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Abstract

We study a semilinear heat equation with strong absorption ut = ∆u− up with
0 < p < 1 in RN . A solution is known to develop dead-core in finite time for a
wide class of initial data. We construct specific solutions with exact dead-core rates
faster than the one given by the corresponding ODE. They are constructed formally
by means of matched asymptotic expansion technique and rigorously by means of
topological fixed-point arguments based on a priori estimates. To obtain the a priori
estimates we analyze a certain linearized problem in a new function space H′.

1 Introduction

We discuss the Cauchy problem for a semilinear heat equation with strong absorption

ut = ∆u− up, x ∈ RN , t > 0, (1.1a)

u(x, 0) = u0(x), x ∈ RN , (1.1b)

where p ∈ (0, 1), N ≥ 1 and u0 ∈ L∞loc(R
N). The equation (1.1a) arises originally in

the Dirichlet problem on a bounded domain in the modeling of an isothermal reaction-
diffusion process [4, 33]. It also appears in a description of thermal energy transport in
plasmas [23]. It is known that a unique smooth solution u of (1.1) exists globally in time if
an initial datum u0 is positive and has an appropriate bound on growth order as |x| → ∞
(cf. [2, 17]). Once a suitable initial datum is chosen, the solution develops dead-core in
finite time. Namely, there exists a finite time T such that the infimum of u(·, t) reaches
zero at t = T . This is a peculiar phenomenon caused by strongly absorbing effect, which
never appears in a solution of the equation with “weak” absorption, i.e., p ≥ 1. It was
investigated in [17] whether a finite-time dead-core occurs in view of the growth order of
initial data as |x| → ∞.

For the corresponding Cauchy-Dirichlet problem on a ball with constant boundary
condition, it was proven in [14, 16] that dead-core rates are, in general, unexpected ones;
they are faster than the self-similar rate, that is,

lim
t↗T

(T − t)−
1

1−pu(0, t) = 0 (1.2)

if u0 is a positive radial nondecreasing function. In other words, they are faster than the
dead-core rate of the ODE obtained by dropping ∆u from (1.1a). Note, however, that
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exact dead-core rates are still remained unrevealed there. Our purpose is to construct
specific solutions of (1.1) which develop dead-core in finite time and exhibit exact dead-
core rates faster than the self-similar rate.

Concerning the case of “extinction time” Te, the first time at which a nonnegative
solution u of (1.1) vanishes identically, it is proven in [7, 19] that

‖u(t)‖L∞ ∼ (Te − t)
1

1−p as t→ Te

under suitable assumptions on initial data. Here and henceforth we write f(t) ∼ g(t) as
t → T for some T > 0 and (real-valued) functions f, g on (0, T ) if there are constants
C1, C2 > 0 and t1 ∈ (0, T ) such that C1g(t) ≤ f(t) ≤ C2g(t) for all t ∈ (t1, T ).

Similar problems have been studied for a semilinear heat equation with source

ut = ∆u+ |u|q−1u, q > 1. (1.3)

The equation (1.3) has finite-time blow-up solutions and their blow-up rates have been
investigated for past decades. Let qs denote the Sobolev ciritical exponent: qs = ∞ for
N = 1, 2 and qs = (N + 2)/(N − 2) for N ≥ 3. For 1 < q < qs, every blow-up solution of
(1.3) exhibits the self-similar rate, often referred as the type I blow-up rate [10,12,13]:

‖u(t)‖L∞ ∼ (T − t)−
1

q−1 . (1.4)

It is known that (1.4) holds also forN ≥ 3 and q ≥ qs under certain additional assumptions
on initial data [8,27,28,37]. The blow-up rate estimate (1.4) is useful to investigate local
structures of blow-up sets (cf. for example, [9,11,18,34,35] and the references cited there).
When N ≥ 3 and q ≥ qs, (1.4) fails to hold in general. Herrero and Velázquez [20, 21]
first discovered nonnegative blow-up solutions of (1.3) such that

lim sup
t→T

(T − t)
1

q−1‖u(t)‖L∞ = +∞,

often referred as type II blow-up or fast blow-up, when q and N are large enough (see
also [29]). Sign-changing type II blow-up solutions were formally constructed in [6] for the
critical case q = qs when N = 3, 4, 5, 6. Moreover, the exact blow-up rates of these specific
solutions are also revealed in the articles. In [20,21] such solutions are constructed formally
by means of matched asymptotic expansion techniques and rigorously by a topological
fixed-point argument. Related arguments were used also in different contexts, e.g., [22,
32,36]. It is worth pointing out that the analysis of general type II blow-up solutions with
radial symmetry has recently advanced on the basis of the specific solutions constructed
in [20,21]. The reader is referred to the review [26] and references therein for this topic.

We shall again focus our attention to the dead-core problems. In the following, α
denotes the positive constant defined by

α =
1

1− p
. (1.5)

For N = 1, Guo and Wu [15] recently studied the equation (1.1a) and discovered that for
every odd integer ` ≥ 1, there exists a solution u of (1.1) which develops dead-core in a
finite time T and behaves as

u(0, t) = min
x∈R

u(x, t) ∼ (T − t)α+2α(`− 1
2
) as t→ T−. (1.6)
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To show this result, they applied the method of [21] to the dead-core problem. They
demand, however, that the parameter ` in (1.6) should be odd integers, which need not
be assumed at least in the formal level of the matching process. It is therefore natural
to ask whether or not the restrictive assumption on ` would be essentially requisite to
prove the existence of solutions with the property (1.6). In addition, one would expect
that this kind of solutions could exist also in arbitrary dimensions N ≥ 2. In the present
article we improve the method of [15], thus giving affirmative answers to these problems:
we are able to remove the assumption on ` and provide radial solutions with analogous
properties to (1.6) in arbitrary dimensions N ≥ 1.

Theorem 1.1. Let N ≥ 1, T > 0 and p ∈ (0, 1). Then for every positive integer `,
there exists a radial solution u` of (1.1) which develops dead-core at t = T such that
u`(0, t) = minx∈RN u`(x, t) and

η1(T − t)
2`α

2α−γ ≤ u`(0, t) ≤ η2(T − t)
2`α

2α−γ for 0 < t < T (1.7)

with some constants η1, η2 > 0 depending only on p,N and `, where α is the positive
constant in (1.5) and γ is the constant given by

γ =
−(N − 2) +

√
(N − 2)2 + 8(α− 1)(2α+N − 2)

2
. (1.8)

The author expects that the solutions u` constructed in Theorem 1.1 will be useful,
for example, to determine the exact dead-core rates of some solutions of (1.1) with gen-
eral initial data, as the solutions of (1.3) constructed in [20, 21] play a crucial role in
determining the blow-up rates of type II blow-up solutions of (1.3) in a supercritical case.

Remark 1.2. (i) Theorem 1.1 shows that infinite kinds of rates do exist. For every N ≥ 1
and p ∈ (0, 1) we have 2(α − 1) < γ < 2α, whence 2`α/(2α − γ) > α for ` ≥ 1. Namely,
each dead-core rate specified in (1.7) is precisely faster than the self-similar rate (T − t)α.
(ii) The constant γ in (1.8) comes from the quadratic equation related to the asymptotic
expansions of stationary solutions Uη of (1.1a) introduced in §§2.1. It is also related to
eigenvalues of the linearized operator A given in (2.11) below (cf. Lemma 2.2).
(iii) Further information about η1, η2 in (1.7) is given in Remark 3.3.

Remark 1.3. In Theorems 3.2 and 6.1 we give detailed descriptions on the asymptotics
of the solutions by virtue of the rescaled solutions w` with the self-similar variables (y, s)
introduced in §2. With the help of a fixed-point theorem, we are able to construct a
particular initial datum u0,` for each positive integer ` so that the corresponding solution
u` of the Cauchy problem (1.1) fulfills the properties described in Theorem 1.1.

Remark 1.4. (i) Theorem 1.1 includes the result in [15] mentioned before as a special
consequence when N = 1. Moreover, our result is still new even in this case in view of
the generality of possible dead-core rates. Indeed, we have γ = 2α−1 for N = 1 and thus
the dead-core rates in Theorem 1.1 are (T − t)2`α with ` = 1, 2, 3, ..., agreeing with the
rates of the solutions constructed in [15] (cf. (1.6)) for the particular cases ` = 1, 3, 5, ...
(ii) For N ≥ 3 the result in Theorem 1.1 was obtained in a part of the author’s thesis [31].
A technical difficulty arises in the proof for N = 1, 2 as is discussed below.
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Our basic strategy to prove Theorem 1.1 is the same as that of [15]. We first intro-
duce the similarity variables to derive a rescaled equation and then linearize the equation
around the singular stationary solution U given in (2.2) below. It is shown that an eigen-
function expansion provides a good approximation for a desired solution of the linearized
equation in a region away from the origin. The behavior of the solution near the origin is
described by rescaling the regular stationary solutions Uη introduced in §2. Asymptotic
expansions of Uη and φ` make the matching possible near the origin and moreover suggest
the position at which it takes place. The existence of the solution with these behaviors
may be rigorously proved by topological arguments coupled with a priori estimate. The
solution enjoys the properties that have been expected by the formal matching argument.
Going back to the original variables, we obtain the solution u` as stated in Theorem 1.1
for each positive integer `.

In order to derive the key a priori estimate, we need to estimate an upper bound of
growth order for the possible solutions in a region near infinity. We are able to prove,
in the same way as [15], that under certain assumptions on initial data the solutions are
below the singular stationary solution U in that region provided that the integer ` is odd.
This estimate allows us to implement the topological arguments. In the present article,
however, we do not impose the restriction that the integer ` is odd. We therefore have to
show another a priori estimate in that region so as to execute the topological arguments
without the restriction on `. This task is accomplished by a comparison argument which
works for every positive integer `. It guarantees that the solutions exhibit the same growth
order as that of U at infinity.

As was noted in Remark 1.4, this result was obtained in the author’s thesis [31] for
N ≥ 3. In that situation, a Hardy type inequality is available (cf. (2.15)) and accordingly
the potential term r−2v in the elliptic part Av of the linearized equation is easily handled
in the function space H1

ρ (cf. (2.11), (2.13b)). To deal with the inverse square potential in
arbitrary dimensions, we introduce another function space H (cf. (2.13c)) in the spectral
analysis and make use of its dual space H′, where we prove that a variation of constants
formula is valid for a nonhomogeneous problem related to the linearized equation. We
explain in more detail in Remark 2.5 why these spaces have to be introduced.

We conclude this introduction by describing the plan of the present article. In the
next §2, we briefly recall some preliminary results on stationary solutions of (1.1a) and
investigate both spectral properties of the linearized operator and the validity of the
variation of constants formula mentioned before. The former part of §3 is concerned
with a formal construction of the solution described in Theorem 1.1. The topological
arguments, together with the set of functions where they should be applied, are described
in the latter part of §3. The proof of Theorem 1.1 is given there as a consequence of the
arguments. §4 and §5 are devoted to proving key a priori estimates. Finally, we show
further properties on the rescaled solution in §6.

2 Stationary solutions and linearization

In this section we recall and establish some fundamental results. §§2.1 is concerned with
stationary solutions of (1.1a), where we briefly introduce some properties of stationary
solutions obtained in [17]. In particular, the asymptotic expansion (2.3) plays an impor-
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tant role in the formal matching argument to be presented in §3. In §§2.2 we investigate
some spectral properties of the linearized operator A formally given in (2.11) below.

2.1 Stationary problems

In this subsection we consider the radially symmetric stationary problem of (1.1a),

u′′ +
N − 1

ξ
u′ = up for ξ > 0, u(0) = η, u′(0) = 0. (2.1)

Let α be the constant in (1.5). A simple computation reveals that

U(ξ) := cp,Nξ
2α with cp,N = {2α(2α+N − 2)}−α (2.2)

is a solution of (2.1) such that U(0) = U ′(0) = 0. It is the unique solution of (2.1) with
η = 0 satisfying U(ξ) > 0 for ξ > 0 and is referred as the singular steady solution. It is
proven in [17] that for each η > 0, a unique solution Uη of (2.1) exists and behaves as

Uη(ξ) = U(ξ) + h(η)ξγ(1 + o(1)) as ξ →∞, (2.3)

where γ is the constant in (1.8) and h(η) = aηµ with µ = 1 − (1 − p)γ/2 > 0 and some
constant a > 0 depending only on p and N . Note that Uη is monotone increasing in
ξ > 0 for every η > 0, since rN−1U ′η =

∫ r

0
zN−1Up

η (z)dz > 0. It is readily seen that if
0 < η1 < η2, then U(r) < Uη1(r) < Uη2(r) for all r ∈ [0,∞).

Remark 2.1. Although (2.3) was proven in [17, Proposition 3.1], we shall show its formal
derivation for reader’s convenience. Set U1(ξ) = U(ξ) +W (ξ) and observe that

W
′′

+
N − 1

ξ
W

′
= pcp−1

p,N ξ
−2W (ξ) + · · · as ξ →∞. (2.4)

Suppose that W grows with algebraic order, say W (ξ) ≈ aξλ with some a 6= 0 and λ > 0,
as ξ → ∞. Formally substituting W (ξ) = aξλ to (2.4) and letting ξ → ∞, we get the
quadratic equation for λ,

λ2 + (N − 2)λ− 2(α− 1)(2α+N − 2) = 0. (2.5)

We then obtain the constant γ in (1.8) as a larger root of (2.5) and get (2.3) with η = 1.
The expansion (2.3) with η > 0 is reduced to the one with η = 1 by the scaling property

Uη(ξ) = ηU1(η
p−1
2 ξ).

2.2 Spectral analysis for the linearized operator

For T > 0, we introduce the similarity variables

u(x, t) = (T − t)αw(y, s), y = (T − t)−1/2x, s = − log(T − t). (2.6)

A function u satisfies (1.1) in RN × (0, T ) if and only if w satisfies

ws = ∆w − 1

2
y · ∇w + αw − wp in RN × (s1,∞), (2.7)

w(y, s1) = w0(y) in RN , (2.8)
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where s1 = − log T and w0(y) = T−αu0(
√
Ty). Since we discuss only radial solutions, we

may write (2.7), (2.8) as

ws = wrr +
(N − 1

r
− r

2

)
wr + αw − wp in (0,∞)× (s1,∞), (2.9a)

wr(0, s) = 0 for s ∈ (s1,∞), (2.9b)

w(r, s1) = w0(r) in [0,∞). (2.9c)

Here and henceforth we write r = |y|. Notice that U = U(r) is a stationary solution of
(2.9). We are discussing the existence of a solution w(r, s) of (2.9) which converges to the
singular stationary solution U as s→∞ in an appropriate way. To this end, we linearize
the equation (2.9a) around U , setting

v(r, s) = w(r, s)− U(r)

for a solution w of (2.9). It then satisfies

vs = −Av + f(v) for r > 0 and s > s1, (2.10a)

v(r, s1) = v0(r) for r > 0, (2.10b)

where v0 = w0 − U and −A is the linear differential operator formally given by

−Av = v′′ +
(N − 1

r
− r

2

)
v′ + αv −

pcp−1
p,N

r2
v

=
1

rN−1ρ(r)

d

dr

(
rN−1ρ(r)

dv

dr

)
+ αv −

pcp−1
p,N

r2
v

(2.11)

with ρ(r) = exp (−r2/4) and where

f(v) = U(r)p − {U(r) + v}p +
pcp−1

p,N

r2
v. (2.12)

We work in the following weighted Hilbert spaces;

L2
ρ =

{
h ∈ L2

loc((0,∞))
∣∣∣ ∫ ∞

0

h(r)2rN−1ρdr <∞
}
, (2.13a)

H1
ρ =

{
h ∈ H1

loc((0,∞))
∣∣∣ h, h′ ∈ L2

ρ

}
, (2.13b)

H =
{
φ ∈ L2

ρ

∣∣∣ φ ∈ H1
ρ ,

∫ ∞

0

|φ(r)|2

r2
rN−1ρdr <∞

}
, (2.13c)

equipped with inner products

〈g, h〉L2
ρ

=

∫ ∞

0

g(r)h(r)rN−1ρdr, (2.14a)

〈g, h〉H1
ρ

= 〈g, h〉L2
ρ
+ 〈g′, h′〉L2

ρ
, (2.14b)

(φ, ψ)H = 〈φ, ψ〉H1
ρ

+ pcp−1
p,N

∫ ∞

0

φ(r)ψ(r)

r2
rN−1ρdr, (2.14c)
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respectively, where ρ is as above. Clearly, the space H is continuously embedded in H1
ρ

as a Banach space. When N ≥ 3, we have a version of Hardy inequality [32, Lemma 2.2]:∫ ∞

0

1

r2
|g(r)|2rN−1ρ(r)dr ≤

4‖g′‖2
L2

ρ

(N − 2)2
+
‖g‖2

L2
ρ

N − 2
(2.15)

for any g ∈ H1
ρ . Therefore we have the converse embedding, so that H = H1

ρ if N ≥ 3
thanks to (2.15), whereas H 6= H1

ρ for N = 1, 2.
We are then led to the spectral analysis for a realization of A in L2

ρ so as to investigate
the asymptotic behavior of v as s → ∞. The analysis to be discussed below reveals
that the realization can be uniquely extended to a self-adjoint operator and its spectrum
consists only of eigenvalues.

