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Abstract

We study a semilinear heat equation with strong absorption u; = Au — uP with
0 <p<1inRM. A solution is known to develop dead-core in finite time for a
wide class of initial data. We construct specific solutions with exact dead-core rates
faster than the one given by the corresponding ODE. They are constructed formally
by means of matched asymptotic expansion technique and rigorously by means of
topological fixed-point arguments based on a priori estimates. To obtain the a priori
estimates we analyze a certain linearized problem in a new function space H’'.

1 Introduction

We discuss the Cauchy problem for a semilinear heat equation with strong absorption

w=Au—u?, xRN, t>0, (1.1a)
u(z,0) = up(r), xR, (1.1b)

where p € (0,1), N > 1 and uy € L2 (RY). The equation (1.1a) arises originally in
the Dirichlet problem on a bounded domain in the modeling of an isothermal reaction-
diffusion process [4,33]. It also appears in a description of thermal energy transport in
plasmas [23]. It is known that a unique smooth solution u of (1.1) exists globally in time if
an initial datum wug is positive and has an appropriate bound on growth order as |z| — oo
(cf. [2,17]). Once a suitable initial datum is chosen, the solution develops dead-core in
finite time. Namely, there exists a finite time 7" such that the infimum of wu(-,t) reaches
zero at t = T'. This is a peculiar phenomenon caused by strongly absorbing effect, which
never appears in a solution of the equation with “weak” absorption, i.e., p > 1. It was
investigated in [17] whether a finite-time dead-core occurs in view of the growth order of
initial data as |z| — oo.

For the corresponding Cauchy-Dirichlet problem on a ball with constant boundary
condition, it was proven in [14,16] that dead-core rates are, in general, unexpected ones;
they are faster than the self-similar rate, that is,

EI/H%(T —t) Tru(0,t) =0 (1.2)

if ug is a positive radial nondecreasing function. In other words, they are faster than the
dead-core rate of the ODE obtained by dropping Au from (1.1a). Note, however, that
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exact dead-core rates are still remained unrevealed there. Our purpose is to construct
specific solutions of (1.1) which develop dead-core in finite time and exhibit exact dead-
core rates faster than the self-similar rate.

Concerning the case of “extinction time” T, the first time at which a nonnegative
solution u of (1.1) vanishes identically, it is proven in [7,19] that

()| ~ (T, —t)TF  ast— T,

under suitable assumptions on initial data. Here and henceforth we write f(t) ~ g(t) as
t — T for some T' > 0 and (real-valued) functions f,g on (0,T) if there are constants
C1,Cy > 0 and t; € (0,7T) such that Cig(t) < f(t) < Cag(t) for all t € (¢1,T).

Similar problems have been studied for a semilinear heat equation with source
up = Au+ |[ulftu,  g> 1. (1.3)

The equation (1.3) has finite-time blow-up solutions and their blow-up rates have been
investigated for past decades. Let gs denote the Sobolev ciritical exponent: g, = oo for
N =1,2and ¢gs = (N +2)/(N —2) for N > 3. For 1 < q < ¢, every blow-up solution of
(1.3) exhibits the self-similar rate, often referred as the type I blow-up rate [10,12,13]:

u(t)|| oo ~ (T — )77 (1.4)

It is known that (1.4) holds also for N > 3 and ¢ > ¢, under certain additional assumptions
on initial data [8,27,28,37]. The blow-up rate estimate (1.4) is useful to investigate local
structures of blow-up sets (cf. for example, [9,11,18,34,35] and the references cited there).
When N > 3 and ¢ > ¢,, (1.4) fails to hold in general. Herrero and Veldzquez [20, 21|
first discovered nonnegative blow-up solutions of (1.3) such that

lim sup(T — )77 ||u(t)|| = = +00,
t—

often referred as type II blow-up or fast blow-up, when ¢ and N are large enough (see
also [29]). Sign-changing type II blow-up solutions were formally constructed in [6] for the
critical case ¢ = ¢, when N = 3,4,5,6. Moreover, the exact blow-up rates of these specific
solutions are also revealed in the articles. In [20,21] such solutions are constructed formally
by means of matched asymptotic expansion techniques and rigorously by a topological
fixed-point argument. Related arguments were used also in different contexts, e.g., [22,
32,36]. It is worth pointing out that the analysis of general type I blow-up solutions with
radial symmetry has recently advanced on the basis of the specific solutions constructed
in [20,21]. The reader is referred to the review [26] and references therein for this topic.

We shall again focus our attention to the dead-core problems. In the following, «
denotes the positive constant defined by

1
=— 1.5
o= (15
For N =1, Guo and Wu [15] recently studied the equation (1.1a) and discovered that for
every odd integer ¢ > 1, there exists a solution u of (1.1) which develops dead-core in a
finite time 7" and behaves as

w(0, ) = minu(x, t) ~ (T ~ )22 agt T (1.6)
S



To show this result, they applied the method of [21] to the dead-core problem. They
demand, however, that the parameter ¢ in (1.6) should be odd integers, which need not
be assumed at least in the formal level of the matching process. It is therefore natural
to ask whether or not the restrictive assumption on ¢ would be essentially requisite to
prove the existence of solutions with the property (1.6). In addition, one would expect
that this kind of solutions could exist also in arbitrary dimensions N > 2. In the present
article we improve the method of [15], thus giving affirmative answers to these problems:
we are able to remove the assumption on ¢ and provide radial solutions with analogous
properties to (1.6) in arbitrary dimensions N > 1.

Theorem 1.1. Let N > 1, T > 0 and p € (0,1). Then for every positive integer /,
there exists a radial solution u, of (1.1) which develops dead-core at t = T such that
u(0,t) = min, gy ue(z, t) and

(T — )7 < ug(0,t) <mo(T — )7 for 0<t<T (1.7)

with some constants ny,m, > 0 depending only on p, N and ¢, where « is the positive
constant in (1.5) and + is the constant given by
—~(N=2)++/(N—-2)2+8(a—1)2a+ N —2)

v = 5 : (1.8)

The author expects that the solutions u, constructed in Theorem 1.1 will be useful,
for example, to determine the exact dead-core rates of some solutions of (1.1) with gen-
eral initial data, as the solutions of (1.3) constructed in [20,21] play a crucial role in
determining the blow-up rates of type II blow-up solutions of (1.3) in a supercritical case.

Remark 1.2. (i) Theorem 1.1 shows that infinite kinds of rates do exist. For every N > 1
and p € (0,1) we have 2(a — 1) < 7 < 2a, whence 2l /(2a0 — ) > « for £ > 1. Namely,
each dead-core rate specified in (1.7) is precisely faster than the self-similar rate (7 — ).
(ii) The constant 7 in (1.8) comes from the quadratic equation related to the asymptotic
expansions of stationary solutions U, of (1.1a) introduced in §§2.1. It is also related to
eigenvalues of the linearized operator A given in (2.11) below (cf. Lemma 2.2).

(iii) Further information about 7,7, in (1.7) is given in Remark 3.3.

Remark 1.3. In Theorems 3.2 and 6.1 we give detailed descriptions on the asymptotics
of the solutions by virtue of the rescaled solutions w, with the self-similar variables (y, )
introduced in §2. With the help of a fixed-point theorem, we are able to construct a
particular initial datum wg , for each positive integer ¢ so that the corresponding solution
ug of the Cauchy problem (1.1) fulfills the properties described in Theorem 1.1.

Remark 1.4. (i) Theorem 1.1 includes the result in [15] mentioned before as a special
consequence when N = 1. Moreover, our result is still new even in this case in view of
the generality of possible dead-core rates. Indeed, we have v = 2a—1 for N = 1 and thus
the dead-core rates in Theorem 1.1 are (T' — t)** with ¢ = 1,2,3, ..., agreeing with the
rates of the solutions constructed in [15] (cf. (1.6)) for the particular cases £ = 1,3,5, ...
(ii) For N > 3 the result in Theorem 1.1 was obtained in a part of the author’s thesis [31].
A technical difficulty arises in the proof for N = 1,2 as is discussed below.
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Our basic strategy to prove Theorem 1.1 is the same as that of [15]. We first intro-
duce the similarity variables to derive a rescaled equation and then linearize the equation
around the singular stationary solution U given in (2.2) below. It is shown that an eigen-
function expansion provides a good approximation for a desired solution of the linearized
equation in a region away from the origin. The behavior of the solution near the origin is
described by rescaling the regular stationary solutions U,, introduced in §2. Asymptotic
expansions of U, and ¢, make the matching possible near the origin and moreover suggest
the position at which it takes place. The existence of the solution with these behaviors
may be rigorously proved by topological arguments coupled with a priori estimate. The
solution enjoys the properties that have been expected by the formal matching argument.
Going back to the original variables, we obtain the solution u, as stated in Theorem 1.1
for each positive integer /.

In order to derive the key a priori estimate, we need to estimate an upper bound of
growth order for the possible solutions in a region near infinity. We are able to prove,
in the same way as [15], that under certain assumptions on initial data the solutions are
below the singular stationary solution U in that region provided that the integer ¢ is odd.
This estimate allows us to implement the topological arguments. In the present article,
however, we do not impose the restriction that the integer ¢ is odd. We therefore have to
show another a priori estimate in that region so as to execute the topological arguments
without the restriction on ¢. This task is accomplished by a comparison argument which
works for every positive integer ¢. It guarantees that the solutions exhibit the same growth
order as that of U at infinity.

As was noted in Remark 1.4, this result was obtained in the author’s thesis [31] for
N > 3. In that situation, a Hardy type inequality is available (cf. (2.15)) and accordingly
the potential term r~2v in the elliptic part Av of the linearized equation is easily handled
in the function space H; (cf. (2.11),(2.13b)). To deal with the inverse square potential in
arbitrary dimensions, we introduce another function space H (cf. (2.13¢)) in the spectral
analysis and make use of its dual space H’, where we prove that a variation of constants
formula is valid for a nonhomogeneous problem related to the linearized equation. We
explain in more detail in Remark 2.5 why these spaces have to be introduced.

We conclude this introduction by describing the plan of the present article. In the
next §2, we briefly recall some preliminary results on stationary solutions of (1.1a) and
investigate both spectral properties of the linearized operator and the validity of the
variation of constants formula mentioned before. The former part of §3 is concerned
with a formal construction of the solution described in Theorem 1.1. The topological
arguments, together with the set of functions where they should be applied, are described
in the latter part of §3. The proof of Theorem 1.1 is given there as a consequence of the
arguments. §4 and §5 are devoted to proving key a priori estimates. Finally, we show
further properties on the rescaled solution in §6.

2 Stationary solutions and linearization

In this section we recall and establish some fundamental results. §§2.1 is concerned with
stationary solutions of (1.1a), where we briefly introduce some properties of stationary
solutions obtained in [17]. In particular, the asymptotic expansion (2.3) plays an impor-



tant role in the formal matching argument to be presented in §3. In §§2.2 we investigate
some spectral properties of the linearized operator A formally given in (2.11) below.

2.1 Stationary problems

In this subsection we consider the radially symmetric stationary problem of (1.1a),

N -1
w4 Tu’ =uP for £ >0, u(0)=mn, «'(0)=0. (2.1)

Let a be the constant in (1.5). A simple computation reveals that
U(€) ==, v with ¢, n = {2020+ N —2)}7° (2.2)

is a solution of (2.1) such that U(0) = U’(0) = 0. It is the unique solution of (2.1) with
n = 0 satisfying U(§) > 0 for £ > 0 and is referred as the singular steady solution. It is
proven in [17] that for each > 0, a unique solution U, of (2.1) exists and behaves as

Up(§) = U(§) + h(m&" (1 +0(1))  as §— oo, (2.3)

where 7y is the constant in (1.8) and h(n) = an* with p =1 — (1 — p)y/2 > 0 and some
constant a > 0 depending only on p and N. Note that U, is monotone increasing in
£ > 0 for every n > 0, since rN~'U) = [72¥"'UP(2)dz > 0. It is readily seen that if
0 <m <1, then U(r) < U, (r) < U,,(r) for all r € [0, 00).
Remark 2.1. Although (2.3) was proven in [17, Proposition 3.1], we shall show its formal
derivation for reader’s convenience. Set Uy (§) = U(&) + W (€) and observe that

w N—1__, 1.9
Suppose that W grows with algebraic order, say W (§) ~ a&* with some a # 0 and A > 0,
as £ — oo. Formally substituting W(¢) = a& to (2.4) and letting & — oo, we get the
quadratic equation for A,

M4+ (N =2)A—2(a—1)2a+ N —2) =0. (2.5)

We then obtain the constant v in (1.8) as a larger root of (2.5) and get (2.3) with n = 1.
The expansion (2.3) with > 0 is reduced to the one with = 1 by the scaling property

U,(€) = nUr(n"7€).

