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DIFFEOMORPHISMS OF EVEN-DIMENSIONAL MANIFOLDS

TAKASHI TSUBOI

Abstract. We show that the identity component Diffr(M2m)0 of the group

of Cr diffeomorphisms of a compact (2m)-dimensional manifold M2m (1 ≤
r ≤ ∞, r �= 2m + 1) is uniformly perfect for 2m ≥ 6, i.e., any element of

Diffr(M2m)0 can be written as a product of a bounded number of commuta-
tors. It is also shown that for a compact connected manifold M2m (2m ≥ 6),

the identity component Diffr(M2m)0 of the group of Cr diffeomorphisms of
M2m (1 ≤ r ≤ ∞, r �= 2m + 1) is uniformly simple, i.e., for elements f and g

of Diffr(M2m)0 \ {id}, f can be written as a product of a bounded number of
conjugates of g or g−1.

1. Introduction

For an n-dimensional manifold Mn, let Diffr
c(M

n) denote the group of Cr dif-
feomorphisms of Mn with compact support (1 ≤ r ≤ ∞). Here, the support of a
diffeomorphism f of Mn is defined to be the closure of {x ∈ M

∣∣ f(x) �= x}. For a
compact manifold Mn, Diffr

c(M
n) coincides with the group Diffr(Mn) of Cr diffeo-

morphisms of Mn. Let Diffr
c(M

n)0 denote the identity component of Diffr
c(M

n).
Here Diffr

c(M
n) is equipped with the Cr topology ([11], [16]). By the results of

Herman, Mather and Thurston ([7], [9], [11], [16], [2]), for an n-dimensional man-
ifold Mn, Diffr

c(M
n)0 is a perfect group if r = 0 or 1 ≤ r ≤ ∞ and r �= n + 1.

Here, a group is said to be perfect if it coincides with its commutator subgroup.
In other words, a group is perfect if any element can be written as a product of
commutators.

We say that a group is uniformly perfect if any element can be written as a
product of a bounded number of commutators. The following results are shown in
[3], [22] and [23].

Theorem 1.1 (Burago-Ivanov-Polterovich [3], Tsuboi [22, 23]).
(1) For the interior Mn of a compact n-dimensional manifold which admits a

handle decomposition only with handles of indices not greater than (n−1)/2,
any element of Diffr

c(M
n)0 (1 ≤ r ≤ ∞, r �= n + 1) can be written as a

product of two commutators.
(2) For a compact even-dimensional manifold M2m which has a handle de-

composition without handles of the middle index m, any element of
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Diffr(M2m)0 (1 ≤ r ≤ ∞, r �= 2m + 1) can be written as a product of
four commutators.

(3) For a compact odd-dimensional manifold M2m+1, any element of Diffr(M2m+1)0
(1 ≤ r ≤ ∞, r �= 2m + 2) can be written as a product of five commutators.

Now the result of this paper concerns the remaining cases.

Theorem 1.2. The identity component Diffr(M2m)0 of the group of Cr diffeomor-
phisms Diffr(M2m) of the compact (2m)-dimensional manifold M2m (1 ≤ r ≤ ∞,
r �= 2m + 1) is uniformly perfect for 2m ≥ 6, i.e., any element of Diffr(M2m)0 can
be written as a product of a bounded number of commutators.

Here the bound for the number of commutators may depend on manifolds. For
the manifolds of dimensions 2 and 4, the problem of uniform perfectness of the
identity component of the group of diffeomorphisms is still open.

The argument deducing the simplicity of Diffr(Mn)0 from the proof of its per-
fectness ([4], [16], [2]) applies to showing the uniform simplicity from the proof of
its uniformly perfectness ([23]). We say that a group G is uniformly simple if, for
elements f and g of G \ {1}, f can be written as a product of a bounded number
of conjugates of g or g−1.

Corollary 1.3. For a compact connected (2m)-dimensional manifold M2m (2m ≥
6), the identity component Diffr(M2m)0 of the group Diffr(M2m) of Cr diffeomor-
phisms of M2m (1 ≤ r ≤ ∞, r �= 2m + 1) is uniformly simple.

The main part of the proof of Theorem 1.2 is a decomposition of an isotopy into
a bounded number of isotopies with controlled support. Then the theorem follows
from Theorem 1.1 (1) in a way similar to the proof of Theorem 1.1 (2) and (3) in
[22] and in [23]. For the decomposition, we give a technique to find the Whitney
disks which guide to separate two subcomplexes of the middle dimension m. The
condition 2m ≥ 6 on the dimension implies that the Whitney disks can be disjointly
embedded in the manifold and enables us to show Theorem 1.2.

We review the proof of Theorem 1.1 in Section 2 and we give the proof of Theorem
1.2 in Section 3. The proof of lemmas used in Section 3 is given in Section 4. We
show Corollary 1.3 in Section 5.

2. Decomposition of isotopies

The proof of our Theorem 1.2 relies on the general position argument for differ-
entiable maps from cellular complexes to a manifold which we used in [22] and [23]
and we review several necessary results.

An n-dimensional finite cellular complex X is given by a filtration

X = X(n) ⊃ X(n−1) ⊃ · · · ⊃ X(1) ⊃ X(0),

where
X(k) = X(k−1) ∪ϕ(k) (

⊔
i

Dk
i ) (k = 1, . . . , n),

ϕ(k) :
⊔

i ∂Dk
i −→ X(k−1) is the attaching map and X(k) is obtained from the

disjoint union of X(k−1) and finitely many k-dimensional disks Dk
i (i = 1, . . . , �k)

by identifying ∂Dk
i and its image under ϕ(k).

A differentiable map from the finite cellular complex X to a manifold M is a
continuous map X −→ M which is differentiable on each open cell Int(Dk

i ).
We showed in [22] and [23] the following lemma.
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Lemma 2.1 ([22], [23]). Let Mn be a compact n-dimensional manifold. Let Kk

and L� be k-dimensional and �-dimensional finite cellular complexes, respectively.
Let f : Kk −→ Mn and g : L� −→ Mn be differentiable maps and assume that f is
an embedding. If k + � + 1 ≤ n, then there is an isotopy {Φt : Mn −→ Mn}t∈[0,1]

(Φ0 = id) such that Φ1(f(Kk)) ∩ g(L�) = ∅.
Then this lemma is used to show the following theorem.

Theorem 2.2 ([22], [23]). Let Mn be a compact n-dimensional manifold. Let P p

and Qq be p-dimensional and q-dimensional finite cellular complexes differentiably
embedded in Mn, respectively. Assume that p + q + 2 ≤ n and that P p ∩ Qq = ∅.
Then any element f ∈ Diffr(Mn)0 (1 ≤ r ≤ ∞) can be written as a product
f = g ◦ h such that g ∈ Diffr

c(M
n \ k(Qq))0 and h ∈ Diffr

c(M
n \ P p)0, where

k ∈ Diffr
0(M

n \ P p)0, and Diffr
c(M

n \ k(Qq))0 and Diffr
c(M

n \ P p)0 are considered
as subgroups of Diffr(Mn)0, respectively.

The statement of Theorem 2.2 means that the diffeomorphism g of Mn obtained
in Theorem 2.2 is isotopic to the identity by an isotopy which is identity on a
neighborhood of k(Qq), and h is isotopic to the identity by an isotopy which is
identity on a neighborhood of P p.

To use Theorem 2.2, we looked at the p-dimensional skeleton of the cellular de-
composition associated with a handle decomposition of a compact manifold and
the q-dimensional skeleton of that associated with the dual handle decomposition.
Then, for an even-dimensional compact manifold M2m which has a handle de-
composition without handles of the middle index m, Theorem 2.2 together with
Theorem 1.1 (1) implies Theorem 1.1 (2) (see [22]).

For the decomposition of an isotopy on an odd dimensional manifold, we used
the following lemma ([22, Remark 4.4]).

Lemma 2.3. In Lemma 2.1, if k + � = n, then there is an isotopy {Φt : Mn −→
Mn}t∈[0,1] (Φ0 = id) such that Φ1(f(K(k−1)))∩g(L�) = ∅ for the (k−1)-dimensional
skeleton K(k−1) of Kk, Φ1(f(Kk)) ∩ g(L(�−1)) = ∅ for the (� − 1)-dimensional
skeleton L(�−1) of L� and the intersection Φ1(f(σk)) ∩ g(τ �) is transverse for each
k-dimensional cell σk of Kk and each �-dimensional cell τ � of L�.

Remark 2.4. In fact, we can show the following for finite cellular complexes K and L
and differentiable maps f : K −→ Mn and g : L −→ Mn. Let K(i) and L(j) denote
the i-dimensional skeleton and the j-dimensional skeleton of K and L, respectively.
If f is an embedding, there exists an isotopy {Φt}t∈[0,1] (Φ0 = id) with support in
a neighborhood of f(K) such that Φ1(f(K(i))) ∩ g(L(j)) = ∅ for i + j + 1 = n, and
the intersection Φ1(f(σi)) ∩ g(τ j) is transverse for each i-dimensional cell σi of K
and each j-dimensional cell τ j of L for i + j = n.

