∗h ′)v (by Lemma 3.8)
= (θki ŏki)i (Φ∗h ′)v.

If h ∈ P, then h /∈ Q by Lemma 5.3, hence (Φ∗h)v = 1. If h ∈ Q, then
(Φ∗h)v = 0. Next suppose h ′ = c4 for some c ∈ Sδ ∪ Aε. Then we have
h = a1 ŏπ c4. We have

(Φ∗h)v =
(
Φ∗(a1 ŏπ c4)

)
v

= (Φ∗a1)v ŏπ
(
(Φ∗c)v

)
4

= a1 ŏπ
(
(Φ∗c)v

)
4 (by Lemma 3.8)

and

a1 ŏπ
(
(Φ∗c)v

)
4 = 1 ⇐⇒ (

(Φ∗c)v
)
∃a1⇐⇒ a1 ŏπ c4 /∈ Q

by the definition of Φ and v. If h ∈ P, then h /∈ Q by Lemma 5.3, hence
(Φ∗h)v = 1. If h ∈ Q, then (Φ∗h)v = 0.

Henceforth we will assume that Ih ≥ 1. The case where h ′ = a xk f with
x ∈ Q is divided into the cases (i)–(vi) below. The case (i) deals with the
case where x ∈ ¬P, where the case (ii) deals with the case where x ∈ P but
x is disconnected. If x ∈ P is connected, then by Assumption 3.1 x is in one
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of the four shapes P, (p, q] with p < q 6= ∞ or p = q = 0,10 (←p] with
p 6= ∞, and p with p 6= ∞. These cases are dealt with by the cases (iii)–(vi)
respectively.

(i) The case where h ′ = a ¬pk f with p ∈ P. In this case have h =

(ai ŏki)i (a ¬pk f). Let h̀ = (ai ŏki)i (a pk f♦). By Lemma 4.15 it follows
that h ³ h̀. By Remark 5.5, (Φ∗h)v = (Φ∗h̀)v. By Lemma 5.4, if h ∈ P

then h̀ ∈ P, while if h ∈ Q then h̀ ∈ Q. We have

Ih = I(a ¬pk f) = Ia + I(¬pk) + If = Ia + 9 + If

> Ia + 7 + If + 1 = Ia + 7 + I(f♦)

≥ Ia + I(pk) + I(f♦) = I(a pk f♦) = Ih̀,

hence if h̀ ∈ P then (Φ∗h̀)v = 1 while if h̀ ∈ Q then (Φ∗h̀)v = 0 by the
inductive hypothesis. Therefore the conclusion follows.

(ii) The case where h ′ = a pk f with disconnected p ∈ P. In this case we
have h = (ai ŏki)i (a pk f). Let p1, . . . , pm be the connected components of
p, and hj = (ai ŏki)i (a pjk f) for j = 1, . . . , m. Then Phj ⊆ Ph. By Lemma
4.14 it follows that h ³ h1 ∨ · · · ∨ hm. By Remark 5.5 and Lemma 3.6,
(Φ∗h)v =

(
Φ∗(h1 ∨ · · · ∨ hm)

)
v = (Φ∗h1)v ∨ · · · ∨ (Φ∗hm)v. By Lemmas

5.4 and 5.5, if h ∈ P then hj ∈ P for some j ∈ {1, . . . , m}, while if h ∈ Q

then hj ∈ Q for all j ∈ {1, . . . , m}. For each j ∈ {1, . . . ,m}, we have

Ih = I(a pk f) = Ia + I(pk) + If = Ia + 7 + If

> Ia + 6 + If ≥ Ia + I(pjk) + If = I(a pjk f) = Ihj,

hence if hj ∈ P then (Φ∗hj)v = 1 while if hj ∈ Q then (Φ∗hj)v = 0 by the
inductive hypothesis. Therefore the conclusion follows.

(iii) The case where h ′ = a Pk f. Here we have h = (ai ŏki)i (a Pk f).
Let h1 = (ai ŏki)i (a 0k f), h2 = (ai ŏki)i (a (← 0]k f). Then Phj ⊆ Ph ∪ {0}

for j = 1, 2. By Lemma 4.14 it follows that h ³ h1∨h2. By Remark 5.5 and
Lemma 3.6, (Φ∗h)v =

(
Φ∗(h1 ∨ h2)

)
v = (Φ∗h1)v ∨ (Φ∗h2)v. By Lemmas

5.4 and 5.5, if h ∈ P then h1 ∈ P or h2 ∈ P, while if h ∈ Q then h1 ∈ Q and
h2 ∈ Q. We have

Ih = I(a Pk f) = Ia + I(Pk) + If = Ia + 6 + If

>

{
Ia + 4 + If ≥ Ia + I(0k) + If = I(a 0k f) = Ih1

Ia + 5 + If ≥ Ia + I((← 0]k) + If = I(a (← 0]k f) = Ih2,

hence if hj ∈ P then (Φ∗hj)v = 1 while if hj ∈ Q then (Φ∗hj)v = 0 by the
inductive hypothesis (j = 1, 2). Therefore the conclusion follows.

