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1 Introduction

Let Wy = {w € C(]0,00);R%); w(0) = 0}, G be the Borel algebra over W, and p be
the Wiener measure on (Wy,G). Let B : [0,00) x Wy — R, i = 1,...,d, be given
by Bi(t,w) = wi(t), (t,w) € [0,00) x Wy. Then {(B(t),...,B%t);t € [0,00)} is a d-
dimensional Brownian motion. Let B°(t) = ¢, ¢ € [0,00). Let {F;};>o be the Brownian
filtration generated by {(B(t),..., B%(t);t € [0,00)}. Let S denote the set of continuous
{Fi}-semimartingales.

Let Vo, Vi,...,Vy € C2(RN; RY). Here C°(RY; R") denotes the space of R"-valued
smooth functions defined in R" whose derivatives of any order are bounded. We regard
elements in C°(RY; RY) as vector fields on RY.

Now let X (t,7), t € [0,00), z € R, be the solution to the Stratonovich stochastic
integral equation

X(t,x) =z + Z/o Vi(X (s, 7)) o dB'(s). (1)

Then there is a unique solution to this equation. Moreover we may assume that X (¢, z) is
continuous in ¢ and smooth in z and X (¢,-) : RY — R¥, t € [0,00), is a diffeomorphism
with probability one.

Let A = Ay = {vo,v1,...,vq4}, be an alphabet, a set of letters, and A* be the set of
words consisting of A including the empty word which is denoted by 1. For u = u!---u* €
A uw € A, j = 1,....k, k = 0, we denote by n;(u), i = 0,...,d, the cardinal of
{7e{1,...,k}uw =v;}. Let |u| = ng(u)+...+nq(u), alength of u, and || u || = |u|+ne(u)
for u € A*. Let R(A) be the R-algebra of noncommutative polynomials on A, R{{A)) be
the R-algebra of noncommutative formal power series on A.

Let r : A*\ {1} — L(A) denote the right normed bracketing operator inductively
given by

r(v;) = v, i=0,1,...,d,

and

r(viu) = [v;, r(u)], i=0,1,...,d, ue A"\ {1}.

*partly supported by the 21st century COE program at Graduate School of Mathematical Sciences,
the University of Tokyo



For any wy = ), 4. 1wt € R({(A)) and wy = )
kind of an inner product (wy,ws) by

wear @2t € R(A), let us define a

(wy,wsy) = Z a1,a2, € R.

ucA*

Also, we denote by ||w]|| (w,w)'/? for w € R(A).

Let A7 ={u € A% [[u [|[=m}, m =2 0, and let R(A),, = >_, 4. Ru, and R(A)<,,
= o R(A), m = 0. Let j,, : R((A4)) — R(A),, be natural sujective linear maps such
that jm (3 ,car Gutt) = year auu. Let jon, @ R((4)) — R(A)<, be given by j<,, =
Z;cnzo Tk

Let A* = U?;l{m’i € A uwe A}, Ay = {u € A || u ||= m}, and AY =
{u € A*; || u ||£ m}, m = 1. Let R**(A) be the R-subalgebra of R(A) generated
by 1 and r(u), u € A**. Also, we denote R**(A) N R(A),, by R*(A),,. We can regard
vector fields Vp, Vi, ...,V as first differential operators over RY. Let DO(RY) denotes
the set of linear differential operators with smooth coefficients over RY. Then DO(RY) is

a noncommutative algebra over R. Let ® : R(A) — DO(RY) be a homomorphism given
by

®(1) = Identity, S(vyy -rv)=Vi - Vi n=1, i,...,i, =0,1,...,d.
Then we see that
O(r(vw)) = [Vi, @(r(u))], i=0,1,...,d, ue A\ {1}.

Now we introduce a condition (UFG) on the family of vector field {Vy, Vi,...,Vy} as
follows.
(UFG) There are an integer ¢y and ¢, € C°(RN), u € AjF  UA ,, o € Az, ,
satisfying the following. -

O(r(w)) = > Guuwd(r(w)),  uweAr UAT,

/ *k
in eAgeo

For any vector field W € C2°(RY; RY), we can think of an ordinary differential equa-
tion on RV

d
ay@? IE) = W(Z/(t? fl?)),
y(0,z) = x.
We denote y(1,z) by exp(W)(x). Then exp(W) : RY — RY is a diffeomorphism. We
define a linear operator Ezp(W) in C*(R") by

(BEap(W)f)(z) = flexp(W)(z)), = €RY, fe C*RY).