Then we proceeded as follows (see [22, Lemma 6.3]).

Lemma 2.5. Let Mn be a compact n-dimensional manifold. Let P p and Qq be p-
dimensional and q-dimensional finite cellular complexes differentiably embedded in
Mn, respectively. Assume that p+ q +1 = n and that P p ∩Qq = ∅. Let P (p−1) and
Q(q−1) be the (p−1)-dimensional skeleton and the (q−1)-dimensional skeleton of P p

and Qq, respectively. Then any element f ∈ Diffr(Mn)0 can be written as a product
f = g ◦ h such that g ∈ Diffr

c(M
n \ k(Qq))0 and h ∈ Diffr

c(M
n \ P (p−1))0, where

k ∈ Diffr
0(M

n \ P p)0. Moreover there is an isotopy {ht}t∈[0,1] such that h0 = id,
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h1 = h, ht is the identity on a neighborhood of P (p−1), and for H(t, x) = ht(x),
H([0, 1] × P p) ∩ k(Q(q−1)) = ∅ and, for each p-dimensional cell σp of P p and each
q-dimensional cell τ q of Qq, the intersection H([0, 1] × σp) ∩ k(τ q) is transverse.
Thus H([0, 1] × P p) ∩ k(Qq) is a finite set.

For an odd dimensional compact manifold M2m+1, we considered a handle de-
composition of M2m+1 in [22], and we took the m-dimensional skeleton Pm of
the associated cell decomposition and the m-dimensional skeleton Qm of the cell
decomposition associated with the dual handle decomposition.

Lemma 2.6. Let {ht}t∈[0,1] (h0 = id) be an isotopy which is the identity on a
neighborhood of P (m−1) and H([0, 1] × Pm) ∩ k(Q(m−1)) = ∅ for H(t, x) = ht(x).
Let V m ⊂ Pm be the complement of a neighborhood of P (m−1) where ht = id. Then
there is an isotopy {ht}t∈[0,1] (h0 = id) fixing a neighborhood of P (m−1) such that
its trace H : [0, 1]×M2m+1 −→ M2m+1 is close to H : [0, 1]×M2m+1 −→ M2m+1

and H|[0, 1] × V m is an immersion outside of a finite subset. Moreover the image

H([0, 1] × V m) ⊂ M2m+1 \ (P (m−1) ∪ k(Q(m−1)))

has finitely many double point curves which is in general position with respect to the
curves H([0, 1] × {v}) (v ∈ V m). If m ≥ 2 these double point curves are disjoint,
and if m = 1, there are at most finitely many triple points and cusps.

Then, using the idea of Burago, Ivanov and Polterovich ([3]), we constructed an
isotopy {at}t∈[0,1] (a0 = id) with support in a union of disjointly embedded (2m+1)-
dimensional open balls embedded in M2m+1 such that (at ◦ ht)(Pm) ∩ k(Qm) = ∅
(t ∈ [0, 1]), and we showed the following lemma ([22, Lemma 6.5]).

Lemma 2.7. For the generic diffeomorphism h = h1 ∈ Diffr
c(M

2m+1 \ P (m−1))0
given by Lemma 2.6, h can be decomposed as h = a◦g◦h′, where a ∈ Diffr

c(
⊔

i Ui)0,⊔
i Ui is a union of disjointly embedded (2m+1)-dimensional open balls Ui embedded

in M2m+1, g ∈ Diffr
c(M

2m+1 \ k(Qm))0 and h′ ∈ Diffr
c(M

2m+1 \ Pm)0.

Note that the element h−1 ◦ h is close to the identity and it can be decomposed
as h−1 ◦ h = ĥ ◦ ĝ with ĥ ∈ Diffr

c(M
2m+1 \ Pm)0 and ĝ ∈ Diffr

c(M
2m+1 \ k(Qm))0

([22, Remark 5.4]). Then by Lemmas 2.5 and 2.7,

f = g ◦ h = g ◦ h ◦ (h−1 ◦ h)
= g ◦ a ◦ g ◦ h′ ◦ ĥ ◦ ĝ

= (g ◦ a ◦ g−1) ◦ (g ◦ g ◦ ĝ) ◦ (ĝ−1 ◦ h′ ◦ ĥ ◦ ĝ)

and g ◦ a ◦ g−1 ∈ Diffr
c(g(

⊔
i Ui))0, g ◦ g ◦ ĝ ∈ Diffr

c(M
2m+1 \ k(Qm))0 and ĝ−1 ◦h′ ◦

ĥ ◦ ĝ ∈ Diffr
c(M

2m+1 \ ĝ−1(Pm))0. Noticing that a can be taken as a commutator
with support in

⊔
i Ui, Theorem 1.1 (1) implies Theorem 1.1 (3) (see [22]).

It is worth noticing again that, for any compact manifold Mn, there is a neigh-
borhood of the identity of Diffr(Mn)0 (1 ≤ r ≤ ∞, r �= n + 1) whose element can
be written as a product of four or six commutators([22, Remark 5.4]).

Remark 2.8. For a compact manifold M we have a handle decomposition. For a
compact odd-dimensional manifold M2m+1, M2m+1 is covered by two open sets U1

and U2 which are neighborhoods of the union of handles of indices not greater than
m and the union of dual handles of indices not greater than m. Then by the frag-
mentation lemma ([2]), there is a neighborhood N of the identity in Diffr(M2m+1)0
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such that any element f of N can be written as a product f = g ◦ h, where
g ∈ Diffr

c(U1)0 and h ∈ Diffr
c(U2)0. Hence by Theorem 1.1 (1), any element f of

N can be written as a product of four commutators of elements of Diffr(M2m+1)0
(1 ≤ r ≤ ∞, r �= 2m + 2). For a compact even-dimensional manifold M2m, M2m

is covered by three open sets U1, U2 and U3. Here, U1 and U2 are neighborhoods
of the union of handles of indices less than m and the union of dual handles of
indices less than m, and U3 is a union of disjointly embedded open balls which is a
neighborhood of the union of m handles. Then by the fragmentation lemma, there
is a neighborhood N of the identity in Diffr(M2m)0 such that any element f of N
can be written as a product f = a ◦ g ◦h, where g ∈ Diffr

c(U1)0, h ∈ Diffr
c(U2)0 and

a ∈ Diffr
c(U3)0. Hence by Theorem 1.1 (1), any element f of N can be written as a

product of six commutators of elements of Diffr(M2m)0 (1 ≤ r ≤ ∞, r �= 2m + 1).

3. Proof of the main theorem

For an even dimensional compact manifold M2m, we proceed as follows to prove
Theorem 1.2. The proof of lemmas is given in the next section.

For the manifold M2m, we consider its triangulation P and let P (k) denote the
k-dimensional skeleton of P . Then the (m− 1)-dimensional skeleton P (m−1) of the
triangulation P has the following property:

For each m-dimensional simplex σm of P (m), let (P (m−1) ∪σm)/σm denote
the (m−1)-dimensional cell complex obtained from P (m−1)∪σm by identi-
fying σm to a point. Then there is an embedding ι of (P (m−1)∪σm)/σm in
M2m such that, for any neighborhood U of ι((P (m−1) ∪ σm)/σm), there is
a diffeomorphism of M2m isotopic to the identity which maps P (m−1) ∪σm

into U .

Remark 3.1. We may use the cellular complex associated with a handle decompo-
sition of M2m if it has this property for each m-dimensional cell σm. The number
N of the m-dimensional cells of such a cellular decomposition of M2m appears in
the estimate of the bound for the number of commuators at the end of the proof of
Theorem 1.2.

For the manifold M2m, the statement of Lemma 2.5 is written as follows.

Lemma 3.2. Let Pm denote the m-dimensional skeleton of a triangulation of a
(2m)-dimensional manifold M2m, and Qm, the m-dimensional skeleton of the dual
cell decomposition. Let P (i) and Q(i) denote the i-dimensional skeletons (i = m−2,
m − 1) of Pm and Qm, respectively. Then any element f ∈ Diffr(M2m)0 can
be written as a product f = g ◦ h such that g ∈ Diffr

c(M
2m \ k(Qm))0 and h ∈

Diffr
c(M

2m \P (m−2))0, where k ∈ Diffr
0(M

2m \Pm)0. Moreover there is an isotopy
{ht}t∈[0,1] which has the following properties:

(1) h0 = id, h1 = h, and ht is the identity on a neighborhood of P (m−2).
(2) For H(t, x) = ht(x),

H([0, 1] × P (m−1)) ∩ k(Q(m−1)) = ∅ and H([0, 1] × Pm) ∩ k(Q(m−2)) = ∅.
(3) For each (m − 1)-dimensional simplex σm−1 of P (m−1) and each m-

dimensional cell τm of Qm, the intersection H([0, 1] × σm−1) ∩ k(τm) is
transverse. Thus H([0, 1] × P (m−1)) ∩ k(Qm) is a finite set.

