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1 Introduction

Let W0 = {w ∈ C([0,∞);Rd); w(0) = 0}, G be the Borel algebra over W0 and μ be
the Wiener measure on (W0,G). Let Bi : [0,∞) × W0 → R, i = 1, . . . , d, be given
by Bi(t, w) = wi(t), (t, w) ∈ [0,∞) × W0. Then {(B1(t), . . . , Bd(t); t ∈ [0,∞)} is a d-
dimensional Brownian motion. Let B0(t) = t, t ∈ [0,∞). Let {Ft}t=0 be the Brownian
filtration generated by {(B1(t), . . . , Bd(t); t ∈ [0,∞)}. Let S denote the set of continuous
{Ft}-semimartingales.
Let V0, V1, . . . , Vd ∈ C∞b (RN ;RN). Here C∞b (R

N ;Rn) denotes the space of Rn-valued
smooth functions defined in RN whose derivatives of any order are bounded. We regard
elements in C∞b (R

N ;RN) as vector fields on RN .
Now let X(t, x), t ∈ [0,∞), x ∈ RN , be the solution to the Stratonovich stochastic

integral equation

X(t, x) = x+
dX
i=0

Z t

0

Vi(X(s, x)) ◦ dBi(s). (1)

Then there is a unique solution to this equation. Moreover we may assume that X(t, x) is
continuous in t and smooth in x and X(t, ·) : RN → RN , t ∈ [0,∞), is a diffeomorphism
with probability one.
Let A = Ad = {v0, v1, . . . , vd}, be an alphabet, a set of letters, and A∗ be the set of

words consisting of A including the empty word which is denoted by 1. For u = u1 · · ·uk ∈
A∗, uj ∈ A, j = 1, . . . , k, k = 0, we denote by ni(u), i = 0, . . . , d, the cardinal of
{j ∈ {1, . . . , k};uj = vi}. Let |u| = n0(u)+. . .+nd(u), a length of u, and k u k = |u|+n0(u)
for u ∈ A∗. Let RhAi be the R-algebra of noncommutative polynomials on A, RhhAii be
the R-algebra of noncommutative formal power series on A.
Let r : A∗ \ {1} → L(A) denote the right normed bracketing operator inductively

given by
r(vi) = vi, i = 0, 1, . . . , d,

and
r(viu) = [vi, r(u)], i = 0, 1, . . . , d, u ∈ A∗ \ {1}.

∗partly supported by the 21st century COE program at Graduate School of Mathematical Sciences,
the University of Tokyo
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For any w1 =
P

u∈A∗ a1uu ∈ RhhAii and w2 =
P

u∈A∗ a2uu ∈ RhAi, let us define a
kind of an inner product hw1, w2i by

hw1, w2i =
X
u∈A∗

a1ua2u ∈ R.

Also, we denote by ||w|| hw,wi1/2 for w ∈ RhAi.
Let A∗m = {u ∈ A∗; k u k= m}, m = 0, and let RhAim =

P
u∈A∗mRu, and RhAi5m

=
Pm

k=0RhAik, m = 0. Let jm : RhhAii→ RhAim be natural sujective linear maps such
that jm(

P
u∈A∗ auu) =

P
u∈A∗m auu. Let j5m : RhhAii → RhAi5m be given by j5m =Pm

k=0 jk.

Let A∗∗ =
Sd
i=1{uvi ∈ A∗; u ∈ A∗}, A∗∗m = {u ∈ A∗∗; k u k= m}, and A∗∗5m =

{u ∈ A∗∗; k u k5 m}, m = 1. Let R∗∗hAi be the R-subalgebra of RhAi generated
by 1 and r(u), u ∈ A∗∗. Also, we denote R∗∗hAi ∩ RhAim by R∗∗hAim. We can regard
vector fields V0, V1, . . . , Vd as first differential operators over R

N . Let DO(RN) denotes
the set of linear differential operators with smooth coefficients over RN . Then DO(RN) is
a noncommutative algebra over R. Let Φ : RhAi→ DO(RN ) be a homomorphism given
by

Φ(1) = Identity, Φ(vi1 · · · vin) = Vi1 · · ·Vin , n = 1, i1, . . . , in = 0, 1, . . . , d.

Then we see that

Φ(r(viu)) = [Vi,Φ(r(u))], i = 0, 1, . . . , d, u ∈ A∗ \ {1}.

Now we introduce a condition (UFG) on the family of vector field {V0, V1, . . . , Vd} as
follows.
(UFG) There are an integer `0 and ϕ̃u,u0 ∈ C∞b (RN), u ∈ A∗∗`0+1 ∪ A∗∗`0+2, u0 ∈ A∗∗5`0 ,
satisfying the following.

Φ(r(u)) =
X

u0∈A∗∗5`0

ϕ̃u,u0Φ(r(u
0)), u ∈ A∗∗`0+1 ∪ A∗∗`0+2

For any vector field W ∈ C∞b (RN ;RN), we can think of an ordinary differential equa-
tion on RN

d

dt
y(t, x) = W (y(t, x)),

y(0, x) = x.

We denote y(1, x) by exp(W )(x). Then exp(W ) : RN → RN is a diffeomorphism. We
define a linear operator Exp(W ) in C∞(RN) by

(Exp(W )f)(x) = f(exp(W )(x)), x ∈ RN , f ∈ C∞(RN ).

Since our main result is rather complicated to present, we will explain our result by
using operators introduced by Ninomiya-Victoir [5] in the following. We define a family
of Markov operator Q(s), s > 0, defined on C

∞
b (R

N ;R) by

(Q(s)f)(x)
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=
1

2
E[(Exp(

s

2
V0)Exp(B

1(s)V1) · · ·Exp(Bd(s)Vd)Exp(
s

2
V0)f)(x)]

+
1

2
E[(Exp(

s

2
V0)Exp(B

d(s)Vd) · · ·Exp(B1(s)V1)Exp(
s

2
V0)(x))f)(x)],

f ∈ C∞b (RN ;R).
Then we can show the following result.

Theorem 1 For any T > 0, there are C > 0 and w ∈ R∗∗hAi6 such that

||Qn(T/n)f − PTf − (
T

n
)2
Z T

0

PT−tΦ(w)Ptfdt||∞ 5
C

n3
||f ||∞, f ∈ C∞b (RN), n = T.

We see by the result in [1] that for any T > 0 there is a C 0 > 0 such that

||
Z T

0

PT−tΦ(w)Ptfdt||∞ 5 C 0||f ||∞, f ∈ C∞b (RN ).

Therefore we see that the following.

Corollary 2 For any T > 0 and any bounded measurable function f : RN → R, there
are c > 0 and C > 0 such that

||Qn(T/n)f − PTf −
c

n2
||∞ 5

C

n3
.

This corollary allows us to use the Romberg extrapolation in numerical computation.
We use the notaion in Shigekawa [6] for Malliavin calculus.

2 Preparations

We say that Z : [0,∞)×W0 → RhhAii is an RhhAii-valued continuous semimartingale,
if there are continuous semimartingales Zu, u ∈ A∗, such that Z(t) =

P
u∈A∗ Zu(t)u.

For RhhAii-valued continuous semimartingale Z1(t), Z2(t), we can define RhhAii-valued
continuous semimartingales

R t
0
Z1(s) ◦ dZ2(s) and

R t
0
◦dZ1(s)Z2(s) byZ t

0

Z1(s) ◦ dZ2(s) =
X

u,w∈A∗
(

Z t

0

Z1,u(s) ◦ dZ2,w(s))uw,

Z t

0

◦dZ1(s)Z2(s) =
X

u,w∈A∗
(

Z t

0

Z1w(s) ◦ dZ2,u(s))uw,

where
Z1(t) =

X
u∈A∗

Z1,u(t)u, Z2(t) =
X
w∈A∗

Z2,w(t)w.

Then we have

Z1(t)Z2(t) = Z1(0)Z2(0) +

Z t

0

Z1(s) ◦ dZ2(s) +
Z t

0

◦dZ1(s)Z2(s).
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Since R is regarded a vector subspace in RhhAii, we can define
R t
0
Z(s) ◦ dBi(s),

i = 0, 1, . . . , d, naturally.
Let S be the set of continuous semimartigales. Let us define S : S × A∗ → S and

Ŝ : S × A∗ → S inductively by
S(Z; 1)(t) = Z(t), Ŝ(Z; 1)(t) = Z(t), t = 0, Z ∈ S, (2)

and

S(Z;uvi)(t) =

Z t

0

S(Z, u)(r) ◦ dBi(r),

Ŝ(Z; viu)(t) = −
Z t

0

S(Z, u)(r) ◦ dBi(r), t = 0, (3)

for any Z ∈ S, i = 0, 1, . . . , d, u ∈ A∗. Also, we denote S(1; u)(t) by B(t;u), t = 0,
u ∈ A∗.
We define I : S × A∗ → S inductively by

I(Z; 1)(t) = Z(t), t = 0, Z ∈ S, (4)

and

I(Z;uvi)(t) =

Z t

0

S(Z, u)(r)dBi(r), t = 0, (5)

for any Z ∈ S, i = 0, 1, . . . , d, u ∈ A∗.
Let us consider the following SDE on RhhAii

X̂(t) = 1 +

dX
i=0

Z t

0

X̂(s)vi ◦ dBi(s), t ≥ 0. (6)

One can easily solve this SDE and obtains

X̂(t) =
X
u∈A∗

B(t; u)u.

Let (W0.G,μ) be a Wiener space as in Introduction. Let H denote the associated
Cameron-Martin space, L denote the associated Ornstein-Uhlenbeck operator, andW r,p(E),
r ∈ R, p ∈ (1,∞), be Watanabe-Sobolev space, i.e. W r,p = (I − L)−r/2(Lp(W0;E, dμ))
for any separable real Hilbert space E. Let D denote the gradient operator. Then D
is a bounded linear operator from W r,p(E) to W r−1,p(H ⊗ E). Let D∗ denote the ad-
joint operator of D. ( See Shigekawa [6] for details.) Now let (Ω̃, B̃, P̃ ) be a proba-
bility space and let (Ω,F , P ) = (W0 × Ω̃,G × B̃,μ ⊗ P̃ ). Note that we can narurally
identify Lp(Ω;E, dP ) with Lp(Ω̃;Lp(W0;E, dμ), dP̃ ) for any p ∈ (1,∞) by the map-
ping Ψ given by Ψ(f)(ω̃)(w) = f(w, , ω̃), for (w, , ω̃) ∈ Ω and f ∈ Lp(Ω;E, dP ). Since
W r,p(E) is a subset of Lp(W ;E, dμ) for any p ∈ (1,∞) and r = 0, we can define
Ŵ r,p(E) = Ψ−1(Lp(Ω;W r,p(E), dP )) as a subset of Lp(Ω̃;E, dP̃ ). We identify Ŵ r,p(E)
with Lp(Ω;W r,p(E), dP ). Then Ŵ r,p(E) is a Banch space.
We can define D̂ : Ŵ r,p(E) → Ŵ r−1,p(H ⊗ E) and D̂∗ : Ŵ r,p(H ⊗ E) → Ŵ r−1,p(E)

by D̂ = Ψ−1 ◦D ◦ Ψ and D̂∗ = Ψ−1 ◦D∗ ◦ Ψ. Then D̂ : Ŵ r,p(E) → Ŵ r−1,p(H ⊗ E) and
D̂∗ : Ŵ r,p(H ⊗ E)→ Ŵ r−1,p(E) are continuous for r = q and p ∈ (1,∞).
Also, we define a Frechet space Ŵ∞,∞−(E) by

Ŵ∞,∞−(E) =
∞\
n=1

Ŵ n,n(E).
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3 Gaussian K-Scheme

Let (Ω0,B0, P0) be a probability space, and let (Ω̃, B̃, P̃ ) = (Ω0,B, P0)N. Let (W0.G,μ)
be a Wiener space as in Introduction. Now let (Ω,F , P ) = (W0.G,μ)× (Ω̃, B̃, P̃ ) and we
think on this probability space.
Let Bi : [0,∞) × Ω → Rd, i = 0, 1, . . . , d, and Zn : Ω → Ω0, n = 1, 2, . . . ,

be B0(t, (w, {ω̃k}∞k=1) = t, Bi(t, (w, {ω̃k}∞k=1) = wi(t), i = 1, . . . , d, t ∈ [0,∞), and
Zn(w, {ω̃k}∞k=1) == ω̃n, for (w, {ω̃k}∞k=1) ∈ Ω.
Let s ∈ (0, 1]. Let F (s)

n , n = 1, 2, . . . , be sub σ-algebras of F generated by {W (t); t ∈
[0, ns]}, and {Zk; k = 1, 2, . . . , n}. Now let η̃i(s) : [0, s)×Ω→ R, i = 0, 1, . . . , d,　 be F (s)

1

measurable functions satisfying the following conditions.
(G-1) There exists an ε0 > 0 such that

sup
s∈(0,1]

E[exp(ε0(s
−1
Z s

0

|η̃0(s)(t)|2dt)) +
dX
i=1

(

Z s

0

|η̃i(s)(t)|2dt))] <∞.