Since our main result is rather complicated to present, we will explain our result by
using operators introduced by Ninomiya-Victoir [5] in the following. We define a family
of Markov operator Q(s), s > 0, defined on C;°(RY;R) by

(Q(S)f) (m)



= S El(Bap(SVo) Eap(B (5)V1) -+~ Bap(BY(s)Va) Bap(55) )(0)]

%E[(Exp(g%)Ewp(Bd(S)%) - Ewp(Bl(S)Vl)E:vp(%%)(x))f)(x)],
f € CGF(RY;R).

Then we can show the following result.

Theorem 1 For any T > 0, there are C > 0 and w € R*(A)¢ such that

T T C
Qr/my f — Prf — (5)2/ Pr_®(w) P fdt|]| = ;HfHoo, feCr®Y), n2T.
0

We see by the result in [1] that for any 7" > 0 there is a C" > 0 such that

T
] / Pro®(w)Pfdtl|w < C'llflles € CFRY).

Therefore we see that the following.

Corollary 2 For any T > 0 and any bounded measurable function f : RYN — R, there
are ¢ > 0 and C' > 0 such that

n c C
Q) f — Prf — ﬁHoo = 5

This corollary allows us to use the Romberg extrapolation in numerical computation.
We use the notaion in Shigekawa [6] for Malliavin calculus.

2 Preparations

We say that Z : [0,00) x Wy — R((A)) is an R((A))-valued continuous semimartingale,
if there are continuous semimartingales Z,, u € A*, such that Z(t) = > 4 Zu(t)u.
For R((A))-valued continuous semimartingale Z;(t), Z5(t), we can define R((A))-valued
continuous semimartingales fot Z1(8) 0 dZy(s) and fot odZ1(s)Zs(s) by

/Ot Z1(s) 0 dZy(s) = Z (/Ot Z1u(8) © dZs o (5) Jurw,

u,WwEA*

[ean@26)= 3 ([ 2ls) 0 dzaulspus

0 u,WwEA* 0

where



Since R is regarded a vector subspace in R((A)), we can define f(f Z(s) o dB'(s),
1=20,1,...,d, naturally.

Let S be the set of continuous semimartigales. Let us define S : § x A* — S and
S:SxA* > S inductively by

S(Z;1)(t) = Z(¢), S(Z;1)(t)=Z(t), t=0, Z eSS, (2)
and

S(Z;uv;)(t) :/0 S(Z,u)(r) o dB(r),

A

S(Z;vu)(t) = —/0 S(Z,u)(r)odB'(r), t=0, (3)

forany Z € S, i = 0,1,...,d, u € A*. Also, we denote S(1;u)(t) by B(t;u), t = 0,
ue A*.
We define I : § x A* — § inductively by

I(Z:1)(t) = Z(t), t20, Ze€S, (4)
and ,
1(Z; wvi)(t) = / S(Z,u)(r)dBi(r), 20, (5)

forany Z €S, 1=0,1,...,d, ue A*.
Let us consider the following SDE on R((A))

d t
() =1 +Z/ X(s)oi 0 dBi(s), > 0. (6)
i=0 V0
One can easily solve this SDE and obtains

X(t) = Z B(t; u)u.
ucA*

Let (Wy.G, ) be a Wiener space as in Introduction. Let H denote the associated
Cameron-Martin space, £ denote the associated Ornstein-Uhlenbeck operator, and W (E),
r € R, p € (1,00), be Watanabe-Sobolev space, i.e. WP = (I — L)™"/2(LP(Wy; E, dp))
for any separable real Hilbert space E. Let D denote the gradient operator. Then D
is a bounded linear operator from W™?(E) to W™ '?(H ® E). Let D* denote the ad-
joint operator of D. ( See Shigekawa [6] for details.) Now let (€, B, P) be a proba-
bility space and let (2, F,P) = (W, x Q,G x B, ® P). Note that we can narurally
identify LP(Q; E,dP) with LP(Q; LP(Wy; E, dp),dP) for any p € (1,00) by the map-
ping ¥ given by ¥ (f)(@0)(w) = f(w,,w), for (w,,®) € Q and f € LP(Q; E,dP). Since
W7"P(E) is a subset of LP(W; E,du) for any p € (1,00) and r = 0, we can define
Wre(E) = U(LP(Q; W™P(E),dP)) as a subset of L?(Q; E,dP). We identify W"?(E)
with LP(; W"?(E),dP). Then W"?(E) is a Banch space.