Then, if 2m ≥ 4, we can separate the image H([0, 1] × P (m−1)) from k(Qm) by
an argument similar to the proof of Lemmas 2.6 and 2.7
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First, we approximate the isotopy H by a generic one H. Let

{ht}t∈[0,1] ⊂ Diff∞
c (M2m \ P (m−2)) (h0 = id)

be a C∞ approximation of {ht}t∈[0,1] ⊂ Diffr
c(M

2m \ P (m−2)) generic with respect
to Pm and k(Qm) such that ht is the identity on a neighborhood of P (m−2). Then
H(t, x) = ht(x) has the following properties:

(0) H : [0, 1] × M2m −→ M2m is close to H : [0, 1] × M2m −→ M2m and ht is
the identity on a neighborhood of P (m−2).

(1) The restriction

H|[0, 1] × V m−1 : [0, 1] × V m−1 −→ M2m

is an immersion, where V m−1(⊂ P (m−1)) is the complement of a neighbor-
hood of P (m−2) ⊂ P (m−1) where ht is the identity.

(2) H([0, 1] × P (m−1)) ∩ k(Q(m−1)) = ∅ and H([0, 1] × Pm) ∩ k(Q(m−2)) = ∅.
(3) H([0, 1] × P (m−1)) ∩ k(Qm) is a finite set;

H([0, 1] × P (m−1)) ∩ k(Qm) = {H(si, vi)
∣∣ i = 1, . . . , r},

(4) H([0, 1] × {vi}) ∩ k(Qm) = H(si, vi) (i = 1, . . . , r) ,
(5) H([0, 1]×{vi}) does not contain double points of H([0, 1]×P (m−1)) (i = 1,

. . . , r),
(6) H|[0, 1] × P (m−1) restricted to a neighborhood of [0, 1] × {vi} in [0, 1] ×

P (m−1) is an embedding (i = 1, . . . , r), and
(7) H([si, 1] × {vi}) (i = 1, . . . , r) are disjoint.

Here, the statements (1)–(7) hold for generic H (or the properties (1)–(7) are generic
in the space of isotopies). In particular, the statement (5) holds because the inverse
image of the double point set of H([0, 1]×P (m−1)) is a finite set which is in general
position with respect to [0, 1] × {vi} (i = 1, . . . , r) and 2m ≥ 4.

For the proof of uniform perfectness, we can approximate the diffeomorphism for
a bounded number of times. In fact in this case, f1 = g1 ◦h1 = g1 ◦h1 ◦ (h1

−1 ◦h1)
and h1

−1 ◦ h1 ∈ Diffr(M2m) is close to the identity. By Remark 2.8, h1
−1 ◦ h1 is

written as a product of six commutators.

Lemma 3.3. For the above generic isotopy {ht}t∈[0,1], there is a neighborhood
Ui (i = 1, . . . , r) of the curve H([si, 1] × {vi}) ⊂ M2m diffeomorphic to a (2m)-
dimensional ball such that Ui are disjoint and there is an isotopy {at}t∈[0,1] (a0 = id)
with support in

⊔r
i=1 Ui such that, for h′

t = at ◦ ht,

h′
t(P

(m−1)) ∩ k(Qm) = ∅ (t ∈ [0, 1]).

Note that at ∈ Diffr
c(

⊔r
i=1 Ui)0 can be taken as one commutator with support in⊔r

i=1 Ui (see [23]).

Since h′
t(P

(m−1)) ∩ k(Qm) = ∅ (t ∈ [0, 1]), there are isotopies {g′t}t∈[0,1] ⊂
Diffr

c(M
2m \k(Qm)) and {h′′

t }t∈[0,1] ⊂ Diffr
c(M

2m \P (m−1)) such that h′
1 = g′1 ◦h′′

1 .
In other words, g′t and h′′

t (t ∈ [0, 1]) are the identity on neighborhoods of k(Qm)
and P (m−1), respectively. Note that, by taking h′′

t generically on Pm, h′′
t (Pm) ∩

k(Q(m−2)) = ∅.
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Here we used the following lemma which is a part of Theorem 2.2 ([22, Theorem
5.1]). We state the lemma in a form convenient for the proof of Theorem 1.2.

Lemma 3.4. Let Mn be a compact n-dimensional manifold. Let P p and Qq be p-
dimensional and q-dimensional finite cellular complexes differentiably embedded in
Mn, respectively. Let P0 be a subset of P p. Let {ft} ⊂ Diffr(Mn)0 (f0 = id) be an
isotopy which is the identity on a neighborhood of P0. Assume that ft(P p\P0)∩Qq =
∅ (t ∈ [0, 1]). Then f1 ∈ Diffr(Mn)0 can be written as a product f1 = g1 ◦h1, where
{gt}t∈[0,1] ⊂ Diffr

c(M
n \Qq)0 (g0 = id) and {ht}t∈[0,1] ⊂ Diffr

c(M
n \P p)0 (h0 = id).

Put h
(0)
t = h′′

t . Then h
(0)
t is the identity on a neighborhood of P (m−1) and

h
(0)
t (Pm) ∩ k(Q(m−2)) = ∅ (t ∈ [0, 1]).
We look at the intersection h

(0)
t (Pm) ∩ k(Qm). We assume 2m ≥ 6 and we are

going to simplify the intersection, simplex by simplex. This is the main part of the
proof of our Theorem 1.2. Let σm

j (j = 1, . . . , N) be the m-dimensional simplices
of Pm. For each simplex σm

j (j = 1, . . . , N), we remove the intersection of the
image of the isotopy of σm

j and k(Q(m−1)) in a way similar to Lemma 3.3, and then
we remove the intersection of the resultant isotopy of σm

j and k(Qm \ σm∗
j ), where

σm∗
j is the m-dimensional cell of Qm dual to σm

j . For the latter process, we will
find the Whitney disks which guide the construction of isotopy to reduce the order
of the intersection point set.

More precisely, we construct the isotopies inductively. As we wrote, let σm
i

(i = 1, . . . , N) be the m-dimensional simplices of Pm. For 0 ≤ j ≤ N , assume that
we have an isotopy

{h(j)
t }t∈[0,1] ⊂ Diffr(M2m)0 (h(j)

0 = id)

such that h
(j)
t is the identity on a neighborhood of P (m−1) ∪ ⋃j

i=1 σm
i . Let h

(j)
t be

a C∞ approximation of h
(j)
t generic with respect to Pm and k(Qm) such that h

(j)
t

is the identity on a neighborhood of P (m−1) ∪ ⋃j
i=1 σm

i . Then H(j)(t, x) = h
(j)
t (x)

has the following properties:

(0) H(j) : [0, 1] × M2m −→ M2m is close to H(j) : [0, 1] × M2m −→ M2m

defined by H(j)(t, x) = h
(j)
t (x) and h

(j)
t is the identity on a neighborhood

of P (m−1) ∪ ⋃j
i=1 σm

i .
(1) The restriction

H(j)|[0, 1] × V m(j) : [0, 1] × V m(j) −→ M2m

is an immersion outside of a 1-dimensional subset (a codimension m subset)
of [0, 1]×V m(j), where V m(j)(⊂ Pm) is the complement of a neighborhood
of P (m−1) in Pm where h

(j)
t is the identity.

(2) H(j)([0, 1]×P (m−1))∩k(Q(m−1)) = ∅ and H(j)([0, 1]×Pm)∩k(Q(m−2)) = ∅.
(3) H(j)([0, 1] × Pm) ∩ k(Q(m−1)) is a finite set;

H(j)([0, 1] × Pm) ∩ k(Q(m−1)) = {H(j)(s(j)
i , v

(j)
i )

∣∣ i = 1, . . . , r(j)},

(4) H(j)([0, 1] × {v(j)
i }) ∩ k(Q(m−1)) = H(j)(s(j)

i , v
(j)
i ) (i = 1, . . . , r(j)),

(5) H(j)([0, 1] × {v(j)
i }) does not contain double points of H(j)([0, 1] × Pm)

(i = 1, . . . , r(j)),
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(6) H(j)|[0, 1]×Pm restricted to a neighborhood of [0, 1]×{v(j)
i } in [0, 1]×Pm

is an embedding (i = 1, . . . , r(j)), and
(7) H(j)([s(j)

i , 1] × {v(j)
i }) are disjoint.