(iv) The case where h ′ = a (p, q]k f with p, q ∈ P such that either
p < q 6= ∞ or p = q = 0. Here we have h = (ai ŏki)i (a (p, q]k f). Let h1 =

10In this argument ∅ ∈ P is treated as (0, 0].
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(ai ŏki)i (a pk f), h2 = (ai ŏki)i (a (← q]k f). By Lemma 4.14 it follows that
h ³ h1 ∧ h2. By Remark 5.5 and Lemma 3.6, (Φ∗h)v =

(
Φ∗(h1 ∧ h2)

)
v =

(Φ∗h1)v ∧ (Φ∗h2)v. By Lemmas 5.4 and 5.5, if h ∈ P then h1 ∈ P and
h2 ∈ P, while if h ∈ Q then h1 ∈ Q or h2 ∈ Q. We have

Ih = I(a (p, q]k f) = Ia + I((p, q]k) + If = Ia + 6 + If

>

{
Ia + 4 + If ≥ Ia + I(pk) + If = I(a pk f) = Ih1

Ia + 5 + If ≥ Ia + I((← q]k) + If = I(a (← q]k f) = Ih2,

hence if hj ∈ P then (Φ∗hj)v = 1 while if hj ∈ Q then (Φ∗hj)v = 0 by the
inductive hypothesis (j = 1, 2). Therefore the conclusion follows.

(v) The case where h ′ = a (← p]k f with p ∈ P − {∞}. In this case we
have h = (ai ŏki)i (a (← p]k f). Let h̀ = (ai ŏki)i (a pk f). By Lemma 4.15 it
follows that h ³ h̀♦. By Remark 5.5 and Lemma 3.6, (Φ∗h)v = (Φ∗h̀♦)v =(
(Φ∗h̀)v

)♦. By Lemmas 5.4 and 5.5, if h ∈ P then h̀ ∈ Q, while if h ∈ Q

then h̀ ∈ P. We have

Ih = I(a (← p]k f) = Ia + I((← p]k) + If = Ia + 5 + If

> Ia + 4 + If = Ia + I(pk) + If = I(a pk f) = Ih̀,

hence if h̀ ∈ P then (Φ∗h̀)v = 1 while if h̀ ∈ Q then (Φ∗h̀)v = 0 by the
inductive hypothesis. Therefore the conclusion follows.

(vi) The case where h ′ = a pk f with p ∈ P − {∞}. In this case we have
h = (ai ŏki)i (a pk f). Let g = (ai ŏki)i f. Take x ∈ Xε which does not occur
free in g, and then let c = a u

(
(x ŏk g) Ωx

)
and Uc = {s ∈ S | (Φ∗c)v∃ s}.

By Lemma 4.17 it follows that h ³ c pπone4. By Remark 5.5, (Φ∗h)v =(
Φ∗(c pπone4)

)
v. By Lemma 3.5,

(
Φ∗(c pπone4)

)
v = 1 if and only if

|Uc| > p. Therefore, (Φ∗h)v = 1 if and only if |Uc| > p.
Suppose h ∈ P. We assume that |Uc| ≤ p to deduce a contradiction.

Since p ∈ PX∪Y, p 6= ó. By (5.11), there exist elements b1, . . . , bm ∈ G and
q1, . . . , qm ∈ P such that Uc ⊆

∪m
j=1 Sbj , |Uc| =

∑m
j=1 qj and bj qjπone4 ∈

Q for j = 1, . . . , m. Since h ³ c pπone4, by Lemma 5.4, c pπone4 ∈ P.
Since p ≥ |Uc| =

∑m
j=1 qj, there exists by Lemma 5.6 an element y ∈ Xε

such that y ŏπa4 ∈ P and y ŏπ b14, . . . , y ŏπ bm4 ∈ Q. We have

Ih = I(a pk f) = Ia + I(pk) + If = Ia + 4 + If = Ia + 4 + Ig

> Ia + 2 + Ig = Ia + I(u) + Ig + I(Ωx)

= I
(
a u

(
(x ŏk g)Ωx

))
= Ic = I(y ŏπ c4),

hence (Φ∗(y ŏπ c4))v = 1 by the inductive hypothesis. By Lemma 3.3 and
Lemma 3.8 it follows that (Φ∗c)v∃y, that is, y ∈ Uc. Besides, y ŏπbj4 ∈ Q

for j = 1, . . . , m, hence y /∈ Sbj by (5.10). This contradicts that Uc ⊆∪m
j=1 Sbj .