2.2 Spectral analysis for the linearized operator

For T' > 0, we introduce the similarity variables

U(ZE, t) = (T - t)aw(ya S)v Y= (T - t)_l/Qxa §= - log(T - t) (26)
A function u satisfies (1.1) in RY x (0,7) if and only if w satisfies
1
ws:Aw—§y~Vw+ozw—wp in RY x (s, 00), (2.7)
w(y, s1) =wo(y) in RY, (2.8)



where s, = —log T and wy(y) = T~ “uo(v/Ty). Since we discuss only radial solutions, we
may write (2.7), (2.8) as

N -1
Wy = Wy + ( - g>wr +aw —w” in (0,00) X (s1,00), (2.9a)
r
w,(0,s) =0 for s € (s1,00), (2.9b)
w(r,s1) = wo(r) in [0, 00). (2.9¢)

Here and henceforth we write » = |y|. Notice that U = U(r) is a stationary solution of
(2.9). We are discussing the existence of a solution w(r, s) of (2.9) which converges to the
singular stationary solution U as s — oo in an appropriate way. To this end, we linearize
the equation (2.9a) around U, setting

U(Ta S) = w(ﬁ S) - U(T)
for a solution w of (2.9). It then satisfies

vs=—Av+ f(v) forr >0 and s> s, (2.10a)
v(r,s1) = vo(r) for r >0, (2.10Db)

where vg = wy — U and —A is the linear differential operator formally given by

N-1 Ay
—Av:v"+< —C>U/+ v—ppg’Nv
" " . (2.11)
1 dyyy, do pey N
= 0 EO p(r)%> +av — v
with p(r) = exp (—7?/4) and where
cpfl
fo) = UG = {UG) + v} + B (2.12)
We work in the following weighted Hilbert spaces;
1= {he 12000 | [ hoprpdr < oo} (2.130)
H! = {h e HL ((0,00)) ( hi € Lg}, (2.13b)
2 1 1) v
H={¢€Lp o€ H, / 2 7 pdr<oo}, (2.13c¢)
0
equipped with inner products
(9,h) 12 —/ g(r)h(r)rN L pdr, (2.14a)
0
<ga h)H; - <g7 h>L% + <g/a h,>L%a (214b)
1 [ o(r)v(r) N
(¢7 w)H = <¢7¢>H; +pcz71\}/ %TN 1Pd73 (214C>
0



respectively, where p is as above. Clearly, the space H is continuously embedded in H;
as a Banach space. When N > 3, we have a version of Hardy inequality [32, Lemma 2.2]:

/]2 2
op g ol

- dr < 0 z 2.15
A 29 pr)dr < s+ Ny (2.15)

for any g € H;. Therefore we have the converse embedding, so that H = H; it N >3
thanks to (2.15), whereas H # H) for N = 1,2.

We are then led to the spectral analysis for a realization of A in L% so as to investigate
the asymptotic behavior of v as s — oo. The analysis to be discussed below reveals
that the realization can be uniquely extended to a self-adjoint operator and its spectrum
consists only of eigenvalues.

Lemma 2.2. The operator A : Li — Li defined by Ay = Ay for ¢ € D(A) with domain
D(A)={¢ e L} | €M, A € L2} may be extended to a unique self-adjoint operator,
still denoted by A, which has the following properties:
D(A) C H; (2.16)
—allellz: < (Ap, )z, Vo € D(A). (2.17)

Moreover, the spectrum of A consists only of the eigenvalues {j1;}52, given by

M:j+%—a,j:QLZm (2.18)

and the corresponding eigenfunctions are explicitly represented as

. N r? .
¢0:COT’Ya ¢j(r):CjT’YM<_j;7+EaZ>7 J :1727"'7 (219>
where ¢; > 0 are the normalizing constants so that ||¢;|l2, = 1, M(a;b,n) denotes the
standard Kummer function, and ~y is the constant in (1.8). Furthermore,

¢i(r) =c¢ir’(14+0(1)) asr— 0; (2.20a)
¢j<r) = 6jr2(ﬂj+a)(1 + 0(1)) as r — oo, (220b)
where ¢; are constants such that (—1)7¢; > 0 for j = 1,2, ...

Proof. We begin with remarking that
(A = [ owr Spdr—a [ our tpdr s pepd [0 Y (221)
0 0 0

for any ¢, € H such that Ay, A¢ € L%. This is readily seen by an integration by parts
and a limiting procedure. In particular, the lower bound (2.17) holds for the original
operator A. Thus A is a semi-bounded symmetric operator. Friedrichs’ theorem admits
then it extending a unique self-adjoint operator such that (2.17) holds (the Friedrichs
extension), still denoted by A, whose domain D(A) is contained in the form domain
of ¢. Here ¢ is the closure of the quadratic form ¢(¢,v) = (¢, AY) rz under the norm
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oll4+1 = (q(d,0) + (a + 1)||9]122)"2 = ||¢|l3 (cf. for example, [30]). The last assertion
simultaneously implies that the form domain of q is continuously embedded in ‘H , whence
(2.16) follows. For any ¢ and 1 in the form domain of §, there are Cauchy sequences {¢, }
and {1, }, in the form domain of ¢ (the original domain of A), which tend to ¢ and to v
as n — 00, respectively, in the sense of the norm || - ||41. We then observe that

(6, AV) 13 = §(6,¥) = lim q(6n, V). (2.22)

Consequently, the representation (2.21) holds for every ¢, in the domain D(A) of the
Friedrichs extension A.
Consider now the equation (A + (o + 1)I)¢ = o for ¢ € L2. By (2.21) we have

H¢H§{; < (0, ¥z < [|@lz2l|1¥[| Lz and thus
6llas < 1]z

which implies that (A + (a+ 1)1 )71 is a compact operator. Therefore the spectrum of A
consists only of a countable number of real eigenvalues.

Let us compute the concrete values of the eigenvalues {y;} and the corresponding
eigenfunctions {¢,} to see (2.18) and (2.19), respectively. We begin with remarking that
every eigenfunction ¢ of A is smooth and satisfies the differential equation A¢ = pu¢
in (0,00) for the corresponding eigenvalue p. Indeed, the self-adjointness of A implies
that p(p,v) = (¢, AY)z for any ¢ € C5°((0,00)). We may exploit Weyl’s lemma to
observe that ¢(r) is twice differentiable for » > 0. An integration by parts shows then
that (¢, AY) s = (A¢, )2 and hence A¢ = ¢ a.e.r > 0. Since ¢; # 0, we may assume,
without loss of generality, that each ¢; is positive where r > 0 is small enough. In order
to prove (2.18)-(2.20b), we set ¢;(r) = ¢;r7H;(n) with n = r?/4. A straightforward
calculation reveals then that the function ¢; solves the equation A¢ = p;¢ if and only if
Hj satisfies Kummer’s equation

nH" () + (b—n)H'(n) — aH (n) = 0 (2.23)
with & = /2 — (u; + ) and b=~ + N/2. The general solution of (2.23) is given by

M(a; b,m) + CU(a; 77)
)

with arbitrary constants Cy and Cy (cf. [1]), where M (a;b,n) is the Kummer function;
(a)2z 4 (@)n2"
M(a;b, z —1+ —l— —i-' . 2.24
= T @ 220

with (a); =ala+1)(a+2)---(a+j—1),5=1,2,..., and

T M (a;b, 2) oM +a—-02-0,2)
sinbr [T(1+a— b)) T(a)D(2 —b)

Ula;b, z) =

Here I' denotes the standard gamma function. Suppose now that Cy # 0. Then ¢; grows
as 172070 (= p77N¥2) a5 — 0, but it then contradicts the fact that ¢; is in H) since
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2(—=y = N +1) + N < 0 and accordingly |¢/(r)[*r¥~" exhibits non-integrable growth as
r — 0. Consequently the constant Cy must vanish. Finally we shall show that a must be
a nonpositive integer. If it were not so, then

2 2

(30 ) < F Yy (7)o

Not belonging to H}, it should be excluded, whence ¢ = —n for some n € N U {0}. We
thus conclude (2.18) and (2.19). Moreover, for each n, we have

N TQ nx .2n 2n
M(—n;”y—l—E,Z):(—l) Curt 4+ 0(r")  asr — 00 (2.25)
with some constant ¢, such that (—1)"¢, > 0. Now (2.20b) is readily seen from (2.25),
(2.18) and (2.19), whereas (2.20a) follows from (2.19) and (2.24). O

An important fact is that, as is proven below, the eigenfunctions ¢; yield a basis of
‘H for any spatial dimension N > 1, which suggests us to work with the space H rather
than H}. Notice that

—1<p <0< <.. (2.26)

Corollary 2.3. Assume the same hypotheses as in Lemma 2.2. Then the sequence {@ 120
defined by

b= ——% -0l (2.27)

\/,uj+04—i—17

is a complete orthonormal system in H.

Proof. From the proof of Lemma 2.2 (cf. (2.14c¢), (2.21) and (2.22)) we have

(¢> ¢)'H = <A¢7 ¢>L% + (Oé + 1)(% ¢>L%7 VQ,b € D(A>7v¢ eH. (228>
Substituting ¢ = ¢, to (2.28), one has that
(¢j7¢)H:(Mj+a+1)<¢]7¢>L%7 ‘v’gbGH, ]:0,1, (229)

and, in particular,

where the symbol 0, denotes Kronecker’s delta. Since the system {¢, };’io is complete in
L2 by Lemma 2.2, it follows from (2.29) and (2.30) that the system (2.27) is a complete
orthonormal system in H. O

We state here some nodal structures of the eigenfunctions ¢; on (0, o), though we do
not require them except for §6. Let J be an interval of [0, 00). For a function ¥ : J — R,
the zero number Z;[V] of ¥ on J is defined by

Z;[¥] :=t{r € J; ¥(r) =0}, (2.31)

where f stands for cardinal numbers. As is well-known, if ¥ is of C''(J), then Z;(¥) + 1
coincides with the number of sign-changes of ¥ in J.
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Proposition 2.4. One has Z(g ) [¢;] = j for each j = 0,1, ... Moreover, if one denotes
by rj, the n-th zero of ¢; in (0,00) enumerated near the origin for j = 1,2,... and

n = 1, 2, ...,j, then 1= 2(2"}/ + N) and Tj+11 € (0,7"]"1>, Tj+1,2 € (ijl, 7"]"2>, o Tirin €
(Tj,nflu Tj,n); ey U141 S (Tj,j; OO) for each j > 1.

Proof. These are fundamental consequences of the well-known Sturm-Liouville theory. We
appeal to an induction on j. The assertions are clear for j = 0,1 by the representation
formula of ¢; in (2.19), (2.24). Assume that they hold for some integer j > 1. Consider two
eigenpairs (fim, &m), (fin, on) of A with p, < p,. Suppose that ¢,,(r;) = 0, ¢p(riz1) =0
and that ¢, has a constant sign in (r;,7;.1) for some r;,r;11 € (0,00). We claim that
there exists a zero of ¢, in (r;,7;11) at which ¢, changes its sign. We may assume that
Gm(r) > 0in (r;,741) without loss of generality. Note that ¢! (r;) > 0 and ¢/, (r;41) < 0.
An integration by parts reveals then that

Ti4+1

(:un - #m) ¢m¢nTN_1pdr = ¢n(ri+1)¢/m(7ni+1)7ﬂﬁzlp(ri+1) - ¢n(7“i)¢;n(7’i)’f’£v_lp(7"i).

T

This identity implies that ¢,, cannot have a constant sign in (r;,r;;1). A similar argument
shows that there exists a zero of ¢, in (r;11,00) at which ¢, changes its sign. Thus
Z0,00)[0j41] = Z(0,00)[¢;]+1 = j+1. On the other hand, the representation formula of ¢; in
(2.19), (2.24) guarantees that Z «)[¢¢] < £ for every £ > 1. Therefore Z g oc)[¢j41] = j+1.
The claim on the positions of zeros is obvious by virtue of the above argument. O

Our next task is to show that the differential operator A may be understood to be
an operator in H'. Moreover, we prove that a solution of the equation (2.10) may be
considered as an element of H’ and enjoys the integral equation in H' corresponding to
the problem (2.10). Here and henceforth, H' stands for the dual space of H.

Remark 2.5. Tt should be noticed that the space H was already used in [15] for N =1
to produce eigenvalues of A, but its dual space H’ was not used explicitly there. The
use of H’ should be essential because a solution of (1.1) is positive everywhere before its
dead-core appears and thus does not belong to ‘H unless N > 3. To show this issue, let
us consider a positive function ® € Lf) and the integral

/Oo —®<T)¢(T)TN’1pdr with ¢ € H;.
0

r2

This integral is not finite for N = 1,2 unless 1 decays at the origin. This fact suggests
us to restrict the set of ¢’s to H and thus regard ® as a bounded linear functional on H.