We can define D : W™P(E) — W™ '"»(H ® E) and D* : W?(H ® E) — W' '2(E)
by D=0"'oDoW and D* = U o D*oW. Then D : Wr*(E) — W™ ?(H ® E) and
D*: W™ (H ® E) — W' '2(E) are continuous for r > ¢ and p € (1, c0).

Also, we define a Frechet space WOO’OO*(E) by

We*~(E) = (| W™"(E).
n=1



3 Gaussian K-Scheme

Let (0, By, Py) be a probability space, and let (Q,B,P) = (Q, B, Py)N. Let (Wy.G, 1)
be a Wiener space as in Introduction. Now let (Q, F, P) = (Wy.G, 1) x (Q, B, P) nd we
think on this probability space.

Let B® : [0,00) x @ — R% i = 0,1,...,d, and Z, : Q@ — Qp, n = 1,2,...,
be BO(t, (w,{op}2,) = t, Bi(t, (w,{Ox}2,) = wi(t), i = 1,...,d, t € [0,00), and

Zo(w, {En k=) — =G, for (1, {Bu}i,) €0

Let s € (0,1]. Let F ,n=1,2 ... besub o-algebras of F generated by {W(t); t €
[0,ns]}, and {Z; k=1,2,...,n}. Now let ﬁés) :[0,8)xQ—R,i=0,1,...,d, be fls)
measurable functions satisfying the following conditions.
(G-1) There exists an gy > 0 such that

sup Elexp(eo(s / | t)|2dt) —I—Z / |77(S )|?dt))
s€(0,1]
(G-2) For any i = 0,1,...,d,

| ittt =5s)

0

(G-3) There is a Cy > 0 such that

S~l t~ S . .
|EP[/ (s)<t>(/ iy (r)dr)dt] — S8,] < Cos®, 4,5 =0,1,....d.
0 0
1,7 =0,...,d, be given by

Here ¢!,

Zj’

0, otherwise .

(G-4) The map t € [0, s) to ﬁfs) (t) is a measurrable map from [0, s) to W"?(R) for any
i=0,1,...,d,and r 2 0, p € (1,00). Moreover,

D%y (t) =0,  te[0,s),

and
sup EP / ||D” (t )HHdt) ]l/p < 00, t€[0,s)

s€(0,1]
for any p € (1, 00).
Let 0(5) : 2 — Q, s € (0,1], be given by
Oy (w, {wr}ply) = (w(- +5) —w(s), {@rri}ile), (w0, {@e}i2,) € Q
We define 77%5) :[0,s) x Q= R,i=0,1,...,d, by

77%3) C(tw) = ﬁés)(t —(n— 1)8,0&;160), ifte: [(n—1)s,mns),n=12....

Let Y{,) : [0,00) x RV x Q@ — R", s € (0,1], be a solution to the following ordinary
differential equation.
d
d i
Dyl (t) = SOV (1)l 1)

1=0



Y5 (0,2) =z € RY.
Let Q(s), s € (0,1], be linear operators in C°(RY) given by
Q) )(x) = BY[f (Yo (s, 2)]-
Also let 17(3) 1 [0,1] x RY x Q@ — R((A)) be a solution to the following ordinary
differential equation.
d
=D _ Vi @iyt

1=0

S)(O) =1.

A

Ba

Theorem 3 Let m = 2 and assume that

e (EP T (9)) = jem(exp(s(z Do + v0)).

i=1
Then for any T > 0, there is a Cr > 0 for which

n CT 0o
1Prf — Qrm fllo = W"f“oo, feCERY), n>T.