Here, the statements (1)–(7) hold for generic H(j). In particular, for the statement
(1), we notice that the set of rank m matrices in the space of (m+1)×(2m) matrices
is codimension m ([15]). The statement (6) holds because the inverse image of the
double point set of H(j)([0, 1] × Pm) is 2-dimensional in [0, 1] × Pm which is in
general position with respect to [0, 1] × {v(j)

i } (i = 1, . . . , r(j)) and 2m ≥ 6.

Lemma 3.5. For the above generic isotopy {h(j)
t }t∈[0,1], there is a neighbor-

hood U
(j)
i (i = 1, . . . , r(j)) of the curve H(j)([s(j)

i , 1] × {v(j)
i }) ⊂ M2m dif-

feomorphic to a (2m)-dimensional ball such that U
(j)
i are disjoint and there is

an isotopy {a(j+1)
t }t∈[0,1] (a(j+1)

0 = id) with support in
⊔r(j)

i=1 U
(j)
i such that, for

h′(j)
t = a

(j+1)
t ◦ h

(j)
t ,

h′(j)
t (Pm) ∩ k(Q(m−1)) = ∅ (t ∈ [0, 1]).

Note again that a
(j+1)
t ∈ Diffr

c(
⊔r(j)

i=1 U
(j)
i )0 can be taken as one commutator with

support in
⊔r(j)

i=1 U
(j)
i (see [23]).

The isotopy h′(j)
t given by Lemma 3.5 has the following properties.

(0) h′(j)
t is the identity on a neighborhood of P (m−1) ∪ ⋃j

i=1 σm
i .

(1) H ′(j)([0, 1] × Pm) ∩ k(Q(m−1)) = ∅.
(2) h′(j)

t is generic with respect to Pm and k(Qm).

Now we look at the intersection h′(j)
t (Pm)∩k(Qm). Since h′(j)

t is the identity on
a neighborhood of P (m−1) ∪ ⋃j

i=1 σm
i , the intersection h′(j)

t (σm
i ) ∩ k(Qm) for i ≤ j

is always the one point set σm
i ∩ k(σm∗

i ), where σm∗
i is the m-dimensional cell of

Qm dual to σm
i (i ≤ j). For the simplex σm

j+1, the intersection h′(j)
t (σm

j+1)∩ k(Qm)
is a finite set which vary with respect to the parameter t. If 2m ≥ 6, we can
find the Whitney disks which guide to reduce the order of intersection point set
h′(j)

t (σm
j+1) ∩ k(Qm \ σm∗

j+1), where σm∗
j+1 is the m-dimensional cell of Qm dual to

σm
j+1 as we explain now.
For the m-dimensional simplex σm

j+1 of Pm, the intersection of σm
j+1 and k(Qm)

is just one point which is the intersection of σm
j+1 and k(σm∗

j+1), Then the behavior

of the intersection h′(j)
t (σm

j+1) ∩ k(σm∗
j+1) it rather complicated. Hence we look at

H ′(j)([0, 1] × σm
j+1) ∩ k(Qm \ σm∗

j+1) or h′(j)
t (σm

j+1) ∩ k(Qm \ σm∗
j+1). First, note that

h′(j)
t (σm

j+1) ∩ k(Qm \ σm∗
j+1) is the empty set for small t, and since h′(j)

t (σm
j+1) ∩

k(Q(m−1)) = ∅ (and h′(j)
t (P (m−1))∩k(Qm) = ∅), the algebraic intersection number

of the two m-dimensional cells h′(j)
t (σm

j+1) and k(τm) (t ∈ [0, 1]) is always 0 for each
m-dimensional cell τm of the dual cell complex Qm other than σm∗

j+1 .

If we look at the movement of the intersection h′(j)
t (σm

j+1)∩k(τm) with respect to
the parameter t, there happen a finite number of generations of pairs of intersection
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points and cancellations of pairs of intersection points. For generic H ′(j) or h′(j)
t ,

the values of the parameters t of generations and cancellations are different. This
genericity argument follows from the following well known lemma.

Lemma 3.6. Consider the space of Cr maps (r ≥ 2) F : R×Rm −→ Rm. Then,
for generic F , the inverse image of a generic point y ∈ Rm consists of regular
points and fold points for Ft = F (t, •). At a fold point x for Ft, by changing the
coordinates of Rm (both of the second factor of R×Rm and the target Rm), Ft is
locally written as

Ft(x1, . . . , xm) = (x1, . . . , xm−1, ym(t, x1, . . . , xm)),

where
∂ym

∂xm
= 0,

∂ym

∂t
�= 0 and

∂2ym

∂xm
2
�= 0 at x. The fold points are discrete in

F−1(y) and correspond to the generations or cancellations of pairs of intersection
points.

We use this Lemma 3.6 in the following way. We take a tubular neighborhood
of k(τm) and the projection pk(τm) to the fiber which is an m-dimensional disk,
and look at the map pk(τm) ◦ (H ′(j)|[0, 1]× σm

j+1). Then for generic H ′(j), by using
Lemma 3.6, there are only finitely many generations and cancellations of pairs of
intersections in the family {h′(j)

t (σm
j+1) ∩ k(τm)}t∈[0,1].

We are going to construct the disks associated with the intersection H ′(j)([0, 1]×
σm

j+1) ∩ k(τm) for an m-dimensional cell τm of Qm other than σm∗
j+1.

For a generation of a pair of intersection points, the intersection points near
the generation point are written as h′(j)

t (xt) and h′(j)
t (yt) (t ∈ [t0, t0 + ε0)), where

h′(j)
t0 (xt0) = h′

t0
(j)(yt0) is the generation point. Here, xt and yt are continuous

functions written as xt = (c1, . . . , cm−1,
√

t − t0) and yt = (c1, . . . , cm−1,−
√

t − t0),
respectively, for a suitable choice of coordinate around (t0, xt0) = (t0, yt0) ∈ [0, 1]×
σm

j+1, where c1,. . . , cm−1 are constants.
We take a flat metric on the m-dimensional simplex σm

j+1 and we draw the
geodesic segment xtyt in σm

j+1 joining the intersection points xt and yt (t ∈ [t0, t0 +
ε0)).

Once we choose the pair of intersection points to be joined by the geodesic
segment, we continue joining them as the parameter t increses unless one of these
intersection points meets a cancellation point.

For a cancellation of a pair of intersections, the intersection points near the
cancellation point are written as h′(j)

t (xt) and h′(j)
t (yt) (t ∈ (t0 − ε0, t0]), where

h′(j)
t0 (xt0) = h′(j)

t0 (yt0) is the cancellation point. Here, xt and yt are continuous func-
tions written as xt = (c1, . . . , cm−1,

√−t + t0) and yt = (c1, . . . , cm−1,−
√−t + t0),

respectively, for a suitable choice of coordinate around (t0, xt0) = (t0, yt0) ∈
[0, 1] × σm

j+1, where c1,. . . , cm−1 are constants.
Assume that we have chosen geodesic segments for the intersection points such

that t < t0. Let x′
t (t ∈ (t0 − ε0, t0)) be the other endpoint of the geodesic segment

containing xt, and y′
t (t ∈ (t0−ε0, t0)) be the other endpoint of the geodesic segment

containing yt. There are two cases. In the case where x′
t0 �= y′

t0 , that is, if it is
a cancellation of intersection points belonging to different geodesic segments xtx′

t

and yty′
t in {t} × σm

j+1 (t ∈ (t0 − ε0, t0)), we draw the geodesic triangle joining the
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3 points xt0 = yt0 , x′
t0 and y′

t0 in {t0} × σm
j+1, and continue to draw the geodesic

segment x′
ty

′
t joining x′

t and y′
t in {t} × σm

j+1 (t ∈ (t0, t0 + ε0)). In the case where
x′

t0 = y′
t0 , that is, if it is a cancellation of intersection points of the same geodesic

segment xtyt in {t} × σm
j+1 (t ∈ (t0 − ε0, t0), x′

t = yt and y′
t = xt), we add the

auxiliary band ⋃
t∈[t0−ε,t0]

[t, 1] × {xt} ∪
⋃

t∈[t0−ε,t0]

[t, 1] × {yt},

which contains the curve [t0, 1] × {xt0} = [t0, 1] × {yt0}, where ε (< ε0) is a small
positive real number. Note that the image of the auxiliary band does not contain
double points of H ′(j)([0, 1]× σm

j+1) for generic H ′(j), and hence H ′(j) restricted to
the auxiliary band is an embedding into M2m \ k(Q(m−1)).

Now we have a family of geodesic segments in σm
j+1 moving with respect to the

parameter t and there are only finitely many times ti (i = 1, . . . , r(j)) when there
appear geodesic triangles.

We are assuming that 2m ≥ 6, and for generic h′(j)
t , the family of geodesic

segments satisfies the following properties because the preimage of the double points
of h′(j)

t (Pm) is 1-dimensional in [0, 1] × σm
j+1.