Lemma 2.2. The operator A : L2
ρ → L2

ρ defined by Aψ = Aψ for ψ ∈ D(A) with domain
D(A) = {ψ ∈ L2

ρ | ψ ∈ H, Aψ ∈ L2
ρ} may be extended to a unique self-adjoint operator,

still denoted by A, which has the following properties:

D(A) ⊂ H; (2.16)

− α‖ϕ‖2
L2

ρ
≤ 〈Aϕ,ϕ〉L2

ρ
, ∀ϕ ∈ D(A). (2.17)

Moreover, the spectrum of A consists only of the eigenvalues {µj}∞j=0 given by

µj = j +
γ

2
− α, j = 0, 1, 2, ... (2.18)

and the corresponding eigenfunctions are explicitly represented as

φ0 = c0r
γ, φj(r) = cjr

γM
(
− j; γ +

N

2
,
r2

4

)
, j = 1, 2, ..., (2.19)

where cj > 0 are the normalizing constants so that ‖φj‖2,ρ = 1, M(a; b, η) denotes the
standard Kummer function, and γ is the constant in (1.8). Furthermore,

φj(r) = cjr
γ(1 + o(1)) as r → 0; (2.20a)

φj(r) = c̃jr
2(µj+α)(1 + o(1)) as r →∞, (2.20b)

where c̃j are constants such that (−1)j c̃j > 0 for j = 1, 2, ...

Proof. We begin with remarking that

〈φ,Aψ〉L2
ρ

=

∫ ∞

0

φ′ψ′rN−1ρdr − α

∫ ∞

0

φψrN−1ρdr + pcp−1
p,N

∫ ∞

0

φψ

r2
rN−1ρdr (2.21)

for any φ, ψ ∈ H such that Aψ,Aφ ∈ L2
ρ. This is readily seen by an integration by parts

and a limiting procedure. In particular, the lower bound (2.17) holds for the original
operator A. Thus A is a semi-bounded symmetric operator. Friedrichs’ theorem admits
then it extending a unique self-adjoint operator such that (2.17) holds (the Friedrichs
extension), still denoted by A, whose domain D(A) is contained in the form domain
of q̂. Here q̂ is the closure of the quadratic form q(φ, ψ) = 〈φ,Aψ〉L2

ρ
under the norm
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‖φ‖+1 := (q(φ, φ) + (α + 1)‖φ‖2
L2

ρ
)1/2 = ‖φ‖H (cf. for example, [30]). The last assertion

simultaneously implies that the form domain of q̂ is continuously embedded in H , whence
(2.16) follows. For any φ and ψ in the form domain of q̂, there are Cauchy sequences {φn}
and {ψn}, in the form domain of q (the original domain of A), which tend to φ and to ψ
as n→∞, respectively, in the sense of the norm ‖ · ‖+1. We then observe that

〈φ,Aψ〉L2
ρ

= q̂(φ, ψ) = lim
n→∞

q(φn, ψn). (2.22)

Consequently, the representation (2.21) holds for every φ, ψ in the domain D(A) of the
Friedrichs extension A.

Consider now the equation
(
A + (α + 1)I

)
φ = ψ for ψ ∈ L2

ρ. By (2.21) we have
‖φ‖2

H1
ρ
≤ 〈φ, ψ〉L2

ρ
≤ ‖φ‖L2

ρ
‖ψ‖L2

ρ
and thus

‖φ‖H1
ρ
≤ ‖ψ‖L2

ρ
,

which implies that
(
A+ (α+ 1)I

)−1
is a compact operator. Therefore the spectrum of A

consists only of a countable number of real eigenvalues.
Let us compute the concrete values of the eigenvalues {µj} and the corresponding

eigenfunctions {φj} to see (2.18) and (2.19), respectively. We begin with remarking that
every eigenfunction φ of A is smooth and satisfies the differential equation Aφ = µφ
in (0,∞) for the corresponding eigenvalue µ. Indeed, the self-adjointness of A implies
that µ〈φ, ψ〉 = 〈φ,Aψ〉L2

ρ
for any ψ ∈ C∞0 ((0,∞)). We may exploit Weyl’s lemma to

observe that φ(r) is twice differentiable for r > 0. An integration by parts shows then
that 〈φ,Aψ〉L2

ρ
= 〈Aφ, ψ〉L2

ρ
and hence Aφ = µφ a. e. r > 0. Since φj 6≡ 0, we may assume,

without loss of generality, that each φj is positive where r > 0 is small enough. In order
to prove (2.18)-(2.20b), we set φj(r) = cjr

γHj(η) with η = r2/4. A straightforward
calculation reveals then that the function φj solves the equation Aφ = µjφ if and only if
Hj satisfies Kummer’s equation

ηH ′′(η) + (b̂− η)H ′(η)− âH(η) = 0 (2.23)

with â = γ/2− (µj + α) and b̂ = γ +N/2. The general solution of (2.23) is given by

C1M(â; b̂, η) + C2U(â; b̂, η)

with arbitrary constants C1 and C2 (cf. [1]), where M(â; b̂, η) is the Kummer function;

M(a; b, z) = 1 +
az

b
+

(a)2z
2

(b)22!
+ · · ·+ (a)nz

n

(b)nn!
+ · · · (2.24)

with (a)j = a(a+ 1)(a+ 2) · · · (a+ j − 1), j = 1, 2, ..., and

U(a; b, z) =
π

sin bπ

[
M(a; b, z)

Γ(1 + a− b)Γ(b)
− z1−bM(1 + a− b; 2− b, z)

Γ(a)Γ(2− b)

]
.

Here Γ denotes the standard gamma function. Suppose now that C2 6= 0. Then φj grows

as rγ+2(1−b̂)(= r−γ−N+2) as r → 0, but it then contradicts the fact that φj is in H1
ρ since
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2(−γ − N + 1) + N ≤ 0 and accordingly |φ′j(r)|2rN−1 exhibits non-integrable growth as
r → 0. Consequently the constant C2 must vanish. Finally we shall show that â must be
a nonpositive integer. If it were not so, then

M
(
â; b̂,

r2

4

)
∼ Γ(b̂)

Γ(â)

(r2

4

)−(b̂−â)

exp
(r2

4

)
as r →∞.

Not belonging to H1
ρ , it should be excluded, whence â = −n for some n ∈ N ∪ {0}. We

thus conclude (2.18) and (2.19). Moreover, for each n, we have

M
(
− n; γ +

N

2
,
r2

4

)
= (−1)nc̃nr

2n + o(r2n) as r →∞ (2.25)

with some constant c̃n such that (−1)nc̃n > 0. Now (2.20b) is readily seen from (2.25),
(2.18) and (2.19), whereas (2.20a) follows from (2.19) and (2.24).

An important fact is that, as is proven below, the eigenfunctions φj yield a basis of
H for any spatial dimension N ≥ 1, which suggests us to work with the space H rather
than H1

ρ . Notice that
−1 < µ0 < 0 < µ1 < ... (2.26)

Corollary 2.3. Assume the same hypotheses as in Lemma 2.2. Then the sequence {φ̂j}∞j=0

defined by

φ̂j =
φj√

µj + α+ 1
, j = 0, 1, ..., (2.27)

is a complete orthonormal system in H.

Proof. From the proof of Lemma 2.2 (cf. (2.14c), (2.21) and (2.22)) we have

(ψ, φ)H = 〈Aψ, φ〉L2
ρ
+ (α+ 1)〈ψ, φ〉L2

ρ
, ∀ψ ∈ D(A),∀φ ∈ H. (2.28)

Substituting ψ = φj to (2.28), one has that

(φj, φ)H = (µj + α+ 1)〈φj, φ〉L2
ρ
, ∀φ ∈ H; j = 0, 1, ... (2.29)

and, in particular,

(φj, φk)H = (µj + α+ 1)δjk, j, k = 0, 1, ..., (2.30)

where the symbol δjk denotes Kronecker’s delta. Since the system {φj}∞j=0 is complete in
L2

ρ by Lemma 2.2, it follows from (2.29) and (2.30) that the system (2.27) is a complete
orthonormal system in H.

We state here some nodal structures of the eigenfunctions φj on (0,∞), though we do
not require them except for §6. Let J be an interval of [0,∞). For a function Ψ : J → R,
the zero number ZJ [Ψ] of Ψ on J is defined by

ZJ [Ψ] := ]{r ∈ J ; Ψ(r) = 0}, (2.31)

where ] stands for cardinal numbers. As is well-known, if Ψ is of C1(J), then ZJ(Ψ) + 1
coincides with the number of sign-changes of Ψ in J .
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Proposition 2.4. One has Z(0,∞)[φj] = j for each j = 0, 1, ... Moreover, if one denotes
by rj,n the n-th zero of φj in (0,∞) enumerated near the origin for j = 1, 2, ... and

n = 1, 2, ..., j, then r1,1 =
√

2(2γ +N) and rj+1,1 ∈ (0, rj,1), rj+1,2 ∈ (rj,1, rj,2), ..., rj+1,n ∈
(rj,n−1, rj,n), ..., rj+1,j+1 ∈ (rj,j,∞) for each j ≥ 1.

Proof. These are fundamental consequences of the well-known Sturm-Liouville theory. We
appeal to an induction on j. The assertions are clear for j = 0, 1 by the representation
formula of φj in (2.19), (2.24). Assume that they hold for some integer j ≥ 1. Consider two
eigenpairs (µm, φm), (µn, φn) of A with µm < µn. Suppose that φm(ri) = 0, φm(ri+1) = 0
and that φm has a constant sign in (ri, ri+1) for some ri, ri+1 ∈ (0,∞). We claim that
there exists a zero of φn in (ri, ri+1) at which φn changes its sign. We may assume that
φm(r) > 0 in (ri, ri+1) without loss of generality. Note that φ′m(ri) ≥ 0 and φ′m(ri+1) ≤ 0.
An integration by parts reveals then that

(µn − µm)

∫ ri+1

ri

φmφnr
N−1ρdr = φn(ri+1)φ

′
m(ri+1)r

N−1
i+1 ρ(ri+1)− φn(ri)φ

′
m(ri)r

N−1
i ρ(ri).

This identity implies that φn cannot have a constant sign in (ri, ri+1). A similar argument
shows that there exists a zero of φn in (ri+1,∞) at which φn changes its sign. Thus
Z(0,∞)[φj+1] ≥ Z(0,∞)[φj]+1 = j+1. On the other hand, the representation formula of φj in
(2.19), (2.24) guarantees that Z(0,∞)[φ`] ≤ ` for every ` ≥ 1. Therefore Z(0,∞)[φj+1] = j+1.
The claim on the positions of zeros is obvious by virtue of the above argument.

Our next task is to show that the differential operator A may be understood to be
an operator in H′. Moreover, we prove that a solution of the equation (2.10) may be
considered as an element of H′ and enjoys the integral equation in H′ corresponding to
the problem (2.10). Here and henceforth, H′ stands for the dual space of H.

Remark 2.5. It should be noticed that the space H was already used in [15] for N = 1
to produce eigenvalues of A, but its dual space H′ was not used explicitly there. The
use of H′ should be essential because a solution of (1.1) is positive everywhere before its
dead-core appears and thus does not belong to H unless N ≥ 3. To show this issue, let
us consider a positive function Φ ∈ L2

ρ and the integral∫ ∞

0

Φ(r)ψ(r)

r2
rN−1ρdr with ψ ∈ H1

ρ .

This integral is not finite for N = 1, 2 unless ψ decays at the origin. This fact suggests
us to restrict the set of ψ’s to H and thus regard Φ as a bounded linear functional on H.

Suppose that a function w0 ∈ L∞loc(R
N) has at most algebraic growth as |y| → ∞.

Let w be a solution of (2.7) with initial data w(s1) = w0. Then by a standard argument
of parabolic equations (cf. [2, 18, 34]), w, ∇w and ∇2w are locally bounded in RN and
have at most algebraic growth as |y| → ∞ for each s ∈ (s1,∞). Namely, for each
0 < s1 < s2 <∞, there are constants C0, C1, C2 > 0 such that

|w(y, s)| ≤ C0(|y|+ 1)β, |∇w(y, s)| ≤ C1(|y|+ 1)β, |∇2w(y, s)| ≤ C2(|y|+ 1)β (2.32)
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with some β > 1. Here the constant C0 does not depend on s1. Let us consider a function
v0 ∈ L∞loc([0,∞)) satisfying

|v0(r)| ≤ C(r + 1)β, r > 0 (2.33)

with some constant C > 0 and β > max{1, 2α− 2}. We then observe that a solution v of
(2.10) with initial datum v0 satisfying (2.33) fulfills

|v(r, s)| ≤ C ′0(r + 1)β, |vr(r, s)| ≤ C ′1(r + 1)β, r > 0, s1 < s ≤ s2; (2.34a)

|vrr(r, s)| ≤ C ′2

(
1 +

N − 1

r

)
(r + 1)β, r > 0, s1 < s ≤ s2 (2.34b)

with some constants C ′0, C
′
1, C

′
2 > 0, since w = v + U .

The following lemma plays a crucial role to deal with a solution of (2.10) in H′.
Throughout the present article the topology of H′ is understood to be that given by the
norm ‖ · ‖H′ = sup{〈·, ψ〉 ; ‖ψ‖H = 1}.

Lemma 2.6. (i) Let g be a measurable function on [0,∞) satisfying

|g(r)| ≤
(
1 +

1

rq

)
ϕ(r) a. e. r > 0 (2.35)

with some constant q ≥ 0 and nonnegative function ϕ ∈ L∞loc([0,∞)) ∩H1
ρ . If

q < γ + min
{
N, 1 +

N

2

}
, (2.36)

then g may be regarded as an element of H′ in the sense that one may associate it with
g̃ ∈ H′ defined by

〈g̃, ψ〉H′×H :=

∫ ∞

0

g(r)ψ(r)rN−1ρdr for ψ ∈ H (2.37)

and, moreover, ‖g̃‖H′ ≤ C‖ϕ‖H1
ρ

with some constant C > 0.
(ii) If v is a solution of (2.10) in (0,∞)× [s1, s2] for some s2 ∈ (s1,∞) such that |v(r, s)| ≤
ϕ(r) with some ϕ ∈ H1

ρ , then f(v) is in the class L1(s1, s2;H′) ∩ C((s1, s2];H′). In
particular, f(v) belongs to this class provided that the initial datum v0 satisfies (2.33).