(G-2) For any i = 0, 1, . . . , d, Z s

0

η̃i(s)(t)dt = B
i(s).

(G-3) There is a C0 > 0 such that

|EP [
Z s

0

η̃i(s)(t)(

Z t

0

η̃j(s)(r)dr)dt]−
s

2
δ0ij| 5 C0s2, i, j = 0, 1, . . . , d.

Here δ0ij, i, j = 0, . . . , d, be given by

δ0ij ==

½
1, if i = j and 1 5 i 5 d ,
0, otherwise .

(G-4) The map t ∈ [0, s) to η̃i(s)(t) is a measurrable map from [0, s) to Ŵ r,p(R) for any

i = 0, 1, . . . , d, and r = 0, p ∈ (1,∞). Moreover,
D̂2η̃i(s)(t) = 0, t ∈ [0, s),

and

sup
s∈(0,1]

EP [(

Z s

0

||D̂η̃i(s)(t)||2Hdt)p]1/p <∞, t ∈ [0, s)

for any p ∈ (1,∞).
Let θ(s) : Ω→ Ω, s ∈ (0, 1], be given by

θ(s)(w, {ω̃k}∞k=1) = (w(·+ s)− w(s), {ω̃k+1}∞k=1), (w, {ω̃k}∞k=1) ∈ Ω.
We define ηi(s) : [0, s)× Ω→ R, i = 0, 1, . . . , d, by

ηi(s) : (t,ω) = η̃i(s)(t− (n− 1)s, θn−1(s) ω), if t ∈: [(n− 1)s, ns), n = 1, 2, . . . .

Let Y(s) : [0,∞) ×RN × Ω → RN , s ∈ (0, 1], be a solution to the following ordinary
differential equation.

d

dt
Y(s)(t, x) =

dX
i=0

Vi(Y (t, x; s))η
i
(s)(t)
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Y(s)(0, x) = x ∈ RN .

Let Q(s), s ∈ (0, 1], be linear operators in C∞b (RN) given by

(Q(s)f)(x) = E
P [f(Y(s)(s, x)].

Also let Ŷ(s) : [0, 1] × Rd × Ω → RhhAii be a solution to the following ordinary
differential equation.

d

dt
Ŷ(s)(t) =

dX
i=0

Ŷ(s)(t)viη
i
(s)(t)

Ŷ(s)(0) = 1.

Theorem 3 Let m = 2 and assume that

j5m(E
P [Ỹ(s)(s)]) = j5m(exp(s(

1

2

dX
i=1

v2i + v0)).

Then for any T > 0, there is a CT > 0 for which

||PTf −Qn(T/n)f ||∞ 5
CT

n(m−1)/2
||f ||∞, f ∈ C∞b (RN), n = T.

Theorem 4 Let m = 2 and assume that there is a w0 ∈ R∗hAim+1 such that

j5m+2(E
P [Ỹ(s)(s)]) = s

(m+1)/2)w0 + j5m+2(exp(s(
1

2

dX
i=1

v2i + v0)).

Then w0 ∈ R∗∗hAim+1 and for any T > 0, there is a CT > 0 for which

||PTf −Qn(T/n)f + (
T

n
)(m−1)/2

Z T

0

PT−tΦ(w)Ptfdt||∞ 5
CT

n(m+1)/2
||f ||∞

for any f ∈ C∞b (RN ), n = T.

We give two examples for the above Theorem.
Example 1(Ninomiya-Victoir)
Let Ω0 = {0, 1} and P0({0}) = P0({1}) = 1/2. Let us define η̃i(s) : [0, s) × Ω → R,

i = 0, 1, . . . , d,　 by the following.

η̃i(s)(t, (w, {ω̃}∞k=1))

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(d+ 1)s−1Bi(s), if t ∈ [ 2i−1
2d+2

s, 2i+1
2d+2

s), i = 1, . . . , d, and ω̃1 = 0 ,

(d+ 1)s−1Bi(s), if t ∈ [2d−2i+1
2d+2

s, 2d−2i+3
2d+2

s), i = 1, . . . , d, and ω̃1 = 1 ,

d+ 1, if t ∈ [0, 1
2d+2

s) ∪ (2d−1
2d+2

s, s), i = 0,

0 otherwise .
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Then the assumption (G-1)-(G-4) are satisfied and the assumption of Theorem 4 for
m = 5 is satisfied. Moreover, the operaor Q(s) is the same as the one given in Introduction.
Therefore Theorem 1 is a corolary to Theorem 4.
Example 2(Ninomiya-Ninomiya)
Let Ω0 = R

d, and P0(dz) = (2π)
−N/2 exp(−|z|2/2)dz. Let us define η̃i(s) : [0, s)×Ω→ R,

i = 0, 1, . . . , d,　 by the following.

η̃0(s)(t, (w, {zk}∞k=1)) =
½
0, t ∈ [0, s/2),
2, t ∈ [s/2, s),

and

η̃i(s)(t, (w, {zk}∞k=1)) =
½

2s−1/2zi1, t ∈ [0, s/2),
2s−1Bi(s)− 2s−1/2zi, t ∈ [s/2, s),

for i = 1, . . . , d.
Then the assumption (G-1)-(G-4) are satisfied and the assumption of Theorem 4 for

m = 5 is satisfied.
This example has been introduced by Ninomiya-Ninomiya [4]. Actually Theorem 4

applies to all examples given in [4].

4 Approximation of SDE

From now on, we assume that the conditions (G-1)-(G-4) are satisfied.
Let δ0ij(s), s ∈ (0, 1], i, j = 0, . . . , d, be given by

δ0ij(s) = E
P [

Z s

0

η̃i(s)(t)(

Z t

0

η̃j(s)(r)dr)dt]−
s

2
δ0ij

Then by the condition (G-3)

|δij(s)| 5 C0s2, s ∈ (0, 1], i, j = 0, . . . , d.

Also, let dij(s)(n) : Ω̃→ R, s > 0, i, j = 0, . . . , d, n = 1, 2, . . . , be given by

dij(s)(n) =

Z ns

(n−1)s
dr1η

i
(s)(r1)(

Z r1

(n−1)s
dr1η

j
(s)(r2))−

s

2
δ0ij − δ0ij(s).

Then from the assumptions (G-1)-(G-3), we see that dij(s) is F
(s)
n -measurable and

E[dijs (n)|F (s)
n−1] = 0, i, j = 0, . . . , d, n ≥ 0.

Since

|dijs (n)| 5 s(1 + C0 +
dX
k=0

Z ns

(n−1)s
|ηk(s)(r)|2dr),

we see from the assumption (G-1) that for any p ∈ (1,∞) there is a constant Cp > 0 such
that

E[|dijs (n)|2p|F (s)
n−1] 5 Cps2p, s ∈ (0, 1], n = 1, 2, 3, . . . . (7)
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Proposition 5 For any T > 0

sup
x∈RN

sup
s∈(0,1]

s−1/3E[ max
t∈[0,T ]

|X(t, x)− Y(s)(t, x)|p]1/p <∞.

Note that

f(Y(s)(t, x)) = f(Y(s)((n− 1)s, x)) +
dX
i=0

Z t

(n−1)s
(Vif)(Y(s)(r, x))η

i
(s)(r)dr

for any f ∈ C∞(RN). Therefore we see that for t ∈ [(n− 1)s, ns),

Y(s)(t, x) = Y(s)((n− 1)s, x) +
dX
i=0

Z t

(n−1)s
Vi(Y(s)(r, x))η

i
(s)(r)dr

= Y(s)((n− 1)s, x) +
dX
i=0

Vi(Y(s)((n− 1)s, x))
Z t

(n−1)s
ηi(s)(r)dr

+
dX

i1,i2=0

Z t

(n−1)s
dr1η

i1
(s)(r1)(

Z r1

(n−1)s
(Vi2(Vi1))(Y(s)(r2, x))η

i2
(s)(r2)dr2).

Therefore we see that

max
t∈[(n−1)s,ns)

|Y(s)(t, x)− Y(s)((n− 1)s, x)|

5 s1/2(1 + d)( max
i=0,...,d

||Vi||∞)(
dX
i=0

Z ns

(n−1)s
|ηi(s)(r)|2dr)1/2 (8)

and
Y(s)(ns, x)

= Y(s)((n− 1)s, x) +
dX
i=0

Vi(Y(s)((n− 1)s, x))(Bi(ns)− Bi((n− 1)s))

+
1

2

dX
i=1

(Vi(Vi))(Y(s)((n− 1)s, x))s+
dX

i1,i2=0

(Vi2(Vi1))(Y(s)((n− 1)s, x))di1,i2(s) + R(s)(n, x),

where
R(s)(n, x)

=
dX

i1,i2=0

(Vi2(Vi1))(Y(s)((n− 1)s, x))d0ij(s)

+

dX
i1,i2,i3=0

Z t

(n−1)s
dr1η

i1
(s)(r1)(

Z r1

(n−1)s
dr2η

i2
(s)(r2)(

Z r2

(n−1)s
(Vi3(Vi2(Vi1)))(Y(s)(r3, x))η

i3
(s)(r3)dr3)).

Then we see that
|R(s)(n, x)|
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5 s2(d+ 1)2C0( max
i=0,...,d

||Vi||C2b ) + s
3/2(d+ 1)3( max

i=0,...,d
||Vi||C3b )(

dX
i=0

Z ns

(n−1)s
|ηi(s)(r)|2dr)3/2.

Also, we see that
X(ns, x)

= X((n− 1)s, x) +
dX
i=0

Vi(X((n− 1)s, x))(Bi(ns)− Bi((n− 1)s))

+
1

2

dX
i=1

(Vi(Vi))(X((n− 1)s, x))s+ R(n, x; s),

where
R(n, x, s)

=

dX
i1,i2,i3=0

Z t

(n−1)s
◦dBi1(r1)(

Z r1

(n−1)s
◦dBi2(r2)(

Z r2

(n−1)s
(Vi3(Vi2(Vi1)))(X(r3, x)) ◦ dBi3(r3))).

Then we can easily see that

sup
s∈(0,1]

sup
x∈RN

max
n=1,...,[T/s]

s−3/2(||R(s)(n, x)||Lp + ||R(n;x, s)||Lp) <∞ (9)

for any T > 0 and p ∈ (1,∞).
Note that

X(ns, x)− Y(s)(ns, x)
= X((n−1)s, x)−Y(s)((n−1)s, x)+(M0,s(n, x)−M0,s(n−1, x))+(M1,s(n, x)−M1,s(n−1, x))

+
dX
i=0

(Vi(X((n− 1)s, x))− Vi(Y(s)((n− 1)s, x)))(Bi(ns)− Bi((n− 1)s))

+R(n;x, s)−R(s)(n, x).
Here

M0,s(n) =

nX
k=1

dX
i=0

(Vi(X((k − 1)s, x))− Vi(Y(s)((k − 1)s, x)))(Bi(ks)− Bi((k − 1)s))

and

M1,s(n, x) =

nX
m=1

dX
i,j=0

(Vj(Vi))(Y(s)((n− 1)s, x))di,j(s).