(1) The geodesic segments in σm
j+1 joining the pairs of intersection points in

(h′
t
(j))−1(k(τm)) never contain the preimage of double points of (h′

t
(j))(Pm).

(2) The geodesic triangles never contain the preimage of double points of
(h′

t
(j))(Pm).

For ti (i = 1, . . . , r(j)), let Y be the union of the geodesic triangle with the
three vertices xti

= yti
, x′

ti
and y′

ti
in {ti} × σm

j+1, the geodesic segments xtx′
t and

yty′
t in {t} × σm

j+1, (t ∈ (ti − εi, ti)) and the geodesic segments x′
ty

′
t in {t} × σm

j+1

(t ∈ (ti, ti + εi)):

Y =
( ⋃

t∈(ti−εi,ti)

{t} × xtx′
t

) ∪ ( ⋃
t∈(ti−εi,ti)

{t} × yty′
t

)
∪({ti} ×�xti

x′
ti

y′
ti

) ∪ ( ⋃
t∈(ti,ti+εi)

{t} × x′
ty

′
t

)
⊂ (ti − εi, ti + εi) × σm

j+1.

We deform it to obtain a 2-dimensional manifold Y ′ embedded in (ti − εi, ti + εi)×
σm

j+1 such that

∂Y ′ = ∂Y = {(t, x′
t)}t∈(ti−εi,ti+εi) ∪ {(t, y′

t)}t∈(ti−εi,ti+εi)

∪{(t, xt)}t∈(ti−εi,ti] ∪ {(t, yt)}t∈(ti−εi,ti]

⊂ (ti − εi, ti + εi) × σm
j+1,

and Y ′ coincides with Y for |t− ti| ≥ εi/2 and the intersection of Y ′ and {t}×σm
j+1

is a union of two disjoint differentiable curves near the original geodesic segments
for t ∈ [ti − εi/2, ti) and is one differentiable curve near the geodesic triangle for
t ∈ [ti, ti + εi/2].

Now we look at the union Z of geodesic segments which are not modified by
the above operation and the manifolds Y ′ for all ti (i = 1, . . . , r(j)). If there
are auxiliary bands we add them to Z and modify it to make Z an embedded
2-dimensional manifold with boundary in [0, 1] × σm

j+1.
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For a generic choice of the isotopy H ′(j) and manifolds Y ′, if 2m ≥ 8, Z is
a union of disjointly embedded 2-dimensional disks in [0, 1] × σm

j+1. If 2m = 6,
the 2-dimensional disks may intersect in [0, 1]× σ3

j+1 creating finitely many double
points.

For 2m ≥ 8, the fact that a connected component of the union Z is diffeomorphic
to a 2-dimensional disk can be seen as follows: Consider the space obtained from Z
by identifying the points in each connected component of Z ∩ ({t} × σm

j+1). Then
it is a graph with vertices corresponding to the generation points and cancellation
points. The generation points correspond to the vertices of valency 1 and the
cancellation points correspond to the vertices of valency 3 except the cancellation
points with auxiliary bands. For the cancellation points with auxiliary bands, the
auxiliary bands become edges ending at {1}×σm

j+1. Thus each connected component
of the graph is a tree rooted at time t = 1 which grows in the negative direction in
t. Hence each connected component of Z is a 2-dimensional disk.

In the case where 2m = 6, we see in a similar way that Z ⊂ [0, 1] × σ3
j+1 is

an immersed image of 2-dimensional disks which has generically a finite number
of double points. That is, the curves joining the pairs of intersection points in
(h′(j)

t )−1(k(τ3)) may intersect at finitely many points (t̂�, x̂�) (� = 1, . . . , r̂(j)).
Then for generic H ′(j), t̂� are not the time of generations or cancellations. When
two geodesic curves γ

(t)
1 and γ

(t)
2 intersect at the time t̂�, we modify one of the

family {γ(t)
2 } of geodesic curves near t̂� by a family {γ′

2
(t)} of curves which does not

intersect {γ(t)
1 } near t̂�.

More concretely, for a small positive real number ε̂�, we can find a neighborhood
of γ

(̂t�)
1 ∪ γ

(̂t�)
2 ⊂ [0, 1] × σm which is diffeomorphic to (t̂� − ε̂�, t̂� + ε̂�) × X, where

X is a neighborhood of [−1, 1] × {0} × {0} ∪ {0} × [−1, 1] × {0} in R3,

γ
(̂t�)
1 = {t̂�} × [−1, 1] × {0} × {0} and

γ
(̂t�)
2 = {t̂�} × {0} × [−1, 1] × {0}.

We can choose the parametrization in this neighborhood so that

γ
(̂t�+s)
1 (u) = (t̂� + s, u, 0, s) and

γ
(̂t�+s)
2 (u) = (t̂� + s, v1s, u + v2s, v3s)

for a vector (v1, v2, v3) ∈ R3 (v3 �= 1). By using a smooth bump function μ :
[−1, 1] −→ [0, 1] such that μ(x) = μ(−x), μ|[0, 1/3] = 1, and μ|[2/3, 1] = 0, we
modify γ

(t)
2 . Put

γ′
2
(̂t�+s)(u) = (t̂� + s, (1 + c�)μ(s/ε̂�)μ(u/δ�) + v1s, u + v2s, v3s),

where c� and δ� are small positive real numbers such that the image of γ′
2
(̂t�+s) is

contained in our neighborhood X. Then the curves γ
(t)
1 and γ′

2
(t) (t ∈ (t̂� − ε̂�, t̂� +

ε̂�)) do not intersect in σm
j+1.

Thus for 2m ≥ 6, using the above family of curves if necessary, we have the union
Z ′ of a finite number of disjointly embedded 2-dimensional disks in [0, 1] × σm

j+1

such that

(H ′(j)|[0, 1] × σm
j+1)

−1(k(τm)) ⊂ Z ′.
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Since 2m ≥ 6, the images under generic H ′(j) of these 2-dimensional disks are
disjointly embedded in M2m \ k(Q(m−1)). The images of these disks are called the
Whitney disks.

We have been looking at the intersection point set h′(j)
t (σm

j+1)∩k(τm) for one m-
dimensional cell τm of Qm other than σm∗. These considerations can be applied to
the intersection point sets h′(j)

t (σm
j+1)∩k(τm) for all (finitely many) m-dimensional

cells τm of Qm other than σm∗ simultaneously. This is because, if 2m ≥ 8, the
embedded 2-dimensional disks Z ′ are disjoint for different τm for generic H ′(j), and
if 2m = 6, we can remove the intersection of the embedded 2-dimensional disks Z ′

for different τm in a way similar to what we did for the intersection of Z for the
same τm. Thus we obtained the union Z ′ of a finite number of disjointly embedded
2-dimensional disks in [0, 1] × σm

j+1 such that

(H ′(j)|[0, 1] × σm
j+1)

−1(k(Qm \ σm∗
j+1)) ⊂ Z ′,

and H ′(j)|Z ′ is an embedding.
If 2m ≥ 8, then the Whitney disks H ′(j)(Z ′) do not contain double points of

H ′(j)([0, 1]×Pm) for generic H ′(j). This is because the inverse image of the double
point set of H ′(j)([0, 1] × Pm) is 2-dimensional in [0, 1] × Pm and m + 1 ≥ 5.

If 2m = 6, then the Whitney disks H ′(j)(Z ′) may intersect the double point set
of H ′(j)([0, 1]× P 3). Then, for generic H ′(j), the intersection is a finite set and we
pick up the points of Whitney disks which are in the image of h′(j)

t (P 3) with larger
t;

H ′(j)(t(j)i , w
(j)
i ) = H ′(j)(t′(j)i , w′(j)

i ) (i = 1, . . . , r′(j)),

where (t(j)i , w
(j)
i ) is a point Z ′ ⊂ [0, 1] × σm

j+1, (t′(j)i , w′(j)
i ) ∈ [0, 1] × P 3 and t

(j)
i <

t′(j)i . Then, for generic H ′(j), the curve H ′(j)([t′(j)i , 1] × {w′(j)
i }) is embedded in

M2m \ k(Qm) and does not contain double points of H ′(j)([0, 1] × P 3) other than
H ′(j)(t′(j)i , w′(j)

i ). Hence if 2m = 6, we have the Whitney disks H ′(j)(Z ′) and the
curves H ′(j)([t′(j)i , 1] × {w′(j)

i }) (i = 1, . . . , r′(j)).
Using the Whitney disks H ′(j)(Z ′) and curves H ′(j)([t′(j)i , 1] × {w′(j)

i }) (i = 1,
. . . , r′(j)), we prove the following lemmas in the next section.