Proof. (i) Note that ψ =
∑∞

j=0(ψ, φ̂j)Hφ̂j in H for every ψ ∈ H by Corollary 2.3. We first
prove that for any R > 0 there exists a constant C(R) > 0 such that

|φj(r)| ≤ C(R)rγj−
1
4 (2.38)

for all 0 < r ≤ R and j ≥ 1. Using (2.19) and the formula∫ ∞

0

xβ−1e−xM(−j, β;x)2dx =
Γ(β)2Γ(j + 1)

Γ(β + j)
,

we get

c2j =
Γ(j + N

2
+ γ)

Γ(N
2

+ γ)Γ(j + 1)
.
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Stirling’s formula then yields a positive constant C such that

cj = C(j + 1)
1
2
(N

2
+γ−1) (2.39)

for j � 1. By a classical asymptotic formula

M(−j, β;x) ∼ π−
1
2 Γ(β)ex

{(β
2

+ j
)
x
} 1

4
−β

2
cos
{√

2(β + 2j)x− βπ

2
+
π

4

}
as j →∞ (cf. [1]), we observe∣∣∣M(− j, γ +

N

2
;
r2

4

)∣∣∣ ≤ C(R)j
1−2γ−N

4 , j ≥ j0 (2.40)

for some j0 � 1 and C(R) > 0. The claim (2.38) then follows from (2.19), (2.39)
and (2.40) for j ≥ j0. Clearly, (2.38) holds for 1 ≤ j < j0 due to the expressions of
eigenfunctions (2.19), (2.24). We use the estimate (2.38) with R = 1 to obtain∫ 1

0

(
1 +

1

rq

)
ϕ(r)|φ̂j(r)|rN−1ρdr ≤ C(1)j−

3
4

∫ 1

0

ϕ(r)rγ+N−1−qρdr (2.41)

for each j ≥ 1. We get, by an integration by parts and the hypothesis on q in (2.36),∫ ∞

0

ϕ(r)rγ+N−1−qρdr =
1

γ +N − q

∫ ∞

0

rγ+N−q
{
−ϕ′(r) +

r

2
ϕ(r)

}
ρdr

≤ C‖ϕ‖H1
ρ

(∫ ∞

0

r2(γ+1−q)+N−1(1 + r2)ρdr

) 1
2

≤ C‖ϕ‖H1
ρ
. (2.42)

By (2.35), (2.41) and (2.42), we get

∞∑
j=0

(∫ ∞

0

g(r)φ̂j(r)r
N−1ρdr

)2

≤ C‖ϕ‖2
H1

ρ
. (2.43)

We then proceed to prove that∫ 1

0

g(r)ψ(r)rN−1ρdr =
∞∑

j=0

(ψ, φ̂j)H

∫ 1

0

g(r)φ̂j(r)r
N−1ρdr. (2.44)

Notice that the completeness of {φ̂j}∞j=0 in H and (2.43) guarantee the convergence of the

series in (2.44). To prove (2.44), we set Sn(r) =
∑n

j=0(ψ, φ̂j)Hφ̂j(r). Since Sn → ψ inH, it
is possible to find a subsequence {Snk

} such that Snk
(r) → ψ(r) a. e. r ∈ [0, 1] as k →∞.

Our assumption (2.35), (2.41) and (2.42) imply that |g(r)Sn(r)rN−1ρ| is estimated above
by an integrable function in [0,∞) independently of n, which provides that

lim
k→∞

∫ 1

0

g(r)Snk
(r)rN−1ρdr =

∫ 1

0

g(r)ψ(r)rN−1ρdr.
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Therefore (2.44) holds. It then follows from (2.44) and (2.43) that

|〈g̃, ψ〉H′×H| ≤ C‖ψ‖H‖ϕ‖H1
ρ
,

which completes the proof of (i).
(ii) It is readily seen that∫ ∞

0

(
U(r)p + {U(r) + v}p

)
|ψ|rN−1ρdr ≤ C(1 + ‖ϕ‖2

L2
ρ
)

p
2‖ψ‖L2

ρ
.

Consider the integral
∫∞

0
r−2vψrN−1ρdr. Since 2 < γ + min{N, 1 +N/2}, we may apply

the result of (i) with q = 2 to this integrand to observe that f(v) ∈ L∞(s1, s2;H′) and
‖f(v)‖L∞(s1,s2;H′) ≤ L with a constant L > 0 depending only on p,N, s1, s2 and ‖ϕ‖H1

ρ
.

Let us prove the continuity of f(v). Since Λ := inf{w(r, s); (r, s) ∈ (0,∞)× [s1, s2]} > 0,
there is a constant C > 0 depending only on p,N, s1, s2 and Λ such that

|f(v(s))− f(v(s̄))| ≤ C
(
1 +

1

r

)
|v(r, s)− v(r, s̄)|, r > 0, s1 < s, s̄ ≤ s2.

Hence ‖f(v(s))− f(v(s̄))‖H′ ≤ C‖v(s)− v(s̄)‖H1
ρ

by (i), which completes the proof.

Based on Corollary 2.3 and Lemma 2.6, we define an operator Ã : H′ → H′. Let v be
an element of H1

ρ . By Lemma 2.6 there is a constant C > 0 depending only on p and N
such that ∣∣∣∫ ∞

0

(
Av
)
(r)ψ(r)rN−1ρdr

∣∣∣ ≤ C‖v‖H1
ρ
‖ψ‖H

for every ψ ∈ H. Hence Av ∈ H′ and

‖Av‖H′ ≤ C‖v‖H1
ρ
. (2.45)

Consequently we may define a linear operator Ã : H′ → H′ with domain D(Ã) by

D(Ã) = H1
ρ , (2.46a)

Ãv = Av in H′ for v ∈ D(Ã). (2.46b)

In particular, φj ∈ D(Ã) and Ãφj = µjφj for each j = 0, 1, ...

Lemma 2.7. Let v be a solution of (2.10) in (0,∞) × [s1, s2] for some s2 ∈ (s1,∞)
satisfying the growth condition (2.34). Denote by v(s) the corresponding element of H′
in the sense of (2.37). Then v is in C1((s1, s2];H′) ∩ C((s1, s2];D(Ã)) and solves the
evolution equation

dv

ds
= −Ãv + f(v) in H′. (2.47)

Proof. For any s ∈ (s1, s2], s+ h ∈ (s1, s2) and r > 0, there is θ ∈ (0, 1) such that∥∥∥v(s+ h)− v(s)

h
− vs

∥∥∥2

H′
≤
∫ ∞

0

{
vs(r, s+ θh)− vs(r, s)

}2
rN−1ρdr (2.48)
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Since vs is bounded and continuous in (0, 1]×[s∗, s2] and is estimated above by C(1+r)2β+2

in [1,∞)× [s∗, s2] for each s∗ ∈ (s1, s2) by virtue of (2.34), the right hand side of (2.48)
tends to zero as h→ 0. It shows that v(s) is differentiable in (s1, s2] and dv(s)/ds = vs(·, s)
in H′. A similar argument shows that vs(·, s) is continuous in s ∈ (s1, s2] with values in
H′. Namely v ∈ C1((s1, s2];H′). We next observe by (2.45) that

‖Ãv(s)− Ãv(s̄)‖H′ ≤ ‖v(s)− v(s̄)‖H1
ρ

for s, s̄ ∈ (s1, s2].

This implies that v is in C((s1, s2];D(Ã)). Since dv(s)/ds = vs(·, s), the function v(s)
solves the equation (2.47) for s ∈ (s1, s2].

We define a family of linear operators {e−(s−s1)Ã}s≥s1 acting on H′ by e0Ã = I, i.e.,
the identity map in H′ and by

e−(s−s1)ÃΦ :=
∞∑

j=0

e−µj(s−s1)〈Φ, φj〉H′×Hφj (2.49)

for Φ ∈ H′ and s > s1.

Proposition 2.8. (i) For each Φ ∈ H′, e−(s−s1)ÃΦ is an element of H′ ∩H and

‖e−(s−s1)ÃΦ‖H′ ≤ ‖Φ‖H′ . (2.50)

The family {e−(s−s1)Ã}s≥s1 is a semigroup on H′. Namely, e0Ã = I and

e−(s−s1)Ãe−(s̄−s1)Ã = e−(s+s̄−2s1)Ã for each s, s̄ ≥ s1. (2.51)

(ii) The function s 7→ e−(s−s1)ÃΦ is continuous in [s1,∞) with values in H′ if and only if

Φ belongs to the closure D(Ã) of D(Ã) in H′.
(iii) Let Φ ∈ H′. If s > s1, then e−(s−s1)ÃΦ ∈ D(Ã) and

Ãe−(s−s1)ÃΦ =
∞∑

j=0

µje
−µj(s−s1)〈Φ, φj〉H′×Hφj. (2.52)

Moreover, the function s 7→ e−(s−s1)ÃΦ is differentiable for each s > s1 and

d

ds
e−(s−s1)ÃΦ =

∞∑
j=0

(−µj)e
−µj(s−s1)〈Φ, φj〉H′×Hφj = −Ãe−(s−s1)ÃΦ. (2.53)

Proof. (i) We begin with remarking that for each Φ ∈ H′ there is FΦ ∈ H with ‖Φ‖H′ =
‖FΦ‖H such that 〈Φ, ψ〉H′×H = (FΦ, ψ)H for every ψ ∈ H. We observe with (2.27) that

∞∑
j=n

|e−µj(s−s1)||〈Φ, φj〉H′×H|‖φj‖H′ ≤Ms

( ∞∑
j=n

|(FΦ, φ̂j)H|2
) 1

2
, s > s1,

where M2
s =

∑∞
j=0 |(µj + α + 1)e−2µj(s−s1)| < ∞. By the completeness of the system

{φ̂j}∞j=0 in H the right hand side tends to zero as n→∞, which implies the convergence
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of the series (2.49) in H′. A similar argument shows that the series is convergent also in
the norm of H. We next claim that

Φ =
∞∑

j=0

〈Φ, φj〉H′×Hφj in H′; (2.54a)

‖Φ‖2
H′ =

∞∑
j=0

|〈Φ, φ̂j〉H′×H|2. (2.54b)

To show (2.54a) we use Corollary 2.3 to see that

FΦ =
∞∑

j=0

〈Φ, φ̂j〉H′×Hφ̂j. (2.55)

Since (φ̂j, ψ)H =
√
µj + α+ 1〈φj, ψ〉L2

ρ
for any ψ ∈ H and j by (2.27) and (2.29), we get

(FΦ, ψ)H =
∑∞

j=0〈Φ, φj〉H′×H〈φj, ψ〉L2
ρ
, which implies (2.54a). Since ‖Φ‖H′ = ‖FΦ‖H, the

claim (2.54b) follows from (2.55). Replacing Φ by e−(s−s1)ÃΦ in (2.54b), we obtain

‖e−(s−s1)ÃΦ‖2
H′ =

∞∑
j=0

|e−µj(s−s1)〈Φ, φ̂j〉H′×H|2, (2.56)

and get (2.50) by (2.54b) and (2.56). The semigroup property (2.51) is now obvious.

(ii) It is enough to prove the continuity of e−(s−s1)ÃΦ at s = s1. By (2.54b) we have

‖e−(s−s1)ÃΦ− Φ‖2
H′ =

∞∑
j=0

|e−µj(s−s1) − 1|2|〈Φ, φ̂j〉H′×H|2. (2.57)

Suppose that Φ belongs to H1
ρ . Then |〈Φ, φ̂j〉H′×H| ≤ |〈Φ, φj〉L2

ρ
| (cf. (2.27)) and

lim sup
n→∞

∞∑
j=n

|〈Φ, φ̂j〉H′×H|2 ≤ lim sup
n→∞

∞∑
j=n

|〈Φ, φj〉L2
ρ
|2 = 0 (2.58)

by the completeness of the system {φj}∞j=0 in L2
ρ. It follows from (2.57) and (2.58) that

lim
s→s1

‖e−(s−s1)ÃΦ− Φ‖2
H′ = 0. (2.59)

The convergence (2.59) for general Φ ∈ D(Ã) is proven by a standard limiting procedure.
(iii) Let s > s1. An argument similar to the one used in the proof of (i) shows that the

series
∑∞

j=0 µje
−µj(s−s1)〈Φ, φj〉H′×Hφj is convergent in H and in H′. Substituting Φ = Ãψ

with ψ = e−(s−s1)ÃΦ to (2.54a), we get Ãe−(s−s1)ÃΦ =
∑∞

j=0 µje
−µj(s−s1)〈Φ, φj〉H′×Hφj,

which yields (2.52). The differentiability of s 7→ e−(s−s1)ÃΦ and (2.53) are proven by an
argument similar to that of (ii). The remaining proof is thus left for the reader.
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Now, let us look at the initial value problem for an evolution equation

dv

ds
= −Ãv + F, in H′ for s ∈ (s1, s2], (2.60a)

v(s1) = v0. (2.60b)

with F ∈ L1([s1, s2];H′) ∩ C((s1, s2];H′) and v0 ∈ H′. A function v ∈ C([s1, s2];H′) ∩
C1((s1, s2];H′) ∩ C((s1, s2];D(Ã)) is understood to be a classical solution of (2.60) if it
solves the equation (2.60a) for all s ∈ (s1, s2] and satisfies the initial condition (2.60b).

Proposition 2.9. If v is a classical solution of the initial value problem (2.60), then

v(s) = e−(s−s1)Ãv0 +

∫ s

s1

e−(s−τ)ÃF (τ)dτ in H′ (2.61)

for s1 ≤ s ≤ s2.

Proof. This is readily obtained by Proposition 2.8 and the semigroup theory (cf. [25]).

Corollary 2.10. Let v0 ∈ L∞loc([0,∞)) satisfy the growth condition (2.33). Suppose
that v(r, s) be a solution of (2.10) in (0,∞) × [s1, s2] for some s2 > s1 with initial data
v(r, s1) = v0(r). Then the solution v(s) = v(·, s) may be regarded as an element of H′ in
the sense of (2.37) and

v(s) = e−(s−s1)Ãv0 +

∫ s

s1

e−(s−τ)Ãf(v(τ))dτ in H′ (2.62)

for s1 ≤ s ≤ s2.

Proof. Since v0 ∈ L2
ρ, it is approximated by a sequence {v0,n} ⊂ C∞0 ([0,∞)) in the norm of

L2
ρ and thus belongs to the closure of D(Ã) in H′. We then see that v is a classical solution

of the problem (2.7) with F = f(v) due to Lemma 2.7. Since f(v) ∈ L1([s1, s2];H′) ∩
C((s1, s2];H′) by Lemma 2.6(ii), the formula (2.62) follows from Proposition 2.9.

3 Dead-core rates and topological arguments

In this section we show the existence of a solution u` of (1.1) that satisfies the bound
(1.7). At first the solution w` of (2.9) corresponding to u` is formally constructed in
§§3.1 by means of a matched asymptotic expansion technique. Suggested by this formal
construction, we prove rigorously that such a solution does exist by a priori estimates and
topological arguments in §§3.2.

3.1 A formal matching argument

We begin with splitting the half line {r > 0} into three regions: inner, intermediate
and outer regions. The inner region is a very narrow layer disappearing as s → ∞. The
outer region lies very far away from the origin and moves to infinity as s → ∞. The
intermediate region is their complement part, which lies between the inner and outer
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regions, and expands to the half line as s → ∞. At first their interfaces are unknown.
Let rm(s) denote the boundary between the inner and intermediate regions. Let δ(s) > 0
be such that δ(s) � rm(s). Suppose that a solution w`(r, s) of (2.9) behaves as

w`(r, s) ≈


δ(s)2αUη(δ(s)

−1r), for 0 ≤ r < rm(s),

U(r) + χ(s)φ`(r), for rm(s) < r < Rm(s),

U(r) + ν(s1)r
2α, for Rm(s) < r <∞,

(3.1)

and for s1 ≤ s ≤ s2, where Rm(s) is the frontier between the intermediate and the outer
regions, and ν(s1) = o(s1) as s1 → ∞, that is, ν(s1)/s1 → 0 as s1 → ∞. Here and
hereafter we loosely use the notation ”≈” to express approximation. The number η is a
positive constant to be determined later. Notice that the first representation in (3.1) is
a rescaling of stationary solution and that the second representation in (3.1) claims that
the eigenfunction expansion yields an approximation of w` − U (= v). Assuming that
they are comparable at r = rm(s), we have

δ(s)2α
[
U(δ(s)−1rm(s)) + h(η){δ(s)−1rm(s)}γ

]
≈ U(rm(s)) + χ(s) · c`(rm(s))γ (3.2)

by (2.3) and (2.20a). We now select η = η∗ > 0 so that

h(η∗) = c`. (3.3)

It then follows from (3.2) and (3.3) that

χ(s) ≈ δ(s)2α−γ. (3.4)

Taking the duality product in the equation (2.47), we see

χ′(s) ≈ −µ`χ(s) + 〈f(v(s)), φ`〉H′×H. (3.5)

At this formal level, it is convenient to assume that 〈f(v(s)), φ`〉H′×H = o(e−µ`s) as s→∞
(cf. (4.9) below), so that the first term in the right hand side of (3.5) is dominant and

χ(s) ≈ e−µ`(s−s1)χ(s1) (3.6)

as far as s � 1. Therefore if the initial data is chosen so that χ(s1) ≈ e−µ`s1 , then
χ(s) ≈ e−µ`s and δ(s) ≈ e−ω`s with ω` = µ`/(2α − γ) by (3.4). Here we may choose
the matching point rm(s) as rm(s) = Kδ(s) = Ke−ω`s with K � 1 being a constant.
A similar argument shows that Rm(s) ≈ eσs with some σ ∈ (0, 1/2). Substituting these
values to (3.1), we deduce that

w`(r, s) ≈


e−2αω`sUη∗(e

ω`sr), for 0 ≤ r < Ke−ω`s,

U(r) + e−µ`sφ`(r), for Ke−ω`s < r < eσs,

U(r) + ν(s1)r
2α, for eσs < r <∞,

(3.7)

and for s1 ≤ s ≤ s2. Therefore infr≥0w(r, s) = w(0, s) ≈ η∗e−2αω`s. We then go back
to the original variables (x, t) through (2.6) to see that the corresponding solution u` of
(1.1a) satisfies

u`(0, t) ≈ η∗(T − t)(2ω`+1)α. (3.8)

The dead-core rate (3.8) is precisely faster than the self-similar rate (T − t)α.
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Remark 3.1. We have selected the particular constant η = η∗ as in (3.3). In fact, arbitrary
choices of η > 0 are available. We only have to replace the values of δ(s), w`(0, s) and
u`(0, t) by M(η, `)e−ω`s, ηM(η, `)2αe−2αω`s and ηM(η, `)2α(T − t)(2ω`+1)α with M(η, `) =
{c`/h(η)}1/(2α−γ), respectively. No changes appearing in the possible dead-core rates, we
have chosen the simplest case where M(η∗, `) = 1 in the above argument.