Suppose that a function wy € L (R™) has at most algebraic growth as |y| — oo.
Let w be a solution of (2.7) with initial data w(s;) = wy. Then by a standard argument
of parabolic equations (cf.[2,18,34]), w, Vw and V?w are locally bounded in RY and
have at most algebraic growth as |y| — oo for each s € (s1,00). Namely, for each
0 < 81 < 89 < 00, there are constants Cy, C1, Cy > 0 such that

w(y, s)] < Collyl +1)7, [Vw(y, s)| < Cilyl + 1)7, [V2w(y, )| < Callyl +1)7 (2.32)
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with some § > 1. Here the constant Cy does not depend on s;. Let us consider a function
vy € L2.([0,00)) satisfying

loc
lue(r)| < C(r+1)°, r>0 (2.33)

with some constant C' > 0 and § > max{1, 2« — 2}. We then observe that a solution v of
(2.10) with initial datum vy satisfying (2.33) fulfills

lu(r, s)| < Ci(r +1)7, |u.(r,s)] < Cl(r+1)%, r>0, 51 <5< sy (2.34a)
N -1
[V (1, 8)| < C’;(l + —>(7’ +1)%, >0, 51 <s5<s (2.34b)
T
with some constants C{, C7, C} > 0, since w = v + U.

The following lemma plays a crucial role to deal with a solution of (2.10) in H'.
Throughout the present article the topology of H' is understood to be that given by the

norm | - [l = sup{(:, ) ; [[¢[l2 = 1}.

Lemma 2.6. (i) Let g be a measurable function on [0, 00) satisfying

g < (145 )el) aer>0 (2.35)

with some constant ¢ > 0 and nonnegative function ¢ € Lj5,([0,00)) N H}. If

loc

N
q<7—|—min{N,1+§}, (2.36)

then g may be regarded as an element of H' in the sense that one may associate it with

g € H' defined by

(@WwwNZA ()N pdr  forp € M (2.37)

and, moreover, ||g|[zw < C|[¢|| 1 with some constant C' > 0.

(ii) If v is a solution of (2.10) in (0,00) X [s1, so] for some sy € (s1,00) such that |v(r, s)| <
@(r) with some ¢ € H), then f(v) is in the class L'(s1, 50, H') N C((s1,52];H'). In
particular, f(v) belongs to this class provided that the initial datum v, satisfies (2.33).

Proof. (i) Note that ¢ = Z;‘;O(w, QAﬁj)Héj in H for every ¢ € ‘H by Corollary 2.3. We first
prove that for any R > 0 there exists a constant C'(R) > 0 such that

()] < C(R)r7j+ (2.38)

forall 0 <7 < R and j > 1. Using (2.19) and the formula

| et te (g =
0

we get
,_ TU+5+7)

STTE TG+

11



Stirling’s formula then yields a positive constant C' such that
¢;=C(j+1)2(5+7D (2.39)

for > 1. By a classical asymptotic formula

SIS

Mg i)~ { (5 +)e} T cos (VAT TR - 4 )

2

as j — oo (cf. [1]), we observe

: N r? A=2y=N
’M(—g,wr?z)‘ <SCR) =+, j=Jo (2.40)
for some jo > 1 and C(R) > 0. The claim (2.38) then follows from (2.19), (2.39)
and (2.40) for j > jo. Clearly, (2.38) holds for 1 < j < jo due to the expressions of

eigenfunctions (2.19), (2.24). We use the estimate (2.38) with R = 1 to obtain

rd

/0 (14 D), par < 1) / T e (241

for each j > 1. We get, by an integration by parts and the hypothesis on ¢ in (2.36),

o© 1 & r
Y+N—-1—¢q dr = 7+qu{_ / - } d
/0 o(r)r pdr ’Y"’N_Q/o r P(r) + 5p(r) ppdr

N

< Cllella ( / PO (14 7’2),0d7”>
0

< Cllgllay. (2.42)

By (2.35), (2.41) and (2.42), we get

oo o 2
) ( / g(r)asj(r)rN-lpdr) < Cllgl. (2.43)
j=0 \"0
We then proceed to prove that
1 00 R 1 A
| a0 e = 320 [ a1 (2.44)
§=0

Notice that the completeness of {¢; }320 in H and (2.43) guarantee the convergence of the
series in (2.44). To prove (2.44), we set S, (r) = > 7 (4, ¢;)nd;(r). Since S, — 1 in H, it
is possible to find a subsequence {S,, } such that S, (r) — ¥ (r) a.e. r € [0, 1] as k — 0.
Our assumption (2.35), (2.41) and (2.42) imply that |g(r)S,(r)rV~1p| is estimated above
by an integrable function in [0, 00) independently of n, which provides that

1

1
lim g(?")Snk(r)rN_lpdr:/ g(r)z/z(r)TN_lpdr.
0

k—o00 0
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Therefore (2.44) holds. It then follows from (2.44) and (2.43) that

(9, V)rsxm| < Cllbllnllol m,

which completes the proof of (i).
(ii) It is readily seen that

| Uy + e+ o Yol < 1+ el 0l

Consider the integral [ r~2vipr™~!pdr. Since 2 < v 4+ min{N, 1+ N/2}, we may apply
the result of (i) with ¢ = 2 to this integrand to observe that f(v) € L*(s1,s2;H') and
1 f(0) Lo (51,50 < L with a constant L > 0 depending only on p, N, s1, s2 and ||| m.
Let us prove the continuity of f(v). Since A := inf{w(r, s); (r,s) € (0,00) X [s1, 2]} > 0,
there is a constant C' > 0 depending only on p, N, s1, so and A such that

V@@»—ﬂd®ﬂ§0@+%ﬁwn$—vaL r>0, 5 <5,5< s
Hence || f(v(s)) — f(v(3))l# < Cllv(s) — v(8)||m by (i), which completes the proof. [

Based on Corollary 2.3 and Lemma 2.6, we define an operator A : H' — H'. Let v be
an element of H ;. By Lemma 2.6 there is a constant C' > 0 depending only on p and N
such that

[ (000 ] < Clolagoli
for every ¢» € H. Hence Av € ‘H' and
Mol < Clollay. (2.45)
Consequently we may define a linear operator A : H' — H’ with domain D(A) by

D(A) = H), (2.46a)
Av=Av in "' for v € D(A). (2.46b)

In particular, ¢; € D(A) and flgzﬁj = p;¢; for each j =0,1, ...

Lemma 2.7. Let v be a solution of (2.10) in (0,00) X [s1, $2| for some sy € (s1,00)
satisfying the growth condition (2.34). Denote by v(s) the corresponding element of H'
in the sense of (2.37). Then v is in C'((s1,52); H') N C((s1, 52); D(A)) and solves the

evolution equation

%:—M+ﬂm in M. (2.47)

Proof. For any s € (s1,52], s+ h € (s1,52) and r > 0, there is 6 € (0,1) such that

v(s+h) —v(s) .

< /OOO{US(T, s+ 60h) — vy(r, 5)}27’N_1pd7" (2.48)
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Since v, is bounded and continuous in (0, 1] x [s*, s5] and is estimated above by C'(1+71)27+2
n [1,00) X [s%, s9] for each s* € (s1,s2) by virtue of (2.34), the right hand side of (2.48)
tends to zero as h — 0. It shows that v(s) is differentiable in (sq, o] and dv(s)/ds = vs(-, s)
in H'. A similar argument shows that v,(-, s) is continuous in s € (s, sg] with values in
H'. Namely v € C'((s1, s2]; H'). We next observe by (2.45) that

|Av(s) — Av(3) |2 < |Jv(s) — v(8) | for s,5 € (s1, s2).

This implies that v is in C((s1, s2]; D(A)). Since duv(s)/ds = vy(-, s), the function v(s)
solves the equation (2.47) for s € (s1, $a]. O

We define a family of linear operators {6_(5_81)’4}3251 acting on H' by 04 = I, ie.,
the identity map in H’ and by

(s— 51)A(I) _ Ze pj(s—s1) ¢j>HlXH¢] (249)

for ® € H and s > s;.
Proposition 2.8. (i) For each ® € H', e~(*~ DA js an element of H' N'H and
e A e < || (2.50)
The family {67(3731)14}8251 is a semigroup on ‘H'. Namely, ¢ = I and
e~ (=) Ap=(6=s1)A _ o=(s+5-2sD4 o onch 5,8 > sq. (2.51)

(ii) The function s — e~ DA js continuous in [s1, c0) with values in H' if and only if
® belongs to the closure D(A) of D(A) in H’.
(iii) Let ® € H'. If s > sy, then e"*~*1)4® € D(A) and

Aef(sfsl)Aq) — Z Iu/je*,uj(sfsl)<(I)7 ¢j>H/><H¢j' (252)

J=0

Moreover, the function s +— e~(s=s0Ag jg differentiable for each s > s1 and
d (s— sl)Aq) —pj(s— 31) _ A 7(3731)A~(D 2.53
7t Z Je (B, 9i)rxnd; = —Ae : (2.53)

Proof. (i) We begin with remarking that for each ® € H’ there is Fp € H with ||®|3y =
| Fo||2¢ such that (®,v)yywy = (Fo, 1)y for every ¢ € H. We observe with (2.27) that

0 0 1
Z|€_Mj(s_81)||<(p’¢j>H’XH|||¢j||HI S M5<Z|(F@7¢j>H|2>27 S > 817
j=n j=n

where M7 = 377 [(; + o + 1)e ~215(5=31)| < 00. By the completeness of the system

{gb]} ° o in H the right hand side tends to zero as n — oo, which implies the convergence
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of the series (2.49) in H’. A similar argument shows that the series is convergent also in
the norm of H. We next claim that

=) (P, ¢))nnd; in M (2.54a)
7=0

1®]3, = Z\ , Bidrsen] . (2.54b)

To show (2.54a) we use Corollary 2.3 to see that

[e.9]

Fy =Y (D,0;)1xud;. (2.55)

J=0

Since (¢, 1)y = \/1t; + @ + 1(¢;, ¥)rz for any ¢ € H and j by (2.27) and (2.29), we get
(Foo, )1 = 3 520(®, @3)3n (b5, ) 12, which implies (2.54a). Since || @[l = [|Foll, the
claim (2.54b) follows from (2.55). Replacing ® by e~(*=1)4® in (2.54b), we obtain

||e—(s—81)A(DH$_{, Z |€—M] 5—51) ¢3>H’><'H| (256)

and get (2.50) by (2.54b) and (2.56). The semigroup property (2.51) is now obvious.
(ii) It is enough to prove the continuity of e~*=*)4® at s = s;. By (2.54b) we have

le=C=040 — B3, =D [e ) — 1PU®, ;) pprr| (2.57)
Suppose that ® belongs to H;. Then ](@,@)HIXM < |<<I>,gbj>Lg| (cf. (2.27)) and

hmsup2| L0V | < hmsup2| o) L2|2 =0 (2.58)

by the completeness of the system {¢;}32, in L2. Tt follows from (2.57) and (2.58) that

lim [le”C~4¢ — &2, = 0. (2.59)

S—S81

The convergence (2.59) for general ¢ € D(fl) is proven by a standard limiting procedure.

(iii) Let s > s;. An argument similar to the one used in the proof of (i) shows that the
series ) % prje (D i)y is convergent in H and in H'. Substituting ® = A
with ¢ = e =504 to (2.54a), we get Ae (54D = Z;’io pje Hi (D, b3V pr by,
which yields (2.52). The differentiability of s + e~(*=*U4® and (2.53) are proven by an
argument similar to that of (ii). The remaining proof is thus left for the reader. O

15



Now, let us look at the initial value problem for an evolution equation

d ~

d—v =—Av+F, inH fors e (sy,ss], (2.60a)
s

v(s1) = vg. (2.60b)

with F' € L'([s1,s2]; H') N C((s1,52; H') and vy € H'. A function v € C([sy, s2); H') N

C((s1, s2); H') N C((s1, 82); D(A)) is understood to be a classical solution of (2.60) if it
solves the equation (2.60a) for all s € (s1, $2| and satisfies the initial condition (2.60b).

Proposition 2.9. If v is a classical solution of the initial value problem (2.60), then

v(s) = e~ (=g +/ Gi(siT)AF(T)dT in H' (2.61)

S1

for s1 < s < s85.
Proof. This is readily obtained by Proposition 2.8 and the semigroup theory (cf. [25]). O

Corollary 2.10. Let vy € L72.([0,00)) satisfy the growth condition (2.33). Suppose
that v(r, s) be a solution of (2.10) in (0,00) X [s1, $o| for some sy > s; with initial data
v(r,s1) = vo(r). Then the solution v(s) = v(+,s) may be regarded as an element of H' in

the sense of (2.37) and

v(s) = e =AYy 4 / e A f(u(r))dr  inH (2.62)

51

for s1 < s < s85.