53



Suppose h ∈ Q. We will prove that |Uc| ≤ p. Since h ³ c pπone4,
by Lemma 5.4, c pπone4 ∈ Q. Let s ∈ S and suppose s /∈ Sc. Then
s ŏπ c4 ∈ Q by (5.10). We have

Ih > Ic = I(s ŏπ c4),

hence (Φ∗(s ŏπ c4))v = 0 by the inductive hypothesis. By Lemma 3.3 and
Lemma 3.8 it follows that (Φ∗c)v 6 ∃ s, that is, s /∈ Uc. Thus we have
Uc ⊆ Sc. This together with c pπone4 ∈ Q shows that |Uc| ≤ p by (5.11).

(vii) The case where h ′ = f ∧ g, f ∨ g or f ⇒ g with f, g ∈ H. As-
sume that h = (ai ŏki)i=1,...,l (f ∧ g). There exists an element ρ ∈ Sl

such that Kf − Kg = {kρ1, . . . , kρn}, Kf ∩ Kg = {kρ(n+1), . . . , kρm} and that
Kg − Kf = {kρ(m+1), . . . , kρl}. Let hf = (aρi ŏkρi)i=1,...,m f, and hg =

(aρi ŏkρi)i=n+1,...,lg. By the permutation law and the generalized ∧ law,
it follows that h ³ hf ∧ hg. By Remark 5.5 and Lemma 3.6, (Φ∗h)v =(
Φ∗(hf ∧ hg)

)
v = (Φ∗hf)v ∧ (Φ∗hg)v. By Lemmas 5.4 and 5.5, if h ∈ P

then hf ∈ P and hg ∈ P, while if h ∈ Q then hf ∈ Q or hg ∈ Q. We have

Ih = I(f ∧ g) = If + I ∧ +Ig = If + 1 + Ig >

{
If = Ihf

Ig = Ihg,

hence if hj ∈ P then (Φ∗hj)v = 1 while if hj ∈ Q then (Φ∗hj)v = 0 by the
inductive hypothesis (j ∈ {f, g}). Therefore the conclusion follows.

Similar arguments hold for the case where h ′ = f ∨ g or f ⇒g.
(viii) The case where h ′ = f♦ with f ∈ H. In this case we have h =

(ai ŏki)i (f♦). Let h̀ = (ai ŏki)i f. By the ♦ law, it follows that h ³ h̀♦.
By Remark 5.5 and Lemma 3.6, (Φ∗h)v =

(
Φ∗(h̀♦)

)
v =

(
(Φ∗h̀)v

)♦. By
Lemmas 5.4 and 5.5, if h ∈ P then h̀ ∈ Q while if h ∈ Q then h̀ ∈ P. We
have

Ih = (f♦) = If + I♦ = If + 1 > If = Ih̀,

hence if h̀ ∈ P then (Φ∗h̀)v = 1 while if h̀ ∈ Q then (Φ∗h̀)v = 0 by the
inductive hypothesis. Therefore the conclusion follows.

(ix) The case where h ′ = (a u b)4 or (a t b)4 with a, b ∈ G. Assume
that h ′ = (aub)4. Then we have h = a1 ŏπ (aub)4. Let ha = a1 ŏπ a4,
hb = a1 ŏπ b4. By Lemma 4.16 it follows that h ³ ha ∧ hb. By Remark
5.5 and Lemma 3.6, (Φ∗h)v =

(
Φ∗(ha ∧ hb)

)
v = (Φ∗hf)v ∧ (Φ∗hg)v. By

Lemmas 5.4 and 5.5, if h ∈ P then ha ∈ P and hb ∈ P, while if h ∈ Q then
ha ∈ Q or hb ∈ Q. We have