Let
A(n; s, x) = max

k=1,...,n
|X(ns, x)− Y(s)(ns, x)|.

Then we have

A(n; s, x) 5
1X
j=0

max
n=1,...,[T/s]

|Mj,s(n, x)|+
[T/s]X
n=1

(|R(n; x, s)|+ |R(s)(n, x)|).

9



Since {Mj,s(n, x)}∞n=0, j = 0, 1 is an F (s)
n martingale, by Burkholder-Davis-Gundy’s

inequality we see that for any p ∈ (2,∞) there is a C 0p > 0 such that

E[| max
k=1,...,n

|M0,s(k, x)|p]

5 C 0pE[(
nX
k=1

dX
i=0

|(Vi(X((k − 1)s, x))− Vi(Y(s)((k − 1)s, x)))|2(Bi(ks)−Bi((k − 1)s))2)p/2]

5 C 0pE[(n(d+ 1))(p−2)/2(
nX
k=1

dX
i=0

|(Vi(X((k − 1)s, x))− Vi(Y(s)((k − 1)s, x)))|p

×|Bi(ks)− Bi((k − 1)s)|p)]
and

E[ max
n=1,...,[T/s]

|M1,s(n, x)|p] 5 C 0pE[(
[T/s]X
n=1

dX
i,j=0

|Vj(Vi))(Y(s)((n− 1)s, x))|2|di,j(s)(n)|2)p/2].

Therefore we see by Equation (7) that

sup
s∈(0,1]

sup
x∈RN

s−1/3E[| max
n=1,...,[T/s]

|M1,s(n, x)|p]1/p <∞, T > 0, p ∈ (2,∞),

and there is a C > 0 for each p ∈ (2,∞) such that

E[| max
k=1,...,n

|M0,s(k, x)|p] 5 C(ns)(p−2)/2s
nX
k=1

E[A(k−1; s, x)p], n = 0, s ∈ (0, 1], x ∈ RN .

Let p ∈ (2,∞) and let b(n; s, x) = Pn
k=1E[A(n; s, x)

p], n = 0, s ∈ (0, 1], x ∈ RN . Then
combining with Equation (9), we see that for any p ∈ (2,∞), and T > 0 there is a constant
C > 0 such that

b(n; s, x)− b(n− 1; s, x) 5 C(sb(n− 1; s, x) + s1/3)

for any n = 1, 2, . . . , [T/s], s ∈ (0, 1], and x ∈ RN . Then we have

(1 + Cs)−nb(n; s, x) 5 nCs1/3

and so
E[A(n; s, x)p] 5 Cns exp(Csn)s1/3

for any n = 1, 2, . . . , [T/s], s ∈ (0, 1], and x ∈ RN . This implies

sup
x∈RN

sup
s∈(0,1]

s−1/3E[ max
n=1,...,[T/s]

|X(ns, x)− Y(s)(ns, x)|p]1/p <∞, T > 0. (10)

Also, by Equation (8) we have for T > 0

E[ max
n=1,...,[T/s]

max
t∈[(n−1)s,ns)

|Y(s)(t, x)− Y(s)((n− 1)s, x)|2p]

10



5 E[
[T/s]X
n=1

max
t∈[(n−1)s,ns)

|Y(s)(t, x)− Y(s)((n− 1)s, x)|2p]

5 sp[T/s](d+ 1)2p( max
i=0,...,d

||Vi||∞)2p
dX
i=0

E[(

Z s

0

|η̃i(s)(r)|2dr)p].

Therefore by (G-1) we see that for any p ∈ (1,∞) and T > 0

sup
x∈RN

sup
s∈(0,1]

s−1/3E[ max
n=1,...,[T/s]

max
t∈[(n−1)s,ns)

|Y(s)(t, x)− Y(s)((n− 1)s, x)|p]1/p <∞.

Similarly we have

sup
x∈RN

sup
s∈(0,1]

s−1/3E[ max
n=1,...,[T/s]

max
t∈[(n−1)s,ns)

|X(t, x)−X((n− 1)s, x)|p]1/p <∞.

These and Equation (10) imply our assertion.

5 Approximation of Linear SDE

Let M = 1, a0 ∈ RM and ci,jk ∈ C∞b (RN ;R), i = 0, 1, . . . , d and j, k = 1, . . .M.
Let A : [0,∞)×RN × Ω → RM and Let Z(s) : [0,∞) ×RN × Ω → RM be solutions

to the following equations.

Aj(t;x) = a0 +

dX
i=0

MX
k=1

Z t

0

ci,jk(X(r, x))Ak(r; x) ◦ dBi(r). (11)

Z(s),j(t; x) = a0 +
dX
i=0

MX
k=1

Z t

0

ci,jk(Y(s)(r, x))Z(s),k(r;x)η
i
(s)(r)dr. (12)

Proposition 6 For any T > 0 and p ∈ (1,∞)

sup
x∈RN

sup
s∈(0,1]

E[ max
t∈[0,T ]

|Z(s)(t, x)|p] <∞.

Proof. It is easy to see that for F ∈ C∞b (RN ;RM), j = 1, . . .m,

d

dt
(F (Y(s)(t, x)) · Z(s)(t, x))) =

dX
i=0

F̃i(Y(s)(t, x);F ) · Z(s)(t, x))ηi(s)(t),

where

F̃i,j(x;F ) =

MX
k=1

Fk(x)ci,kj(x) + ViFj(x) x ∈ RN , j = 1, . . . ,M.

Note that
d

dt
log(1 + |Z(s)(t, x))|2)

= (1 + |Z(s)(t, x))|2)−1
dX
i=0

MX
j,k=1

Z(s),j(t, x)ci,jk(Y(s)(r, x))Z(s),k(t; x)η
i
(s)(t),

11



and so

| d
dt
log(1 + |Z(s)(t, x)|2)| 5

dX
i=0

MX
j,k=1

||ci,jk||∞|ηi(s)(t)|.

So we have
max

t∈[(n−1)s,ns)
(1 + |Z(s)(t, x))|2)

5 (1 + |Z(s)((n− 1)s, x)|2) exp(γ0s1/2(
dX
i=1

Z ns

(n−1)s
|ηi(s)(t)|2dt)1/2) (13)

where γ0 =
Pd

i=0

PM
j,k=1 ||ci,jk||∞.

Also, we see that there are bounded smooth functions G1,i : R
N × RM → R, i =

0, 1 . . . d, and G2,ij : R
N ×RM → R, i, j = 0, 1 . . . d, such that

log(1 + |Z(s)(ns, x)|2)− log(1 + |Z(s)((n− 1)s, x)|2)

=

dX
i=0

G1,i(Y(s)((n− 1)s, x), Z(s)((n− 1)s, x))(Bi(ns)− Bi((n− 1)s)) + R̂(s)(n, x),

and
R̂(s)(n, x)

=

dX
i1,i2=0

Z ns

(n−1)s
dr1η

i1
(s)(r1)(

Z r1

(n−1)s
dr2η

i2
(s)(r2)G2,i1.i2(Y(s)(r2, x), Z(s)(r2, x))

Note that

|R̂(s)(n, x)| 5 (
dX

i1,i2=0

||G2,i1.i2 ||∞)s
dX
j=0

Z ns

(n−1)s
ηj(s)(r)

2dr

Since esx 5 1 + s(ex − 1) for any x = 0 and s ∈ (0, 1], we see from the assumption (G-1)

sup
s∈(0,1/γ]

E[exp(sγ

[T/s]X
n=1

dX
j=0

Z ns

(n−1)s
ηj(s)(r)

2dr)]

5 sup
s∈(0,1/γ]

(1 +
sγ

ε0
E[exp(ε0

dX
i=0

(

Z s

0

|η̃i(s)(t)|2dt))])[T/s] <∞ (14)

for any γ > 1 and T > 0. Also we see that

exp(

nX
k=1

(γ

dX
i=1

G1,i(Y(s)((k − 1)s, x), Z(s)((k − 1)s, x))(Bi(ks)− Bi((k − 1)s)))

−γ
2s

2

dX
i=1

G1,i(Y(s)((k − 1)s, x), Z(s)((k − 1)s, x))2)

is a {F (s)
n }n=0-martingale for any γ > 0. Also it is obvious from Equation (13) that

sup
x∈RN

sup
s∈(s0,1]

E[ max
n=1,...,[T/s]

(1 + |Z(s)(ns, x)|2)p] <∞

12



for any s0 > 0 and T > 0. So we seefrom Equation (13) and (14) that

sup
x∈RN

sup
s∈(0,1]

E[ max
n=1,...,[T/s]

(1 + |Z(s)(ns, x)|2)p] <∞.

By Equation (13) we see that

sup
t∈[0,T ]

(1 + |Z(s)(t, x)|2)

5 max
n=0,...,[T/s]

(1 + |Z(s)(ns, x)|)2) exp(γ0s1/2
dX
i=0

Z (n+1)s

ns

|ηi(s)(r)|dr).

Since (1+|Z(s)(ns, x)|)2 and
Pd

i=0

R (n+1)s
ns

|ηi(s)(r)|dr are independent, we have by Burkholder’s
inequality

E[ sup
t∈[0,T ]

(1 + |Z(s)(t, x)|2)p]1/p

5 κ(s)E[ max
n=0,...,[T/s]

(1 + |Z(s)(ns, x)|2)p]1/p

+CpE[(

[T/s]X
n=0

{(1 + |Z(s)(ns, x)|2)2(exp(γ0s1/2(
dX
i=0

Z (n+1)s

ns

|ηi(s)(r)|2)1/2dr)− κ(s))2)p/2]1/p

5 E[ max
n=0,...,[T/s]

(1 + |Z(s)(ns, x)|2)2p]1/2p

×(κ(s) + CpE[(
[T/s]X
n=0

(exp(γ0s
1/2

dX
i=0

Z (n+1)s

ns

|ηi(s)(r)|dr)− κ(s))2)p]1/2p

where

κ(s) = E[exp(γ0s
1/2(

dX
i=0

Z s

0

|ηi(s)(r)|2dr)1/2)].

This implies our assertion.
By using Proposition 6, we can prove the following similarly to Proposition 5.

Proposition 7 For any T > 0 and p ∈ (1,∞)

sup
x∈RN

sup
s∈(0,1]

s−1/3E[ max
t∈[0,T ]

||A(t, x)− Z(s)(t, x)||p]1/p <∞.

Corollary 8 For any T > 0 and p ∈ (1,∞)

sup
x∈RN

sup
s∈(0,1]

s−1/3E[ max
t∈[0,T ]

||∇X(t, x)−∇Y(s)(t, x)||p]1/p <∞.

and
sup
x∈RN

sup
s∈(0,1]

s−1/3E[ max
t∈[0,T ]

||(∇X(t, x))−1 − (∇Y(s)(t, x))−1||p]1/p <∞.
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Proof. Since

d∇X(t, x) =
dX
i=0

∇Vi(X(t, x)) ◦ dBi(t)

and
d

dt
∇Y(s)(t, x) =

dX
i=0

∇Vi(Y(s)(t, x))ηi(s)(t),

we have our first assertion from Proposition 7.

Proposition 9 For any T > 0, m = 0, p ∈ (1,∞) and any multi-index α ∈ ZN=0

sup
x∈RN

sup
s∈(0,1]

s−1/3E[ max
t∈[0,T ]

|| ∂
α

∂xα
D̂m(X(t, x)− Y(s)(t, x))||pH⊗m⊗RN ]

1/p <∞.

Proof. Note that for any h ∈ H

d

dt
D̂Y(s)(t, x)(h)

=

dX
i=0

∇Vi(Y(s)(t, x))D̂Y(s)(t, x)(h)ηi(s)(t) +
dX
i=0

Vi(Y(s)(t, x))D̂η
i
(s)(t)(h).