We expect from (3.7) that a desired solution w` would converge to U for ε0 < r < 1/ε0

with every ε0 > 0 as s→∞. However, the presence of unstable eigenvalue µ0 makes the
situation involved (cf. (2.26)). We have to perturb the initial datum of w so as to get rid
of unstable effects caused by µ0. Topological aspects of mapping degree, the subjects of
the next section, provide a suitable perturbation.

3.2 Topological arguments

As is noted in Remark 1.2, the constant γ in (1.8) admits a useful inequality

2(α− 1) < γ < 2α (3.9)

with constant α in (1.5) for every N ≥ 1 and p ∈ (0, 1). For each ` = 1, 2, ..., we set

ω` =
µ`

2α− γ
=

`

2α− γ
− 1

2
> 0. (3.10)

We select positive constants K and σ respectively as

K = ekω`s1 with max
{ 1

2α+ 1− γ
,
1

2

}
< k < 1; (3.11)

µ`

2`
< σ < min

{1

2
, kµ`

}
. (3.12)

Let η1, η2 be positive constants such that

h(η1) < c` < h(η2), (3.13)

where h(η) is as in §2.1 (cf. (2.3)) and c` is the constant appearing in (2.20a).

Theorem 3.2. Let k, σ, η1, η2 be as above and let ε > 0 be a constant such that h(η1) <
c`(1−3ε) and c`(1+3ε) < h(η2). Then for any G > 0 and for each positive integer `, there
exists a radial solution w` of (2.7) with the following properties: there exists a positive
constant s1 depending only on p,N, `,G, k, σ, η1, η2 and ε such that

e−2αω`sUη1(e
ω`sr) < w`(r, s) < e−2αω`sUη2(e

ω`sr) (3.14)

for 0 ≤ r ≤ Ke−ω`s and s ≥ s1;

|w`(r, s)− U(r)− e−µ`sφ`(r)| ≤ εe−µ`s(rγ + r2(µ`+α)) (3.15)

for Ke−ω`s ≤ r ≤ eσs and s ≥ s1;

|w`(r, s)− U(r)| < Gr2α (3.16)

for eσs ≤ r and s ≥ s1.
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Remark 3.3. (i) In §6 we give further properties on the solution w`, such as the convergence
lims→∞ e

µ`s{w`(r, s)− U(r)} in compact sets of (0,∞) and the zeros of w`(s)− U .
(ii) By fixed-point arguments we construct a suitable initial datum for each positive integer
` so that the corresponding solution w` of the problem (2.9) fulfills the above properties.
(iii) One may choose the constants η1, η2 arbitrarily close to each other if they satisfy
(3.13), though ε must be selected so small accordingly (cf. (3.22) below).

In the sequel let ε ∈ (0, 1) be a constant and we denote by w(r, s; d) the solution of
(2.9) with initial datum w(r, s1; d).

Definition 3.4. Let d = (d0, d1, ..., d`−1) ∈ R` be such that

`−1∑
n=0

|dn| < εe−µ`s1 . (D)

A solution w(r, s; d) of (2.9) is said to be in a class Wθ
s1,s2

, θ ∈ (0, 1], and written as
w(r, s; d) ∈ Wθ

s1,s2
if

|w(r, s; d)− U(r)− e−µ`sφ`(r)| ≤ θεe−µ`s(rγ + r2(µ`+α))

for Ke−ω`s ≤ r ≤ eσs and s1 ≤ s ≤ s2. We set

Us1,s2 = {d ∈ R`; d satisfies the property (D) and w(r, s; d) ∈ W1
s1,s2

}. (3.17)

For the constants k and σ respectively in (3.11) and (3.12), we choose positive constants
K̃ and σ̃ as

σ < σ̃ < min
{1

2
, kµ`

}
, (3.18)

K̃ = ek̃ω`s1 with 0 < k̃ < k. (3.19)

Let η∗ be the constant in (3.3). We select a function φ̃` ∈ L∞loc([0,∞)) satisfying

φ̃`(r) = −eµ`s1

{
U(r)− e−2αω`s1Uη∗(e

ω`s1r) +
`−1∑
n=0

dnφn(r)
}

in [0, K̃e−ω`s1); (V 1)

φ̃`(r) = φ`(r) in [K̃e−ω`s1 , eσ̃s1); (V 2)∣∣∣ `−1∑
n=0

dnφn(r) + e−µ`s1φ̃`(r)
∣∣∣ ≤ 1

2
Gr2α for some G > 0 in [eσ̃s1 ,∞); (V 3)

U(r) +
`−1∑
n=0

dnφn(r) + e−µ`s1φ̃`(r) > 0 in [0,∞). (V 4)

For this function φ̃`(r), we take an initial function as

w(r, s1; d) = U(r) + v0,`(r; d) (3.20a)
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with d ∈ R` satisfying the property (D) and

v0,`(r; d) :=
`−1∑
n=0

dnφn(r) + e−µ`s1φ̃`(r). (3.20b)

The initial data w(r, s1; d) may have jumps in [K̃e−ωs1 ,∞) and thus can be discontinuous,
but this thing is not a serious drawback since the corresponding mild solutions become
smooth immediately for s > s1 in view of parabolic regularizing effects. Further remarks
on the choice of initial data are given after the proof of Proposition 3.5 below.

For the future references, we note that for each j = 0, 1, ..., there is a constant Cj > 0
such that

|〈φ` − φ̃`, φj〉| ≤ Cje
−(γ+N)(1−k̃)ω`s1 , (3.21)

where k̃ ∈ (0, 1) is the constant in (3.19). The estimate (3.21) is readily obtained by
splitting the integral defining the inner product according to (V 1)-(V 3) and using (2.20a)
as well as (3.19) and the exponentially decaying factor of the weight function ρ as r →∞.

In the following, for a constant ε > 0, we write s1 � 1 if s1 ≥ s0 with some sufficiently
large s0 ≥ 1 depending only on p,N, `, k, σ,G, η1 and η2 as well as on ε. We now choose
ε > 0 so small to fulfill

h(η1) < c`(1− 3ε) < c` < c`(1 + 3ε) < h(η2). (3.22)

Such a constant ε does exist due to our choices of η1 and η2 in (3.13).

Proposition 3.5. Let η1, η2 and ε be as above. Assume that d ∈ U s1,s2 for some s2 > s1.
Then there exist δ ∈ (0, 1) and s1 � 1such that

(1 + δ)e−2αω`sUη1(e
ω`sr) < w(r, s) < (1− δ)e−2αω`sUη2(e

ω`sr) (3.23)

for 0 ≤ r ≤ Ke−ω`s and s1 ≤ s ≤ s2. In particular, there holds

η1e
−2αω`s < w(r, s)− U(r). (3.24)

Proof. Since d ∈ U s1,s2 , we have

w(r, s)− U(r) ≤ e−µ`s
{
φ`(r) + εrγ(1 + r2`)

}
(3.25)

for Ke−ω`s ≤ r ≤ eσs and s1 ≤ s ≤ s2. Take a constant δ0 ∈ (0, 1) small enough so that
c`(1+3ε) < h(η2)(1−δ0). We set δ = δ(s1) = e−µ`s1 . Then c`(1+3ε) < h(η2)(1−δ0)(1−δ)
as far as s1 � 1. Recalling (2.20a) and (2.3), we then get from (3.25) that

w(Ke−ω`s, s) ≤ e−2αω`sU(K) + h(η2)(1− δ0)(1− δ)e−µ`s(Ke−ω`s)γ − ε

2
e−µ`s(Ke−ω`s)γ

= (1− δ)e−2αω`s{U(K) + h(η2)(1− δ0)K
γ}+ δe−2αω`sU(K)− ε

2
e−2αω`sKγ

≤ (1− δ)e−2αω`sUη2(K)

if s1 � 1, because δ = o(K−2α+γ) and thus δU(K) = o(Kγ) as s1 → ∞ (cf. (3.10) and
(3.11)). A similar argument shows that

w(Ke−ω`s, s) ≥ (1 + δ)e−2αω`sUη1(K)
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if s1 � 1. Consequently (3.23) holds for r = Ke−ω`s and s1 ≤ s ≤ s2.
We then proceed to observe, by our choice of the initial data, that

w(r, s1) = e−2αω`s1Uη∗(e
ω`s1r) (3.26)

for 0 ≤ r ≤ K̃e−ω`s1 , and

|w(r, s1)− U(r)| =
∣∣∣ `−1∑

n=0

dnφn(r) + e−µ`s1φ`(r)
∣∣∣

≤ c`e
−µ`s1rγ(ε+ 1)(1 + o(1))

(3.27)

for K̃e−ω`s1 ≤ r ≤ Ke−ω`s1 as s1 →∞. On the other hand, there holds

e−2αω`s1Uηi
(eω`s1r) = U(r) + h(ηi)e

−µ`s1rγ(1 + o(1)) (3.28)

as s1 →∞ for i = 1, 2 by (2.3). Arguing as above, we obtain

(1 + δ)e−2αω`s1Uη1(e
−ω`s1r) ≤ w(r, s1) ≤ (1− δ)e−2αω`s1Uη2(e

−ω`s1r) (3.29)

for K̃e−ω`s1 ≤ r ≤ Ke−ω`s1 , if s1 � 1. It follows from (3.26) and (3.29) that (3.23) holds
for 0 ≤ r ≤ Ke−ω`s1 and s = s1. Thus (3.23) valids in {(r, s1); 0 ≤ r ≤ Ke−ω`s1} ∪
{(r, s)| r = Ke−ω`s, s1 ≤ s ≤ s2}. We shall show that this estimate keeps to hold for
0 ≤ r ≤ Ke−ω`s, s1 ≤ s ≤ s2 by a comparison argument. We set

w(r, s) = (1 + δ)e−2αω`sUη1(e
ω`sr);

w(r, s) = (1− δ)e−2αω`sUη2(e
ω`sr).

A direct calculation yields then that

ws − wrr −
(N − 1

r
− r

2

)
wr − αw + wp

=(1 + δ)e−2(α−1)ω`s
[
−
{
1− (1 + δ)−(1−p)

}
Up

η1
(eω`sr) + e−2ω`sB(eω`sr)

] (3.30)

with

B(ξ) := (2ω` + 1)
{1

2
ξU ′η1

(ξ)− αUη1(ξ)
}
.

Notice that the function B is negative near ξ = 0 and ξ = ∞ due to (2.3) and (3.9).
Because Uη1(ξ) > 0, B(ξ) is bounded and e−2ω`s1 � δ when s1 � 1 (cf. (3.9)), the right
hand side of (3.30) is negative for 0 < r < Ke−ω`s and s1 < s < s2 if s1 � 1, that is, w
is a subsolution of (2.9a). A similar argument shows that w is a supersolution of (2.9a).
Note that U ′η1

(0) = U ′η2
(0) = wr(0, s) = 0 for s1 < s < s2. The desired estimate (3.23) is

then obtained by the comparison theorem. Since U ′η1
− U ′ ≥ 0, we get (3.24).

We have remarked in §2 that under the general hypothesis on initial data of having
algebraic growth bound as |y| → ∞, the corresponding solution w of (2.7) grows with at
most algebraic order for every s ∈ (s1, s2). The estimate, however, can depend on s2. We
next prove that for our particular initial data, the corresponding solutions have growth
bound as r →∞ that is independent of s ∈ [s1, s2].
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Proposition 3.6. Assume that d ∈ U s1,s2 for some s2 > s1. Then there exists s1 � 1
such that

|w(r, s)− U(r)| < Gr2α for r ≥ eσs and s1 ≤ s ≤ s2,

where G is the positive constant in the choice of initial data described in (V 3).

Proof. Since we are assuming that d belongs to U s1,s2 , we certainly have that

|w(r, s)− U(r)| ≤ Ce−µ`s(rγ + r2(µ`+α)) <
1

2
Gr2α

for 1 ≤ r ≤ eσs and s1 ≤ s ≤ s2, provided that s1 � 1. We then go back to the original
variables (u;x, t) to see that

|u(x, t)− U(|x|)| < 1

2
G|x|2α for |x| ≤ (T − t)

1
2
−σ, t1 ≤ t ≤ T1, (3.31)

where t1 := T − e−s1 and T1 := T − e−s2 . Define

ϕ(x, t) := u(x, t)− U(|x|)

and observe that

∂tϕ = ∆ϕ− up − Up

u− U
ϕ ≡ ∆ϕ−Ψ(x, t)ϕ.

We then multiple sgnϕ and make use of Kato’s inequality to get

∂t(|ϕ|) ≤ ∆(|ϕ|)−Ψ(x, t)|ϕ| ≤ ∆(|ϕ|). (3.32)

Namely, |ϕ| is a subsolution of the heat equation. On the other hand, we have

0 = ∆U(|x|)− U(|x|)−(1−p)U(|x|) ≥ ∆U(|x|)− c
−(1−p)
p,N (T − t)−(1−2σ)U(|x|).

for |x| ≥ (T − t)
1
2
−σ. A simple computation shows then that the function

Z(x, t) := exp
(
c
−(1−p)
p,N

∫ t

t1

(T − τ)−(1−2σ)dτ
)
U(|x|)

is a supersolution of the heat equation, that is,

Zt ≥ ∆Z for |x| ≥ (T − t)
1
2
−σ, t1 < t ≤ T1 (3.33)

(and so is CZ(x, t) for each constant C > 0). Moreover, our choice of initial data (cf. (V 2),
(V 3) and (3.20b)) implies that if s1 � 1, then

|u(x, t1)− U(|x|)| ≤ 1

2
G|x|2α for |x| ≥ (T − t1)

1
2
−σ, (3.34)

where the same argument as the derivation of (3.31) has been used to obtain (3.34) for

(T − t1)
1
2
−σ ≤ |x| ≤ (T − t1)

1
2
−σ̃. It then follows from (3.31)-(3.34) that

|u(x, t)− U(|x|)| ≤ C0Z(x, t) for |x| ≥ (T − t)
1
2
−σ, t1 ≤ t ≤ T1
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by the comparison theorem, where C0 = (2cp,N)−1G. Since∫ t

t1

(T − τ)−(1−2σ)dτ =
1

2σ

(
(T − t1)

2σ − (T − t)2σ
)
,

we conclude

|u(x, t)− U(|x|)| < G|x|2α for |x| ≥ (T − t)
1
2
−σ, t1 ≤ t ≤ T1,

if T − t1 = e−s1 � 1. Changing the variables to (w; y, s), we get the desired estimate.

We may define a map P : U s1,s2 → R` by

P (d; s1, s2) = (p0, p1, ..., p`−1), pn = 〈w(·, s2; d)− U, φn〉L2
ρ
, n = 0, 1, ..., `− 1. (3.35)

The following proposition plays a key role in the proof of Theorem 3.2.