Ih = I((a u b)4) = Ia + I u +Ib = Ia + 1 + Ib >

{
Ia = Iha

Ib = Ihb,

hence if hj ∈ P then (Φ∗hj)v = 1 while if hj ∈ Q then (Φ∗hj)v = 0 by
the inductive hypothesis (j ∈ {a, b}). Therefore the conclusion follows. A
similar argument holds when h ′ = (a t b)4.
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(x) The case where h ′ = a¤4 with a ∈ G. In this case we have h =

a1 ŏπ a¤4. Let h̀ = a1 ŏπ a4. By Lemma 4.16 it follows that h ³ h̀♦.
By Remark 5.5 and Lemma 3.6, (Φ∗h)v =

(
Φ∗(h̀♦)

)
v =

(
(Φ∗h̀)v

)♦. By
Lemmas 5.4 and 5.5, if h ∈ P then h̀ ∈ Q while if h ∈ Q then h̀ ∈ P. We
have

Ih = I(a¤4) = Ia + I¤ = Ia + 1 > Ia = Ih̀,

hence if h̀ ∈ P then (Φ∗h̀)v = 1 while if h̀ ∈ Q then (Φ∗h̀)v = 0. Therefore
the conclusion follows.

(xi) The case where h ′ = (fΩx)4 with f ∈ A∅, x ∈ Xε. In this case we
have h = a1 ŏπ (fΩx)4. By Lemma 4.19, there exists an (x, a1)-alternative
g ∈ A∅ of f. Let h̀ = g(x/a1). Since f is parallel to g, Ph̀ ⊆ Ph by Lemmas
2.2, 3.15 and 3.16. By Lemma 4.20 it follows that h ³ h̀. By Remark 5.5,
(Φ∗h)v = (Φ∗h̀)v. By Lemma 5.4, if h ∈ P then h̀ ∈ P, while if h ∈ Q then
h̀ ∈ Q. By Remark 5.6, If = Ig. We have Ig = I(g(x/a1)) by Lemma 5.9.
Therefore we have

Ih = I((fΩx)4) = If + I(Ωx) = If + 1

> If = Ig = I(g(x/a1)) = Ih̀,

hence if h̀ ∈ P then (Φ∗h̀)v = 1 while if h̀ ∈ Q then (Φ∗h̀)v = 0 by the
inductive hypothesis. Therefore the conclusion follows. ¥

Thus we have completed the proof of Theorem 5.1.

6 The non-existence theorem

Let (A, T, σ, S, C, X, Γ) be an MPC language satisfying Assumption 3.1, (A,

W, (IW)W∈W) be the logical system MPCL on it, and 4 be an MPC.1 re-
lation contained in the validity relation 4G of the predicate logical space
(H,G).

In Corollary 5.1 we dealt with the case where P is well-ordered and has
the largest element. The following theorem deals with the remaining case.

Theorem 6.1 Assume that the quantity system P of A is not well-ordered
or does not have the largest element. Then there exists a cut (X, Y) ∈
P(A∅) × P(A∅) of H by 4 which has no F-model.

Remark 6.1 By Remark 3.3, the above cut (X, Y) has no G-model either.

Proof We define subsets P,Q of P as follows. If P is not well-ordered, then
let Q be an arbitrary non-empty subset of P which does not have the smallest
element, and let P = {p ∈ P | p < q for every q ∈ Q}. Otherwise (in this case
P does not have the largest element), let P = P and Q = ∅. Take an element
x ∈ Xε arbitrarily, and let X = {xpπ one4 |p ∈ P}, Y = {x qπone4 | q ∈ Q}.
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First we will prove that (X, Y) is a cut of H by 4. Assume α 4 β

for some α ⊆ X, β ⊆ Y to deduce a contradiction. Then there exist el-
ements p1, . . . , pm ∈ P and q1, . . . , qn ∈ Q satisfying α = f1 . . . fm and
β = g1 . . . gn, where fi = x piπone4 for i = 1, . . . ,m and gj = x qjπone4
for j = 1, . . . , n. There exists an element r ∈ P such that pi < r for every
i ∈ {1, . . . , m} and r < qj for every j ∈ {1, . . . , n} by the definition of P and
Q. We can assume that r 6= 0 because 0 /∈ Q.

We will construct an MPC world Wr as follows. Define S = {s} where s

is arbitrary. Let ∃ be the identity relation on S. Define the P-measure by
|{s}| = r, |∅| = 0. Let Φ be an arbitrary C-denotation into Wr, and v be an
arbitrary X-denotation into Wr. We have (Φ∗fi)v = 1 and (Φ∗gj)v = 0 by
Lemma 3.5. This contradicts that 4 is contained in 4G. Therefore (X, Y) is
a cut of H by 4.