Proof. Since vy € L2, it is approximated by a sequence {vg,,} C C§°([0, 00)) in the norm of
Li and thus belongs to the closure of D(fl) in ‘H’'. We then see that v is a classical solution
of the problem (2.7) with F = f(v) due to Lemma 2.7. Since f(v) € L'([s1,s2]; H') N

C((s1, s2); H') by Lemma 2.6(ii), the formula (2.62) follows from Proposition 2.9. O

3 Dead-core rates and topological arguments

In this section we show the existence of a solution u, of (1.1) that satisfies the bound
(1.7). At first the solution w, of (2.9) corresponding to u, is formally constructed in
§63.1 by means of a matched asymptotic expansion technique. Suggested by this formal
construction, we prove rigorously that such a solution does exist by a priori estimates and
topological arguments in §§3.2.

3.1 A formal matching argument

We begin with splitting the half line {r > 0} into three regions: inner, intermediate
and outer regions. The inner region is a very narrow layer disappearing as s — oo. The
outer region lies very far away from the origin and moves to infinity as s — oco. The
intermediate region is their complement part, which lies between the inner and outer
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regions, and expands to the half line as s — oo. At first their interfaces are unknown.
Let r,,(s) denote the boundary between the inner and intermediate regions. Let d(s) > 0
be such that d(s) < r,,,(s). Suppose that a solution wy(r, s) of (2.9) behaves as

6(s)?U,(6(s)"tr), for 0 <r < r,(s),
wy(r, s) ~ U(r) + x(s)de(r), for r,,(s) <r < Rn(s), (3.1)
U(r) + v(sy)r*e, for R,,(s) <r < oo,

and for s; < s < s9, where R,,(s) is the frontier between the intermediate and the outer
regions, and v(s1) = o(s1) as s; — oo, that is, v(s;)/s; — 0 as s; — oo. Here and
hereafter we loosely use the notation "a” to express approximation. The number 7 is a
positive constant to be determined later. Notice that the first representation in (3.1) is
a rescaling of stationary solution and that the second representation in (3.1) claims that
the eigenfunction expansion yields an approximation of wy, — U (= v). Assuming that
they are comparable at r = r,,(s), we have

0(5)** [U(3(5) " rm(s)) + h(m){d(s) " rmn()}] & Ulrm(s)) +x(5) - celrm(s))” (3.2)
by (2.3) and (2.20a). We now select n = n* > 0 so that

h(n*) = ce. (3.3)
It then follows from (3.2) and (3.3) that
X(s) A d(s)* 7. (3.4)

Taking the duality product in the equation (2.47), we see
X'(s) = —pex(s) + (f(v(s)), Ge)rxr (3-5)

At this formal level, it is convenient to assume that (f(v(s)), pe)rrxn = o(e7#%) as s — oo
(cf. (4.9) below), so that the first term in the right hand side of (3.5) is dominant and

X(s) m ey (sy) (3.6)

as far as s > 1. Therefore if the initial data is chosen so that x(s;) ~ e #¢*1  then
X(s) = e " and 0(s) ~ e “** with wy = pe/(2a — ) by (3.4). Here we may choose
the matching point r,,(s) as rp,(s) = Ko(s) = Ke ™ with K > 1 being a constant.
A similar argument shows that R,,(s) ~ e’® with some o € (0,1/2). Substituting these
values to (3.1), we deduce that

e 2owns . (e¥esr), for 0 <r < Ke e,
we(r,s) = § U(r) + e #5¢,(r), for Ke ™t < r < e’®, (3.7)
U(r) + v(s1)r*, for €7 < r < o0,

and for s; < s < s5. Therefore inf,>qw(r,s) = w(0,s) ~ p*e 2. We then go back
to the original variables (x,t) through (2.6) to see that the corresponding solution u, of
(1.1a) satisfies

we(0,1) ~ " (T — t)Zwetbe (3.8)

The dead-core rate (3.8) is precisely faster than the self-similar rate (7" — ¢)“.
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Remark 3.1. We have selected the particular constant n = n* as in (3.3). In fact, arbitrary
choices of n > 0 are available We only have to replace the values of §(s),w,(0,s) and
ue(0,t) by M(n, E) s M (n, £)?*e=2wes and nM (n, £)?*(T — )@@t with M(n, () =
{co/h(n)}/ 2= respectively. No changes appearing in the possible dead-core rates, we
have chosen the sunplest case where M (n*,¢) = 1 in the above argument.

We expect from (3.7) that a desired solution w, would converge to U for g < 1 < 1/¢
with every ¢y > 0 as s — co. However, the presence of unstable eigenvalue pp makes the
situation involved (cf. (2.26)). We have to perturb the initial datum of w so as to get rid
of unstable effects caused by py. Topological aspects of mapping degree, the subjects of
the next section, provide a suitable perturbation.

3.2 Topological arguments
As is noted in Remark 1.2, the constant 7 in (1.8) admits a useful inequality
20a@—1) <y <2a (3.9)
with constant « in (1.5) for every N > 1 and p € (0,1). For each ¢ = 1,2, ..., we set

He ¢ 1
= = —=>0. 3.10
e 20—y 2a—7y 2 ( )

We select positive constants K and o respectively as

1 1
K = eszsl with max{m, 5} <k< 1, (311)
1
P < mln{ ,]{?Mg}. (3.12)
20
Let m1,n2 be positive constants such that
h(m) < ce < h(n), (3.13)

where h(n) is as in §2.1 (cf. (2.3)) and ¢ is the constant appearing in (2.20a).

Theorem 3.2. Let k,0,m,m2 be as above and let € > 0 be a constant such that h(n;) <
co(1—3¢) and ¢y(143¢) < h(ny). Then for any G > 0 and for each positive integer ¢, there
exists a radial solution w, of (2.7) with the following properties: there exists a positive
constant s, depending only on p, N, ¢, G, k,o,n1,n2 and € such that

=209 (e95) < wy(r, 5) < e~ 2290, (e40°r) (3.14)
for 0 <r < Ke ™ and s > s;
lw(r, s) — U(r) — e P3¢y (r)| < ee s (r7 4 p2Heta)) (3.15)
for Ke ™ <r < e’ and s > sy;
lwg(r,s) — U(r)| < Gr*® (3.16)

for e?* < r and s > s;.
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Remark 3.3. (i) In §6 we give further properties on the solution wy, such as the convergence
im0 €**{wy(r, s) — U(r)} in compact sets of (0,00) and the zeros of wy(s) — U.

(ii) By fixed-point arguments we construct a suitable initial datum for each positive integer
¢ so that the corresponding solution wy of the problem (2.9) fulfills the above properties.
(iii) One may choose the constants 7,7, arbitrarily close to each other if they satisfy
(3.13), though € must be selected so small accordingly (cf. (3.22) below).

In the sequel let € € (0,1) be a constant and we denote by w(r, s;d) the solution of
(2.9) with initial datum w(r, s1;d).

Definition 3.4. Let d = (dy, dy, ...,ds—1) € R be such that

/—1
D fdn| < gemren, (D)
n=0

A solution w(r, s;d) of (2.9) is said to be in a class W¢ . 0 € (0,1], and written as
w(r,s;d) e WY if
lw(r,s;d) — U(r) — e 5¢y(r)| < Oeehes(r7 4 p2leta))
for Ke @ <r <e’ and s1 < s < s9. We set
U, s, = {d € RY; d satisfies the property (D) and w(r,s;d) € W _}. (3.17)

S1,82

For the constants k and o respectively in (3.11) and (3.12), we choose positive constants
K and ¢ as

1
o<0< min{§,ku4}, (3.18)

K =M with 0<k < k. (3.19)

Let n* be the constant in (3.3). We select a function ¢, € Li2.([0, c0)) satisfying

Gu(r) =~ {U(r) = e 2 (¢ +Zdn¢n )b o, Ky (V)

( ) Ge(r) in [Kemer, ™) (V2)

) Z (1) 4 €152 Gy (r )‘ %Grzo‘ for some G > 0 in [¢7*', 00); (V3)
n=0

+Zdn¢n + e M gy(r) > 0 in [0, 00). (V4)

For this function ¢,(r), we take an initial function as

w(r,s1;d) = U(r) + v e(r; d) (3.20a)
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with d € R’ satisfying the property (D) and

v (7 d) Zdnqbn + e M Gy (7). (3.20D)

The initial data w(r, s;; d) may have jumps in [f(e*“’sl, 00) and thus can be discontinuous,
but this thing is not a serious drawback since the corresponding mild solutions become
smooth immediately for s > s; in view of parabolic regularizing effects. Further remarks
on the choice of initial data are given after the proof of Proposition 3.5 below.

For the future references, we note that for each j = 0,1, ..., there is a constant C; > 0
such that i

(60 — b1, 6;)| < CreOrHMETBn, (3.21)

where k& € (0,1) is the constant in (3.19). The estimate (3.21) is readily obtained by
splitting the integral defining the inner product according to (V'1)-(V'3) and using (2.20a)
as well as (3.19) and the exponentially decaying factor of the weight function p as r — oc.

In the following, for a constant € > 0, we write s; > 1 if s; > s with some sufficiently
large sy > 1 depending only on p, N, ¢, k,o,G, 1 and 1, as well as on €. We now choose
e > 0 so small to fulfill

h(m) < ci(1 —3¢e) < o < (14 3¢) < h(n). (3.22)
Such a constant ¢ does exist due to our choices of 7, and 7, in (3.13).

Proposition 3.5. Let ny,m; and ¢ be as above. Assume that d € Uy, ,, for some s; > $;.
Then there exist 6 € (0,1) and sy > lsuch that

(1 + 8)e 2 U, (e*r) < w(r,s) < (1 —8)e **U,, (e“*r) (3.23)
for 0 <r < Ke ™ and s; < s < so. In particular, there holds
me 2 < w(r,s) — U(r). (3.24)
Proof. Since d € Uy, ,,, we have
w(r,s) = U(r) < e *{go(r) +er?(1+1°)} (3.25)

for Kem* <r < e? and s; < s < sy9. Take a constant dy € (0,1) small enough so that
co(143e) < h(n2)(1—0g). Weset 6 = §(s1) = e 1. Then ¢,(143¢) < h(n2)(1—0d)(1—0)
as far as s; > 1. Recalling (2.20a) and (2.3), we then get from (3.25) that

€ eme (e

= (1 _ 5) —2awes{U(K) + h(?’]g)(l _ 50)K7} + 56—2awzsU(K) o ge—QawgsKy
S (1 _ 5) —2awgsU (K)

w(Ie™ 5) < e 2BU(K) + hp) (1= o) (1 — 8)e e (Kemrs) -

if s; > 1, because § = o( K 2*"7) and thus 6U(K) = o(K") as s; — oo (cf. (3.10) and
(3.11)). A similar argument shows that

w(Ke ™, ) > (1+8)e U, (K)
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if s1 > 1. Consequently (3.23) holds for r = Ke™** and s; < s < s.
We then proceed to observe, by our choice of the initial data, that

w(r, s1) = e 22U, (e r) (3.26)

for0<r < f(e‘“’fsl, and

/-1
wir,s1) = U)| = | 3 dudu(r) + e 4(r)

(3.27)
< e T (e +1)(1 4 o(1))
for Ke west < p < Kewest ag s1 — o0. On the other hand, there holds
e 2wty (e5tr) = U(r) + h(n;)e "7 (1 + o(1)) (3.28)
as s — oo for i = 1,2 by (2.3). Arguing as above, we obtain
(1+0)e 251y, (e7@1r) < w(r, s1) < (1 —8)e 21U, (e r) (3.29)

for Ke 1 < < Ke 1 if s, > 1. Tt follows from (3.26) and (3.29) that (3.23) holds
for 0 < r < Ke ! and s = s;. Thus (3.23) valids in {(r,s1); 0 < r < Ke “*1} U
{(r,s)] r = Ke ", s1 < s < so}. We shall show that this estimate keeps to hold for
0<r< Ke ™ s <s< sy byacomparison argument. We set

w(r,s) = (1+ 5)6_20‘”8Um(ewsr);
w(r,s) = (1— 5)6_20“"25Um(e”‘—’sr).