Therefore we have
(∇Y(s)(t, x))−1D̂Y(s)(t, x)(h)

=

dX
i=0

Z t

0

(∇Y(s)(r, x))−1Vi(Y(s)(r, x))D̂ηi(s)(r)(h)dr

and so
(∇Y(s)(ns, x))−1D̂Y(s)(ns, x)(h)

dX
i=1

nX
k=1

(∇Y(s)((k − 1)s, x))−1Vi(Y(s)((k − 1)s, x))(hi(ks)− hi((k − 1)s) + R0(n; s, x)(h),

where
R0(n; s, x)(h)

=
nX
k=1

dX
i=0

Z ks

(k−1)s
((∇Y(s)(r, x))−1Vi(Y(s)(r, x))− (∇Y(s)((k − 1)s, x))−1Vi(Y(s)((k − 1)s, x))

D̂ηi(s)(r)(h)dr.

Since ηi(s)(r), r ∈ ((k−1)s, ks), i = 0, 1, . . . , d is σ{B(u)−B((k−1)s); u ∈ ((k−1)s, ks)}∨
σ{Zk}-measurable, k = 1, 2, . . . , we see that

||R0(n; s, x)||2H

=

nX
k=1

||
dX
i=1

Z ks

(k−1)s
((∇Y(s)(r, x))−1Vi(Y(s)(r, x))− (∇Y(s)((k−1)s, x))−1Vi(Y(s)((k−1)s, x))
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D̂ηi(s)(r)dr||2H

5 d2s
nX
k=1

dX
i=1

max
r∈[(k−1)s,ks]

|(∇Y(s)(r, x))−1Vi(Y(s)(r, x))−(∇Y(s)((k−1)s, x))−1Vi(Y(s)((k−1)s, x)|2

×(
Z ks

(k−1)s
||D̂ηi(s)(r)||2Hdr)

and so we see by the assumption (G-4) that

sup
x∈RN

sup
s∈(0,1]

s−1/3E[ max
n=1,2,...[T/s]

||R0(n; s, x)||pH ]1/p <∞

for any p ∈ (1,∞) and T > 0. Note that

(∇X(t, x))−1D̂X(t, x)(h)

=

dX
i=0

Z t

0

(∇X(r, x))−1Vi(X(r, x))
dhi

dr
(r)dr.

So by Propositions 5 and 7, we have the assetion for m = 1.
Also, we have our assertion inductively in m and α.
Similarly we have the following.

Proposition 10 Let A and Z(s) be the solutions to Equations (11) and (12). For any
T > 0, m = 0, p ∈ (1,∞) and any multi-index α ∈ ZN=0

sup
x∈RN

sup
s∈(0,1]

s−1/3E[ max
t∈[0,T ]

|| ∂
α

∂xα
D̂m(A(t, x)− Z(s)(t, x))||pH⊗m⊗RM ]

1/p <∞.

6 Structure of vector fields

From now on, we assume that that the condition (UFG) and the conditions (G-1)-(G-4)
are satisfied.
Let J ji (t, x) =

∂
∂xi
Xj(t, x). Then for any C∞b vector field W on RN , we see that

(X(t)∗W )(X(t, x)) =
PN

j=1 J
i
j(t, x)W

j(x), where X(t)∗ is a push-forward operator with

respect to the diffeomorphism X(t, ·) : RN → RN . Therefore we see that

d(X(t)−1∗ W )(x) =
dX
i=0

(X(t)−1∗ [Vi,W ])(x) ◦ dBi(t)

for any C∞b vector field W on RN (cf. [2]). So we have

d(X(t)−1∗ Φ(r(u)))(x)

=

dX
i=0

(X(t)−1∗ Φ(r(viu)))(x) ◦ dwi(t),

for any u ∈ A∗ \ {1}.
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Also, we see that
d

dt
(Y(s)(t)

−1
∗ Φ(r(u)))(x)

=
dX
i=0

(Y(s)(t)
−1
∗ Φ(r(viu)))(x)η

i
(s)(t),

for any u ∈ A∗ \ {1}.

Proposition 11 There are ϕu,u0 ∈ C∞b (RN), u ∈ A∗∗, u0 ∈ A∗∗5`0 such that

Φ(r(u)) =
X

u0∈A∗∗5`0

ϕu,u0Φ(r(u
0)), u ∈ A∗∗.

Proof. It is obivious that our assertion is valid for u ∈ A∗∗5`0+2. Suppose that our assertion
is valid for any u ∈ A∗∗5m, m = `0. Then we have for any i = 0, 1, . . . , d and u ∈ A∗∗5m,

Φ(r(viu)) = [Vi,Φ(r(u))] =
X

u0∈A∗∗5`0

[Vi,ϕu,u0Φ(r(u
0))]

=
X

u0∈A∗∗5`0

(Viϕu,u0)Φ(r(u
0)) +

X
u0∈A∗∗5`0

ϕu,u0Φ(r(viu
0))

=
X

u0∈A∗∗5`0

(Viϕu,u0)Φ(r(u
0)) +

X
u0,u00∈A∗∗5`0

ϕu,u0ϕu0,u00Φ(r(u
00))

So we see that our assertion is valid for any u ∈ A∗∗5m+1. Thus by induction we have our
Proposition.
Let m = `0. Let c(m)i (·, u, u0) ∈ C∞b (RN ,R), i = 0, 1, . . . , d, u, u0 ∈ A∗∗5m, be given by

c
(m)
i (x; u, u0) =

⎧⎨⎩
1, if ||viu|| 5 m and u0 = viu,
ϕviu,u0(x), if ||viu|| > m and ||u0|| 5 `0,
0, otherwise.

Here ϕviu,u0 is one as in Proposition 11. Then we have

d(X(t)−1∗ Φ(r(u)))(x)

=

dX
i=0

X
u0∈A∗∗5m

(c
(m)
i (X(t, x); u, u0)(X(t)−1∗ Φ(r(u

0)))(x) ◦ dBi(t), u ∈ A∗∗5m,

and
d

dt
(Y(s)(t)

−1
∗ Φ(r(u)))(x)

=
dX
i=0

X
u0∈A∗∗5m

(c
(m)
i (X(t, x); u, u0)(Y(s)(t)

−1
∗ Φ(r(u

0)))(x)ηi(s)(t).

16



Note that c
(m)
i (·; u, u0) ∈ C∞b (RN). As is shown in [1], there exists a solution a(m)(t, x;u, u0),

u, u0 ∈ A∗∗5m, to the following SDE

da(m)(t, x;u, u0) =
dX
i=0

X
u00∈A∗∗5m

(c
(m)
i (X(t, x); u, u00)a(m)(t, x;u00, u0)) ◦ dBi(t). (15)

a(m)(0, x; u, u0) = hu, u0i,
such that
(1) a(m)(t, x; u, u0) is smooth in x and ∂α

∂xα
a(m)(t, x; u, u0) is continuous in (t, x) ∈ [0,∞)×

RN for any multi-indez α ∈ ZN=0 with probability one,
and
(2) for any multi-indez α ∈ ZN=0 and T > 0

sup
x∈RN

E[ sup
t∈[0,T ]

| ∂
α

∂xα
a(m)(t, x;u, u0)|p] <∞.

Then the uniqueness of SDE implies

(X(t)−1∗ Φ(r(u)))(x) =
X

u0∈A∗∗5m

a(m)(t, x;u, u0)Φ(r(u0))(x), u ∈ A∗∗5m. (16)

Similarly we see that there exists a unique good solution b(m)(t, x;u, u0), u, u0 ∈ A∗∗5m,
to the SDE

b(m)(t, x; u, u0) = hu, u0i−
dX
i=0

X
u00∈A∗∗5m

Z t

0

(b(m)(r, x; u, u00))(c(m)i (X(r, x);u00, u0)) ◦ dBi(r).

(17)
Then we see thatX

u00∈A∗∗5m

a(m)(t, x, u, u00)b(m)(t, x, u00, u) = hu, u0i, u, u0 ∈ A∗∗5m,

and so we see that

Φ(r(u))(x) =
X

u0∈A∗∗5m

b(m)(t, x;u, u0)(X(t)−1∗ Φ(r(u
0)))(x), u ∈ A∗∗5m. (18)

Also, there exists a solution a
(m)
(s) (t, x; u, u

0), b(m)(s) (t, x;u, u
0) u, u0 ∈ A∗∗5m, to the following

ODE

d

dt
a
(m)
(s) (t, x;u, u

0) =
dX
i=0

X
u00∈A∗∗5m

(c
(m)
i (Y(s)(t, x); u, u

00)a(m)(s) (t, x;u
00, u0))ηi(s)(t). (19)

a
(m)
(s) (0, x; u, u

0) = hu, u0i.
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and

d

dt
b
(m)
(s) (t, x;u, u

0) = −
dX
i=0

X
u00∈A∗∗5m

b
(m)
(s) (t, x; u

0, u00))(c(m)i (Y(s)(t, x);u
00, u0)ηi(s)(t). (20)

a
(m)
(s) (0, x; u, u

0) = hu, u0i.
Then we see that

(Y(s)(t)
−1
∗ Φ(r(u)))(x) =

X
u0∈A∗∗5m

a
(m)
(s) (t, x; u, u

0)Φ(r(u0))(x), u ∈ A∗∗5m. (21)

Φ(r(u))(x) =
X

u0∈A∗∗5m

b
(m)
(s) (t, x;u, u

0)(Y(s)(t)
−1
∗ Φ(r(u

0)))(x), u ∈ A∗∗5m. (22)

Then we have the following similarly to proofs of Propositions prop:5 and prop:6.

Proposition 12 For any T > 0 α ∈ ZN=0, and u, u0 ∈ A∗∗5m

sup
x∈RN

sup
s∈(0,1]

s−1/3E[ max
t∈[0,T ]

|| ∂
α

∂xα
D̂n(a(m)(t, x; u, u0)− a(m)(s) (t, x; u, u

0))||pH⊗n]1/p <∞

sup
x∈RN

sup
s∈(0,1]

s−1/3E[ max
t∈[0,T ]

|| ∂
α

∂xα
D̂n(b(m)(t, x; u, u0)− b(m)(s) (t, x;u, u

0))||pH⊗n]1/p <∞

Let
R∗m,0 = A

∗
m−1 ∪ A∗m R∗m,i = A

∗
m, i = 1, . . . , d,

and

R∗m =
d[
i=0

{viu;u ∈ R∗m,i, ||u|| = m}. (23)

Then we have the following.

Proposition 13 For any m = `0 + 1,

a(m)(t, x, u, u0)

=
X

u1∈A∗5m

hu1u, u0iB(t;u1)

+
X

u1∈A∗:u1u∈R∗m

X
u2∈A∗∗5`0

S(ϕu1u,u2(X(·, x))a(m)(·, x, u2, u0), u1)(t)

for any t ∈ [0,∞), x ∈ RN , and u, u0 ∈ A∗∗5m.

18



Proof. Note that for u, u0 ∈ A∗∗5m

a(m)(t, x;u, u0)

= hu, u0i+
dX
i=0

X
u1∈A∗∗5m

S(c
(m)
i (X(·, x);u, u1)a(m)(·, x; u1, u0), vi)(t).

So the assertion is obvious from the definition, if ||u|| = m. If ||u|| = m− 1, we have

a(m)(t, x;u, u0)

= hu, u0i+
dX
i=1

S(hviu, u0ia(m)(·, x; viu, u0), vi)(t)

+
X

u1∈A∗∗5`0

S(ϕv0u,u1(X(·, x))a(m)(·, x, u1, u0), v0)(t)

= hu, u0i+
dX
i=1

hviu, u0iS(1, vi)(t)

+
dX
i=1

dX
j=0

X
u1∈A∗∗5`0

S(S(ϕvjviu,u1(X(·, x))a(m)(·, x, u1, u0), vj), vi)(t)

+
X

u1∈A∗∗5`0

S(ϕv0u,u1(X(·, x))a(m)(·, x, u1, u0), v0)(t).

So we have our assertion. Similarly by induction in m− ||u|| we have our assertion.

Corollary 14 For any m = `0 + 1,

a(m)(t, x; u, u0)

= hX̂(t)u, u0i
+

X
u1∈A∗:u1u∈R∗m

X
u2∈A∗5`0

S(ϕu1u,u2(X(·, x))a(m)(·, x; u2, u0), u1)(t)

for any t ∈ [0,∞), x ∈ RN , and u, u0 ∈ A∗∗5m.

Similarly we have the following .