Lemma 3.7. For h′(j)
t , there is an isotopy {b(j+1)

t }t∈[0,1] (b(j+1)
0 = id) with support

in a union of disjointly embedded open balls such that for h′′
t
(j) = b

(j+1)
t ◦h′(j)

t , h′′
t
(j)

is the identity on a neighborhood of P (m−1) ∪ ⋃j
i=1 σm

i and h′′
t
(j)(σm

j+1) ∩ k(Qm \
σm∗

j+1) = ∅.
Lemma 3.8. For h′′

t
(j) given by Lemma 3.7, there are isotopies

{g(j+1)
t }t∈[0,1] ⊂ Diffr

c(M
2m \ k(Qm \ σm∗

j+1)) (g(j+1)
0 = id) and

{h(j+1)
t }t∈[0,1] ⊂ Diffr

c(M
2m \ (P (m−1) ∪ ⋃j+1

i=1 σm
i )) (h(j+1)

0 = id)

such that h′′
t
(j) = g

(j+1)
t ◦ h

(j+1)
t .

Now we complete the proof of our main Theorem 1.2.

Proof of Theorem 1.2. Let f be an element of Diffr(M2m)0. By Lemma 3.2, there
are g ∈ Diffr

c(M
2m \ k(Qm))0 and h ∈ Diffr

c(M
2m \ P (m−2))0 such that f = g ◦ h.



UNIFORM PERFECTNESS OF THE GROUPS OF DIFFEOMORPHISMS 13

Then by using the approximation h of h,

f = g ◦ h ◦ (h−1 ◦ h).

By Lemmas 3.3 and 3.4, there are a diffeomorphism a with support in a union of
disjointly embedded open balls, g′ ∈ Diffr

c(M
2m \ k(Qm))0 and h′′ ∈ Diffr

c(M
2m \

P (m−1))0 such that
h = a−1 ◦ (a ◦ h) = a−1 ◦ g′ ◦ h′′.

Put h(0) = h′′ ∈ Diffr
c(M

2m \ P (m−1))0, and for h(j) ∈ Diffr
c(M

2m \ (P (m−1) ∪⋃j
i=1 σm

i ))0 (j = 0, . . . , N − 1), we use its approximation h(j) and by Lemmas 3.5,
3.7 and 3.8, there are diffeomorphisms a(j+1) and b(j+1) with support in unions of
disjointly embedded open balls, g(j+1) ∈ Diffr

c(M
2m \ k(Qm \ σm∗

j+1))0 and h(j+1) ∈
Diffr

c(M
2m \ (P (m−1) ∪ ⋃j+1

i=1 σm
i ))0 such that

h(j) = h(j) ◦ ((h(j))−1 ◦ h(j))
= (a(j+1))−1 ◦ (a(j+1) ◦ h(j)) ◦ ((h(j))−1 ◦ h(j))
= (a(j+1))−1 ◦ (b(j+1))−1 ◦ g(j+1) ◦ h(j+1) ◦ ((h(j))−1 ◦ h(j)).

Hence,

f = g ◦ h ◦ (h−1 ◦ h)
= g ◦ a−1 ◦ g′ ◦ h(0) ◦ (h−1 ◦ h)
= g ◦ a−1 ◦ g′ ◦ (a(1))−1 ◦ (b(1))−1 ◦ g(1) ◦ h(1) ◦ ((h(0))−1 ◦ h(0)) ◦ (h−1 ◦ h)
= g ◦ a−1 ◦ g′ ◦ (a(1))−1 ◦ (b(1))−1 ◦ g(1) ◦ · · · ◦ (a(N))−1 ◦ (b(N))−1 ◦ g(N)

◦h(N) ◦ ((h(N−1))−1 ◦ h(N−1)) ◦ · · · ◦ ((h(0))−1 ◦ h(0)) ◦ (h−1 ◦ h).

Here, note that

h(N) ∈ Diffr
c(M

2m \ (P (m−1) ∪
N⋃

i=1

σm
i ))0 = Diffr

c(M
2m \ Pm).

Since

((h(N−1))−1 ◦ h(N−1)) ◦ · · · ◦ ((h(0))−1 ◦ h(0)) ◦ (h−1 ◦ h) ∈ Diffr(M2m)

is close to the identity, by Remark 2.8, it is written as ĥ◦â◦ĝ, where ĥ ∈ Diffr(M2m\
Pm)0, ĝ ∈ Diffr(M2m \ k(Qm))0 and â is with support in a union of disjointly
embedded open balls which is a neighborhood of the union of m handles. Thus

f = g ◦ a−1 ◦ g′ ◦ (a(1))−1 ◦ (b(1))−1 ◦ g(1)◦
· · · ◦ (a(N))−1 ◦ (b(N))−1 ◦ g(N) ◦ h(N) ◦ ĥ ◦ â ◦ ĝ.

Now by the construction, each of a−1, (a(1))−1, . . . , (a(N))−1, (b(1))−1, . . . , (b(N))−1

can be written as one commutator with support in a union of disjointly embedded
open balls. The diffeomorphism â can be written as a product of two commutators
by Theorem 1.1 (1). The diffeomorphism h(N) ◦ ĥ ∈ Diffr(M2m \Pm)0 is written as
a product of two commutators in Diffr(M2m \ Pm)0 by Theorem 1.1 (1). Each of
the diffeomorphisms g, g′ and ĝ ∈ Diffr(M2m \k(Qm))0 is also written as a product
of two commutators in Diffr(M2m \ k(Qm))0 by Theorem 1.1 (1). By the property
of the triangulation, the diffeomorphism g(j) ∈ Diffr

c(M
2m \ k(Qm \ σm∗

j+1))0 is
supported on an open set which can be deformed in a neighborhood of the embedded
(m− 1)-dimensional complex ι((P (m−1) ∪ σm

j )/σm
j ), and hence g(j) can be written

as a product of two commutators in Diffr(M2m \ k(Qm \ σm∗
j+1))0 by Theorem 1.1

(1). Thus f is written as a product of 4N + 11 commutators. �
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4. Proof of lemmas

We give the proof of lemmas we used in the previous section to show Theorem
1.2.

Proof of Lemma 3.2. This follows from Lemma 2.5 and Remark 2.4. �

Proof of Lemma 3.3. The construction of at is essentially due to Burago, Ivanov
and Polterovich ([3]) and we wrote it in the proof of Lemma 2.7 which is [22, Lemma
6.5]. However, we write it again here, for, we use this argument later again.

For H(si, vi), we take a small neighborhood Ui of H([si, 1]×{vi}) diffeomorphic
to the (2m)-dimensional ball. We can take these Ui to be disjoint.

The intersection of Ui and H([0, 1] × P (m−1)) or k(Qm) is described as follows.
We put a coordinate

(x1, x2, . . . , xm, xm+1, . . . , x2m) ∈ (−2, 2)2m

on Ui such that, for εi > 0,

k(Qm) ∩ Ui = {0} × {0}m−1 × (−2, 2)m,
H((si − 2εi(1 − si), 1] × {vi}) ∩ Ui = (−2, 1] × {0}2m−1, and
hsi+t(1−si)(P

(m−1)) ∩ Ui = {t} × (−2, 2)m−1 × {0}m (t ∈ [−εi, 1]).

Take an isotopy {at}t∈[0,1] with support in
⊔r

i=1 Ui such that, on each Ui, a0 = id
and, for (x1, x2, . . . , x2m) ∈ [−εi, 1] × [−1, 1]2m−1 ⊂ (−2, 2)2m,

at(x1, x2, . . . , x2m) = (x1 − (1 + εi)t, x2, . . . , x2m).

Now (a1 ◦h1)(P (m−1))∩ k(Qm) = ∅. Moreover, by changing the time parameter
of the above at, we obtain an isotopy at (a0 = id) with support in

⊔r
i=1 Ui such

that for h′
t = at ◦ ht,

h′
t(P

(m−1)) ∩ k(Qm) = ∅ (t ∈ [0, 1]).

In fact, if we put

t = si + ui(1 − si) ∈ [si − εi(1 − si), 1], i.e., ui ∈ [−εi, 1],

and look at a(ui+εi)/(1+εi) ◦ hsi+ui(1−si), then on Ui,

(a(ui+εi)/(1+εi) ◦ hsi+ui(1−si))({−εi} × [−1, 1]m−1 × {0}m)
= a(ui+εi)/(1+εi)({ui} × [−1, 1]m−1 × {0}m)
= {ui − (ui + εi)} × [−1, 1]m−1 × {0}m

= {−εi} × [−1, 1]m−1 × {0}m.

Hence by using the above at with appropriate time change, we obtain the desired
isotopy at.

Note that a1 ∈ Diffr
c(

⊔r
i=1 Ui)0 can be taken as one commutator with support

in
⊔r

i=1 Ui ([23]). �

Proof of Lemma 3.4. Let F : [0, 1] × Mn −→ Mn be the trace of the isotopy:
F (t, x) = ft(x).