Proposition 3.7. Let s1 � 1. If there exists d ∈ U s1,s2 for some s2 > s1 such that
P (d; s1, s2) = 0, then w(r, s; d) ∈ Wθ

s1,s2
for some θ ∈ (0, 1).

The proof of Proposition 3.7 requiring quite heavy analysis, we postpone the proof to
§5. Once Proposition 3.7 is proven, a topological fixed-point argument by mapping degree
guarantees the existence of the solution as stated in Theorem 3.2. This step is a purely
topological argument and is therefore essentially the same as the corresponding parts of
[15,21], but we present highlights for readers’ convenience.

Proposition 3.8. Let s1 � 1. If U s1,s2 6= ∅ for some s2 > s1, then there exists d ∈ U s1,s2

such that P (d; s1, s2) = 0.

Proof. Note that pn(d; s1, s1) = dn + e−µ`s1〈φ̃`, φn〉, n = 0, 1, ..., `− 1, and

Us1,s1 =
{
d ∈ R` ;

`−1∑
n=0

|dn| < εe−µ`s1 ,
∣∣∣ `−1∑

n=0

dnφn(r)
∣∣∣ ≤ e−µ`s1(rγ + r2(µ`+α))

for Ke−ω`s1 ≤ r ≤ eσs1

}
.

Lemma 4.2 below implies that if P (d; s1, s1) = 0 for some d ∈ U s1,s2 , then d lies in the
interior of Us1,s2 . Since the map P is continuous in d and is homotopic with the identity
map I and there is no d ∈ ∂Us1,s1 such that P (d; s1, s1) = 0, homotopy invariance of
mapping degree yields

deg(P (·; s1, s1), Us1,s1 , 0) = deg(I, Us1,s1 , 0) = 1. (3.36)

Admitting Proposition 3.7, we have

0 6∈ P (∂Us1,s; s1, s) for s1 ≤ s ≤ s2.

It then follows from (3.36) and the homotopy invariance [24, Theorem 2.2.4] that

deg(P (·; s1, s2), Us1,s2 , 0) = deg(P (·; s1, s1), Us1,s1 , 0) = 1.

Hence there exists d ∈ Us1,s2 such that P (d; s1, s2) = 0, which completes the proof.
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Proposition 3.9. If s1 � 1 then U s1,s2 6= ∅ for every s2 > s1.

Proof. By our choice of initial data w, we have w(r, s1; 0) ∈ W1/2
s1,s1 . Then there is a

constant η > 0 such that w(r, s; 0) ∈ W1/2
s1,s1+η, whence 0 ∈ Us1,s1+η. We set

s∗ := sup{s > s1; Us1,s 6= ∅}

and prove s∗ = +∞ by contradiction. Suppose that s∗ were finite. Then there is a
sequence {sj} ⊂ (s1, s

∗) such that sj → s∗ as j →∞ and Us1,sj
6= ∅ for every j. It follows

from Proposition 3.8 that for each j, there exists dj ∈ Us1,sj
such that P (dj; s1, sj) =

0. We then use Proposition 3.7 to see that w(r, s; dj) ∈ Wθj
s1,sj for some θj ∈ (0, 1).

Taking a subsequence which converges to some d∗ ∈ RN , we obtain P (d∗; s1, s
∗) = 0

and w(r, s; d∗) ∈ W1
s1,s∗ . Namely, d∗ ∈ Us1,s∗ . We again use Proposition 3.7 to observe

that w(r, s; d∗) ∈ Wθ∗
s1,s∗ for some θ∗ ∈ (0, 1), whence d∗ ∈ Us∗,s∗+η with some η > 0,

contradicting the definition of s∗.

We have now arrived at a position to prove Theorems 3.2 and 1.1.

Proof of Theorem 3.2. For a monotone increasing unbounded sequence {sj}, we may take
d(j) ∈ U s1,sj

such that P (d(j); s1, sj) = 0 for each j by Propositions 3.8 and 3.9. We

then apply Proposition 3.7 to deduce that w(r, s; d(j)) ∈ Wθj
s1,sj for some θj ∈ (0, 1).

Taking a subsequence converging to some d∗ ∈ ∩j≥1U s1,sj
, we see w(r, s; d∗) ∈ W1

s1,∞ =
∩s2≥s1W1

s1,s2
, which is the desired solution w`(r, s). The properties (3.14), (3.15) and

(3.16) are guaranteed by Propositions 3.5, 3.7 and 3.6, respectively.

Proof of Theorem 1.1. Let d∗ be as in the proof of Theorem 3.2. For T > 0 small enough,
the function u`(x, t) := (T − t)αw`((T − t)−1/2x,− log (T − t); d∗) is the desired solution of
(1.1) with initial data u0,`(x) = Tαw`(T

−1/2x,− log T ; d∗). The existence for each T > 0

is shown by rescaling u` 7→ u
(λ)
` (x, t) = λ−αu`(λx, λ

2t) and selecting a suitable λ > 0.

4 Fundamental estimates

In this section we derive some auxiliary estimates leading to the proof of the key
a priori estimate of Proposition 3.7. As is previously noted in §3, these estimates are
essential to execute our topological argument withinWθ

s1,s2
, whereWθ

s1,s2
is the set defined

in Definition 3.4 together with Us1,s2 . To this end we just recall here some notations
introduced in the previous sections. Let f be as in (2.12), i.e.,

f(ψ) = U(r)p − {U(r) + ψ}p +
pcp−1

p,N

r2
ψ, r > 0,

where r = |y| and U(r) is the singular stationary solution given in (2.2). It may be
regarded as an element of H′ by Lemma 2.6. We have denoted the duality product
between H′ and H by 〈·, ·〉H′×H, but we shall henceforth write it, together with the inner
product in L2

ρ, simply as 〈·, ·〉. We denote by w(r, s) a solution of (2.9) with initial
data w(r, s1; d) = v0(r; d) + U(r), where v0 is the function defined in (3.20b), and set
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v(r, s) := w(r, s)−U(r). Then v is a solution of the linearized equation (2.10) and admits
the integral equation described in Corollary 2.10. The linearized operator is denoted
by A as well as its Friedrichs extension in Lemma 2.2, whose eigenvalues {µj}∞j=0 and
eigenfunctions {φj}∞j=0 are given in (2.18) and (2.19), respectively.

In the following, we shall denote by C a generic positive constant which varies from
line to line. As is used in the previous sections, for a positive constant ν, we write s1 � 1
if s1 ≥ s0 with some sufficiently large s0 ≥ 1 which may depend only on p,N, `, k, σ,G, η1

and η2 as well as on ν. Here k, σ and ηi are the positive constants given in (3.11), (3.12)
and (3.13), respectively, while G is the positive constant appearing in (V 3) to define the
class of initial data w(r, s1; d) given in (V 1)-(V 4) and (3.20).

Lemma 4.1. Assume d ∈ U s1,s2 . Let K be the constant as in (3.11). If s1 � 1, then

0 ≤ f(v) ≤ CKγe−2αω`sr−2 for 0 < r ≤ Ke−ω`s, s1 ≤ s ≤ s2; (4.1)

0 ≤ f(v) ≤ Ce−2µ`sr2γ−2α−2 for Ke−ω`s < r ≤ 1, s1 ≤ s ≤ s2; (4.2)

0 ≤ f(v) ≤ Ce−2µ`sr4γ−2α−2 for 1 < r ≤ eσs, s1 ≤ s ≤ s2; (4.3)

0 ≤ f(v) ≤ Cr2α−2 for eσs ≤ r, s1 ≤ s ≤ s2. (4.4)

Proof. Notice that if s1 � 1, then

0 ≤ v(r, s) < e−2αω`sUη2(e
ω`sr)− U(r)

≤ 2h(η2)K
γe−2αω`s

for 0 ≤ r ≤ Ke−ω`s and s1 ≤ s ≤ s2 by Proposition 3.5 and (2.3). Then there holds

f(v) ≤ CU−(1−p)v

≤ CKγe−2αω`sr−2,

which yields (4.1).
We next note that Taylor’s theorem yields

0 ≤ f(v) ≤ CU−(2−p)v2 for any r > 0. (4.5)

By the assumption d ∈ U s1,s2 , we have

|w(r, s; d)− U(r)− e−µ`s| ≤ εe−µ`s(rγ + r2(µ`+α))

for Ke−ω`s ≤ r ≤ eσs and s1 ≤ s ≤ s2, whence

|v| ≤ Ce−µ`s(rγ + r2(µ`+α)) (4.6)

there. It then follows from (4.5) and (4.6) that

f(v) ≤

{
Ce−2µ`sr2γ−2α−2 for Ke−ω`s ≤ r ≤ 1, s1 ≤ s ≤ s2;

Ce−2µ`sr4µ`+2α−2 for 1 ≤ r ≤ eσs, s1 ≤ s ≤ s2,

which shows (4.2) and (4.3).
Finally, (4.4) immediately follows from (4.5) and Proposition 3.6.
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Lemma 4.2. Let s1 � 1. Suppose that for any ν > 0, there exists d = (d0, d1, ..., d`−1) ∈
U s1,s2 such that P (d; s1, s2) = 0. Then

`−1∑
n=0

|dn| < νe−µ`s1 . (4.7)

Proof. Taking the duality product with φn in (2.62) at s = s2, we have

0 = e−µn(s2−s1)〈v0, φn〉+

∫ s2

s1

e−µn(s2−τ)〈f(v(τ)), φn〉dτ (4.8)

for n = 0, 1, ..., `− 1. In order to prove (4.8), we show

‖f(v(τ))‖H′ ≤ Ce−(1+κ)µ`τ , s1 ≤ τ ≤ s (4.9)

with some constants C > 0 and κ > 0 for s1 � 1. To show (4.9) we take φ ∈ H and use
the estimates of f(v(r, τ)) in Lemma 4.1 and (2.29) to observe that∣∣〈f(v(τ)), φ〉

∣∣
≤ C

∞∑
j=0

〈φ, φj〉

(
Kγe−2αω`τ

∫ Ke−ω`τ

0

|φj(r)|rN−3ρdr + e−2µ`τ

∫ 1

Ke−ω`τ

|φj(r)|r2γ−2α+N−3ρdr

)

+ Ce−2µ`τ

∫ eστ

1

r4γ−2α+N−3|φ(r)|ρdr + C

∫ ∞

eστ

r2α+N−3|φ(r)|ρdr

=:
∞∑

j=0

(φ, φj)H
µj + α+ 1

(
L1,j + L2,j

)
+ L3 + L4. (4.10)

Since γ +N − 2 > 0, we may estimate L1,j by (2.38) as

|L1,j| ≤ CKγe−2αω`τj−
1
4

∫ Ke−ω`τ

0

rγ+N−3ρdr

≤ Cj−
1
4 e−(1+κ)µ`τ for j ≥ 1

and get similarly |L1,0| ≤ Ce−(1+κ)µ`τ , where κ = (1− k)(2γ +N − 2)/(2α− γ) > 0 with
k ∈ (0, 1) being the constant as in (3.11). To estimate L2,j we take a positive constant
a := 2α− γ − ε0 with 0 < ε0 < min{2α− γ, 2γ +N − 2} and then obtain, by (2.38), that

|L2,j| ≤ Ce−2µ`τ

∫ 1

Ke−ω`τ

r2γ−2α−3+N |φj(r)|ρdr

≤ Cj−
1
4 e−2µ`τ (Ke−ω`τ )−a

∫ 1

0

r2γ+N−3−ε0dr

≤ Cj−
1
4K−ae−µ`τe−ε0ω`τ for j ≥ 1
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and get analogously |L2,0| ≤ K−ae−µ`τe−ε0ω`τ . Using these estimates in (4.10), we have

∞∑
j=0

(φ, φj)H
µj + α+ 1

(
L1,j + L2,j

)
≤C
( ∞∑

j=0

(φ, φ̂j)
2
H

) 1
2
(
j0 +

∞∑
j=j0

j−
1
2

µj + α+ 1

) 1
2 (
e−(1+κ)µ`τ + e−µ`τe−ε0ω`τ

)
≤C‖φ‖H

(
e−(1+κ)µ`τ + e−µ`τe−ε0ω`τ

)
. (4.11)

As for L3 and L4, it is readily seen that

|L3|+ |L4| ≤ C
{
e−2µ`τ + C exp

(
−e

2στ

8

)}
‖φ‖H. (4.12)

We substitute (4.11) and (4.12) to (4.10), so that the claim (4.9) holds.
Since 〈v0,`, φn〉 = dn + e−µ`s1〈φ̃`, φn〉 by our choice of v0,` and P (d; s1, s2) = 0, we have

dn = −e−µ`s1〈φ̃`, φn〉 −
∫ s2

s1

eµn(τ−s1)〈f(v(τ)), φn〉dτ (4.13)

for n = 0, 1, ..., `− 1 by (4.8) and hence, using (3.21) and (4.9),

|dn| ≤ |〈φ̃`, φn〉|e−µ`s1 + C
√
µn + α+ 1e−µ`s1

∫ s2

s1

e−(µ`−µn)(τ−s1)e−κµ`τdτ

< Ce−(1+q0)s1e−µ`s1 (4.14)

where q0 = min{κ, (γ+N)(1− k̃)(2α−γ)} > 0. Summing up (4.14) for n = 0, 1, ..., `− 1,
we obtain (4.7) for s1 � 1.

5 Proofs of a priori estimates.

This section is devoted to proving the key a priori estimate described in Proposition 3.7.
We continue to use the notations having been used in the previous sections and partly
recalled at the beginning of §4. Throughout this section, we always assume that there is
d ∈ U s1,s2 such that P (d; s1, s2) = 0 for some s2 > s1. The proof is divided into two parts;
short-time s1 ≤ s ≤ s1 + 1 and long-time s1 + 1 ≤ s ≤ s2. The former part is discussed
in §§5.1, while the latter is argued in §§5.2. The proof of Proposition 3.7 is concluded at
the end of this section.

5.1 Short-time estimates

In this subsection we prove Proposition 3.7 for the short-time interval. We set

Σs1
m,s :=

{
(r, s)| Ke−ω`s ≤ r ≤ eσs, s1 ≤ s ≤ s1 + 1

}
.
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The formula (2.62) in Corollary 2.10 provides that

v(s) =
∞∑

j=0

e−µj(s−s1)〈v0,`, φj〉φj +

∫ s

s1

∞∑
j=0

e−µj(s−τ)〈f(v(τ)), φj〉φjdτ (5.1)

= S1(·, s) + S2(·, s) + S3(·, s),

where

S1(·, s) := e−µ`s〈φ̃`, φ`〉φ`, (5.2a)

S2(·, s) :=
∑
j 6=`

e−µj(s−s1)e−µ`s1〈φ̃`, φj〉φj +
`−1∑
n=0

dne
−µn(s−s1)φn(r), (5.2b)

S3(·, s) :=
∞∑

j=0

∫ s

s1

e−µj(s−τ)〈f(v(τ)), φj〉φjdτ. (5.2c)

Lemma 5.1. For any ν > 0, there exists s1 � 1 such that

S2 < νe−µ`s1(rγ + r2(µ`+α)) in Σs1
m,s. (5.3)

Proof. Since S2 satisfies the equation Ss = Srr +((N − 1)/r− r/2)Sr +αS− (pcp−1
p,N /r

2)S,
it may be represented as S2(r, s) = rγV (r, s) with a solution V of the equation

Vs = Vrr +
(2γ +N − 1

r
− r

2

)
Vr +

(
α− γ

2

)
V (5.4)

for r > 0 and s1 ≤ s ≤ s2. The equation (5.4) is further reduced to

Ws = Wrr +
(2γ +N − 1

r
− r

2

)
Wr

by setting W = V exp (−(α− γ/2)(s− s1)). Hence we have

W (r, s) =
Ce(α+N−2

4
)(s−s1)

1− e−(s−s1)

∫ ∞

0

I 2γ+N−2
2

(
e−

s−s1
2 ξr

2(1− e−(s−s1))

)

· exp

(
− r2e−(s−s1) + ξ2

4(1− e−(s−s1))

)
r−γ+1−N

2 ξγ+N
2 W (ξ, s1)dξ, (5.5)

where Iµ denotes the modified Bessel function of order µ (cf. [29, Proposition 6.1]). We
recast (5.5) for S2 to get

S2 = Crγ e
(α+N−2

4
)(s−s1)

1− e−(s−s1)

∫ ∞

0

H(ξ, r; s− s1)ξ
N
2 S2(ξ, s1)dξ (5.6)

with

H(ξ, r; t) = I 2γ+N−2
2

(
e−

t
2 ξr

2(1− e−t)

)
exp

(
− r2e−t + ξ2

4(1− e−t)

)
r−γ+1−N

2 . (5.7)
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Since

|Iµ(z)| ≤ Czµez

(1 + z)µ+1/2
, z ∈ R,

for any µ > 0 (cf. [1]), we have

H(ξ, r; s− τ) ≤ C
{ e−

s−τ
2 ξr

2(1− e−(s−τ))

} 2γ+N−2
2

{
1 +

e−
s−τ
2 ξr

2(1− e−(s−τ))

}− 2γ+N−1
2

· exp

(
− r2e−(s−τ) + ξ2

4(1− e−(s−τ))

)
r−γ−1+N

2

=: T (ξ, r; s− τ). (5.8)

Therefore S2 is estimated as

|S2| ≤ Crγ
exp

((
α+ N−2

4

)
(s− s1)

)
1− e−(s−s1)

∫ ∞

0

( e−
s−s1

2 ξr

2(1− e−(s−s1))

) 2γ+N−2
2

·
(
1 +

e−
s−s1

2 ξr

2(1− e−(s−s1))

)− 2γ+N−1
2

exp

(
− (re−

s−s1
2 − ξ)2

4(1− e−(s−s1))

)
r−γ+1−N

2 ξ
N
2 |S2(ξ, s1)|dξ

≤ Crγ

1− e−(s−s1)

(∫ K̃e−ω`s

0

+

∫ ∞

K̃e−ω`s

)
T (ξ, r; s− s1)ξ

N
2 |S2(ξ, s1)|dξ

=: S2,1 + S2,2.