Proposition 15 For any m = `0 + 1,

b(m)(t, x; u, u0)

= hX̂(t)−1u, u0i

+

dX
i=0

X
u1∈A∗,u2∈A∗5`0 :u

0=u1u2

X
u3∈R∗m,i

S̃(b(m)(·, x;u, u3)ϕviu3,u2(X(·, x)), u1)(t)
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= hX̂(t)−1u, u0i

+
dX
i=0

X
u1∈A∗,u2∈A∗5`0 :u

0=u1u2

X
u3∈R∗m,i

S̃(hX(·)−1u, u3iϕviu3,u2(X(·, x)), u1)(t)

+

dX
i,j=0

X
u1∈A∗,u2∈A∗5`0 :u

0=u1u2

X
u3∈R∗m,i

X
u4∈A∗,u5∈A∗5`0 :u3=u4u5

X
u6∈R∗m,j

S̃(S̃(b(m)(·, x; u, u6)ϕviu6,u5(X(·, x)), u4)ϕviu3,u2(X(·, x)), u1)(t)
for any t ∈ [0,∞), x ∈ RN , and u, u0 ∈ A∗∗5m.

Finally let y0 : R×RN → RN be a solution to the following ODE.

d

dt
y0(t, x) = V0(y0(t, x)), t ∈ R

y(0, x) = x ∈ RN .

Let c0(·;u, u0) ∈ C∞b (RN), u, u0 ∈ A∗5`0 be given by

c0(x, u, u
0) =

⎧⎨⎩
1, if ||u|| 5 `0 − 1 and u0 = v0u,

ϕv0u,u0(x), if ||u|| = `0 − 1,
0, otherwise .

Let a0(t, x; u, u
0), b0(t, x; u, u0), u, u0 ∈ A∗5`0 be solutions to the following ODE.

d

dt
a0(t, x;u, u

0) =
X

u00∈A∗5`0

c(y0(t, x), u, u
00)a0(t, x; u

00, u0)

d

dt
b0(t, x;u, u

0) = −
X

u00∈A∗5`0

b0(t, x; u, u
00)c(y0(t, x), u

00, u)

a0(0, x, u, u
0) = b0(0, x, u, u

0) = hu, u0i
Then we see that

y0(t)
−1
∗ r(u) =

X
u0∈A∗5`0

a0(t, x, u, u
0)r(u0) (24)

r(u) =
X

u0∈A∗5`0

b0(t, x, u, u
0)(y0(t)

−1
∗ r(u

0)) (25)

for any u ∈ A∗5`0.
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7 A certain class of Wiener functionals

For any separable real Hilbert space E let K̂0(E) be the set of F : (0,∞)×RN ×Ω→ E
such that
(1) F (t, ·,ω) : RN → E is smooth for any t ∈ (0,∞) and ω ∈ Ω,
(2) ∂αF/∂xα(·, ∗,ω) : (0,∞)×RN → E is continuous for any ω ∈ Ω and α ∈ ZN=0,
(3) ∂αF/∂xα(t, x, ·) ∈ Ŵ r,p for any r, p ∈ (1,∞), α ∈ ZN=0, t ∈ (0,∞) and x ∈ RN ,

and
(4) for any r, p ∈ (1,∞), α ∈ ZN=0, and T > 0

sup
t∈(0,T ]

sup
x∈RN

|| ∂
α

∂xα
F (t, x)||Ŵ r,p <∞.

Then it is easy to see the following.

Proposition 16 (1) Let F ∈ K̂0(E) and γ = 0. Let F̃i : (0,∞) × RN × Ω → E, i =
0, . . . , d be given by

F̃0(t, x) = t
−(γ+||vi||/2)

Z t

0

rγF (r, x)dBi(r) (t, x) ∈ (0,∞)×RN .

Then F̃i ∈ K̂0(E), i = 0, 1 . . . , d, if we take a good version.
(2) Let Fi ∈ K̂0(E), c ∈ C∞b (RN ;E). Let F̃ : (0,∞)×RN × A∗ × Ω→ E, be given by

F̃ (t, x; 1) = c(x) +

dX
i=0

Z t

0

Fi(r, x)dB
i(r),

and
F̃ (t, x;u) = S(F̃ (·, x);u)(t)

for (t, x) ∈ (0,∞)×RN . Then t−||u||/2F̃ (t, x;u) ∈ K̂0(E), if we take a good version.
Let us define k(m) : [0,∞)×RN × A∗∗5m × Ω→ H by

k(m)(t, x;u) = (

Z t∧·

0

a(m)(r, x; vi, u)dr)i=1,...d.

Let M (m)(t, x) = {M (m)(t, x; u, u0)}u,u0∈A∗∗5m be a matrix-valued random variable given by

M (m)(t, x; u, u0) = t−(||u||+||u
0||)/2(k(m)(t, x;u), k(m)(t, x;u0))H .

Then it has been shown in [1]

sup
t∈(0,T ]

sup
x∈RN

EP [|detM (m)(t, x)|−p] <∞ for any p ∈ (1,∞) and T > 0.

Let M (m)−1(t, x) = {M (m)−1(t, x;u, u0)}u,u0∈A∗∗5m be the inverse matrix of M
(m)(t, x)

Note that

||D̂n ∂
α

∂xα
k(m)(t, x; u)||2H⊗(n+1) =

Z t

0

||D̂n ∂
α

∂xα
a(m)(r, x; viu)||2H⊗ndr

Therefore we have the following by Corollary 14, Propositions 15 and 16.
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Proposition 17 Let m = 2`0 + 1.
(1) a(m)(t, x;u, u0), b(m)(t, x;u, u0), M (m)(t, x; u, u0), andM (m)−1(t, x;u, u0) belong to K̂0(R)
for any u, u0 ∈ A∗∗5m.
(2) t−(m−||u||)/2(a(m)(t, x;u, u0)−hX̂(t)u, u0i) and t−(m−||u||)/2(b(m)(t, x;u, u0)−hX̂(t)−1u, u0i)
belong to K̂0(R) for any u, u0 ∈ A∗∗5m. In particular, t

−(||u0||−||u||)/2a(m)(t, x;u, u0) and

t−(||u
0||−||u||)/2b(m)(t, x; u, u0) belong to K̂0(R) for any u, u0 ∈ A∗∗5m.

(3) t−||u||/2k(m)(t, x;u) belongs to K̂0(H) for any u, u0 ∈ A∗∗5m.

Let us define k
(m)
(s) : [0,∞)×RN × A∗∗5m × Ω→ H by

k
(m)
(s) (t, x; u) =

dX
i=0

Z t

0

a
(m)
(s) (r, x; vi, u)Dη

i
(s)(r)(h)dr.

Note that

(k
(m)
(s) (t, x;u), h)H =

dX
i=0

[t/s]X
k=1

a
(m)
(s) ((k − 1)s, x; vi, u)(hi(ks)− hi((k − 1)s))

+

dX
i=0

[t/s]X
k=1

Z ks

(k−1)s
(a
(m)
(s) (r, x; vi, u)− a

(m)
(s) ((k − 1)s, x; vi, u))Dηi(s)(r)(h)dr

+

dX
i=0

Z t

[t/s]s

a
(m)
(s) (r, x; vi, u)Dη

i
(s)(r)(h)dr,

and so we see that

k
(m)
(s) (t, x; u) = (

Z s[t/s]∧·

0

a
(m)
(s) (s[r/s], x; vi, u)dr)i=1,...,d

+

Z s[t/s]

0

(a
(m)
(s) (r, x; vi, u)− a

(m)
(s) (s[r/s], x; vi, u))Dη

i
(s)(r)dr

+

dX
i=0

Z t

[t/s]s

a
(m)
(s) (r, x; vi, u)Dη

i
(s)(r)dr. (26)

Therefore we see that
||k(m)(t, x; u)− k(m)(s) (t, x;u)||2H

5 5
dX
i=1

Z s[t/s]

0

|a(m)(s[r/s], x; vi, u)− a(m)(s) (s[r/s], x; vi, u)|2

+5

dX
i=1

Z s[t/s]

0

|a(m)(r, x; vi, u)− a(m)(s[r/s], x; vi, u)|2dr

+5(d+1)s
dX
i=0

[t/s]X
k=1

max
r∈[(k−1)s,ks]

|a(m)(s) (r, x; vi, u)−a
(m)
(s) (s[r/s], x; vi, u))|2

Z ks

(k−1)s
||Dηi(s)(r)||2Hdr
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+5s

dX
i=0

max
r∈[s[t/s],t]

|a(m)(s) (r, x; vi, u)|2
Z t

[t/s]s

||Dηi(s)(r)||2dr + 5s
dX
i=0

max
r∈[s[t/s],t]

|a(m)(r, x; vi, u)|2

This implies that

sup
s∈(0,1]

s−1/3 sup
x∈RN

EP [ sup
t∈[0,T ]

||k(m)(t, x;u)− k(m)(s) (t, x; u)||
p
H ]
1/p <∞ (27)

for any u ∈ A∗∗5m and T > 0.
Also note that

∂α

∂xα
D̂nk

(m)
(s) (t, x;u)

= (

Z s[t/s]∧·

0

∂α

∂xα
Dna

(m)
(s) (s[r/s], x; vi, u)dr)i=1,...,d

+

Z s[t/s]

0

∂α

∂xα
D̂n(a

(m)
(s) (r, x; vi, u)− a

(m)
(s) (s[r/s], x; vi, u))Dη

i
(s)(r)dr

+
dX
i=0

Z t

[t/s]s

∂α

∂xα
D̂na

(m)
(s) (r, x; vi, u)Dη

i
(s)(r)dr.

So by a similar argument we have the following.

Proposition 18 For any n = 0, α ∈ ZN=0, u ∈ A∗∗5m and T > 0 we have

sup
s∈(0,1]

s−1/3 sup
x∈RN

EP [ sup
t∈[0,T ]

|| ∂
α

∂xα
D̂n(k(m)(t, x;u)− k(m)(s) (t, x; u))||

p

H⊗(n+1)]
1/p <∞

8 Random linear operators

Let Nk, k = 0, 1, . . . , be the dimension of R-vector space R∗∗hAi5k. Then there are a
basis {en}∞n=0 of R∗∗hAi such that e0 = 1, and that {en}Nk−1n=Nk−1 is a basis of R

∗∗hAik,
k = 1, 2, . . . For each ei belongs to R

∗∗hAik for some k = 0. We denote this k by ||ei||.
Let us define random linear operators U(t), U(s)(t), and U0(t) in C

∞(RN ) by

(U(t)f)(x) = f(X(t, x)), (U(s)(t)f)(x) = f(Y(s)(t, x)),

for t ∈ [0,∞) and f ∈ C∞(RN ), and

U0(t) = Exp(tV0), U(s),0(t) = Exp((

Z t

0

η0(s)(r)dr)V0) t ∈ [0,∞).

Then we have

dU(t) =
dX
i=0

U(t)Φ(vi) ◦ dBi(t)

d

dt
U(s)(t) =

dX
i=0

U(s)(t)Φ(vi)η
i
(s)(t)
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d

dt
U0(t) = U0(t)Φ(v0) = Φ(v0)U0(t)

d

dt
U0(t)

−1 = −U0(t)−1Φ(v0) = −Φ(v0)U0(t)−1,

and
d

dt
U(s),0(t)

−1 = −η(s)(t)Φ(v0)U0(t)−1.

Note that for any u ∈ A∗∗5m

(U(t)Φ(r(u))f)(x) = hX(t)∗df,X(t)−1∗ Φ(r(u))ix

=
X

u0∈A∗∗5m

hX(t)∗df, a(m)(t, x;u, u0)Φ(r(u0))ix =
X

u0∈A∗∗5m

a(m)(t, x;u, u0)(Φ(r(u0))U(t)f)(x).

Let a(m)(t; u, u0), u, u0 ∈ A∗∗5m, be multiplier operators in C∞(RN ) defined by

(a(m)(t;u, u0)f)(x) = a(m)(t, x; u, u0)f(x).

Then we have
U(t)Φ(r(u)) =

X
u0∈A∗∗5m

a(m)(t;u; u0)Φ(r(u0))U(t).