Let W be a neighborhood of P0 in Mn where ft is the identity. Let U be a
neighborhood of F ([0, 1] × (P p \ W ∩ P p)) and V be a neighborhood of Qq such
that U ∩ V = ∅.
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Let ξ be the vector field on [0, 1] × Mn given by

∂

∂t
+

(dft+s(x)
ds

)
s=0

at (t, ft(x)). This ξ generates the isotopy ft. Let η be a vector field on [0, 1]×Mn

with support in [0, 1] × U such that η = ξ on a neighborhood of

{(t, ft(x0))
∣∣ x0 ∈ P p \ W ∩ P p, t ∈ [0, 1]}.

Then η = ∂/∂t on [0, 1]×(V ∪W ) which is a neighborhood of [0, 1]×(Qq∪P0). Then
η generates an isotopy {gt}t∈[0,1] such that gt is the identity on the neighborhood
V ∪ W of Qq ∪ P0 and gt(x) = ft(x) for x in a neighborhood of P p = (P p \ W ∩
P p) ∪ (W ∩ P p). Here for x ∈ W , gt(x) = x = ft(x).

Put h = g1
−1f1, then h is the identity on a neighborhood of P p, and it is isotopic

to the identity as an element of Diffr(Mn). For, put ht = gt
−1 ◦ ft. Then ht is the

identity on a neighborhood of P p.
Thus we can write as f = g ◦ h, where g ∈ Diffr

c(M
n \Qq)0 and h ∈ Diffr

c(M
n \

P p)0. �

Proof of Lemma 3.5. The proof is similar to that of Lemma 3.3.
For H(j)(s(j)

i , v
(j)
i ), we take a small neighborhood U

(j)
i of H([s(j)

i , 1] × {v(j)
i })

diffeomorphic to the (2m)-dimensional ball. We can take these U
(j)
i to be disjoint.

The intersection of U
(j)
i and H(j)([0, 1] × Pm) or k(Q(m−1)) is described as

follows. We put a coordinate

(x1, x2, . . . , xm+1, xm+2, . . . , x2m) ∈ (−2, 2)2m

on U
(j)
i such that, for ε

(j)
i > 0,

k(Q(m−1)) ∩ U
(j)
i = {0} × {0}m × (−2, 2)m−1,

H((s(j)
i − 2ε

(j)
i (1 − s

(j)
i ), 1] × {v(j)

i }) ∩ U
(j)
i = (−2, 1] × {0}2m−1, and

h
(j)

s
(j)
i +t(1−s

(j)
i )

(Pm) ∩ U
(j)
i = {t} × (−2, 2)m × {0}m−1 (t ∈ [−ε

(j)
i , 1]).

Take an isotopy {a(j+1)
t }t∈[0,1] with support in

⊔r(j)

i=1 U
(j)
i such that, on each U

(j)
i ,

a
(j+1)
0 = id and, for (x1, x2, . . . , x2m) ∈ [−ε

(j)
i , 1] × [−1, 1]2m−1 ⊂ (−2, 2)2m,

a
(j+1)
t (x1, x2, . . . , x2m) = (x1 − (1 + ε

(j)
i )t, x2, . . . , x2m).

Now (a(j+1)
1 ◦ h

(j)
1 )(Pm) ∩ k(Q(m−1)) = ∅. Moreover, by changing the time

parameter, we obtain an isotopy a
(j+1)
t (a(j+1)

0 = id) with support in
⊔r

i=1 U
(j)
i

such that, for h′(j)
t = a

(j+1)
t ◦ h

(j)
t ,

h′(j)
t (Pm) ∩ k(Q(m−1)) = ∅ (t ∈ [0, 1]).

In fact, if we put

t = s
(j)
i + u

(j)
i (1 − s

(j)
i ) ∈ [s(j)

i − ε
(j)
i (1 − s

(j)
i ), 1], i.e., u

(j)
i ∈ [−ε

(j)
i , 1],
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and look at a
(j+1)

(u
(j)
i +ε

(j)
i )/(1+ε

(j)
i )

◦ h
(j)

s
(j)
i +u

(j)
i (1−s

(j)
i )

, then on U
(j)
i ,

(a(j+1)
(ui+εi)/(1+εi)

◦ h
(j)

s
(j)
i +u

(j)
i (1−s

(j)
i )

)({−ε
(j)
i } × [−1, 1]m × {0}m−1)

= a
(j+1)

(u
(j)
i +ε

(j)
i )/(1+ε

(j)
i )

({u(j)
i } × [−1, 1]m × {0}m−1)

= {u(j)
i − (u(j)

i + ε
(j)
i )} × [−1, 1]m × {0}m−1

= {−ε
(j)
i } × [−1, 1]m × {0}m−1.

Hence by using the above a
(j+1)
t with appropriate time change, we obtain the desired

isotopy a
(j+1)
t .

Note that a
(j+1)
1 ∈ Diffr

c(
⊔r(j)

i=1 U
(j)
i )0 can be taken as one commutator with

support in
⊔r(j)

i=1 U
(j)
i ([23]). �

Proof of Lemma 3.6. For

F (t, x1, . . . , xm) = (f1(t, x1, . . . , xm), . . . , fm(t, x1, . . . , xm)),

put

∂F

∂t
=

⎛
⎜⎝

∂f1
∂t
...

∂fm

∂t

⎞
⎟⎠ and

∂F

∂x
=

⎛
⎜⎝

∂f1
∂x1

· · · ∂f1
∂xm

...
. . .

...
∂fm

∂x1
· · · ∂fm

∂xm

⎞
⎟⎠ .

On the 2-jet bundle J2(R × Rm,Rm), we consider the subbundle E1 defined by

rank
(

∂F

∂t

∂F

∂x

)
= m − 1 and the subbundle E2 defined by the two equations,

rank
(

∂F

∂x

)
= m − 1 and rank

⎛
⎜⎝

∂F

∂x
∂

∂x
det

∂F

∂x

⎞
⎟⎠ = m − 1, where

∂

∂x
det

∂F

∂x
=

(
∂

∂x1
det

∂F

∂x
· · · ∂

∂xn
det

∂F

∂x

)
.

Then E1 and E2 are codimension 2 subbundles. The closures of these subbundles
are the set determined by the inequalities expressing the ranks are not greater than
m − 1.

By the jet transversality theorem, the jet of a generic map F intersects these
subbundles transversely. Hence the set

{(t, x)
∣∣ J2

(t,x)F ∈ E1 ∪ E2}
is an (m − 1)-dimensional subset and its image in Rm is nowhere dense. We take
a point y in Rm in the complement of this image and consider its inverse image

F−1(y). Then for a point x ∈ F−1(y), either rank
(

∂F

∂x

)
= m holds or the three

equations rank
(

∂F

∂x

)
= m − 1, rank

(
∂F

∂x

)
= m and rank

⎛
⎜⎝

∂F

∂x
∂

∂x
det

∂F

∂x

⎞
⎟⎠ = m

hold.
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If rank
(

∂F

∂x

)
= m at x, then x is a regular point of Ft = F (t, •) and the inverse

image is locally a 1-dimensional manifold transverse to {t} × Rm.

Assume that the three equations hold. Since rank
(

∂F

∂x

)
= m − 1, by the

implicit function theorem, we can change the local coordinate (x1, . . . , xm) of the
second factor of the source to (x′

1, . . . , x
′
m) and that (y1, . . . , ym) of the target to

(y′
1, . . . , y

′
m) so that

F (t, x′
1, . . . , x

′
m) = (x′

1, . . . , x
′
m−1, y

′
m(t, x′

1, . . . , x
′
m)).

Then det
(

∂F

∂x

)
=

∂y′
m

∂x′
m

and the matrix

⎛
⎜⎝

∂F

∂x
∂

∂x
det

∂F

∂x

⎞
⎟⎠ with respect to these coor-

dinates is written as⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 0

0
. . . . . .

...
...

...
. . . . . . 0 0

0 · · · 0 1 0
∂y′

m

∂x′
1

· · · · · · ∂y′
m

∂x′
m−1

∂y′
m

∂x′
m

∂2y′
m

∂x′
m∂x′

1
· · · · · · ∂2y′

m

∂x′
m∂x′

m−1

∂2y′
m

∂x′
m

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and the matrix
(

∂F

∂t

∂F

∂x

)
with respect to these coordinates is written as

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0 0

0 0
. . . . . .

...
...

...
...

. . . . . . 0 0
0 0 · · · 0 1 0

∂y′
m

∂t
∂y′

m

∂x′
1

· · · · · · ∂y′
m

∂x′
m−1

∂y′
m

∂x′
m

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Hence,
∂y′

m

∂x′
m

= 0,
∂y′

m

∂t
�= 0 and

∂2y′
m

∂x′
m

2
�= 0 at x.