A direct calculation yields then that

w, — W

s Lpr ™

N-1 r
( ——)wr—ozwwpr
T 2

(3.30)
=(1+ 5)6_2(6“_1)“"5 [ — {1 —(1+ 5)_(1_7’)}U51(6w557“) + 6_2‘%83(6”87’)}

with
B(&) = (e + V{5605, (6) — ol (6)}

Notice that the function B is negative near £ = 0 and £ = oo due to (2.3) and (3.9).
Because U, (§) > 0, B(€) is bounded and e 2! < § when s; > 1 (cf. (3.9)), the right
hand side of (3.30) is negative for 0 < r < Ke “** and s1 < s < s9 if 57 > 1, that is, w
is a subsolution of (2.9a). A similar argument shows that @ is a supersolution of (2.9a).
Note that Uy (0) = Uy,(0) = w,(0,s) = 0 for s; < s < s5. The desired estimate (3.23) is
then obtained by the comparison theorem. Since U; — U’ > 0, we get (3.24). O

We have remarked in §2 that under the general hypothesis on initial data of having
algebraic growth bound as |y| — oo, the corresponding solution w of (2.7) grows with at
most algebraic order for every s € (s, s2). The estimate, however, can depend on sy. We
next prove that for our particular initial data, the corresponding solutions have growth
bound as r — oo that is independent of s € [s1, s].
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Proposition 3.6. Assume that d € Usl& for some sy > s;. Then there exists s; > 1
such that
lw(r,s) —U(r)] < Gr**  forr > e and 51 < s < sy,

where G is the positive constant in the choice of initial data described in (V'3).
Proof. Since we are assuming that d belongs to U, ,, we certainly have that
1
lw(r,s) — U(r)| < Ce™Hes(r7 4 p2reta)y < §Gr2a

for 1 <r <e? and s; < s < 59, provided that s; > 1. We then go back to the original
variables (u;x,t) to see that

1
lu(z,t) — U(|z])| < §G\xl2“ for || < (T — t)%*", t <t <T, (3.31)
where t; ;=T — e % and T} := T — e %2. Define

pla,t) = u(z,t) = U(lz])

and observe that
uP — Ur
= Ap — V(x,t)p.

We then multiple sgny and make use of Kato’s inequality to get

ai(lel) < Allel) = ¥z, D)]el < Allpl). (3.32)

Namely, |¢| is a subsolution of the heat equation. On the other hand, we have

dp=Ap — " —

0= AU(|z]) - U(j2))~ O PU(|2]) = AU(Jz]) — ¢, § (T - £)"120U(|a]).

for || > (T — ¢)27°. A simple computation shows then that the function

t
Z(x,t) == exp (c;S\l,_p) / (T — T)_(1_2”)dT)U(|x|)

t1

is a supersolution of the heat equation, that is,
Z,>ANZ  for |z| > (T —1)27, t; <t <T, (3.33)

(and so is CZ(x, t) for each constant C' > 0). Moreover, our choice of initial data (cf. (V2),
(V3) and (3.20b)) implies that if s; > 1, then

1
lu(z,t1) — U(|z])] < §G|x|2a for |z| > (T — tl)%_", (3.34)

where the same argument as the derivation of (3.31) has been used to obtain (3.34) for
(T —t1)277 < |z| < (I'—t;)27%. It then follows from (3.31)-(3.34) that

lu(z,t) = U(|z])| < CoZ(z,t) for |z| > (T — t)%_", t,<t<T
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by the comparison theorem, where Cy = (2¢, x) 'G. Since

t
1
[ @ =70 (- (1 - o),
t 20
we conclude
lu(z,t) — U(|z|)| < Gla[**  for |z| > (T — t)%"’, ty <t <17y,

if '—t; = e <« 1. Changing the variables to (w;y, s), we get the desired estimate. [

We may define a map P: U, ,, — R’ by

P<d;51782> = (pOupla"wpffl% Pn = <U)(‘,82;d) _U7¢n>L%7 n:0717"'7€_1' (335>
The following proposition plays a key role in the proof of Theorem 3.2.

Proposition 3.7. Let s; > 1. If there exists d € Usl& for some sy > s; such that
P(d; s1,82) =0, then w(r,s;d) € WY for some 6 € (0,1).

1,52

The proof of Proposition 3.7 requiring quite heavy analysis, we postpone the proof to
§5. Once Proposition 3.7 is proven, a topological fixed-point argument by mapping degree
guarantees the existence of the solution as stated in Theorem 3.2. This step is a purely
topological argument and is therefore essentially the same as the corresponding parts of
[15,21], but we present highlights for readers’ convenience.

Proposition 3.8. Let s; > 1. If Uy, ,, # () for some s, > s, then there exists d € Uy, ,,
such that P(d; sy, s2) = 0.

Proof. Note that p,(d; s1,51) = dy + €5 (¢y, ¢), n =0,1,....,0 — 1, and

-1 -1
U = {d € B0 3o 1da] < ce™, |30 dun(r)| < 70 o7 4 22004))
n=0 n=0

for Ke7™@t < r < e”sl}.

Lemma 4.2 below implies that if P(d;sq,s1) = 0 for some d € USLSQ, then d lies in the
interior of Uy, 5,. Since the map P is continuous in d and is homotopic with the identity
map [ and there is no d € 90Uy, 5, such that P(d;s;,s;) = 0, homotopy invariance of
mapping degree yields

deg(P(+;s1,51),Us, 5,,0) = deg(I,Us, 5,,0) = 1. (3.36)
Admitting Proposition 3.7, we have
0¢ P(OUg, s;51,5) for sy <s<so.
It then follows from (3.36) and the homotopy invariance [24, Theorem 2.2.4] that
deg(P(+; s1,52),Usgy 55, 0) = deg(P(+; 51, 51), Ugy 51,0) = 1.

Hence there exists d € Uy, 4, such that P(d; sy, s2) = 0, which completes the proof. O
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Proposition 3.9. If s; > 1 then U,, ,, # () for every sy > s;.

Proof. By our choice of initial data w, we have w(r,s;;0) € )/\/sll/2s1 Then there is a

constant 1 > 0 such that w(r, s;0) € Wsll/iﬁn, whence 0 € Uy, 5,1 We set

s* i=sup{s > s1; Uy, s # 0}

and prove s* = 400 by contradiction. Suppose that s* were finite. Then there is a
sequence {s;} C (s1,5*) such that s; — s* as j — oo and Uy, 5, # 0 for every j. It follows
from Proposition 3.8 that for each j, there exists d; € U, s, such that P(dj;s1,s;)

0. We then use Proposition 3.7 to see that w(r,s;d;) € Wff,sj for some 6; € (0,1).
Taking a subsequence which converges to some d* € RY, we obtain P(d*;s;,s*) = 0
and w(r, s;d*) € W! Namely, d* € Us, s~. We again use Proposition 3.7 to observe

51,58%°
that w(r,s;d*) € WS;S* for some 6* € (0,1), whence d* € Ug« 44, with some n > 0,
contradicting the definition of s*. n

We have now arrived at a position to prove Theorems 3.2 and 1.1.

Proof OL Theorem 3.2. For a monotone increasing unbounded sequence {s,}, we may take
dY) € U,, ,, such that P(dY);s;,s;) = 0 for each j by Propositions 3.8 and 3.9. We
then apply Proposition 3.7 to deduce that w(r, s; dﬁ)) € ff,sj for some 6; € (0,1).
Taking a subsequence converging to some d* € N;>1Us, s, we see w(r, s;d*) € WSILOO =
Nsy>s; W, 4,» Which is the desired solution wy(r,s). The properties (3.14), (3.15) and

(3.16) are guaranteed by Propositions 3.5, 3.7 and 3.6, respectively. O

Proof of Theorem 1.1. Let d* be as in the proof of Theorem 3.2. For T" > 0 small enough,
the function u,(x,t) := (T —t)*w,((T —t)~Y/%z, —log (T — t); d*) is the desired solution of
(1.1) with initial data wug¢(z) = T%w(T~2x, —log T; d*). The existence for each T' > 0
is shown by rescaling u, — ué)‘) (z,t) = A %up( Az, A?t) and selecting a suitable A > 0. [

4 Fundamental estimates

In this section we derive some auxiliary estimates leading to the proof of the key
a priori estimate of Proposition 3.7. As is previously noted in §3, these estimates are
essential to execute our topological argument within ngysz, where VVSGLS2 is the set defined
in Definition 3.4 together with U, 5,. To this end we just recall here some notations

introduced in the previous sections. Let f be as in (2.12), i.e.,

cp—l
FW) = UGy — (U@ + vy + 2y, w0,

where r = |y| and U(r) is the singular stationary solution given in (2.2). It may be
regarded as an element of H' by Lemma 2.6. We have denoted the duality product
between H' and H by (-, -)3x2, but we shall henceforth write it, together with the inner
product in L2, simply as (-,-). We denote by w(r,s) a solution of (2.9) with initial
data w(r, s1;d) = vo(r;d) + U(r), where vy is the function defined in (3.20b), and set

24



v(r,s) :=w(r,s)—U(r). Then v is a solution of the linearized equation (2.10) and admits
the integral equation described in Corollary 2.10. The linearized operator is denoted
by A as well as its Friedrichs extension in Lemma 2.2, whose eigenvalues {y; 720 and
eigenfunctions {¢;}22, are given in (2.18) and (2.19), respectively.

In the following, we shall denote by C a generic positive constant which varies from
line to line. As is used in the previous sections, for a positive constant v, we write s; > 1
if s; > s with some sufficiently large sy > 1 which may depend only on p, N, ¢, k, o, G,
and 7, as well as on v. Here k,o and 7, are the positive constants given in (3.11), (3.12)
and (3.13), respectively, while G is the positive constant appearing in (V'3) to define the
class of initial data w(r, s1;d) given in (V'1)-(V4) and (3.20).

Lemma 4.1. Assume d € U,, ,,. Let K be the constant as in (3.11). If s, > 1, then

0< flv) <CKYe 2502 for 0<r < Ke ™ s <5< 89 (4.1)
0< f(v) < Ce 2esp72072 for Ke @ <r <1, 51 <5< s9; (4.2)
0< f(v) < Ce2espr=2072 for | <1 < e, 5, <5< 8; (4.3)
0< f(v) <Cr* 2 for ¢ <r, 51 <5< sy (4.4)
Proof. Notice that if s; > 1, then
0 <w(r,s) < e 25U, (e“r) — U(r)
S 2h(?72)K'y€72awgs
for 0 <r < Ke ™ and s; < s < sy by Proposition 3.5 and (2.3). Then there holds
flv) < Ccu—1=Ply
S Cr‘Kv'ye—2ozwgsT—27
which yields (4.1).
We next note that Taylor’s theorem yields
0< flv) <CU P2 for any r > 0. (4.5)
By the assumption d € U, ,,, we have
lw(r, s;d) — U(r) — e 15| < ge™#e8 (7 4 p2lreta))
for Ke ¢ <r <e? and s; < s < s9, whence
[u| < Clehes (Y 4 p2lrete)) (4.6)
there. It then follows from (4.5) and (4.6) that
f(v) < Ce 2uspr=2a=2  for e w5 <p <1, 51 <5< 89;
v
T | CeZmesptimt20=2 for ] < p < g% 51 < 5 < 59,
which shows (4.2) and (4.3).
Finally, (4.4) immediately follows from (4.5) and Proposition 3.6. O
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Lemma 4.2. Let s; > 1. Suppose that for any v > 0, there exists d = (do,dy,...,ds—1) €
Us,.s, such that P(d;sy,se) = 0. Then

-1
> fd| < vemre, (4.7)
n=0

Proof. Taking the duality product with ¢,, in (2.62) at s = s9, we have

0 =2 (g, p,) + / ) e (u(T)), )T (4.8)

S1

for n=0,1,...,¢ — 1. In order to prove (4.8), we show
1f(0() e < CemUFomT s <7 < (4.9)

with some constants C' > 0 and k > 0 for s; > 1. To show (4.9) we take ¢ € H and use
the estimates of f(v(r,7)) in Lemma 4.1 and (2.29) to observe that

[(f(v(7)), 9)]

oo Ke weT 1

<CY (6.9)) (K / |6 (r) [N =2 pedrr + =200 / |¢j<r>|r27—2a+N—3pdr)
§=0 0

Ke weT

o

+ Ce2y,gT/ T4772Q+N73’¢(T)’pd7’ 4 C/ T2a+N73|¢<r)‘pdr
1 e’

- (¢, ¢)'H
=2 it Oj_+ T (L1 + Loj) + Ls + L, (4.10)
j=0

Since v+ N — 2 > 0, we may estimate L, ; by (2.38) as

K67WZT
Lyl < OK7e 23 / PN pdy
0
< CjaemWHRmT  for 5>

and get similarly |L; o] < Ce=(F®meT where k = (1 — k)(2y + N — 2)/(2a — ) > 0 with
k € (0,1) being the constant as in (3.11). To estimate Lo ; we take a positive constant
a:=2a—y—¢g with 0 < &g < min{2a — 7,27+ N — 2} and then obtain, by (2.38), that
1
Lol < Ce7?7 / 72N 6, ()| pdr

Ke weT

1
S C«j—ie—ZugT(Ke—ng)—a/ r2’y+N—3—£0dr
0

< Cj_iK_ae_“”e_mw” for j > 1
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and get analogously |Lgo| < K% #Te~=0“¢" Using these estimates in (4.10), we have

Z (0, 05)n (L, + L)
— ;i +a+1
7=0
G N2 2 G J 2 2 (1+k)
<C< oy ) ( 4 —> e~ (FR)meT | o—peT g —eoweT
<e(S00) (- £ |
Jj=0 J=jo
<O\ @l (e™WFmImeT 4 empuT g mE0weT) (4.11)

As for L3 and Ly, it is readily seen that

20T

=) Hlolhe (4.12)

We substitute (4.11) and (4.12) to (4.10), so that the claim (4.9) holds.