Next we will prove that (X, Y) has no F-model. Assume that there exists
a triple (W,Φ, v) which satisfies (Φ∗f)v = 1 for each f ∈ X and (Φ∗g)v = 0

for each g ∈ Y, to deduce a contradiction. Let Ux = {s ∈ S | (Φ∗x)v∃ s},
where S is the base, ∃ is the basic relation, and | · | is the P-measure of
W. For each p ∈ P, x pπone4 ∈ X, hence

(
Φ∗(x pπone4)

)
v = 1. There-

fore |Ux| > p by Lemma 3.5. For each q ∈ Q, x qπone4 ∈ X, hence(
Φ∗(x qπone4)

)
v = 0. Therefore |Ux| ≤ q by Lemma 3.5. If P is not well-

ordered, then this contradicts that Q does not have the smallest element.
Otherwise, this contradicts that P does not have the largest element. ¥

7 Classification

Let (A, T, σ, S, C, X, Γ) be an MPC language satisfying Assumption 3.1, and
(A,W, (IW)W∈W) be the logical system MPCL on it. Recall that the G-
validity relation 4G of the predicate logical space (H,G) is an MPC.1 relation
by Theorem 4.1.

In this section we apply the results in §5 and §6 to determine which class
(H,G) belongs to.

Lemma 7.1 For each (f, g) ∈ H × H, there exists an element h ∈ H such
that h <G f, h <G f, and fg <G h. Let α ∈ H∗. Then α 4G f for every
element f ∈ H if and only if α 4G .

Proof The former assertion holds for h = f ∨ g by the disjunction law.
If α 4G , then α 4G h for all h ∈ H by the weakening law.
Next we assume that α 4G h for all h ∈ H. Then α 4G f and α 4G f♦

for some f ∈ H. We have ff♦ 4G by the negation law. Applying the strong
cut law to the above three equations, we have α 4G . ¥

Lemma 7.2 Let X ⊆ H. Then X is G-inconsistent if and only if there exists
an element α ∈ H∗ such that α ⊆ H and α 4G .
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Proof By [6, Theorems 6.5, 6.7], the largest G-logic is the restriction of
4G.11 Moreover, by [6, Theorem 8.2], X is G-inconsistent if and only if there
exists an element α ∈ H∗ such that α ⊆ H and α 4G h for all h ∈ H. Lemma
7.1 shows that α 4G h for all h ∈ H if and only if α 4G .

¥

Lemma 7.3 Let X, Y ⊆ H. Then (X, Y) is a cut of H by 4G if and only if
X ∪ Y♦ is G-consistent, where Y♦ = {g♦ | g ∈ Y}.

Proof Suppose (X, Y) is not a cut. Then there exist a sequence α ⊆ X and
elements g1, . . . , gn ∈ Y satisfying α 4F g1 . . . gn. Hence αg♦

1 . . . g♦
n 4G by

Lemma 4.1. Therefore X∪Y♦ is G-inconsistent by Lemma 7.2. The opposite
direction is proved similarly. ¥

Lemma 7.4 Let X, Y ⊆ H. Then (X, Y) has a G-model if and only if X∪Y♦

has a G-model, where Y♦ = {g♦ | g ∈ Y}.

Proof For each f ∈ H, W ∈ W, C-denotation Φ into W, X-denotation v

into W and θ ∈ K → Wε, we have(
(Φ∗f♦)v

)
(θ|Kf

) =
(
(Φ∗f)v

)♦
(θ|Kf

)

=
((

(Φ∗f)v
)
(θ|Kf

)
)♦

by Lemma 3.6 and the definition of ♦ on W. Hence(
(Φ∗f)v

)
(θ|Kf

) = 0 ⇐⇒ (
(Φ∗f♦)v

)
(θ|Kf

) = 1.

Therefore, a G-model of (X, Y) is a G-model of X ∪ Y♦, and vice versa. ¥

Lemma 7.5 We can obtain an MPC language (A ′, T ′, σ ′, S ′, C, X ′, Γ) by
extending the set Xε to X ′

ε. Let (A ′, W ′, (I ′W′)W′∈W′) be the logical system
MPCL on A ′ and (H ′,G ′) be the predicate logical space associated with
the logical system. Then the G-validity relation 4G is the restriction of the
G ′-validity relation 4G′ to H∗×H∗. Moreover, let X be a subset of H. Then
X is G-consistent if and only if X is G ′-consistent. Also X has a G-model if
and only if X has a G ′-model.