Theorem 4 Let m = 2 and assume that there is a wy € R*(A),,11 such that

Jemea (B ¥ (8)]) = sV 4 ey (exp(s Zv + 1))

Then wy € R™(A) 11 and for any T > 0, there is a Cp > 0 for which

Cr

1Prf = @iyt + ()™ [ Proi@(w)P s S ol

for any f € CP(RN), n=T.

We give two examples for the above Theorem.
Example 1(Ninomiya-Victoir)

Let Qo = {0,1} and Ry({0}) = Py({1}) = 1/2. Let us define 7j,, : [0,5) x @ — R,
1=20,1,...,d, Dby the following.

sy (£ (w,{@}32))

((d+1)s7'B'(s), 1ft€[2d+§ ,321:12 s),i=1,...,d,and @; =0,

(d+1)s71Bi(s), ifte[2L2itls 2021830y — 1 . d and @ =1,

2d+2 2d+2
. d— .
d+1, if t €0, 5755) U (355s,5), i =0,
L 0 otherwise .



Then the assumption (G-1)-(G-4) are satisfied and the assumption of Theorem 4 for
m = 5 is satisfied. Moreover, the operaor @(y) is the same as the one given in Introduction.
Therefore Theorem 1 is a corolary to Theorem 4.
Example 2(Ninomiya-Ninomiya)

Let Qo = R?, and Py(dz) = (2m)~"? exp(—|2[*/2)dz. Let us define 7, : [0,5)xQ — R,
1=20,1,...,d, Dby the following.

e gz = { o 1)

y - 28*1/22% t € [073/2)7
(s (t, (w, {21 }e2q)) = { 2s71Bi(s) — 257V, t € [s/2,s),

fori=1,....,d.

Then the assumption (G-1)-(G-4) are satisfied and the assumption of Theorem 4 for
m = 5 is satisfied.

This example has been introduced by Ninomiya-Ninomiya [4]. Actually Theorem 4
applies to all examples given in [4].

and

4 Approximation of SDE

From now on, we assume that the conditions (G-1)-(G-4) are satisfied.
Let &;;(s), s € (0,1], 4,5 = 0,...,d, be given by

s » t » s
(s = B°L[ it [ i (ranian - 3,
Then by the condition (G-3)
69(s)| £ Cos?,  s€(0,1],4,7=0,...,d.

Also, let dg)(n):flﬁR,s>O, i,j=0,...,d,n=1,2,..., be given by

y ns ; T1 . S
i = [ anaige)([ " drarly () 305 = 3 0)

n—1)s (n—1)s
Then from the assumptions (G-1)-(G-3), we see that d’é | is F9)_neasurable and
E[dI(n)|FO) =0,  4,j=0,...,d, n>0.
Since

di(n)] < s( 1+oo+§j/ Ik, () Pdr),

we see from the assumption (G-1) that for any p € (1, 00) there is a constant C}, > 0 such
that
E[ldI ()| F0)) £ Cps®, s € (0,1, n=1,2,3,.... (7)



Proposition 5 For any T > 0

sup sup s~ /3E[max |X(t,2) — Yy (t,2)")V? < oo.

zE€RN 5€(0,1] t€[0,1]
Note that
d t ‘
(Vi (t2)) = F(Yio (0 — s, ) + 3 /( D )i
for any f € C*(RY). Therefore we see that for ¢t € [(n — 1)s,ns),
d t ‘
Yig(t,2) = Yig((n - Ds,2) + 3 /( Va2l ()
i=0 Y (n=1)s
d t '
— Vi ((n— s, 2) + 3 ViV (n — 1)s, 1)) /( o
i=0 n—hs

+ Z/ vy ) V) Bl ) )

i1,i2=0 n—1)s

Therefore we see that

max |Yv(8)(t7x) - Y'(S)((n - 1)S,$)|

te[(n—1)s,ns)

< $2(1+ d)( max [V ) Z [ R Q

and

Y(S)(”‘va)

=Yy((n—1)s,2) + Z Vi(Ys)((n = 1)s,2))(B'(ns) — B'((n —1)s))
% Z(Vi(%))(m((n —1)s,2))s + Z (Vi (Vi) (Yoy((n = 1)s, 2))d(y* + Reoy(m, ),

where |

R (n, x)

d

Z 2 (Vi) (Vo) ((n — 1), 2))diy (s)

¥ z/ druf (1) /(n_l)sdmnéi)(?“z)( | Do 2 ).