We first consider S2,1. Since

S2(r, s1) = e−2αω`s1

{
Uη∗(e

ω`s1r)− U(eω`s1r)
}
− e−µ`s1〈φ̃`, φ`〉φ`(r)

= O(e−2αω`s1K̃γ) (5.9)

for 0 ≤ r ≤ K̃e−ω`s1 as s1 →∞, S2,1 may be estimated as

S2,1(r, s) ≤
Ce−2αω`s1K̃γrγ

1− e−(s−s1)

∫ K̃e−ω`s

0

T (ξ, r; s− s1)ξ
N
2 dξ

≤ Ce−2αω`s1K̃γr−
N−1

2

√
1− e−(s−s1)

∫ K̃e−ω`s

0

exp
(
− ξ2

2(1− e−(s−s1))

)
ξ

N−1
2 dξ,

where the fact that re−(s−s1)/2 − ξ ≥ ξ for r ≥ Ke−ω`s and 0 ≤ ξ ≤ K̃e−ω`s1 has been
used. By a change of variable ξ 7→ t = ξ/

√
1− e−(s−s1), we obtain

S2,1(r, s) ≤ Ce−2αω`s1K̃γ

∫ ∞

0

exp
(
− t2

2

)
dt

< Ce−(k−k̃)γω`s1e−µ`srγ in Σs1
m,s. (5.10)
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We then proceed to estimate S2,2. We know

|S2(r, s1)| =
∣∣∣ `−1∑

n=0

dnφn(r) + e−µ`s1φ̃`(r)− e−µ`s1〈φ̃`, φ`〉φ`(r)
∣∣∣

≤
{
Ce−(1+q1)µ`s1e−µ`s1(rγ + r2(µ`+α)) for K̃e−ω`s1 ≤ r ≤ eσ̃s1 ,
Cr2(µ`+α) for eσ̃s1 ≤ r ≤ ∞,

(5.11)

where q1 = (γ +N)(1− k̃)(2α− γ) > 0 (cf. (3.21)). It then follows that

S2,2(r, s) ≤
Crγ

1− e−(s−s1)

∫ ∞

eσ̃s1

T (ξ, r; s− s1)ξ
2(µ`+α)+N

2 dξ

+
Ce−(1+q1)µ`s1rγ

1− e−(s−s1)

(∫ eσ̃s1

2re−
s−s1

2

+

∫ 2re−
s−s1

2

K̃e−ω`s1

)
T (ξ, r; s− s1)ξ

N
2

+γ(1 + ξ2`)dξ

=: S1
2,2 + S2

2,2 + S3
2,2.

Consider S1
2,2. Since the conditions ξ ≥ eσ̃s1 and r ≤ eσs imply ξ − re−

s−s1
2 ≥ ξ(1 −

e−(σ̃−σ)s1) ≥ ξ/2, as long as s1 ≤ s ≤ s1 + 1 and s1 � 1, we have

T (ξ, r; s− s1) ≤
( ξ

2(1− e−(s−s1))

) 2γ+N−2
2

exp
(
− ξ2

4(1− e−(s−s1))

)
,

whence

S1
2,2(r, s) ≤

Crγ

1− e−(s−s1)
exp

(
− eσ̃s1

32

)∫ ∞

eσ̃s1

( ξ

2(1− e−(s−s1))

) 2γ+N−2
2

· exp
(
− ξ2

32(1− e−(s−s1))

)
ξ2(µ`+α)+N

2 dξ.

We then change the integral variable by setting t = ξ(1− e−(s−s1))−1/2 to deduce that

S1
2,2(r, s) ≤

Crγ

√
1− e−(s−s1)

exp
(
− eσ̃s1

32

)∫ ∞

0

( t

2
√

1− e−(s−s1)

) 2γ+N−2
2

· exp
(
− t2

32

)
(1− e−(s−s1))µ`+α+N

4 t2(µ`+α)+N
2 dt.

≤ Crγ exp
(
− eσ̃s1

32

)∫ ∞

0

tγ+N+2(µ`+α)−1 exp
(
− t2

32

)
dt.

Therefore we obtain
S1

2,2(r, s) < Ce−2µ`s1rγ in Σs1
m,s. (5.12)

Next consider S2
2,2. Since ξ − re−(s−s1)/2 ≥ ξ2/2 when ξ ≥ 2re−(s−s1)/2, we see

S2
2,2 <

Ce−(1+q1)µ`s1rγ

1− e−(s−s1)

∫ σ̃s1

2re−
s−s1

2

( ξ

2(1− e−(s−s1))

) 2γ+N−2
2

· exp
(
− ξ2

16(1− e−(s−s1))

)
ξγ+N

2 (1 + ξ2`)dξ.
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We then use the same transformation of the integral variable as above, so that the integral
is estimated by a constant multiple of 1− e−(s−s1), and thus

S2
2,2 < Ce−(1+q1)µ`s1rγ in Σs1

m,s. (5.13)

We finally estimate S3
2,2. Since e−(s−s1)/2ξr ≥ ξ2/2 for ξ ≤ 2re−(s−s1)/2, we have

S3
2,2 <

Ce−(1+q1)µ`s1rγ

1− e−(s−s1)

∫ 2re−
s−s1

2

0

{ ξ2

2(1− e−(s−s1))

} 2γ+N−2
2

·
{ ξ2

4(1− e−(s−s1))

}− 2γ+N−1
2

exp
(
− |ξ − re−

s−s1
2 |2

4(1− e−(s−s1))

)
ξγ+N

2 (1 + ξ2`)dξ

≤ Ce−(1+q1)µ`s1rγ

√
1− e−(s−s1)

(1 + r2`)

∫ 2re−
s−s1

2

0

exp
(
− |ξ − re−

s−s1
2 |2

4(1− e−(s−s1))

)
dξ.

Since ∫ ∞

0

exp
(
− |ξ − re−

s−s1
2 |2

4(1− e−(s−s1))

)
dξ

=

∫ re−
s−s1

2

0

exp
(
− |ξ − re−

s−s1
2 |2

4(1− e−(s−s1))

)
dξ +

∫ ∞

0

exp
(
− z2

4(1− e−(s−s1))

)
dz

≤ 4π
N
2

√
1− e−(s−s1),

we obtain
S3

2,2 < Ce−(1+q1)µ`s1(rγ + r2(µ`+α)) in Σs1
m,s. (5.14)

Summing up (5.12) to (5.14), we have

S2,2 < Ce−(1+q1)µ`s1(rγ + r2(µ`+α)) in Σs1
m,s. (5.15)

The desired estimate (5.3) for s1 � 1 then follows from (5.10) and (5.15).

We shall show that a similar bound holds also for S3. The proof requires a number of
steps. Note that

S3(r, s) =

∫ s

s1

Z(τ ; r, s)dτ with Z(τ ; r, s) = e−(s−τ)Ãf(v(τ)). (5.16)

Since the function Z(τ ; r, s) satisfies

Zs = Zrr +
(N − 1

r
− N

2

)
Zr + αZ −

pcp−1
p,N

r2
Z, r > 0, s > τ,

we may write (5.16) as

S3(r, s) = Crγ

∫ s

s1

e(α+N−2
4

)(s−τ)

1− e−(s−τ)

∫ ∞

0

H(ξ, r; s− τ)ξ
N
2 f(v(ξ, τ))dξdτ,
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where H is the function defined in (5.7). It then follows from (5.8) that

S3(r, s) ≤ Cr1−N
2

∫ s

s1

exp
((
α+ N−2

4

)
(s− τ)

)
1− e−(s−τ)

∫ ∞

0

{ e−
s−τ
2 ξr

2(1− e−(s−τ))

} 2γ+N−2
2

·
{

1 +
e−

s−τ
2 ξr

2(1− e−(s−τ))

}− 2γ+N−1
2

exp
(
− r2e−(s−τ) + ξ2

4(1− e−(s−τ))

)
ξ

N
2 f(v(ξ, τ))dξdτ

≤
∫ s

s1

(∫ Leω`τ

0

+

∫ eστ

Leω`τ

+

∫ ∞

eστ

)
I(ξ, τ ; r, s)dξdτ

=: S3,1 + S3,2 + S3,3, (5.17)

where L = eϑω`s1 with max{(2α+ 1− γ)−1, 1/2} < ϑ < k and

I(ξ, τ ; r, s) := Crγ(s− τ)−γ−N
2

{
1 +

e−
s−τ
2 ξr

2(1− e−(s−τ))

}− 2γ+N−1
2

· exp

(
− |re− s−τ

2 − ξ|2

4(1− e−(s−τ))

)
ξγ+N−1f(v(ξ, τ)). (5.18)

Lemma 5.2. Let S3,1 be as in (5.17). For any ν > 0, there exists s1 � 1 such that

S3,1 < νe−µ`s1rγ in Σs1
m,s. (5.19)

Proof. When ξ ≤ Le−ω`τ , r ≥ Ke−ω`s and s1 ≤ τ ≤ s ≤ s1 + 1, one may readily check
that 2ξre−(s−τ)/2 < e−(s−τ)r2 if L� K. We then have

exp

(
− |re−(s−τ)/2 − ξ|2

4(1− e−(s−τ))

)
≤ exp

(
− (2e)−1r2 + ξ2

4(1− e−(s−τ))

)
there and obtain, by (4.1),

S3,1 ≤ C(Lr)γ

∫ s

s1

(s− τ)−γ−N
2 e−2αω`τ

∫ Leω`τ

0

{
1 +

e−
s−τ
2 ξr

2(1− e−(s−τ))

}− 2γ+N−1
2

· exp
(
− (2e)−1r2 + ξ2

4(1− e−(s−τ))

)
ξγ+N−3dξdτ

≤ C(Lr)γe−2αω`s1

∫ s

s1

(s− τ)−
γ
2
−1

∫ ∞

0

exp
(
− Cr2

s− τ

)
e−Cz2

zγ+N−3dzdτ,

where we have used the change of variable ξ 7→ z = ξ/
√
s− τ and the fact that γ+N−2 >

0. We again change the variable τ 7→ ζ = r/
√
s− τ to observe that

S3,1 ≤ Cr2(Lr)γe−2αω`s1

∫ ∞

0

(ζ
r

)γ+2

e−Cζ2

ζ−3

∫ ∞

0

e−Cz2

zγ+N−3dzdζ

≤ CLγe−2αω`s1 = C
( L
K

)γ

(Ke−ω`s)γeω`γs−2αω`s1

< Ce−(1+q2)µ`s1rγ

in Σs1
m,s, where q2 = γ(k − ϑ)/(2α− γ) > 0. This yields (5.19) for s1 � 1 for s1 � 1.
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Lemma 5.3. Let S3,2 be as in (5.17). For any ν > 0, there exists s1 � 1 such that

S3,2 < νe−µ`s1(rγ + r2(µ`+α)) in Σs1
m,s. (5.20)

Proof. By the fundamental estimates of f(v) in (4.2) and (4.3), we have

S3,2 ≤ Crγ

∫ s

s1

(s− τ)−γ−N
2 e−2µ`τ

(∫ 1

Le−ω`τ

(
1 +

Cξr

s− τ

)− 2γ+N−1
2

· exp
(
− (re−

s−τ
2 − ξ)2

4(1− e−(s−τ))

)
ξ3γ−2α+N−3dξ

+

∫ eστ

1

(
1 +

Cξr

s− τ

)− 2γ+N−1
2

exp
(
− (re−

s−τ
2 − ξ)2

4(1− e−(s−τ))

)
ξγ+4µ`+2α+N−3dξ

)
dτ

=: S1
3,2 + S2

3,2.

We first consider S1
3,2. It may be estimated and split as

S1
3,2 ≤ Crγe−2µ`s1

∫ s

s1

(s− τ)−γ−N
2

(∫ 4r

Le−ω`τ

+

∫ 1

4r

)(
1 +

Cξr

s− τ

)− 2γ+N−1
2

· exp
(
− (re−

s−τ
2 − ξ)2

4(1− e−(s−τ))

)
ξ3γ−2α+N−3dξdτ

=: S1,1
3,2 + S1,2

3,2 .

Note that ξr ≥ ξ2/4 when Le−ω`τ ≤ ξ ≤ 4r. Changing the variable ξ 7→ z = ξ/
√
s− τ ,

we see

S1,1
3,2 ≤ Crγe−2µ`s1

∫ s

s1

(s− τ)
γ
2
−α−1

∫ 4r/
√

s−τ

Le−ω`τ /
√

s−τ

(1 + Cz2)−
2γ+N−1

2 z3γ−2α+N−3

· exp
(
− C

∣∣∣ re− s−τ
2

√
s− τ

− z
∣∣∣2)dzdτ.

We split the region where the integral with respect to z is carried out into

D1 =
{∣∣∣ re− s−τ

2

√
s− τ

− z
∣∣∣ ≥ re−

s−τ
2

2
√
s− τ

}
and D2 =

{∣∣∣ re− s−τ
2

√
s− τ

− z
∣∣∣ < re−

s−τ
2

2
√
s− τ

}
,

and denote the corresponding integrals in z as Ai(r, s; τ), i = 1, 2. It is readily seen that

A1(r, s; τ) ≤ exp
(
− Cr2

) ∫
D1

(1 + Cz2)−
2γ+N−1

2 z3γ−2α+N−3dz.

We shall argue in the following, dividing two cases: 3γ− 2α+N − 3 ≤ −1 and 3γ− 2α+
N − 3 > −1. In the first case, one may readily check that

A1(r, s; τ) ≤ C
(
Le−ω`(s1+1)

)3γ−2α+N−3
∫ 4r

Le−ω`τ

ζ−(2γ+N−1)dζ.
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We set

S1,1,1
3,2 := Crγe−2µ`s1

∫ s

s1

(s− τ)
γ
2
−α−1A1(r, s; τ)dτ.

It follows then that

S1,1,1
3,2 ≤ Crγe−2µ`s1e−Cr2(

Le−ω`(s1+1)
)γ−2α−1

< Ce−(1+q3)µ`s1r2(µ`+α) in Σs1
m,s,

where q3 = {(2α − γ + 1)ϑ− 1}/(2α − γ) > 0. In the latter case, setting t = r2/(s− τ),
we observe that

S1,1,1
3,2 ≤ Crγ+2e−2µ`s1

∫ ∞

0

e−ct
( r√

t

)γ−2α−2

(
√
t)3γ−2α+N−4dt

≤ Ce−2µ`s1r2γ−2α

< Ce−(1+k)µ`s1rγ in Σs1
m,s.