So we have the following.

Proposition 19 For any n = 1 and u1, . . . , un ∈ A∗∗5m,

U(t)Φ(r(u1) · · · r(un))

=

nX
k=1

X
u01,...,u

0
k∈A∗∗5m

a(m)(t; u1, . . . , un; u
0
1, . . . , u

0
k)Φ(r(u

0
1)) · · · r(u0k))U(t),

where a(m)(t;u1, . . . , un+1;u
0
1, . . . , u

0
k)’s are multiplier operators iductively defined by

a(m)(t; u1, . . . , un+1;u
0
1, . . . , u

0
k)

= a(m)(t, u1; u
0
1)a

(m)(t;u2, . . . , un; u
0
2, . . . , u

0
k)

+
X

ũ∈A∗∗5m

a(m)(t;u1, ũ)[Φ(r(ũ)), a
(m)(t; u2, . . . , un;u

0
1, . . . , u

0
k)].

In particular, a(m)(t; u1, . . . , un;u
0
1, . . . , u

0
k)’s are multiplier operators multiplying

a(m)(t, x;u1, . . . , un+1;u
0
1, . . . , u

0
k) belonging to K̂0(R).

Similarly we have the following.

Proposition 20 For any n = 1 and u1, . . . , un ∈ A∗∗5m,

U(s)(t)Φ(r(u1) · · · r(un))
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=

nX
k=1

X
u01,...,u

0
k∈A∗∗5m

a
(m)
(s) (t;u1, . . . , un; u

0
1, . . . , u

0
k)Φ(r(u

0
1)) · · · r(u0k))U(s)(t),

where a
(m)
(s) (t, x; u1, . . . , un+1;u

0
1, . . . , u

0
k)’s are multiplier operators inductively defined by

the following. a
(m)
(s) (t;u, u

0), u, u0 ∈ A∗∗5m, are multiplier operators in C∞(RN) defined by

(a
(m)
(s) (t;u, u

0)f)(x) = a(m)(t, x; u, u0)f(x),

and
a
(m)
(s) (t; u1, . . . , un+1;u

0
1, . . . , u

0
k)

= a
(m)
(s) (t;u1; u

0
1)a

(m)
(s) (t;u2, . . . , un; u

0
2, . . . , u

0
k)

+
X

ũ∈A∗∗5m

a
(m)
(s) (t; , u1, ũ)[Φ(r(ũ)), a

(m)
(s) (t;u1, . . . , un; u

0
1, . . . , u

0
k)].

In particular, a
(m)
(s) (t; u1, . . . , un;u

0
1, . . . , u

0
k)’s are multiplier operators multiplying

a
(m)
(s) (t, x;u1, . . . , un+1;u

0
1, . . . , u

0
k) such that

sup
s∈(0,1]

sup
t∈(0,T ]

sup
x∈RN

|| ∂
α

∂xα
a
(m)
(s) (t, x;u1, . . . , un+1; u

0
1, . . . , u

0
k)||Ŵ r,p <∞.

for any r, p ∈ (1,∞), α ∈ ZN=0, and T > 0.

By the above two Propositions, we have the following.

Proposition 21 For any i = 0, there areMi = 1 and aij, a(s),ij ∈ K̂0(R), j = 0, 1, . . . ,Mi,
s ∈ (0, 1] satisfying the following.
(1) For any j = 1, 2, . . . ,Mi, T > 0, r, p ∈ (1,∞) and α ∈ ZN=0,

sup
s∈(0,1]

sup
t∈(0,T ]

sup
x∈RN

|| ∂
α

∂xα
a(s),ij(t, x)||Ŵ r,p <∞.

(2)For any t = 0,

U(t)Φ(ei) =

MiX
j=0

Φ(ej)aij(t)U(t)

and

U(s)(t)Φ(ei) =

MiX
j=0

Φ(ej)a(s),ij(t)U(s)(t).

Here aij(t) and a(s),ij(t) are multiplier operators multiplying aij(t, x) and a(s),ij(t, x) re-
spectively.

Similarly we have the following.
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Proposition 22 For any i = 0, there areMi = 1 and bij, b(s),ij ∈ K̂0(R), j = 0, 1, . . . ,Mi,
s ∈ (0, 1] satisfying the following.
(1) For any j = 1, 2, . . . ,Mi, T > 0, r, p ∈ (1,∞) and α ∈ ZN=0,

sup
s∈(0,1]

sup
t∈(0,T ]

sup
x∈RN

|| ∂
α

∂xα
b(s),ij(t, x)||Ŵ r,p <∞.

(2)For any t = 0,

Φ(ei)U(t) =

MiX
j=0

bij(t)U(t)Φ(ej)

and

Φ(ei)U(s)(t) =

MiX
j=0

b(s),ij(t)U(s)(t)Φ(ej).

Here bij(t) and b(s),ij(t) are multiplier operators multiplying bij(t, x) and b(s),ij(t, x) respec-
tively.

Also, by Equations (24) and (25), we have the following.

Proposition 23 For any i = 0, there are Mi = 1 and a continuous map cijk : [0,∞) →
C∞b (R

N ), j = 0, 1, . . . ,Mi, k = 0, 1 satisfying the following.

Φ(ei)U0(t) =

MiX
j=0

cij1(t)U0(t)Φ(ej)

and

U0(t)Φ(ei) =

MiX
j=0

Φ(ej)cij1(t)U0(t).

As a corollary to Propositions 21 and 22, we have the following.

Proposition 24 For any i = 0, there are Mi = 1 and linear operators Rijk(t), in
C∞b (R

N ), t = 0, s ∈ (0, 1], j = 1, . . . ,Mi k = 0, 1, such that
(1) For any T > 0, there is a C > 0 such that

||Rik0(t)f ||∞ + ||Rik1(t)f ||∞ 5 C||f ||∞

for any f ∈ C∞b (RN ), t ∈ (0, T ] j = 0, . . . ,Mi.
(2) For any t = 0

PtΦ(ei) =

MiX
j=0

Φ(ej)Ri,k,0(t),

and

Φ(ei)Pt =

MX
j=0

Ri,j,1(t)Φ(ej).
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Let ã(m)(t, x;u, u0), u, u0 ∈ A∗∗5m, be given by

ã(m)(t, x; u, u0) = t(||u||−||u
0||)/2a(m)(t, x; u, u0)

and let ã(m)(t; u, u0), be a corresponding multiplier operators in C∞(RN). By Proposi-
tion 17, we see that ã(m)(·, ∗; u, u0) belongs to K0(R).
Then we have

t||u||/2U(t)Φ(r(u)) =
X

u0∈A∗∗5m

ã(m)(t; u;u0)t||u
0||/2Φ(r(u0))U(t),

where ã(m)(t; u, u0) is a multiplier given by

(ã(m)(t;u, u0)f)(x) = ã(m)(t, x; u, u0)f(x).

So we have the following.

Proposition 25 For any n = 1 and u1, . . . , un ∈ A∗∗5m,

t(||u1||+...+||un||)/2U(t)Φ(r(u1) · · · r(un))

=
nX
k=1

X
u01,...,u

0
k∈A∗∗5m

ã(m)(t;u1, . . . , un;u
0
1, . . . , u

0
k)t

(||u01||+...+||u0k||)/2Φ(r(u01)) · · · r(u0k))U(t),

where ã(m)(t;u1, . . . , un+1;u
0
1, . . . , u

0
k)’s are multiplier operators inductively defined by

ã(m)(t; u1, . . . , un+1;u
0
1, . . . , u

0
k)

= ã(m)(t, u1; u
0
1)a

(m)(t;u2, . . . , un; u
0
2, . . . , u

0
k)

+
X

ũ∈A∗∗5m

ã(m)(t;u1, ũ)t
||ũ||/2[Φ(r(ũ)), a(m)(t;u2, . . . , un;u

0
1, . . . , u

0
k)].

In particular, ã(m)(t; u1, . . . , un;u
0
1, . . . , u

0
k)’s are multiplier operators multiplying

ã(m)(t, x;u1, . . . , un+1;u
0
1, . . . , u

0
k) belonging to K̂0(R).

By the above Propositions, we have the following.

Proposition 26 For any i = 0, there are Mi = 1 and ãij ∈ K̂0(R), j = 0, 1, . . . ,Mi,
such that

t||ei||/2U(t)Φ(ei) =
MiX
j=0

t||ej ||/2Φ(ej)ãij(t)U(t), t > 0.

Here aij(t) is a multiplier operators multiplying ãij(t, x).

Similarly we have the following.

Proposition 27 For any i = 0, there are Mi = 1 and b̃ij ∈ K̂0(R), j = 0, 1, . . . ,Mi, such
that

t||ei||/2Φ(ei)U(t) =
MiX
j=0

t||ej ||/2b̃ij(t)U(t)Φ(ej).

Here b̃ij(t) is a multiplier operator multiplying b̃ij(t, x).
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Note that

X(t)∗(x)
−1D̂X(t, x) = (

Z t∧·

0

(X(r)−1∗ Vi)(x)dr)i=1,...d.

Then we see that

X(t)∗(x)
−1D̂X(t, x) =

X
u∈A∗∗5m

k(m)(t, x; u)Φ(r(u))(x),

and so we have

D̂(f(X(t, x))) = h(X(t)∗df)(x), X(t)∗(x)−1D̂X(t, x)i

=
X

u∈A∗∗5m

(Φ(r(u))U(t)f)(x)k(m)(t, x;u) (28)

for any f ∈ C∞b (RN).
Then we have the following.

Proposition 28 For any u ∈ A∗∗5m and F ∈ K̃0(R), we have

t||u||/2EP [F (t, x)(Φ(r(u))U(t)f)(x))] = EP [(R(u)F )(t, x)(U(t)f)(x)],
where

(R(u)F )(t, x) =
X

u0∈A5m

D̂∗(M (m)−1(t, x; u, u0))F (t, x)t−||u
0||/2k(m)(t, x, u))

for any f ∈ C∞b (RN ), t > 0 and x ∈ RN . Moreover R(u)F belongs to K̃0(R).
Then we have the following.

Proposition 29 For any i, j = 0 and F ∈ K̃0(R), there is an Fij ∈ K̃0(R) such that
t(||ei||+||ej ||)/2EP [F (t, x)(Φ(ei)U(t)Φ(ej)f)(x))] = E

P [Fij(t, x)(U(t)f)(x)].

9 Basic lemma

Let Q(s)(t), t > 0, s ∈ (0, 1] be linear operators in C∞b (RN) given by

(Q(s)(t)f)(x) = E
P [f(Y(s)(t, x))], f ∈ C∞b (RN).

In this section, we prove the following lemma

Lemma 30 There are linear operators Q(s),0(t), and Q(s),1(t), t > 0, s ∈ (0, 1], in C∞b (RN)
satisfying the following.
(1) Q(s)(t) = Q(s),0(t) +Q(s),1(t).
(2) For any w,w0 ∈ R∗∗hAi and T1 > T0 > 0, there is a C > 0 such that

||Ψ(w)Q(s),0(t)Ψ(w0)f ||∞ 5 C||f ||∞
for any t ∈ [T0, T1], s ∈ (0, 1], and any f ∈ C∞b (RN ).
(3) For any n = 1 and T1 > T0 > 0, there is a C > 0 such that

||Q(s),1(t)f ||∞ 5 Cs−n||f ||∞
for any t ∈ [T0, T1], s ∈ (0, 1], and any f ∈ C∞b (RN ).
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We make some preparations to prove this lemma.
Let M

(m)
(s) (t, x) = {M

(m)
(s) (t, x;u, u

0)}u,u0∈A∗∗5m be a matrix-valued random variable given
by

M
(m)
(s) (t, x; u, u

0) = t−(||u||+||u
0||)/2(k(m)(s) (t, x;u), k

(m)
(s) (t, x;u

0))H .

Then we have

(D̂(f(Y(s)(t, x))), k
(m)
(s) (t, x))H =

X
u∈A∗∗5m

M
(m)
(s) (t, x;u, u

0)(Φ(r(u))f)(x)k(s)(t, x.u).