Since (vor, ¢n) = dp + e 1 (P, Py) by our choice of vy, and P(d; s1, s2) = 0, we have

|Ls| 4+ |L4| < C’{e*Q‘W + C'exp (—6

dyp = —e” 1 <Q~5€’ ¢n> - / 2 elm(T_Sl)(f(v(T))v ¢n>d7— (4'13>

S1

forn=0,1,...,¢ — 1 by (4.8) and hence, using (3.21) and (4.9),

~ 52
] < (G dndle + O T a Tervion [ etwemamltsngncgr
s1

< C«e—(l—&—qo)sle—uzsl (414)

where ¢ = min{x, (y+ N)(1 —k)(2a —~)} > 0. Summing up (4.14) forn =0,1,....,¢ — 1,
we obtain (4.7) for s; > 1. O

5 Proofs of a priori estimates.

This section is devoted to proving the key a priori estimate described in Proposition 3.7.
We continue to use the notations having been used in the previous sections and partly
recalled at the beginning of §4. Throughout this section, we always assume that there is
d € Uy, s, such that P(d; sy, s3) = 0 for some sy > s;. The proof is divided into two parts;
short-time s; < s < s; + 1 and long-time s; + 1 < s < s9. The former part is discussed
in §§5.1, while the latter is argued in §§5.2. The proof of Proposition 3.7 is concluded at
the end of this section.

5.1 Short-time estimates

In this subsection we prove Proposition 3.7 for the short-time interval. We set

ot o= {(rs)] Ke™* <r <e”™, 53 <s<s+1}.
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The formula (2.62) in Corollary 2.10 provides that

Ze 650 (g 1 65)65 + / S eI ) obdr (5.1)
51 j—0

S1(+,8) 4+ Sa(-,8) + S3(+, 5),

where
S1(,8) == €7y, d) b, (5.2a)
-1
So(-,8) = Z e—uj(s—sl)e—um@e’ b;)P; + Z dne_”n(s—sl)¢n(r)7 (5.2b)
AL n=0

— Z/S e_uj(8—7)<f(v(7'))7¢j>q§jd7. (5.2(3)

Lemma 5.1. For any v > 0, there exists s; > 1 such that
S < we M (pt 4 p2ete)y gy B (5.3)

Proof. Since S, satisfies the equation S5 = S, + (N —1)/r —1/2)S, + aS — (pcij]\}/TQ)S,
it may be represented as Sy(r, s) = 7V (r, s) with a solution V' of the equation

%:wr+<27+i\7—1_g>w+<a_%>v (5.4)

for r > 0 and s; < s < s9. The equation (5.4) is further reduced to

9y L N —1
WS:WTTJF(%—Q)WT

by setting W = Vexp (—(a — v/2)(s — s1)). Hence we have

ssl

Celoti72)(s=s1) oo e
W(T,S) = _ 67(8781) /(; [M 2<1 — e (s— 51))

rlem(ms) 2\ N N
+ €Xp <_ 4(1 _ e—(S—Sl)) r7 2 g'y 2 W(€751)d£a (55)

where [, denotes the modified Bessel function of order y (cf. [29, Proposition 6.1]). We
recast (5.5) for Sy to get

(Oé+ )(s—s1
SQ = Crwm/ H £ T 8-81)5 SQ(f 51) 5 (56)
with
N e 2lr rle=t 4 £2 Y
H({,r,t)—]w <m> exp(—m>r + . (57)
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Since

Czte?

11,(2)] < W, z e R,

for any p > 0 (cf. [1]), we have

_ 2y+N-1
e T ¢r T e~z ¢r :
Ty S e ) P
Eris =7) < O\ ey I ety
7’26_(S_T) +§2
. . I —y-1+Z
eXp( —eey) 7
=T r;s—T). (5.8)

Therefore Sy is estimated as

exp <(a + M)(

— ) 00 ST S1 29+ N—2
2
1 —e(s=s1) /0 (21—6 551))

6_%57“ 2~/+N 1 % 5)2 o
(1 2(1 — e—(s—sl)) - 1 ety |1 RIS sl

CrY Ke—wes 00
SN R e / +/ T(&,7; 5 — 51)€ |Sa(8, 51)dg
—€ 0 Kewes

=:591 4+ Sa2.2.

|SQ| S OT’A/

o

We first consider Sy ;. Since

So(r, 51) = e~ 20wt {Un*(e‘”fslr) _ U(ewmr)} e Gy, ) be(r)
= O(e 2w K7) (5.9)

for0<r< Ke st as 51 — 00, Sz1 may be estimated as

Cle=2awest [y

ke—wes v
T s —s1)€7dg
1 — e (5=s1) /0

C€—2awglenyT Ke™ 52

< —
= /—1 - S—s1 0 eXp < 2(1 _ 67(5781))

where the fact that re-(=50/2 — ¢ > ¢ for r > Ke_“’fs and 0 < & < Ke 1 has been
used. By a change of variable £ — t = £/v/1 — e=(6—51) we obtain

So(r,s) <

3

N fo'e) t2
Soq(r,s) < Ce_Qo‘w‘fleV/ exp < — §>dt
0

< Cemhmhnwesiommesyy iy Yo s (5.10)
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We then proceed to estimate Sy 2. We know

1
|Sa(r, s1)] = ’ D dudn(r) + e Gu(r) — e Gy, dr)bo(r)
n=0

—(14q1)pes1 o —pest (Y 2(peta) oW1 & o < 081
< 062 e ~(7” +r ) for Ke <r < e’ (5.11)
Cr2ueta) — for 751 < < o0,
where ¢ = (v 4+ N)(1 — k)(2cc — ) > 0 (cf. (3.21)). It then follows that
Crv o
S0alr9) < T oty [ T(Emis — st g
— e §—S eds1
. 5—s1
C —(14q1)pes1 4y e?*1 2re 2
Ty / a T(€ rss — 5162 V(1 + €2 de
1 —e(s=s1) 2T€_L2ﬂ Ke~wes1
= 521’2 + 5372 + 53’2.
Consider S},. Since the conditions £ > e and r < e” imply £ —re” 2" > £(1 —

e (079)51) > €/2 aslong as s; < s < 51 + 1 and s, > 1, we have

2v+N-—-2
2

T(E,r;s—sﬁﬁ( £ )

52
2(1— e ) P < T a(1- e—<s—81>)>’

whence

CT’Y 6651 oo 5 2'7"’2&
1 — —_— —
SQ,Q(T; 3) < 1 — o—G—s1) exXp ( 32 > l551 (2(1 _ 6—(5—51))>

52 2(pet+a)+ &
- exp ( — 01 = 6(881))>§ ¢ 2 dE.

We then change the integral variable by setting ¢t = £(1 — e~=51))=1/2 to deduce that

2v+N-2
2

Or? ey [ t
Shtrs) £ e (- ) [ (s———)
22(1,8) < V1 — e—(s=s1) exp 327 Jo \2y/1—e(s=s1)

t2
65'51 &9} t2
< Cr7exp ( — ) / $HN+2(peta)—1 exp ( _ —>dt.
= 32 ) J, 32
Therefore we obtain
Syo(r,s) < Ce o1y in B2 (5.12)
Next consider S3,. Since { — re”(=*1)/2 > ¢2/2 when & > 2re= /2 we see
Cle—(IFa)msiypy  [os1 2y+N-2
5'222 < € r / - ( 5 ) 2
, 1 — e—(s—s1) oo 2L 2(1 _ 67(5781))
& ) v+ 2
: - 2 (1 dg.
eXp( 16(1 — e G—0) 2 (1+87)de
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We then use the same transformation of the integral variable as above, so that the integral
is estimated by a constant multiple of 1 — e~(*=51)_ and thus

S5y < CeUtammesiyy . 3321 (5.13)

We finally estimate S3,. Since e (5=s1)/2¢p > €2 /2 for € < 2re”(5751/2 we have

s—s1

53 C@f(lJrfh),ugkﬁT'y 2re” "2 52 w
2,2 < 1 — e—(s—51) 0 {2<1 _ e—(s—sl))
& }_QWQN_I < € —re” 2| > v+ 2
. _ » ;
{4(1 — e~ (sms) R TG P C) &2 (1+E7)dg
S*Sl
Cle—(+a)mesypy e T € — e P
< 1 20 (_ >d .
— 1 _ e—(s—sl) ( + r )/0‘ eXp 4(1 _ 67(3751)) 5
Since
o) |€ - TG—% |2 >
- d
/0 P ( 11 = ey )%
7‘6—57251 ‘5 _ T€7%|2 [e'e) 22
/o o (- 4= o) “/0 P\ H ey
< 471'% 1— e*(5*51)7
we obtain

554 < Ce~(Wranesy (7 | p2ueta)y iy Yo o (5.14)
Summing up (5.12) to (5.14), we have

Syo < Ce~Utamest (pv 4 p20ueta)y gy w1 (5.15)

The desired estimate (5.3) for s; > 1 then follows from (5.10) and (5.15). O

We shall show that a similar bound holds also for S3. The proof requires a number of
steps. Note that

Ss(r,s) = /SZ(T;r,s)dT with  Z(r:7,s) = e~ DA f(u(7). (5.16)

Since the function Z(7;r,s) satisfies

N—-1 N e
——2>Zr+ozZ—pp2’NZ, r>0, 5>7,
T T

Zs:er+<

we may write (5.16) as

(a+ N4_2 V(s—T

s ) 00 N
Sy(rs) = Cr / S /0 H(E,rys — 1)€Y f(o(€,7))dedr,

S1

31



where H is the function defined in (5.7). It then follows from (5.8) that

s [ R0 [ ey

1—e(=7) 1—e(s=7)

1
_s—T 727+N 1

e 2 &r r2e=(5=7) 4 ¢2
{Hm} exp (= =y )€ (6 T dsr

/( [ /0> PR

=: 831+ 532+ 533, (5.17)
where L = %51 with max{(2a + 1 — 7)1, 1/2} <9 < k and

2v+N—1

e_%ér o2
{1 T e(ST))}
exp (— H)sfv Y. 6y

Lemma 5.2. Let S3; be as in (5.17). For any v > 0, there exists s; > 1 such that

Sk

I mrs)=Cri(s—1) 7"

Sz <wve M7 in N5 (5.19)

Proof. When £ < Le ™ r > Ke ™ and s; < 7 < s < s1 + 1, one may readily check
that 26re=(=7)/2 < ¢~ (=712 if [, « K. We then have

|Tef(sfﬂ')/2 _ §|2 - (26)717”2 4 62
ex — ex —_
PlT g —e 6y ) =P T4 —e6)

there and obtain, by (4.1),

_ 2y+N-—1
S < C(Lr)Y ’ —V—% —20wyT Fentt 1 6_%571 ’
51 < C(Lr) 51<S_T) e ; LT )
(2¢)~'r 2+§2> VN3
- /L ded
eXp( 11—y )¢ sdr
—2awys ’ -2-1 OO Cr? —C2% _~y+N-3
< C(Lr)Te =@t | (s —171)72 exp ( - )e 27 dzdr,
s 0 s—T

where we have used the change of variable £ — z = £//s — 7 and the fact that v+ N —2 >
0. We again change the variable 7+ ¢ = r/y/s — T to observe that

%) 19 , 00 .
Sua < Cr(Lrpeeos [ (8 Tecees [T gy
0 0

r

LN\"
S CLWG—Qoewe& — C(?) (Ke_WN)’YeWZVS—QOM(ZSl

< C’e*(lﬂlz)ﬂeslr’Y

in 331 . where ¢o = y(k —9)/(2a — ) > 0. This yields (5.19) for s; > 1 for sy > 1. O
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Lemma 5.3. Let S35 be as in (5.17). For any v > 0, there exists s; > 1 such that
Sy < ve M (pY 4 p2lete))y gy Y o (5.20)

Proof. By the fundamental estimates of f(v) in (4.2) and (4.3), we have

s 1 2y+N—-1
C _2y+N-1
S30 < C’?”/ (s — 7')_7_1;]6_2/”7—</ <1 + T ) ’
Lefwe'r 8 — T

S1

(rei% B 5)2 3y—2a+N-3
f@(‘ﬂf:ﬁﬁﬂﬁ a
e Cér \— 25— (re"z —¢&)? N+ A +2a+N—3
+/1 (1 Tz T> P ( T - e—(S—T))>£ Z dc | dr
= S§,2 + S?%,z-

We first consider S3,. It may be estimated and split as

s 4r 1 29+ N—-1
C _2y+N-1
S35 < Ore2Hes / (s — 7)777% / +/ <1 + &r ) ’
’ s1 Le “e™ 4r S§—=T

(e % )
4(1 — e~(s=m)

- exp < . )537—2&+N—3d§d7_
=: Sy + S35
Note that &r > €2/4 when Le ™ < € < 4r. Changing the variable £ — 2z = £/y/s — T,

we see

s T'/ 8 29+N-—-1
1,1 —2u X _q— = 3y—2a+N-3
S372 <— C K 2 281/ (S )2 1/ (]_ +CZ2> 2 z N
Le=%e™ [\/s—T

S1
_5=T
re 2

N

We split the region where the integral with respect to z is carried out into

'exp<—C’ —z‘2>dzd7'.