We thus obtain, in the both cases,

S1,1,1
3,2 < Ce−(1+q4)µ`s1

(
rγ + r2(µ`+α)

)
in Σs1

m,s, (5.21)

where q4 = min{q3, k}. We then proceed to estimate A2 and its integral in τ . Note that
z ∈ D2 if and only if

re−
s−τ
2

2
√
s− τ

< z <
3re−

s−τ
2

2
√
s− τ

.

It allows us to estimate A2 as

A2(r, s; τ) ≤
∫

D2

(1 + Cz2)−
2γ+N−1

2 z3γ−2α+N−3dz

≤ C

∫
D2

zγ−2α−2dz

≤ C(Ke−ω`s)−(1+2α−γ)(s− τ)
1+2α−γ

2

for Ke−ω`s ≤ r and s1 ≤ τ ≤ s ≤ s1 + 1. It then follows that

S1,1,2
3,2 := Crγe−2µ`s1

∫ s

s1

(s− τ)
γ
2
−α−1A2(s, τ)dτ

≤ Crγe−2µ`s1(Ke−ω`s)−(1+2α−γ)

< Ce−(1+q5)µ`s1rγ

(5.22)

for Ke−ω`s ≤ r and s1 ≤ s ≤ s1 + 1, where q5 = {(2α − γ + 1)k − 1}/(2α − γ) > 0.
Summing up (5.21) and (5.22), we get

S1,1
3,2 < Ce−(1+q4)µ`s1

(
rγ + r2(µ`+α)

)
in Σs1

m,s. (5.23)

We shall show that a similar bound holds also for S1,2
3,2 . Since

exp
(
− (re−

s−τ
2 − ξ)2

4(1− e−(s−τ))

)
≤ exp

(
− r2 + ξ2

12(1− e−(s−τ))

)
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when ξ ≥ 4r and s1 ≤ τ < s ≤ s1 + 1, we have

S1,2
3,2 ≤ Crγe−2µ`s1

∫ s

s1

(s− τ)−γ−N
2

∫ 1

4r

exp
(
− r2 + ξ2

12(1− e−(s−τ))

)
ξ3γ−2α+N−3dξdτ

≤ Crγe−2µ`s1

∫ s

s1

(s− τ)
γ
2
−α−1

∫ ∞

4r/
√

s−τ

exp
(
− Cr2

s− τ

)
e−Cz2

z3γ−2α+N−3dzdτ

≤ Cr2γ−2αe−2µ`s1

∫ ∞

r2/(s−s1)

t−( γ
2
−α−1)e−Ct

∫ ∞

4
√

t

e−Cz2

z3γ−2α+N−3dzdt,

where we have used the change of variables ξ 7→ z = ξ/
√
s− τ and τ 7→ t = r2/(s − τ).

To proceed further, we divide the argument into the two cases: 3γ − 2α + N − 3 > −1
and 3γ−2α+N −3 ≤ −1. For the first case, the integrand e−Cz2

z3γ−2α+N−3 is integrable
in z up to the origin, which yields

S1,2
3,2 ≤ Cr2γ−2αe−2µ`s1

∫ ∞

0

tα−
γ
2
−1e−Ctdt

< Ce−(1+k)µ`s1rγ in Σs1
m,s. (5.24)

Consider the second case. By the definition of γ in (1.8), there is a constant a ∈ (0, 1)
such that γ + (N + a− 3)/2 > 0. We then have

S1,2
3,2 ≤ Cr2γ−2αe−2µ`s1

∫ ∞

0

tγ+N+a−5
2 e−Ctdt

< Ce−(1+k)µ`s1rγ in Σs1
m,s. (5.25)

It follows from (5.23), (5.24) and (5.25) that

S1
3,2 < Ce−(1+q4)µ`s1(rγ + r2(µ`+α)) in Σs1

m,s. (5.26)

We then proceed to estimate S2
3,2. It may be estimated as

S2
3,2 ≤ Crγe−2µ`s1

∫ s

s1

(s− τ)−γ−N
2

(∫ 4r

1

+

∫ eστ

4r

)(
1 +

Cξr

s− τ

)− 2γ+N−1
2

· exp
(
− (re−

s−τ
2 − ξ)2

4(1− e−(s−τ))

)
ξγ+4µ`+2α+N−3dξdτ

=: S2,1
3,2 + S2,2

3,2 .

Consider S2,1
3,2 . Since 4ξr ≥ ξ2 in the interval under consideration, it is readily seen that

S2,1
3,2 ≤ Crγe−2µ`s1

∫ s

s1

(s− τ)−γ−N
2

∫ 4r

1

( Cξ2

s− τ

)− 2γ+N−1
2

ξγ+4µ`+2α+N−3dξdτ.

We then change the integral variable ξ 7→ θ = ξ/
√
s− τ to get

S2,1
3,2 ≤ Crγe−2µ`s1

∫ s

s1

(s− τ)
γ
2
+2`−α−1

∫ 4r/
√

s−τ

1/
√

s−τ

θ−(2γ+N−1)θγ+4µ`+2α+N−3dθdτ

≤ Cr2γ+4`−2α−1e−2µ`s1

< Ce−(1+q6)µ`s1r2(µ`+α) in Σs1
m,s, (5.27)
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where q6 = k + (1 − k)(2` − 1)/(2α − γ) > 0. As for S2,2
3,2 , arguing as in the estimate of

S1,2
3,2 , we obtain

S2,2
3,2 ≤ Crγe−2µ`s1

∫ s

s1

(s− τ)−γ−N
2

∫ eστ

4r

exp
(
− Cξ2

s− τ

)
ξγ+4µ`+2α+N−3dξdτ

≤ Crγe−2µ`s1

∫ s

s1

(s− τ)
γ
2
−α+2`−1

∫ ∞

4r/
√

s−τ

e−Cz2

zγ+4µ`+2α+N−3dzdτ

< Ce−2µ`s1rγ in Σs1
m,s. (5.28)

The estimates (5.26)-(5.28) yield then the desired estimate (5.20) for s1 � 1.

Lemma 5.4. Let S3,3 be as in (5.17). For any ν > 0, there exists s1 � 1 such that

S3,3 < νe−µ`s1r2(µ`+α) in Σs1
m,s. (5.29)

Proof. We first use (4.4) to get

S3,3 ≤ Crγ

∫ s

s1

(s−τ)−γ−N
2

∫ ∞

eστ

{
1+

Cξr

s− τ

}− 2γ+N−1
2

exp
(
− |re− s−τ

2 − ξ|2

s− τ

)
ξγ+2α+N−3dξdτ.

Consider the case r ≤ eσs/4. In this case we have

S3,3 ≤ Crγ

∫ s

s1

(s− τ)−γ−N
2

∫ ∞

eστ

exp
(
− C(r2 + ξ2)

s− τ

)
ξγ+2α+N−3dξdτ

≤ C exp
(
− Ce2σs1

)
rγ

∫ s

s1

(s− τ)−
γ
2
−1+α

∫ ∞

eστ /
√

s−τ

e−Cθ2

θγ+2α+N−3dθdτ

< C exp
(
− Ce2σs1

)
rγ in Σs1

m,s ∩ {r ≤ eσs/4}, (5.30)

where we have used the change of variable ξ 7→ θ = ξ/
√
s− τ .

In the case where r > eσs/4, we further split the integral as

S3,3 ≤ Crγ

∫ s

s1

(s− τ)−γ−N
2

(∫ 4r

eστ

+

∫ ∞

4r

)(
1 +

Cξr

s− τ

)− 2γ+N−1
2

· exp
(
− |re− s−τ

2 − ξ|2

s− τ

)
ξγ+2α+N−3dξdτ

=: S1
3,3 + S2

3,3.

Consider S1
3,3. Since ξr ≥ ξ2/4 in the interval under consideration, we have

S1
3,3 ≤ Crγ

∫ s

s1

(s− τ)−γ−N
2

∫ 4r

eστ

( Cξ2

s− τ

)− 2γ+N−1
2

ξγ+2α+N−3dξdτ

≤ Crγ

∫ s

s1

(s− τ)−
γ
2
+α−1

∫ 4r/
√

s−τ

eστ /
√

s−τ

θ−γ+2α−2dθdτ,
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where we have used the same change of variables as above. Suppose that −γ+2α−1 ≤ 0.
We then have

S1
3,3 ≤ Crγ+1

∫ s

s1

(s− τ)−
γ
2
+α− 3

2

( eστ

√
s− τ

)−γ+2α−2

dτ

≤ Crγ+1e−(γ−2α+2)σs1

< Ce−(1+q7)µ`s1r2(µ`+α) (5.31)

for r > eσs/4 and s1 � 1, where q7 = 2`σ/µ` − 1 > 0 (cf. (3.12)). On the other hand, if
−γ + 2α− 1 > 0, then

S1
3,3 ≤ Crγ

∫ s

s1

(s− τ)−
γ
2
+α−1

( 4r√
s− τ

)−γ+2α−1

dτ

≤ Cr2(µ`+α)+2α−γ−2µ`−1K−(2α−γ)e−µ`s

≤ Ce−(1+q8)µ`s1r2(µ`+α) in Σs1
m,s (5.32)

by the definition of K in (3.11), where q8 = k+σ(γ−2α+2µ` +1)/µ` > 0. We thus have

S1
3,3 < Ce−(1+q9)µ`s1r2(µ`+α) in Σs1

m,s ∩ {r > eσs/4}, (5.33)

where q9 = min{q7, q8}. Next consider S2
3,3. Arguing as in the estimate for S2,2

3,2 , we get

S2
3,3 ≤ Crγ

∫ s

s1

(s− τ)−γ−N
2

∫ ∞

0

( Cr2

s− τ

)− 2γ+N−1
2

exp
(
− Cξ2

s− τ

)
ξγ+N+2α−3dξdτ

≤ Cr−γ−N+1

∫ s

s1

(s− τ)
γ+N−3

2
+α

∫ ∞

0

e−Cθ2

θγ+N+2α−3dθdτ

< Ce−(1+q10)µ`sr2(µ`+α) in Σs1
m,s ∩ {r > eσs/4}, (5.34)

where q10 = 2`σ/µ` > 0. Summing up (5.33) and (5.34), we see that if s1 � 1, then (5.29)
holds in Σs1

m,s ∩ {r > eσs/4} as well as in Σs1
m,s ∩ {r ≤ eσs/4} due to (5.30).

We shall summarize the estimates having been obtained in this subsection.

Corollary 5.5. For any ν > 0, there exists s1 � 1 such that

|v(r, s)− e−µ`s〈φ̃`, φ`〉φ`| < νe−µ`s1(rγ + r2(µ`+α)) in Σs1
m,s. (5.35)

5.2 Long-time estimates

Our aim in this subsection is to extend the estimates obtained for the short time
interval s1 ≤ s ≤ s1 + 1 in §§5.1 to the long time interval s1 + 1 ≤ s ≤ s2. Let R ≥ 1 be
a fixed constant. The following notations will be used throughout this section:

Σs1+1
R,` :=

{
(r, s) | Ke−ω`s ≤ r ≤ R, s1 + 1 < s ≤ s2

}
,

Σs1+1
m,` :=

{
(r, s) | Ke−ω`s ≤ r ≤ eσs, s1 + 1 < s ≤ s2

}
.
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Substituting (4.13) to (5.1) with (5.2), we observe, for n = 0, 1, 2, ..., `− 1, that

v(r, s) = e−µ`s〈φ̃`, φ`〉φ`(r) +
∞∑

j=`+1

e−µj(s−s1)−µ`s1〈φ̃`, φj〉φj(r)

+
∞∑

j=`

∫ s

s1

e−µj(s−τ)〈f(v(τ)), φj〉φj(r)dτ −
`−1∑
n=0

∫ s2

s

e−µn(s−τ)〈f(v(τ)), φn〉φn(r)dτ

=: I1 + I2 + I3 + I4.

Note that I1, I2, I3, I4 are expressed by S1, S2, S3 in (5.2) as

I1 = S1, (5.36a)

I3 = S3 −
`−1∑
j=0

∫ s

s1

e−µj(s−τ)〈f(v(τ)), φj〉φj(r)dτ. (5.36b)

I2 + I4 = S2 +
`−1∑
j=0

∫ s

s1

e−µj(s−τ)〈f(v(τ)), φj〉φj(r)dτ, (5.36c)

Lemma 5.6. For any ν > 0, there exists s1 � 1 such that

|I4| < νe−µ`s(rγ + r2(µ`+α)) for all r > 0 and s1 + 1 ≤ s ≤ s2. (5.37)

Proof. By (4.9) we obtain

|I4| ≤ C
`−1∑
n=0

|φn(r)|e−µns

∫ s2

s

e−(µ`−µn+κµ`)τdτ

≤ Ce−κµ`se−µ`s|φn(r)| (5.38)

in Σs1+1
R,` . The claim (5.37) follows from (5.38), (2.38) and (2.20).

Lemma 5.7. For any ν > 0, there exists s1 � 1 such that

|I2| < νe−µ`srγ in Σs1+1
R,` . (5.39)

Proof. Parseval’s identity yields that ‖φ̃` − φ`‖2
2,ρ ≥

∑∞
j=`+1

∣∣〈φ̃`, φj〉
∣∣2. Recalling (3.21),

we obtain

|I2| < e−(µ`+ε1)s1

∞∑
j=`+1

e−µj(s−s1)|φj(r)|, (5.40)

where ε1 = min{(γ +N)(1− k̃)ω`, 1}. By (2.38) we then conclude

|I2| < e−ε1s1e−µ`sC(R)e−
1
2
ε1(s−s1)

∞∑
j=`+1

e−(µj−µ`− 1
2
ε1)(s−s1)j−

1
4 rγ (5.41)

< C(R)e−
1
2
ε1s1e−(µ`+

1
2
ε1)srγ in Σs1+1

R,`

if s1 � 1, since µj − µ` = j − ` ≥ 1 for every j ≥ `+ 1.
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Lemma 5.8. For any ν > 0, there exists s1 � 1 such that

|I3| < νe−µ`srγ in Σs1+1
R,` . (5.42)

Proof. We first split I3 as

I3 =
∞∑

j=`

(∫ s

s−1

+

∫ s−1

s1

)
e−µj(s−τ)〈f(v(τ)), φj〉φj(r)dτ =: I3,1 + I3,2.

Making use of the estimate of S3 in Σs1
m,s (cf. Lemmata 5.2-5.4), we have |I3,1| < νe−µ`(s−1)rγ

in Σs1+1
R,` for s1 � 1. It thus suffices to show a similar bound for I3,2 in Σs1+1

R,` .
An argument similar to the one used in the proof of Lemma 5.7 (cf. (5.41)) yields that

|I3,2| ≤
∫ s−1

s1

e−µ`(s−τ)

(
∞∑

j=`

(µj + α+ 1)e−2(j−`)(s−τ)|φj|2
) 1

2
(

∞∑
j=`

|〈f(v(τ)), φj〉|2

µj + α+ 1

) 1
2

dτ

≤ C(R)rγ

∫ s−1

s1

e−µ`(s−τ)‖f(v(τ))‖H′dτ in Σs1+1
R,` .

By (4.9) we have
|I3,2| < C(R)e−κµ`s1e−µ`srγ in Σs1+1

R,` ,

whence get the desired estimate (5.42) for s1 � 1.

Lemma 5.9. For any ν > 0, there exists s1 � 1 such that

|S2| < νe−µ`sr2(µ`+α) in Σs1+1
m,` ∩

{
(r, s) | r ≥ e

s−s1
2

}
. (5.43)

Proof. Recalling (5.9), (5.6) and (5.11), we have

|S2| ≤ Crγe(α+N−2
4

)(s−s1)

∫ ∞

0

T (ξ, r; s− s1)ξ
N
2 |S2(ξ, s1)|dξ

≤ S1
2 + S2

2 + S3
2 in Σs1+1

m,`

with the function T in (5.8) and

S1
2 := CKγe−2αω`s1e(α+N−2

4
)(s−s1)r1−N

2

∫ K̃e−ω`s1

0

ξ
N
2 dξ,

S2
2 := Cνe−µ`s1r1−N

2

∫ eσ̃s1

K̃e−ω`s1

(e−
s−s1

2 ξr)
2γ+N−2

2

(
1 + Ce−

s−s1
2 ξr

)− 2γ+N−1
2

· exp
(
− C

∣∣re s−s1
2 − ξ

∣∣2)ξ N
2

(
ξγ + ξ2(µ`+α)

)
dξ,

S3
2 := Crγ

∫ ∞

eσ̃s1

ξγ+N−1+2(µ`+α) exp
(
− C

∣∣ξ − re−
s−s1

2

∣∣2)dξ · e(α−N
2

)(s−s1).