Let δ
(m)
(s) (t, x), t > 0, x ∈ RN , s ∈ (0, 1] be given by

δ
(m)
(s) (t, x) = detM

(m)(t, x)−1 detM (m)
(s) (t, x)− 1

Then we see that

sup
s∈(0,1]

s−1/3 sup
x∈RN

sup
t∈(0,T ]

tγm || ∂
α

∂xα
δ
(m)
(s) (t, x)||Ŵ r,p <∞ (29)

for any T > 0, r, p = 1 and α ∈ ZN=0. Here

γm =
X

u∈A∗5m

||u||.

Let us define M
(m)−1
(s) (t, x) = {M (m)−1

(s) (t, x;u, u0)}u,u0∈A∗∗5m be a matrix-valued random
variable given by

M
(m)−1
(s) (t, x) = lim

ε↓0
M

(m)
(s) (t, x)(εIA∗∗5m +M

(m)
(s) (t, x))

−2.

Then one can easy to see that for any ϕ ∈ C∞0 ((−1/2, 1/2)), ϕ(δ(m)(s) (t, x))M
(m)−1
(s) (t, x;u, u0)

belongs to Ŵ r,p for all r, p ∈ (1,∞),X
u2∈A∗∗5m

(ϕ(δ
(m)
(s) (t, x))M

−1
(s) (t, x;u1, u2)M

(m)
(s) (t, x; u2, u3) = hu1, u3i, u1, u3 ∈ A∗∗5m,

and

sup
s∈(0,1]

s−1/3 sup
x∈RN

sup
t∈(0,T ]

t(r+1+|α|)γm || ∂
α

∂xα
(ϕ(δ

(m)
(s) (t, x))M

(m)−1
(s) (t, x; u1, u2))||Ŵ r,p <∞ (30)

for any T > 0, r, p ∈ (1,∞), α ∈ ZN=0 and u1, u3 ∈ A∗∗5m.
Note that

d

dt
D̂Y(s)(t, x)(h) =

dX
i=0

Vi(Y(s)(t, x))D̂η
i
(s)(t)(h) +

dX
i=0

(∇Vi)(Y(s)(t, x))D̂Y(s)(t, x)(h)ηi(s)(t)

Therefore we have

Y(s)(t)
−1
∗ D̂Y(s)(t)(h))(x) =

dX
i=0

Z t

0

(Y(s)(r)
−1
∗ Vi)(x)η

i
(s)(t)(h)

29



Then we see that for any f ∈ C∞b (RN)

D̂(f(Y(s)(t, x))) = h(Y ∗(s)df)(x), Y(s)(t)∗(x)−1D̂Y(s)(t, x)i

=
X

u∈A∗∗5m

(Φ(r(u))U(s)(t)f)(x)k(s)(t, x.u).

=
X

u,u0∈A∗∗5m

b(m)(t, x; u, u0)(U(s)(t)Φ(r(u
0))f)(x)k(m)(s) (t, x.u). (31)

Then we have the following by using Equation (31).

Proposition 31 Let ϕ,ψ ∈ C∞0 ((−1/2, 1/2)) and F : (0,∞) × RN → Ŵ∞,∞− be a
continuous map. We assume that ψ = 1 in the neighborhood of the clousure of {z ∈
(−1/2, 1/2); ϕ(z) > 0}. Then we see that for any u ∈ A∗∗5m

EP [F (t, x)ϕ(δ
(m)
(s) )(U(s)(t)Φ(r(u))f)(x))]

= EP [(R(s)F )(t, x; u,ϕ)ψ(δ
(m)
(s) (t, x))(U(s)(t)f)(x)],

where
(R(s)F )(t, x;u,ϕ)

=
X

u1,u2∈A∗∗5m

D̂∗(ϕ(δ(m)(s) (t, x))M
−1
(s) (t, x; u1, u2)a

(m)(t, x;u, u2)F (t, x)k
(m)
(s) (t, x, u1))

for any f ∈ C∞b (RN), t > 0 and x ∈ RN . Moreover, (R(s)F )(t, x;u,ϕ)ψ(δ
(m)
(s) (t, x)) is

independent of a choice of ψ.

Let ϕ,ψ ∈ C∞0 ((−1/2, 1/2)) such that ψ = 1 in the neighborhood of the clousure of
{z ∈ (−1/2, 1/2); ϕ(z) > 0}. Then for any n = 1 we can find ϕk ∈ C∞0 ((−1/2, 1/2)),
k = 0, 1, . . . , n, such that ϕ0 = ϕ, ϕn = ψ, and that ϕk = 1 in the neighborhood of
the clousure of {z ∈ (−1/2, 1/2); ϕk−1(z) > 0}, k = 1, . . . , n. Then we see that for any
u1, . . . , un ∈ A∗∗5m and continuous map F : (0,∞)×RN → Ŵ∞,∞−

EP [F (t, x)ϕ(δ
(m)
(s) )(Φ(r(u1) · · · r(un)U(s)(t)f)(x)]

= EP [(R(s)F )(t, x;u1, . . . , un,ϕ)ψ(δ
(m)
(s) (t, x))(U(s)(t)f)(x)],

where
(R(s)F )(t, x;u1, . . . , un,ϕ) = (R(s)(un,ϕn−1) · · · R(s)(u1,ϕ0)F )(t, x)

for any f ∈ C∞b (RN), t > 0 and x ∈ RN .
So conbining this with Proposition 31 we have the following.

Proposition 32 Let ϕ,ψ ∈ C∞0 ((−1/2, 1/2)) such that ψ = 1 in the neighborhood of the
clousure of {z ∈ (−1/2, 1/2); ϕ(z) > 0}. For any i, j = 0, T1 > T0 > 0 and F ∈ K̃0, there
is an F 0 ∈ K̃0, such that

EP [F (t, x)ϕ(δ
(m)
(s) (t, x))(Φ(ei)U(s)(t)Φ(ej)f)(x))]

= EP [(F 0(t, x)ψ(δ(m)(s) (t, x))(U(t)f)(x)],

for any f ∈ C∞b (RN ), t ∈ [T0, T1], and x ∈ RN .
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Now let us prove our lemma.
Note that

(Q(s)(t)f)(x) = E
P [(U(s)(t)f)(x)].

Let us fix ϕ ∈ C∞0 ((−1/2, 1/2)) such that ϕ(z) = 1 for z ∈ (−1/4, 1/4), and let Q(s),i(t),
i = 0, 1, t > 0, be linear operators in C∞b (R

N) given by

(Q(s),0(t)f)(x) = E
P [ϕ(δ

(m)
(s) (t, x))(U(s)(t)f)(x)],

and
(Q(s),1(t)f)(x) = E

P [(1− ϕ(δ
(m)
(s) (t, x)))(U(s)(t)f)(x)].

Since
P (|δ(m)(s) (t, x))| > 1/4) 5 4nE[|δ

(m)
(s) (t, x))|n],

we have by Equation (29)

sup
s∈(0,1]

s−n/3 sup
x∈RN

sup
t∈(0,T ]

tnγmP (|δ(s)(t, x))| > 1/4) <∞

for any n = 1. Then we see that for any n = 1 and T1 > T0 > 0,

sup
s∈(0,1]

s−n sup
x∈RN

sup
t∈[T0,T1]

|| ∂
α

∂xα
(1− ϕ(δ

(m)
(s) (t, x)))||Ŵ r,p <∞ (32)

Now our lemma is a consequence of Proposition 32 and Equations (29) and (32).

10 Commutation and Infinitesimal Difference

Let Ãj : A
∗ ×RhAi→ RhAi, j = 0, 1, be a map inductively defined by

Ãj(1)w = w, Ãj(vi)w = viw, i = 1, . . . , d, j = 0, 1,

Ã0(v0)w = [v0, w], Ã0(v0)w =
1

2

dX
i=1

v2i + [v0, w],

and
Ãj(uvi)w = Ãj(vi)(Ãj(u)w), i = 0, . . . , d, u A∗, w ∈ RhAi.

Then we have the following.

Proposition 33 Ãj(u)w ∈ R∗∗hAin+||u|| for any j = 0, 1, w ∈ R∗∗hAin, n = 0, and
u ∈ A∗.

Proof. We have our assertion, noting that

[v0, r(u1) · · · r(un)] =
nX
k=1

r(u1) · · · r(uk−1)r(v0uk)r(uk+1) · · · r(un).
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It is easy to see that

U(t)Φ(w)U0(t)
−1 = Φ(Ã0(1)w) +

dX
i=0

Z t

0

U(r)Φ(Ã0(vi)w)U0(r)
−1 ◦ dBi(r)

= Φ(Ã1(1)w) +

dX
i=0

Z t

0

U(r)Φ(Ã1(vi)w)U0(r)
−1dBi(r)

for any w ∈ A∗. Therefore we have for any n = 0

U(t)U0(t)
−1 =

X
u∈A∗5n

I(1;u)(t)Φ(Ã1(u)1)

+
X
u∈R∗n

I(U(·)Φ(Ã0(u)1)U0(·)−1.

Here R∗n is as in (23).
Remind that X̂(t) is a solution to the following SDE over RhhAii.

X̂(t) = 1 +

dX
i=0

Z t

0

X̂(r)vi ◦ dBi(r).

= 1 +

dX
i=1

Z t

0

X̂(r)vidB
i(r) +

Z t

0

X̂(r)(
1

2

dX
i=1

v2i + v0)dB
0(r).

Let X̂0(t) Ŷ(s)(t) and Ŷ(s),0(t) are solutions to the following ordinary differential equations
over RhhAii

X̂0(t) = 1 +

Z t

0

X̂0(r)v0 ◦ dB0(r),

Ŷ(s)(t) = 1 +

dX
i=0

Z t

0

Ŷ(s)(r)viη
i
(s)(r)dr,

and

Ŷ(s),0(t) = 1 +

Z t

0

Ŷ(s)(r)v0η
0
(s)(r)dr.

Then we see that

X̂(t)wX̂0(t)
−1 = Ã1(1)w +

dX
i=0

Z t

0

X̂(r)(Ã1(vi)w)X̂0(r)
−1dBi(r)

for any w ∈ A∗. So we see that for any n = 0

X̂(t)X̂0(t)
−1 =

X
u∈A∗5n

I(1;u)(t)(Ã(u)1) +
X
u∈R∗n

I(X̂(·)(Ã1(u)1)X̂0(·)−1.

Noting that
j5n(X̂(t)X̂0(t)

−1) = j5n(j5n(X̂(t))X̂0(t)
−1),
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we have
U(t)U0(t)

−1

= Φ(j5n(j5n(X̂(t))X̂0(t)
−1))) +

X
u∈R∗n

I(U(·)Φ(Ã1(u)1)U0(·)−1. (33)

Similarly we have

U(s)(t)U0(t)
−1 = Φ(j5n(j5n(Ŷ(s)(t))Ŷ(s),00(t)

−1)))

+
X

vi1 ···vim∈R∗n

Z t

0

ηi1(s)(r1)dr1 · · ·
Z rm−1

0

ηi1(s)(rm)drmU(s)(rm+1)Φ(Ã0(vim · · · vi11)U0(rm)−1.

(34)
Note that by the assumption (G-3) we have

U(s),0(s) = U0(s) and Ŷ(s),0(s) = X̂0(s) = exp(sv0). (35)

Then by Propositions 21, 22, and Equation (33), we have the following.

Proposition 34 For any n = 0, and i, i0 = 0, there are M = 1 and measurable functions
dn,i,i0,j,k : R

∗
n → K̂0(R), j = 0, 1, . . . ,M, k = 0, 1, such that

Φ(ei)U(t)Φ(ei0)− Φ(eij5n(j5n(X̂(t)) exp(−tv0))))U0(t)Φ(ei0)

=
X
u∈R∗n

MX
j=0

Φ(ej)I(dn,i,i0,j,0(·, ∗, u)U(·)U0(t− ·);u)(t).

=
X
u∈R∗n

MX
j=0

I(U(·)U0(t− ·)dn,i,i0,j,1(·, ∗, u);u)(t)Φ(ej).