Proof Let L ′ be the index set of T . Then L ′ = L ∪ {Ωx | x ∈ Xε}, hence
L ∩ Γ = L ′ ∩ Γ . A and T are the L-reduct of A ′ and T ′ respectively. By
the definition of the MPC language A ′, it follows that σ = σ ′|A and that
X ⊆ X ′. An MPC world denotable for A is regarded as an MPC world
denotable for A ′, and vice versa. Therefore W = W ′. For each W ∈ W and
each x ∈ Xε, IW(Ωx) and I ′W(Ωx) are the same. Each X-denotation into

11Lemma 7.1 shows that 4G satisfies the quasi-disjunction law and the lower quasi-end
law defined in [6].
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W is extended to an X ′-denotation into W. For each X ′-denotation v ′ into
W, the restriction v ′|X is an X-denotation into W. Therefore, by Theorem
2.3, it follows that G = {ϕ|H | ϕ ∈ G ′}. This shows that, for each α,β ∈ H∗,
α 4G β if and only if α 4G′ β.

For each X ⊆ H,

X is G-consistent⇐⇒ α 64G for every α ⊆ X⇐⇒ α 64G′ for every α ⊆ X⇐⇒ X is G ′-consistent

and

X has a G-model⇐⇒ X ⊆ ϕ−11 for some ϕ ∈ G⇐⇒ X ⊆ ϕ ′−11 for some ϕ ′ ∈ G ′

⇐⇒ X has a G ′-model.

¥

Theorem 7.1 The predicate logical space (H,G) belongs to Class 2 or 3. It
belongs to Class 2 if and only if the quantity system P of A is well-ordered
and has the largest element.

Proof By [6, Theorem 8.9], (H,G) belongs to Class 1 or 2 if and only if
every G-consistent subset X of H has a G-model. By Lemma 3.4, we have
#G > 1. Hence (H,G) does not belong to Class 1 by [6, Remark 6.3].

Suppose P is well-ordered and has the largest element. Let X be a G-
consistent subset of H, and κ = #A. By virtue of Lemma 7.5, we may
assume that there exists κ many elements of Xε which do not occur in the
predicates of X. (X, ∅) is a cut of H by 4G by Lemma 7.3. Hence (X, ∅) has
a G-model by Corollary 5.1. Therefore X has a G-model by Lemma 7.4.

Next suppose P is not well-ordered or does not have the largest element.
Then there exists a cut (X, Y) of H by 4G which has no G-model by Theorem
6.1 and Remark 6.1. Hence X∪Y♦ is a G-consistent set which has no G-model
by Lemma 7.3 and Lemma 7.4. ¥

Remark 7.1 An argument similar to the proof of Theorem 7.1 holds for
the ∅-sentential functional logical space (A∅, F), and it belongs to Class 2 if
and only if the quantity system P of A is well-ordered and has the largest
element.
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8 A characteristic law

Let (A, T, σ, S, C, X, Γ) be an MPC language satisfying Assumption 3.1, (A,

W, (IW)W∈W) be the logical system MPCL on it, and (H,G) be the predicate
logical space associated with the logical system.

In this section we apply Theorem 5.1 to show that the MPC.1 law is a
characteristic law of (H,G).

Theorem 8.1 Let (A,F) be a T-valued functional logical space and (~R, ~D)

be a deduction system on ~A, where ~A = A∗ × A∗. Assume the following:

1. The F-validity relation 4F satisfies (~R, ~D).

2. Every finite cut of A by every relation which satisfies (~R, ~D) and is
contained in 4F has an F-model.

Then (~R, ~D) together with the weakening law, contraction law, and exchange
law forms a characteristic law of (A,F).

Proof Consult [6, Theorem 7.13].

Theorem 8.2 The MPC.1 law is a characteristic law of (H,G).

Proof The G-validity relation 4G satisfies the MPC.1 law by Theorem 4.1.
In view of Theorem 8.1, it suffices to show that every finite cut of H by

every MPC.1 relation contained in 4G has a G-model.
Let 4 be an MPC.1 relation contained in 4G and (X, Y) be a finite cut

of H by 4. Since (X, Y) is finite, there exist κ many elements of Xε which
do not occur in the predicates in X ∪ Y, where κ = #A. By Lemma 3.13 it
follows that PX∪Y is finite, hence [PX∪Y ∪ {0}] is well-ordered by Lemma 3.1.
Therefore, by Theorem 5.1, (X, Y) has a G-model. ¥
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