We then deduce that, for r ≥ exp {(s− s1)/2} and s ≥ s1 + 1,

S1
2 ≤ Cr2(µ`+α)Kγ(e

s−s1
2 )−2(µ`+α)+1−N

2 e(α+N−2
4

)(s−s1)−2αω`s1(K̃e−ω`s1)1+N
2

= Ce−µ`s1r2(µ`+α)e−((γ+N
2

+1)−(γk+(N
2

+1)k̃))ω`s1e−(µ`− 1
4
)(s−s1)

< νe−µ`s1r2(µ`+α), (5.44)
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if s1 � 1, where we have used the definitions of K and K̃ in (3.11) and (3.19), respectively.
To estimate S2

2 , we split the interval under consideration into

D1 =
{
ξ;
∣∣re− s−s1

2 − ξ
∣∣ < ξ

2

}
and D2 =

{
ξ;
∣∣re− s−s1

2 − ξ
∣∣ ≥ ξ

2

}
and denote the corresponding integrals by S2,1

2 and S2,2
2 , respectively. If ξ ∈ D1, then

ξ ∼ re−(s−s1)/2 and hence

S2,1
2 ≤ Cνe−µ`s1r1−N

2

∫
D1

ξ
N
2
−1 exp

(
− C

∣∣re s−s1
2 − ξ

∣∣2)(ξγ + ξ2(µ`+α)
)
dξ

≤ Cνe−µ`s1(e−
s−s1

2 )
N
2
−1{(re−

s−s1
2 )−2` + 1}(re−

s−s1
2 )2(µ`+α)

∫ ∞

0

exp
(
− Cz2

)
dz

≤ Cνe−µ`sr2(µ`+α) in Σs1+1
m,` ∩

{
(r, s) | r ≥ e

s−s1
2

}
. (5.45)

As to S2,2
2 , the integrand shows exponentially decay, which gives

S2,2
2 ≤ Cνe−µ`s1e(α−

γ
2
)(s−s1)rγ

∫
D2

e−Cξ2

ξγ+N−1
(
ξγ + ξ2(µ`+α)

)
dξ

≤ Cνe−µ`sr2(µ`+α)e`(s−s1)
(
e

s−s1
2

)−2`
∫ ∞

0

e−Cξ2

ξγ+N−1
(
ξγ + ξ2(µ`+α)

)
dξ

≤ Cνe−µ`sr2(µ`+α) in Σs1+1
m,` ∩

{
(r, s) | r ≥ e

s−s1
2

}
. (5.46)

We finally estimate S3
2 . Note that the conditions r ≤ eσs and ξ ≥ eσ̃s1 imply ξ −

re−
s−s1

2 ≥ ξ/2 if s1 � 1. An argument similar to that for the estimate of S2,2
2 yields that

S3
2 ≤ exp

(
− C

2
e2σ̃s1

)
e−µ`sr2(µ`+α) in Σs1+1

m,` ∩
{
(r, s) | r ≥ e

s−s1
2

}
. (5.47)

The desired estimate (5.43) follows from (5.44) to (5.47).

Lemma 5.10. For any ν > 0, there exists s1 � 1 such that

|S3| < νe−µ`sr2(µ`+α) in Σs1+1
m,` ∩

{
(r, s) | r ≥ e

s−s1
2

}
. (5.48)

Proof. We begin with splitting S3 as

S3 =
(∫ s

s−1

+

∫ s−1

s1

)
e−(s−τ)Ãf(v(τ))dτ =: A+B.

Since A can be estimated by the procedure adapted in the previous subsection, we only
have to estimate B. With the function T in (5.8) we have

|B| ≤ Crγ

∫ s−1

s1

e(α+N−2
4

)(s−τ)

1− e−(s−τ)

∫ ∞

0

T (ξ, r; s− τ)ξ
N
2 f(v(ξ, τ))dξdτ

≤ Crγ

∫ s−1

s1

e(α−
γ
2
)(s−τ)

(∫ Ke−ω`s

0

+

∫ 1

Ke−ω`s

+

∫ eσs

1

+

∫ ∞

eσs

)
ξγ+N−1

·
(
1 + Ce−

s−τ
2 ξr

)− 2γ+N−1
2 exp

(
− C

∣∣ξ − re−
s−τ
2

∣∣2)f(v(ξ, τ))dξdτ

=: B1 +B2 +B3 +B4.
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Consider B1. Using (4.1) and the definition of K in (3.11), we obtain

B1 ≤ CKγrγ

∫ s−1

s1

e(α−
γ
2
)(s−τ)−2αω`τ

∫ Ke−ω`s

0

ξγ+N−3dξdτ

≤ CK2γ+N−2rγe(α−
γ
2
)(s−s1)e−2αω`s1e−(γ+N−2)ω`s1

≤ Ce−µ`sr2(µ`+α)e−(1−k)(2γ+N−2)ω`s1 in Σs1+1
m,` ∩

{
(r, s) | r ≥ e

s−s1
2

}
. (5.49)

As for B2, it follows from (4.2) that

B2 ≤ Crγ

∫ s−1

s1

e(α−
γ
2
)(s−τ)−2µ`τ

∫ 1

Ke−ω`s

ξγ−2α−1dξdτ

≤ CrγK−(2α−γ)e(α−
γ
2
)(s−s1)−µ`s1e`(s−s1)

< νe−µ`sr2(µ`+α) in Σs1+1
m,` ∩

{
(r, s) | r ≥ e

s−s1
2

}
, (5.50)

if s1 � 1. As for B3, we have

B3 ≤ Crγ

∫ s−1

s1

e(α−
γ
2
)(s−τ)−2µ`τ

∫ eστ

1

ξN+γ+4µ`+2α−3
(
1 + Ce−

s−τ
2 ξr

)− 2γ+N−1
2

· exp
(
− C

∣∣ξ − re−
s−τ
2

∣∣2)dξdτ
=: B3,1 +B3,2,

where we have split the interval of ξ under consideration into

D1 =
{
ξ ; |ξ − re−

s−τ
2 | ≤ ξ

2

}
and D2 =

{
ξ ; |ξ − re−

s−τ
2 | > ξ

2

}
and denoted the corresponding integrals by B3,1 and B3,2, respectively. Consider firstly
B3,1. Notice that if ξ ∈ D1, then ξ ∼ re−(s−τ)/2 and thus the measure of D1 is equal to
(4/3)re−(s−τ)/2. We then obtain

B3,1 ≤ Crγ

∫ s−1

s1

e(α−
γ
2
)(s−τ)−2µ`τ

∫
D1

ξ4µ`−γ+2α−2dξdτ

≤ Crγ+4µ`e−2µ`s

∫ s−1

s1

e(α−
γ
2
)(s−τ)

(
re−

s−τ
2

)2α−1−γ
dτ

< νe−µ`sr2(µ`+α) in Σs1+1
m,` ∩

{
(r, s) | r ≥ e

s−s1
2

}
, (5.51)

if s1 � 1. As to B2,2, there is an exponentially decaying factor in the integrand in ξ.
Hence the procedure used to bound B2 above yields that

B3,2 ≤ Crγ

∫ s−1

s1

e(α−
γ
2
)(s−τ)−2µ`τ

∫ ∞

1

ξN+γ+4µ`+2α−3 exp
(
− Cξ2

)
dξdτ

< νe−µ`sr2(µ`+α) in Σs1+1
m,` ∩

{
(r, s) | r ≥ e

s−s1
2

}
, (5.52)
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if s1 � 1. The above procedure also provides that

B4 ≤ Crγ

∫ s−1

s1

e(α−
γ
2
)(s−τ)−2µ`τ

∫ ∞

eστ

ξN+γ+2α−3 exp
(
− Cξ2

)
dξdτ

≤ e−µ`sr2(µ`+α)e`sr−2`e−(α− γ
2
)s1 exp

(
− Ce2σs1

)
< νe−µ`sr2(µ`+α) in Σs1+1

m,` ∩
{
(r, s) | r ≥ e

s−s1
2

}
, (5.53)

if s1 � 1. Summing up (5.49)-(5.53), we obtain the desired estimate.

Summarizing Lemmata 5.6 to 5.10, we have the following estimates.

Corollary 5.11. For any ν > 0, there exists s1 � 1 such that

|v(r, s)− e−µ`s〈φ̃`, φ`〉φ`(r)| < νe−µ`srγ in Σs1+1
R,` ;

|v(r, s)− e−µ`s〈φ̃`, φ`〉φ`(r)| < νe−µ`s(rγ + r2(µ`+α)) in Σs1+1
m,` ∩

{
(r, s) | r ≥ e

s−s1
2

}
.

Proof of Proposition 3.7. We prove that

|v(r, s)− e−µ`s〈φ̃`, φ`〉φ`(r)| < νe−µ`s(rγ + r2(µ`+α)) (5.54)

in Σs1+1
m,` . It suffices to show (5.54) for Σs1+1

m,` ∩ {R ≤ r} by virtue of Corollary 5.11. To

this aim we set s̃1 = s1 + 1, s̃2 = s̃1 + 1 and R =
√
e. Notice that r ≥ e(s−s̃1)/2 whenever

R ≤ r and s̃1 ≤ s ≤ s̃2. Corollary 5.11 implies then that (5.54) holds for R ≤ r ≤ eσs

and s̃1 ≤ s ≤ min{s̃2, s2}. We have thus proven that (5.54) holds in the all of Σs1+1
m,` if

s2 ≤ s̃2. When s2 > s̃2, we set s̃3 = s̃2 +1 and argue as above to observe that (5.54) holds
in Σs1+1

m,` ∩ {s̃2 ≤ s ≤ s̃3}, whence in Σs1+1
m,` ∩ {s̃1 ≤ s ≤ s̃3}. Repeating these arguments

finitely many times, we observe that (5.54) holds in the all of Σs1+1
m,` . The desired estimate

in Proposition 3.7 follows from (2.20), (3.21), Corollary 5.5 and (5.54).

6 Further properties on the solution w`

Having proven our main results, we investigate further properties on the solution w`

obtained in Theorem 3.2 in this final section.

Theorem 6.1. Let w`(r, s) be the solution of (2.9) obtained in Theorem 3.2. Then
there exists a constant β` = β`(s1) > 0 such that |β` − 1| = O(e−ε0ω`s1) with ε0 =
min{(γ +N)(1− k̃), κ(2α− γ)} as s1 →∞ and

lim
s→∞

eµ`s
{
w`(r, s)− U(r)

}
= β`φ`(r) (6.1)

uniformly in each compact set of (0,∞). More precisely, there exists a constant λ > 0
such that, for each R > 0,∣∣eµ`s

(
w`(r, s)− U(r)

)
− β`φ`(r)

∣∣ ≤ CRe
−λµ`srγ (6.2)

with some constant CR > 0 for Ke−ω`s ≤ r ≤ R and s ≥ s1.
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Proof. We continue to use the notations in the previous sections. We first consider the
case s ≥ s1 + 1. Note that, by (5.36),

w`(r, s)− U(r)− I1 −
∫ s

s1

e−µ`(s−τ)〈f(v(τ)), φ`〉φ`dτ

= I2 + I4 −
∫ s

s−1

e−(s−τ)Ãf(v(τ))dτ −
∞∑

j=`+1

∫ s−1

s1

e−µj(s−τ)〈f(v(τ)), φj〉φjdτ. (6.3)

Let R > 0 be a constant. According to the proofs of Lemmata 5.2-5.4, it is possible to
find a constant λ0 > 0 such that∣∣∣ ∫ s

s−1

e−(s−τ)Ãf(v(τ))dτ
∣∣∣ ≤ CRe

−(1+λ0)µ`srγ (6.4)

for Ke−ω`s ≤ r ≤ R and s ≥ s1 + 1. Arguing as in the proof of Lemma 5.8, we obtain∣∣∣ ∞∑
j=`+1

∫ s−1

s1

e−µj(s−τ)〈f(v(τ)), φj〉φjdτ
∣∣∣ ≤ CRe

−(1+λ1)µ`srγ (6.5)

for Ke−ω`s ≤ r ≤ R and s ≥ s1 + 1, where λ1 = κ/2 with κ ∈ (0, 1) being the constant in
(4.9). The proofs of Lemmata 5.6 and 5.7 imply the existence of a constant λ2 > 0 such
that

|I2|+ |I4| ≤ CRe
−(1+λ2)µ`srγ (6.6)

for Ke−ω`s ≤ r ≤ R and s ≥ s1 + 1. It then follows from (6.3)-(6.6) that∣∣∣w`(r, s)− U(r)− I1 −
∫ s

s1

e−µ`(s−τ)〈f(v(τ)), φ`〉φ`dτ
∣∣∣ ≤ 3CRe

−(1+λ)µ`srγ

for Ke−ω`s ≤ r ≤ R and s ≥ s1 + 1, where λ = min{λ0, λ1, λ2}. By (4.9) one may readily
observe that χ :=

∫∞
s1
eµ`τ 〈f(v(τ)), φ`〉dτ exists and satisfies∣∣∣ ∫ s

s1

eµ`τ 〈f(v(τ)), φ`〉dτ − χ
∣∣∣ ≤ Ce−κµ`s

for s ≥ s1 + 1. Since I1 = e−µ`s〈φ̃`, φ`〉φ`(r), we conclude (6.2) with β` = 〈φ̃`, φ`〉+ χ. By
(3.21) and (4.9) we have |β` − 1| ≤ Ce−ε0ω`s1 with ε0 = min{(γ +N)(1− k̃), κ(2α− γ)}.

Consider the case s1 ≤ s ≤ s1 + 1. According to the proofs of Lemmata 5.1-5.4, there
exists a constant q > 0 such that

|w`(r, s)− U(r)− S1| ≤ |S2|+ |S3|
≤ Ce−(1+q)µ`s(rγ + r2(µ`+α)) in Σs1

m,s. (6.7)

Since |χ| ≤ Ce−kµ`s1 , we obtain (6.2) for s1 ≤ s ≤ s1 + 1 by taking λ > 0 smaller than
what we have shown above.
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As an immediate consequence of Theorem 6.1, we get information about the number of
intersections between the graph of the solution w`(·, s) and that of the singular stationary
solution U if we add the following additional condition on the class of initial data w0,` :

The function w0,` − U has just ` simple zeros in (0,∞). (V 5)

Here a zero r∗ ∈ (0,∞) of a function Ψ ∈ C1((0,∞)) is said to be simple unless Φ′(r∗) = 0.

Corollary 6.2. Let w0,` be a function satisfying the condition (V 5) as well as (V 1)-(V 4)
in §3 and let w`(r, s) be the solution of (2.9) obtained by Theorem 3.2. Then the graph of
w`(·, s) has `-intersections with the graph of U in [0,∞), that is, Z[0,∞)[w`(·, s)− U ] = `
for every s ∈ [s1,∞), where ZJ [·] is the zero number defined in (2.31). Every zero of
w`(·, s)− U is simple for every s ∈ [s1,∞) and tends to some zero of φ` as s→∞.

Proof. Theorem 6.1 and Lemma 2.4 imply that there exists s∗ ≥ s1 such that

Z[0,∞)[w`(·, s)− U ] ≥ Z[0,∞)[φ`] = ` for s ≥ s∗. (6.8)

On the other hand, the zero number diminishing property (cf. [3, 5, 27]) assures that

Z[0,∞)[w`(·, s)− U ] ≤ Z[0,∞)[w`(·, s1)− U ] for all s ≥ s1.

Therefore Z[0,∞)[w`(·, s)−U ] = ` under the condition (V 5). If there is a zero of w`(·, s∗)−U
that is not simple in [0,∞) at some s∗ ∈ (s1,∞), then Z[0,∞)[w`(·, s)− U ] < ` for s > s∗,
violating (6.8). Thus every zero r`,j(s), j = 1, 2, ..., `, of w`(·, s) − U is simple for every
s ∈ [s1,∞), which simultaneously implies that r`,j(s) is a smooth function of s. The last
assertion is then readily seen by (6.1) and the continuity of φ`.
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