D { re” "z re "z } 4D {‘reszf _ re "z }
= | — ———— 1 an ={|— _—
' Vs —T 2v/s—T ? Vs —T 2y/s—T

and denote the corresponding integrals in z as A;(r,s;7), ¢ = 1,2. It is readily seen that

2)2 —z‘

Aq(r,s;7) < exp ( — C’rz) / (1+ C’zz)_%z%_mﬂv_?’dz.
Dy

We shall argue in the following, dividing two cases: 3y —2a+ N —3 < —1 and 3y — 2o+
N — 3 > —1. In the first case, one may readily check that

4ar
Ai(r,s;7) < C(Le—wg(81+1))372a+N3/ (NG

Le—weT
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We set i
1,1,1 . Yo
Sgy = Crle e / (s —7)2 1A (r, s;7)dT.

51
It follows then that
55,21,1 < CT’ye—Q,LL[sle—CT'2 (Le—wg(sl—i-l))'Y_QO‘_l

< Ce~(Has)mesi p2(peta) ) w51

m,s)

where g3 = {(2a — v + 1)9 — 1}/(2a — ) > 0. In the latter case, setting ¢t = r?/(s — 1),
we observe that

o0 r \7—2a-2
5;721,1 S Cr7+26—2u531/ e—ct<_> (\/E)S'y—QoH—N—ZLdt
0 ﬂ
< CB_QMESITQ’Y_QOC

< Qe HRmesiyy iy Yo s
We thus obtain, in the both cases,

1,1,1 _ .
5372’ < O (IHad)ues: (T'y + T2(ue+a)) in 2287

(5.21)

where ¢, = min{gs, k}. We then proceed to estimate A, and its integral in 7. Note that
z € Dy if and only if

S—T s—T

re- 2 e 3re” 2
—_— <<
2V/s—T 2Vs—T1

It allows us to estimate Ay as

As(r,5;7) < / (1+ 022)_27+§7lz37_2a+N_3dz

Dy

< C/ 2072
Do
1+2a—y

< C«(Ke—wgs)—(l+2oc—’y) (S . 7_) 5

for Ke @ <rand s; <7 <s<s;+1. It then follows that

S
S;QIQ = Orle st / (s — T)%_O‘_lAg(s, T)dT
s1

< CT'ye—Qwsl (Ke—wgs)—(l—i-Qa—'y) (522)

< O~ (Has)mes .y

for Kem* < r and s < s < s34+ 1, where ¢5 = {(2a — v+ 1)k — 1}/(2a — ) > 0.
Summing up (5.21) and (5.22), we get
Syp < CemUtanmesy (47 g p2uete)) iy 311 (5.23)

We shall show that a similar bound holds also for Ség Since

SISy 24 g2
exp ( — M) < exp ( — 12<17"_t_§(3—r))>
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when & > 4r and s; <7 < s < 51+ 1, we have

s 1 2 2
53{22 < Cr”e‘QWSl/ (s — T)_V_ZZV/ exp ( BT rte >§37_2°‘+N_3d§dr

s1 4r 1- 6_(5_T))

S [o%e) 2
< Orvem2rest [ (s — 7)%_0‘_1 exp ( — Cr )6_022237_20‘+N_3dzd7
- s1 dr/\/s—T S—=T

0o 0o
< Cr27—2a6—2ugsl / t—(%—a—l)e—Ct / e—C’z2 Z37—2a+N—3dzdt’
r2/(s—s1) 4t

where we have used the change of variables £ — z = £/\/s — 7 and 7 — t = r?/(s — 7).
To proceed further, we divide the argument into the two cases: 3y —2a+ N —3 > —1
and 3y — 2+ N —3 < —1. For the first case, the integrand e=C% z37-20+N=3 ig integrable
in z up to the origin, which yields

(9]
_ _ Y1 —
Séﬁ S 07,,27 2046 2ugs1/ 122 16 Ctdt
0
< CemHRmesiyy iy Yo s (5.24)

Consider the second case. By the definition of « in (1.8), there is a constant a € (0,1)
such that v+ (VN +a — 3)/2 > 0. We then have

00
1.2 _ _ N+4a—=5 _
53,2 S O’I"QA/ 2046 2u251/ t“H- 5 e Ctdt
0

< Qe WHhmesiyr iy 3381 (5.25)
It follows from (5.23), (5.24) and (5.25) that
S35 < CemUtauest (7 p2ute)y iy w1 (5.26)

We then proceed to estimate S3,. It may be estimated as

s 4r Cf'f’ 2’V+N 1
2 < Y o211 _
Sz, < Crle /81(3 T) (/ / > 3—7')

(7“6 S% - é-) Y+4pp+2a+N—3
41— e(ST))>€ dedr

=: 85 + 83
Consider S§21 Since 4&r > €2 in the interval under consideration, it is readily seen that

27+N 1

s 2
S??:; < 07“762/”51/‘ (S _ 7.) 72/ ( Cg ) €'y+4w+2a+N73d£dT'
1

51 S—T

We then change the integral variable £ — 0 = £/+/s — T to get

s dr/\/s—T
Sap < Crle st / (s —7)z 2o / O~ TN gt 20t NS g g
’ s1 1/v/s—7
< C«r27+4€72a71672ug51

< Ce~(Haemes1p2(pete) iy Efgs,

(5.27)
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where ¢gs = k+ (1 — k)(20 — 1)/(2ac — v) > 0. As for Sgﬁ, arguing as in the estimate of
S;ﬁ, we obtain

s N
S22 < Cre et / (s—m) % /

S1 4r

e’T

oe

)£7+4Wg+2a+N—3d€dT
S—T

exp(—

S oo
_ J_ _ _ 2 _
< Crle 2‘”51/ (s — )2 ot 1/ e~ O A A204N =3 11

s1 dr/\/s—T
< Ce ?51y7 in B3 (5.28)
The estimates (5.26)-(5.28) yield then the desired estimate (5.20) for s; > 1. O

Lemma 5.4. Let S35 be as in (5.17). For any v > 0, there exists s; > 1 such that
Sgg < e Hesipieta) iy Yo o (5.29)

Proof. We first use (4.4) to get

Si s gcw/ <s—7)71¥/ {1+SC_£TT}

S1 e

e g

S—T

exp ( - )f’”z‘”N’SdeT.

Consider the case r < €7%/4. In this case we have

S 00 2 9
5373 S CTW/ (S - T)_’y_% / exp ( — M>§7+2Q+N—3dfd7

s or s—T
< Cexp (= Ce*™ )17 / (s—r) 27!t / e~ CO 20N =3 g
s1 eoT [\/s—T
< Cexp(—Ce* )" inX3 N{r<e™/4}, (5.30)

where we have used the change of variable £ — 6 = £/+/s — 7.
In the case where r > e7¢/4, we further split the integral as

s ~ 4r 00 057” _%
< Y _ e
53’3 - cr /81 (S T) (/e‘d‘r * AT ) <1 + S — T)

|7’€_% B 5‘2>£’Y+2a+N—3d§dT
T

S —

=: 835+ S35

Consider S3 4. Since £r > £2/4 in the interval under consideration, we have

s 4r 2 _2ytN-1
S35 < C"r’”/ (5—7)72/ (Of > PN =3 ey

51 S —T
s N 4r/\/s—1

<o / (s — 1) 3o / 6+ 2gpdr,
s1 e’ /\/s—T
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where we have used the same change of variables as above. Suppose that —y+2a—1 < 0.
We then have

dr

8 3 —v+2a—2
S35 < CT"YJFI/ (s — 7')*%“‘*5( )

51 S—T

< Cr'y—i—l —(y—2a+4+2)0s1

< Ce~Han)mes1p2(peta) (5.31)

for r > e?*/4 and s; > 1, where ¢; = 2lo/jip — 1 > 0 (cf. (3.12)). On the other hand, if
—v+2a—1> 0, then

s 4r —y+2a-1
S35 < CTV/ (S—T)_%’La_l(—) dr
< Op2ueta)t20=y=2p—1 fr—(20-7) g—pes
< (Ce” (Itgs)pestp2(pete) ) W81 (5.32)

by the definition of K in (3.11), where gs = k+ 0o (v —2a+2us+1) /e > 0. We thus have

Syg < Ce~UFalnesiy2(uta) gy Yon s M{r > €7 /44, (5.33)

where gg = min{qz, gs}. Next consider S§’3. Arguing as in the estimate for S;’S, we get

° n [T Or? = ce’
S35 <Cr / (s—1) /0 ( ) exp ( — T)g dédr

s §—T s

s N-3 0o
< C,r—'y—N-i-l / (S _ 7_)” +oe/ 6—0929'\/+N+2o¢—3d9d7_

S1 0

< Cem(Hmolnesy2ueta) gy Yo s NA{r > e7 /43, (5.34)

where g10 = 200 /11, > 0. Summing up (5.33) and (5.34), we see that if s; > 1, then (5.29)
holds in 335! (N {r > e7/4} as well as in %51 N {r < e?®/4} due to (5.30). O

We shall summarize the estimates having been obtained in this subsection.

Corollary 5.5. For any v > 0, there exists s; > 1 such that

0(r, ) = €7 (G, Ge) bl < e OHD) TR (5.35)

5.2 Long-time estimates

Our aim in this subsection is to extend the estimates obtained for the short time
interval s; < s < s; 4+ 1 in §§5.1 to the long time interval s; +1 < s < s5. Let R > 1 be
a fixed constant. The following notations will be used throughout this section:

2;121:—{ s) | Ke ™ <r <R, 51+1<3<52}
Ei}b}rl:—{ s) | Ke @ <r <e’, 81+1<s<82}
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Substituting (4.13) to (5.1) with (5.2), we observe, for n =0,1,2,...,¢ — 1, that

v(r,s) = e (Gr, Go)dul(r) + D e MR G, 6)65(r)

j=t+1

+ Z; /818 e’#j(8*7)<f(v(7'))’ ¢j>¢j(7‘)d7’ _ Z:% /852 e Hn(s=T) <f(1)<7')), ¢n>¢n(7”)d7'

= [1+[2+[3+[4.
Note that Iy, Io, I3, I are expressed by S, 52,53 in (5.2) as
Il = Slu

—1 g
h=5-Y [ e pur),ér)os(r)dr
=071
=1
Ltli=%+Y / e D f(0(r)), 605 (r)dr,
j=0 71

Lemma 5.6. For any v > 0, there exists s; > 1 such that

|I4| < ve ™ H5(r7 + 7“2(“”0‘)) forallr > 0 and s1 +1 < s < s5.

Proof. By (4.9) we obtain

£—1 59
L CY on(]e s [ e mimirgs
n=0 S
< Cem ™o gy (1))

in Zsﬁ}zl. The claim (5.37) follows from (5.38), (2.38) and (2.20).

Lemma 5.7. For any v > 0, there exists s; > 1 such that

— S .Y ; s1+1
[Io| <we™™r" in X5

(5.36a)

(5.36D)

(5.36¢)

(5.37)

(5.38)

(5.39)

Proof. Parseval’s identity yields that ||¢, — Gellz, > D |<Q~5€, gbj)}Q. Recalling (3.21),

we obtain
oo

|]2| < e~ (keter)s1 Z e_ﬂj(8—81)|¢j(r)|’

j=0+1

where £; = min{(y + N)(1 — k)wg, 1}. By (2.38) we then conclude

L] < 6—&151e—ust(R)e—%a(s—m) Z e—(uj—ue—%al)(s—ﬂ)j—%rv

j=t+1

Clele —(up4ld .
< C(R)e 25151~ et ze)sy iy yytd

if s> 1, since p; — pg = j — € > 1 for every j > £ + 1.
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Lemma 5.8. For any v > 0, there exists s; > 1 such that
|I3] <ve #°r7 in E;}’Zl. (5.42)

Proof. We first split I3 as
/ / TSI f(0(7)), d5) @5 (r)dr =: gy + Igs.