Thus at x ∈ F−1(y), either det
(

∂F

∂x

)
�= 0 or F is locally written as

F (t, x′
1, . . . , x

′
m) = (x′

1, . . . , x
′
m−1, y

′
m(t, x′

1, . . . , x
′
m)),

where
∂y′

m

∂x′
m

= 0,
∂y′

m

∂t
�= 0 and

∂2y′
m

∂x′
m

2
�= 0. �

The proof of Lemma 3.7 is divided into two cases.

Proof of Lemma 3.7 in the case where 2m ≥ 8. If 2m ≥ 8, the Whitney disks
guide the way to construct the isotopy b

(j+1)
t with support in a union of disjoint

open balls. In fact, the support of b
(j+1)
t is in a neighborhood of the union of

the Whitney disks. The construction of the isotopy b
(j+1)
t is possible because the
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neighborhood of one of the Whitney disks can be considered as a neighborhood of
a tree growing in the negative direction in t in [0, 1] × σm

j+1.

The construction of b
(j+1)
t is as follows. Take a vector field of the form

∂

∂t
+ζ(t, v)

on the union of disks Z ′ ⊂ [0, 1] × σm
j+1 which is tangent to Z ′ and transverse to

the boundary ∂Z ′ ⊂ Z ′, where ζ(t, v) is a vector field in the direction of σm
j+1.

Such a vector field
∂

∂t
+ ζ(t, v) exists because Z ′ deforms to a tree which grows in

the negative direction in t by shrinking the connected components of Z ′ ∩ ({t} ×
σm

j+1) to a point. We extend ζ(t, •) on σm
j+1 so that the support is contained in a

small neighborhood of Z ′. Let b′(j+1)
t denote the isotopy generated by

∂

∂t
+ ζ(t, v).

Then the support of b′(j+1)
t is contained in a neighborhood U ′(j) of the union

of the Whitney disks H ′(j)(Z ′). Since H ′(j)(Z ′) does not contain double points
of H ′(j)([0, 1] × Pm), the support of b′(j+1)

t intersects H ′(j)([0, 1] × Pm) only in
U ′(j). Here, U ′(j) is a union of disjointly embedded open balls in M2m. Moreover,
(h′(j)

t )∗ζ(t, •) is tangent to the union of the Whitney disks H ′(j+1)(Z ′) in M2m and

(b′(j+1)
t )−1(h′(j)

t (σm
j+1)) ∩ k(Qm \ σm∗

j+1) = ∅ (t ∈ [0, 1]).

Put b
(j+1)
t = (b′(j+1)

t )−1, then

(b(j+1)
t ◦ h′(j)

t )(σm
j+1) ∩ k(Qm \ σm∗

j+1) = ∅ (t ∈ [0, 1]).

Note that b
(j+1)
1 ∈ Diffr

c(U
′(j))0 can be taken as one commutator with support

in U ′(j) ([23]). �

Proof of Lemma 3.7 in the case where 2m = 6. If 2m = 6, then we also consider
the curves H ′(j)([t′(j)i , 1] × {w′(j)

i }) (i = 1, . . . , r′(j)).
First take a small neighborhood U ′(j) of the union of the Whitney disks which

is a union of disjointly embedded open balls in M6, and construct b
(j+1)
t as in the

case where 2m ≥ 8. Then we modify it by using an isotopy.
We take a small neighborhood U

′(j)
i of the curve H ′(j)([t′(j)i , 1]×{w′(j)

i }) (i = 1,
. . . , r′(j)). We put a coordinate

(x1, x2, x3, x4, x5, x6) ∈ (−2, 3) × (−2, 2)5

on U ′(j)
i such that, for ε′(j)i > 0,

H ′(j)((t′(j)i − 2ε′(j)i (1 − t′(j)i ), 1] × {w′(j)
i }) ∩ U ′(j)

i = (−2, 1] × {0}5, and
h′

t′(j)
i −2ε′(j)

i (1−t′(j)
i )

(P 3) ∩ U ′(j)
i = {t} × (−2, 2)3 × {0}2 (t ∈ [−ε′(j)i , 1]).

We take an isotopy {a′(j+1),i
t }t∈[0,1] with support in U ′(j)

i such that a′(j+1),i
0 = id

and, for (x1, x2, x3, x4, x5, x6) ∈ [−ε′(j)i , 1] × [−1, 1]5 ⊂ (−2, 3) × (−2, 2)5,

a′(j+1),i
t (x1, x2, x3, x4, x5, x6) = (x1 + t(1 + ε′(j)i ), x2, x3, x4, x5, x6).

Put a =
r′(j)∏
i=1

a′(j+1),i
1 . Then a ◦ b

(j+1)
1 ◦ a−1 is isotopic to the identity by the

isotopy with support in the union of disjoint 6-dimensional open balls a(U ′(j)). By
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the construction,

((a ◦ b
(j+1)
1 ◦ a−1) ◦ h1)(σ3

j+1) ∩ k(Q3 \ σ3∗
j+1) = ∅.

Moreover, by an appropriate change of time parameter on each U ′(j)
i , we obtain an

isotopy at (t ∈ [0, 1]) such that

((at ◦ b
(j+1)
t ◦ a−1

t ) ◦ ht)(σ3
j+1) ∩ k(Q3 \ σ3∗

j+1) = ∅

and the support of the isotopy at ◦ b
(j+1)
t ◦ a−1

t is contained in U ′(j) ∪ ⊔r′(j)

i=1 U ′(j)
i

which is a union of disjointly embedded open balls in M2m. Thus we obtained the
desired isotopy.

Note that a ◦ b
(j+1)
1 ◦ a−1 can be taken as one commutator with support in a

union of disjointly embedded open balls. �

Proof of Lemma 3.8. This follows from Lemmas 3.7 and 3.4. �

5. Uniform simplicity

We prove Corollary 1.3. In [23, Theorem 2.2], we showed the following theorem.

Theorem 5.1 ([23]). Let Mn be the interior of a compact n-dimensional manifold
with handle decomposition with handles of indices not greater than (n − 1)/2. Let
c be the order of the set of indices appearing in the handle decomposition. Then
any element of Diffr

c(M
n)0 (1 ≤ r ≤ ∞, r �= n + 1) can be written as a product of

two commutators. Moreover, if Mn is connected, any element of Diffr
c(M

n)0 can
be written as a product of 4c + 1 commutators with support in embedded open balls.

In Section 3, we showed that any element f ∈ Diffr(M2m)0 can be written as

f = g ◦ a−1 ◦ g′ ◦ (a(1))−1 ◦ (b(1))−1 ◦ g(1)◦
· · · ◦ (a(N))−1 ◦ (b(N))−1 ◦ g(N) ◦ h(N) ◦ ĥ ◦ â ◦ ĝ.

Since a compact subset of a union of disjointly embedded open balls is contained in
a larger embedded open ball, each of diffeomorphisms a−1, (a(1))−1, . . . , (a(N))−1,
(b(1))−1, . . . , (b(N))−1 can be written as one commutator with support in an em-
bedded open ball and the diffeomorphism â can be written as a product of two com-
mutators with support in an embedded open ball. Now by Theorem 5.1, each of the
diffeomorphisms h(N) ◦ ĥ ∈ Diffr(M2m \Pm)0, g, g′ and ĝ ∈ Diffr(M2m \ k(Qm))0,
g(j) ∈ Diffr

c(M
2m \ k(Qm \ σm∗

j+1))0 is written as a product of 4m + 1 commuta-
tors with support in embedded open balls. Hence f is written as a product of
4(N + 4)m + 3N + 7 commutators with support in embedded open balls.

Now Corollary 1.3 follows from the following lemma ([23, Lemma 3.1]).

Lemma 5.2 ([23]). Let Mn be a connected n-dimensional manifold. Let g be a
nontrivial element of Diffr

c(M
n)0. Assume that f ∈ Diffr

c(M
n)0 is written as a

product of commutators [ai, bi] (i = 1, . . . , k); f = [a1, b1] · · · [ak, bk], where ai and
bi are with support in an embedded open ball Ui ⊂ Ui ⊂ Mn. Then f can be written
as a product of 4k conjugates of g or g−1.

Proof of Corollary 1.3. Let g be a nontrivial element of Diffr(M2m)0 (1 ≤ r ≤ ∞,
r �= 2m + 1). Since any element f of Diffr(M2m)0 can be written as a product of
4(N +4)m+3N +7 commutators with support in embedded open balls, by Lemma
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5.2, f can be written as a product of 16(N + 4)m + 12N + 28 conjugates of g or
g−1. �
Remark 5.3. We showed in [23] that, for a compact connected n-dimensional man-
ifold Mn with handle decomposition without handles of the middle index n/2, for
any elements f and g of Diffr(Mn)0 \{id}, f can be written as a product of at most
16n + 28 conjugates of g or g−1. For such manifolds, the bound for the number of
conjugates depends only on the dimension n. In Corollary 1.3, however, the bound
for the number of conjugates may depend on the topology of M2m.
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