By Equation (34), we see that for any m = 1 and w,w0 ∈ R∗∗hAi

Φ(w)(U(s)(s))Φ(w
0)

= Φ(wj5n(j5n(Ŷ(s)(s)) exp(−sv0))))U0(s)Φ(w0)

+
X

vi1 ,...viq∈A:vi1 ···viq∈R∗n

Z s

0

ηi1(s)(r1)dr1 · · ·
Z rq−1

0

ηi1(s)(rq)drq

Φ(w)U(s)(rq+1)Φ(Ã0(viq · · · vi11)Exp((
Z s

rq

η
iq
(s)(r̃)dr̃)V0)Φ(w

0).

Then by Propositions 21, 22, and Equations (34) and (35) we have the following.

Proposition 35 For any n = 0, and i, i0 = 0, there are M = 1 and measurable functions
dn,(s),i,i0,j,k : (0, s]×R∗n → K̂0(R), j = 0, 1, . . . ,M, s ∈ (0, 1], k = 0, 1, such that

Φ(ei)U(s)(s)Φ(ei0)− Φ(eijn(j5n(Ŷ(s)(s)) exp(−sv0))))U0(s)Φ(ei0)
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=
X

vi1 ,...viq∈A:vi1 ···viq∈R∗n

MX
j=0

Φ(ej)

Z s

0

ηi1(s)(r1)dr1 · · ·
Z rq−1

0

ηi1(s)(rq)drq

dn,(s),i,i0,j,0(·, ∗, vi1 · · · viq)(rq)U(s)(rq)Exp((
Z s

rq

η(s)(r̃)dr̃)V0)

=
X

vi1 ,...viq∈A:vi1 ···viq∈R∗m

MX
j=0

Z s

0

ηi1(s)(r1)dr1 · · ·
Z rq−1

0

ηi1(s)(rq)drq

U(s)(rq)Exp((

Z s

rq

η(s)(r̃)dr̃)V0).d
k
n,(s),i,i0,1(·, ∗, vi1 · · · viq)Φ(ej).

Note that

E[(

Z s

0

|ηi1(s)(r1)|dr1 · · ·
Z rq−1

0

drq|ηiq(s)(rq)||g(rq)|)p]1/p

5 E[{(
Z s

0

|ηi1(s)(r)|dr) · · · (
Z s

0

|ηiq−1(s) (r)|dr)(
Z s

0

|ηiq(s)(r)||g(r)|dr)}p]1/p

5 s||vi1 ···viq ||/2E[{(s−1
Z s

0

|ηi(s)(r)|2dr +
dX
i=1

Z s

0

|ηi(s)(r)|2dr)}qp]1/2pE[(
Z s

0

|g(r)|2dr)2p]1/2p

for any vi1 · · · viq ∈ R∗n and progressively measurable function g.
Therefore as a corollary to the above propositions, we have the following.

Corollary 36 For any n = 0, and i, i0 = 0, there are M = 1 and linear operators
Rs,k,j = Rn,s,k,i,i0,j, R̃(s),j,k = R̃n,(s),i,i0,j,k, j = 0, 1 . . . ,M, k = 0, 1, s ∈ (0, 1] defined in
C∞b (R

N ) satisfying the following.
(1) There is a C > 0 such that

||Rs,k,0f ||∞ + ||Rs,k,1f ||∞ + ||R̃(s),j,0f ||∞ + ||R̃(s),j.1f ||∞ 5 Cs(n+1)/2||f ||∞

for any f ∈ C∞b (RN ), s ∈ (0, 1] and j = 0, 1 . . . ,M.
(2)

Φ(ei)PsΦ(ei0)− Φ(eij5n(E[j5n(X̂(s))]) exp(−sv0)))U0(s)Φ(ei0)

=

MX
j=0

Φ(ej)Rs,j,0 =

MX
j=0

Rs,j,1Φ(ej)

(3)
Φ(ei)Q(s)Φ(ei0)− Φ(eij5n(E[j5n(Ŷ(s)(s))]) exp(−sv0)))U0(s)Φ(ei0)

=
MX
j=0

Φ(ej)R̃(s),j,0 =
MX
j=0

R̃(s),j,1Φ(ej).
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11 Proof of Theorems 3

Let us assume the assumption of Theorem 3. Note that

Pns −Qn(s) =
nX
k=1

P(k−1)s(Ps −Q(s))Q(s)((n− k)s)

= R(s),n,0 + R(s),n,1,

where

R(s),n,0 =

[n/2]X
k=1

P(k−1)s(Ps−Q(s))Q(s),0((n− k)s)+
nX

k=[n/2]+1

P(k−1)s(Ps−Q(s))Q(s)((n− k)s),

and

R(s),n,1 =

[n/2]X
k=1

P(k−1)s(Ps −Q(s))Q(s),1((n− k)s).

Here Q(s),0(t) and Q(s),1(t) are as in Lemma 30.
Then we have the following.

Proposition 37 Let T1 > T0 > 0. Then we have the following.
(1) For any w ∈ R∗∗hAi, there is a C > 0 such that

||Φ(w)R(s),n,0f || 5 Cs(m−1)/2||f ||∞

for any f ∈ C∞b (RN ), s ∈ (0, 1], n = 1 with T0 5 ns 5 T1.
(2) For any γ > 0, there is a C > 0 such that

||R(s),n,1f || 5 Csγ||f ||∞

for any f ∈ C∞b (RN ), s ∈ (0, 1], n = 1 with T0 5 ns 5 T1.
(3) There is a C > 0 such that

||(Pns −Qn(s))f || 5 Cs(m−1)/2||f ||∞

for any f ∈ C∞b (RN ), s ∈ (0, 1], n = 1 with T0 5 ns 5 T1.

Proof. The assertion (2) is an easy consequence of Lemma 30. The assertion (3)
follows from the assertions (1) and (2). So it is sufficient to prove the assertion (1).
Fix w ∈ R∗∗hAi. Applying Proposition 22, we see that there are I = 1 and linear

operators P̃t,i in C
∞
b (R

N ) such that

Φ(w)Pt =
MX
i=0

P̃t,iΦ(ei)

and that there is a C0 > 0 such that

||P̃t,if ||∞ 5 C0||f ||∞
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for any f ∈ C∞b (RN) and i = 0, . . . , I.
Applying Corollary 36 to n = m, we see that for there are K = 1 and linear operators

R̃(s),i,k,j in C
∞
b (R

N ), s ∈ (0, 1], i = 0, . . . , I k = 0, 1, j = 0, . . . , J such that

Φ(ei)(Ps −Q(s)) =
JX
j=0

Φ(ej)R̃(s),i,0,j =

JX
j=0

R̃(s),i,1,jΦ(ej)

and that there is a C1 > 0 such that

||R̃(s),i,k,jf ||∞ 5 C1s(m+1)/2||f ||∞

for any f ∈ C∞b (RN), s ∈ (0, 1], i = 0, . . . , I and k = 0, 1, and j = 0, . . . , J. Then we see
that

||Φ(w)R(s),n,0f ||∞

5
IX
i=0

JX
j=0

[n/2]X
k=1

||P(k−1)s,iR̃(s),i,1,jΦ(ej)Q(s),0((n− k)s)f ||∞

+

JX
j=0

nX
k=[n/2]+1

||Φ(w)P(k−1)sΦ(ej)R̃(s),0,jQ(s)((n− k)s)f ||∞

5
IX
i=0

JX
j=0

s(m+1)/2
[n/2]X
k=1

C0C1||Φ(ej)Q(s),0((n− k)s)f ||∞

+

JX
j=0

s(m+1)/2
nX

k=[n/2]+1

C1 sup{||Φ(w)P(k−1)sΦ(ej)f̃ ||∞; f ∈ C∞b (RN), ||f̃ ||∞ 5 1}||f ||∞.

Then we have the assertion (1) from Proposition 29 and Lemma 30 .
Theorem 3 is an easy consequence of the above Proposition.

12 Proof of Theorem 4

We assume the assumption of Theorem 4. Note that

hlog(X̂(s) exp(−sv0)), v0i = hlog(Ŷ(s)(s) exp(−sv0)), v0i = 0

with probability 1. Therefore we see that

w0 = s
−(m+1)/2E[j5m+1((X̂(s)− Ŷ(s)(s)) exp(−sv0))] ∈ R∗∗hAi.

Also, by Corollary 36, there are M = 1 and linear operators R̂s,k,j, j = 0, 1 . . . ,M,
k = 0, 1, s ∈ (0, 1] defined in C∞b (RN ) satisfying the following.
(1) There is a C > 0 such that

||Rs,k,0f ||∞ + ||Rs,k,1f ||∞ 5 Cs(m+2)/2||f ||∞
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for any f ∈ C∞b (RN), s ∈ (0, 1] and j = 0, 1 . . . ,M.
(2)

Ps −Q(s) + s(m+1)/2Φ(w0)U0(s)

=
MX
j=0

Φ(ej)R̂s,j,0 =

MX
j=0

R̂s,j,1Φ(ej)

Now by applying Corollary 36 for n = m+ 2, we see that

Pns −Qn(s)

=

nX
k=1

P(k−1)s(Ps −Q(s))P(n−k)s −
nX
k=1

P(k−1)s(Ps −Q(s))(P(n−k)s −Q(s)((n− k)s))

=
X
i=0

I(s),n,i,

where

I(s),n,0 = s
(m+1)/2

nX
k=1

P(k−1)sΦ(w0)U0(s)P(n−k)s

I(s),n,1 =

MX
j=0

[n/2]X
k=1

P(k−1)sR̂q+2,s,j,1Φ(ej)P(n−k)s +
MX
j=0

nX
k=[n/2]+1

P(k−1)sΦ(ej)R̂q+2,s,j,0P(n−k)s

I(s),n,2 = −
nX
k=1

n−kX
`=1

P(k−1)s(Ps −Q(s))P`−1(Ps −Q(s))Q(s),n−k,0

I(s),n,3 = −
nX
k=1

n−kX
`=1

P(k−1)s(Ps −Q(s))P`−1(Ps −Q(s))Q(s),n−k,1

Then by using a similar argument in the proof of Proposition, we see that for any T1 >
T0 > 0, there is a C > 0 such that

||I(s),n,1f ||∞ 5 Cs(m+1)/2||f ||∞
||I(s),n,2f ||∞ 5 Csm−1||f ||∞
||I(s),n,3f ||∞ 5 Cs2m||f ||∞

for any f ∈ C∞b (RN), n = 1, s ∈ (0, 1], with ns ∈ [T0, T1].
Also, note that Z ns

0

PrΦ(w0)Pns−rdr − s−(m−1)/2I(s),n,0

=

nX
k=1

P(k−1)s(

Z s

0

(PrΦ(w0)Ps−r − Φ(w0)U0(s))dr)P(n−k)s.

Note that for r ∈ (0, s),
PrΦ(w0)Ps−rU0(s)

−1

= PrU0(r)
−1(U0(r)Φ(w0)U0(r)

−1)U0(r)(Ps−rU0(s− r)−1)U0(r)−1.
Therefore appliying Corollary 36 for n = 1, we have the following.
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Proposition 38 For any s ∈ (0, 1], there are M = 1, and linear operators defined Rs,i,j,
= 0, 1, . . . ,M, j = 0, 1, in C∞b (R

N) satisfying the following.
(1) There is a C > 0 such that

||Rs,i,jf ||∞ 5 Cs||f ||∞

for any f ∈ C∞b (RN ), s ∈ (0, 1], i = 0, 1, . . . ,M, j = 0, 1.
(2) Z s

0

(PrΦ(w0)Ps−rU0(s)
−1)ds

= Φ(w0) +

MX
i=0

Φ(ei)Rs,j,0 = Φ(w0) +

MX
i=0

Rs,j,1Φ(ei).

Then again similarly to the proof of Proposition 37 we see that for any T1 > T0 > 0,
there is a C > 0 such that

||s(m−1)/2
Z ns

0

PrΦ(w0)Pns−rfdr − I(s),n,0f ||∞ 5 Cs(m+1)/2||f ||∞

for any f ∈ C∞b (RN), n = 1, s ∈ (0, 1], with ns ∈ [T0, T1].
So we have Theorem 4.
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