Making use of the estimate of S in 35! | (cf. Lemmata 5.2-5.4), we have |I3] < ve (=D
n Zﬁf for sy > 1. It thus suffices to show a similar bound for I35 in Z‘E’H.
An argument similar to the one used in the proof of Lemma 5.7 (cf. (5.41)) yields that

s—1 e
I < —pe(s—T) ) 1 —2(j—0)(s—7)| 4 |2 | ¢]>| d
= e (S a0 (s,

S1 j=t j=£

s—1
scuwﬁ/ e | f(o(T)lndr  in ST

S1

By (4.9) we have
|I32] < C(R)e™ "1™y in E;}jl,

whence get the desired estimate (5.42) for s; > 1. O

Lemma 5.9. For any v > 0, there exists s; > 1 such that
|Sy| < wemresplnete) iy Efﬁfgl N{(rs)|r>ez } (5.43)
Proof. Recalling (5.9), (5.6) and (5.11), we have
S < Cree e [Tre s — s)e¥Sale, sl
< S+ S5+ S5 inozfgf

with the function 7" in (5.8) and

Ke~wes1
_ N—=2y._ _N N
S% — OK e 2o¢wgsle(a+ T )(s 81),,,,1 5 / €2d§’
0

gs
e?°1 29+N—1

S2 .= C’l/e_ufslrl_]zv/ (6_%&") B2 (1 +Ce 2t fr)i 2
Ke™%es1

coxp (= Clre 2" —¢[)e% (€ + ) g,
Sy = Cr? /OO §7+N_1+2(“e+a) exp ( — C|§ —re 2 2)d§ ela=5)(s=s1)
gs1

We then deduce that, for r > exp {(s — s1)/2} and s > 51 + 1,

N-2

—251 )—2(H2+0¢) 1——e(a+ )(s—s1)—20wys1 (f(e—wgsl >1+%

S1 < Ot g (e
— Clo—resip2(ueta) o= (541 =k (FHDR)west o= (ne— 1) (s—s1)

< ve Hestpueta) (5.44)
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if 51 > 1, where we have used the definitions of K and K in (3.11) and (3.19), respectively.
To estimate S2, we split the interval under consideration into

D, = {f; ‘re_% —5‘ < g} and Dy = {f; |T€_% _§| > g}

and denote the corresponding integrals by 5'22’1 and 522’2, respectively. If & € Dy, then
€ ~ re=5=51/2 and hence

52 L < Cpetesiypl= §2 exp ( — C‘re% — 5{2> (fv + 52(ue+a))d§
< Cre M1 (e” = Sl)*_l{( ) 21 1} (re ) (“’+a)/ exp(— 022)dz
0
< Ce Pesp?eta) iy 25”'1 N{(r,s)|r> et }. (5.45)

As to 5’5’2, the integrand shows exponentially decay, which gives

52272 < C,/e—ume(a—g)(s—ﬁ)rv/ 6—062§7+N—1(€7 +€2(ue+a))d€

Do

< Clve Hes p2(uta) (s—s1) (e%)_% /OO 6705257+N71 (57 + 52(ue+a))d5
0

< Cyetesp?iete) g 5280 {(r,s) | r > ez }. (5.46)

We finally estimate S3. Note that the conditions r < ¢ and & > €' imply & —

re” 2 that

3 ¢ 26 — s, 2(pe+a) s1+1 574

SQSeXp<—§e 1>e“’f7’“Z in %) ﬂ{rs|r>e2}. (5.47)

The desired estimate (5.43) follows from (5.44) to (5.47). O
Lemma 5.10. For any v > 0, there exists s; > 1 such that

|S5| < e resplnete) iy ESlH N{(rs)|r=> ez }. (5.48)

Proof. We begin with splitting S5 as

Sy = / / (s=DAf(y(7))dr =: A+ B.

Since A can be estimated by the procedure adapted in the previous subsection, we only
have to estimate B. With the function 7" in (5.8) we have

|B,§W/“M/°° (e, rss — ) flo(e, 7)) dedr

s, 1—e b

s—1 —wes
SOT’Y/ 6(0&—%)(8 T) / / / / éﬁ’y-l-N 1
S1 Ke™wes

2y+N—

(L Ce )T exp (= Cle— e T ) f(o(6,m)dgdr
:ZB1+BQ+B3—|—B4.
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Consider By. Using (4.1) and the definition of K in (3.11), we obtain

—wys

s—1 Ke
B, < OKWT,')// e(a—;)(s—’r)—Qau}[r/ §’y+N—3d£dT
0

51
_ C 2V (s—s1) — _ _
< OK*+N 2,7 pla=3)(s=s1) g =2awes1 o —(v+N=2)west

< CleHesp2(peta) o =(1=k)(2y+N=2)wes1 Esl+1 N { rs | > 65—281 } (5'49>

As for By, it follows from (4.2) that

1

s—1
By < C?”V/ e(a—g)(s—f)—QueT/ 57—2a—1d5d7

51 Ke—wes
< OV K~ (e la —3)(s=s1)—pes1 H(s—s1)
< pe Hesp2neta) ZSlH N{(rs)|r> ezt }, (5.50)

if s1 > 1. As for B3, we have

s—1 N e’™ e _ 29+N-1
By < CT’Y/ 6(06—2)(8—7)—2#@7/ §N+7+4W+20¢—3(1 +CG_T§7‘) B
1

S1

- exp ( — C’|§ — re_%IQ)dﬁdT

where we have split the interval of £ under consideration into

D1:{f; fﬁ—res’flgg} and D2:{§; |§—r6527|>§}

and denoted the corresponding integrals by Bs; and Bs g, respectively. Consider firstly
Bs;. Notice that if £ € Dy, then & ~ re*=7/2 and thus the measure of D; is equal to
(4/3)re=(s=7/2_ We then obtain

s—1
B3y < 07”7/ el 3)s=m) =2 [ chpe=rt20-2 ¢ gp

s1 Dy

s—1
< 0r7+4uee—2u58/ e(a—%)(S—T) (7"6_%)204717%[7'

S1
s—s1

< perespRluta) iy Zsl+1 N{(rs)|r>ez }, (5.51)

if s > 1. As to By, there is an exponentially decaying factor in the integrand in &.
Hence the procedure used to bound By above yields that

s—1 [e's}
B&2 < CTW/ e(a—;)(S—T)—QMT/ §N+7+4Hz+2a—3 exp ( _ C§2>d§d7'

S1

< pe—tusp2peto) 231+1 N { rs)|r> et }, (5.52)
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if 51 > 1. The above procedure also provides that

s—1 o
B, < C’I"’y/ e(ag)(ST)Q,u,[T/ £N+’y+2a73 exp ( _ 052)dfd7

S1
— — —(a—2
<e ugsTQ(ug—i-a)eEsr 2@6 (a=3)s1 exp ( . 062051)

< ve rsptel in 3 A {(rs) | > e%}, (5.53)
if 51 > 1. Summing up (5.49)-(5.53), we obtain the desired estimate. O

Summarizing Lemmata 5.6 to 5.10, we have the following estimates.

Corollary 5.11. For any v > 0, there exists s; > 1 such that

lu(r,s) — e_’“fs(gz;g, oY pe(r)| < ve HrY in ZE’ZI;
5751

0(r. ) — €4 (G Ge) ()] < weHeH (7  r2E) in S A {(rs) [ > e T,
Proof of Proposition 3.7. We prove that
[0(r, 8) = €7 (Gy, Ge)be(r)| < we 5 (r7 4 p2ete)) (5.54)

in Zfrﬂl. It suffices to show (5.54) for Efﬁ}?l N{R < r} by virtue of Corollary 5.11. To
this aim we set §; = s; + 1, 5, = §; + 1 and R = \/e. Notice that r > e*=*1)/2 whenever
R < rand 5 < s < 8. Corollary 5.11 implies then that (5.54) holds for R < r < e°*
and §; < s < min{3,, s2}. We have thus proven that (5.54) holds in the all of Efﬁ;l if
So < 5. When sy > 35, we set §3 = 5+ 1 and argue as above to observe that (5.54) holds
in Eiﬁl N {32 < s < 383}, whence in Zi}jl N {8 < s < §3}. Repeating these arguments
finitely many times, we observe that (5.54) holds in the all of 22;1. The desired estimate
in Proposition 3.7 follows from (2.20), (3.21), Corollary 5.5 and (5.54). O

6 Further properties on the solution wy

Having proven our main results, we investigate further properties on the solution w;
obtained in Theorem 3.2 in this final section.

Theorem 6.1. Let wy(r,s) be the solution of (2.9) obtained in Theorem 3.2. Then
there exists a constant 3y = [¢(s1) > 0 such that |8, — 1| = O(e™*“**') with gy =
min{(y+ N)(1 — k), k(2a — )} as s; — oo and

lim e"*{w,(r,s) — U(r)} = Bege(r) (6.1)

§—00

uniformly in each compact set of (0,00). More precisely, there exists a constant A > 0
such that, for each R > 0,

| (we(r, s) — U(r)) — Bece(r)| < Cre= ey (6.2)

with some constant Cr > 0 for Ke ¢ <r < R and s > s;.
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Proof. We continue to use the notations in the previous sections. We first consider the
case s > s1 + 1. Note that, by (5.36),

we(r,s) = U(r) — Iy — / e D f(u(7)), de) pedT

S1

—neti= [ e = Y [T eme gt et (63)

J=0+1

Let R > 0 be a constant. According to the proofs of Lemmata 5.2-5.4, it is possible to
find a constant Ag > 0 such that

‘/ 6—(5—T)Af(v(7_))d7_‘ < Cre~(IHA0)mes .y (6.4)
s—1

for Ke7** <r < R and s > s; + 1. Arguing as in the proof of Lemma 5.8, we obtain

|50 [ et apir] < Cpe ©5)

j=t+1

for Kem*** <r < Rand s > s; + 1, where \; = /2 with x € (0, 1) being the constant in
(4.9). The proofs of Lemmata 5.6 and 5.7 imply the existence of a constant Ay > 0 such
that

|]2| + |]4| S ORG_(I—H\Q)MSTW (66)

for Ke7** <r < Rand s > s; + 1. It then follows from (6.3)-(6.6) that
’we(ﬁ s)=U(r) =L —/ 6*‘”(577)0”(“(7)),¢e>¢zd7‘ < 3Cge™HHen
S1

for Ke @ <r < R and s > s; + 1, where A = min{ )\, A1, \a}. By (4.9) one may readily
observe that x := f:lo et (f(v(T)), e)dT exists and satisfies

‘/ et (f ), Qe)dT — X’ < Cefimes

for s > s1 4 1. Since I = e #%(¢;, ¢)dy(r), we conclude (6.2) with 3, = (¢, ¢¢) + x. By
(3.21) and (4.9) we have |3, — 1| < Ce =01 with gy = min{(y 4+ N)(1 — k), &(2a —7)}.

Consider the case s; < s < s; + 1. According to the proofs of Lemmata 5.1-5.4, there
exists a constant ¢ > 0 such that

[we(r, 8) = U(r) = Si| < [|So] + [S3]
< Cem e (7 4 p2mete)y iy Do (6.7)

Since |x| < Ce kst we obtain (6.2) for s; < s < s; + 1 by taking A > 0 smaller than
what we have shown above. O

43



As an immediate consequence of Theorem 6.1, we get information about the number of
intersections between the graph of the solution wy(+, s) and that of the singular stationary
solution U if we add the following additional condition on the class of initial data wq:

The function wy, — U has just ¢ simple zeros in (0, co). (V5)

Here a zero r* € (0, 00) of a function ¥ € C'((0, 00)) is said to be simple unless ®'(r*) = 0.

Corollary 6.2. Let wy, be a function satisfying the condition (V'5) as well as (V'1)-(V4)
in §3 and let wy(r, s) be the solution of (2.9) obtained by Theorem 3.2. Then the graph of
wy(-, s) has (-intersections with the graph of U in [0,00), that is, Zcc)[we(:,s) — U] = £
for every s € [s1,00), where Z,[-] is the zero number defined in (2.31). Every zero of
wy(+,s) — U is simple for every s € [s1,00) and tends to some zero of ¢y as s — 0.

Proof. Theorem 6.1 and Lemma 2.4 imply that there exists s* > s; such that
Z0,00)[We(+,8) = U] > Zjp.00)[e] =€ for s > s". (6.8)
On the other hand, the zero number diminishing property (cf. [3,5,27]) assures that
Zioooywe(+,8) = Ul < 200y [we(-,51) = U] for all s > 5.

Therefore Z o) [we(:, s)=U| = £ under the condition (V'5). If there is a zero of wy(-, s*)=U
that is not simple in [0, 00) at some s* € (s1,00), then Zp o)[we(:, s) — U] < £ for s > s*,
violating (6.8). Thus every zero r,,(s), j = 1,2,...,¢, of wy(-,s) — U is simple for every
s € [s1,00), which simultaneously implies that 4 ;(s) is a smooth function of s. The last
assertion is then readily seen by (6.1) and the continuity of ¢,. O]
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