11,i2,13=0 n—1)s

Then we see that
|Rsy(n, )|



d ns

< 5*(d +1)°Co( max [|Villeg) + 5**(d + 1)*( max_ IIVillcg)(Z/

() )2

S

Also, we see that
X (ns,x)
d

= X((n—1)s,z) + Z Vi(X((n —1)s,2))(B'(ns) — B'((n — 1)s))

43 SVAX (0 = s, 2)s + R, ;)

where

R(n,x,s)

odB™ (r " cap® T2 : Vis (Vi, (Vi) (X (r3,z)) 0 dB*™(r3))).
=3 [ e[ aneea[" 00K o a8

i1,i2,i3=0 n— n—1)s

Then we can easily see that

sup sup max s *(||Rgy(n,2)||e + ||R(n; 2, 8)||1r) < 00 9)
s€(0,1] zeRN n=1,..., [T/s]

for any "> 0 and p € (1, 00).
Note that
X(TLS, $) - Y'(S)(HS, .77)

= X((n—1)s,2)=Y5((n—1)s, 2)+(Mos(n, x) =My s(n—1,2))+ (M s(n, x) =M s(n—1,2))

+ Z(VE(X((” —1)s,2)) = Vi(Y5)((n — 1)s,2)))(B'(ns) — B'((n — 1)s))
+R(n;z,s) — Rsy(n, z).
Here
My (n) = Z(V%(X((k‘ —1)s,z)) = Vi(Ys) ((k = 1)s,2)))(B'(ks) — B'((k — 1)s))
and ;
M) = 32 37 (V) Ko = s, ),
Let |

A(n;s,x) = 1ax | X (ns,x) — Y5 (ns, )|

k=1,..,n

Then we have

1 (T/s]
A(n; s, x) < max |Mjo(n, @)+ (|R(n; 2, 8)| + |Rs) (n, ).
—0 n=1,..., S n—1



Since {M;s(n,z)}5%,, j = 0,1 is an F¥ martingale, by Burkholder-Davis-Gundy’s
inequality we see that for any p € (2, 00) there is a C}, > 0 such that

Bl| max [My(k, )P

77777

Z (Vi —1)s,2)) = Vi(¥) ((k — 1), 2)) (B (ks) — B'((k — 1)5))*)"?]

< GLE[(n(d+ )" 22 Y (VX ((k —1)s,2)) = Vi(Yio(k — 1)s,2))) P

k=1 =0

x|B'(ks) — B'((k — 1)s)|")]

and
[T/s] d N
E[n {nax | M s(n, z)P] < C" 231 2:0“/ 1)3am))|2|d2(;])(”)|2)p/2]-
n ©,J

Therefore we see by Equation (7) that

sup sup s PE[ max |M(n,z)]P]"? < oo, T >0, pe (2,00),
s€(0,1] zeRN n=L,..,[T/s]

and there is a C' > 0 for each p € (2, 00) such that
E[| max |Mo(k,z)") < C(ns)*225sY " E[A(k—1;s,2)"], n=0,s€(0,1], z€R".

Let p € (2,00) and let b(n;s,z) = >_,_, E[A(n;s,2)?], n =2 0, s € (0,1], z € RY. Then
combining with Equation (9), we see that for any p € (2, ) and T' > 0 there is a constant
C > 0 such that
b(n;s,z) —b(n —1;5,2) < C(sb(n — 1;5,z) + s*/3)
for any n = 1,2,...,[T/s], s € (0,1], and 2 € RN. Then we have
(14 Cs)™"b(n; s,z) < nCs'/3

and so
E[A(n; s, z)P] £ Cnsexp(Csn)s'/?

for any n = 1,2,...,[T/s], s € (0,1], and z € R". This implies

sup sup s 1/3E[ _max 1 X (ns, ) — Yis)(ns, z)|P]VP < oo, T>0.  (10)
z€RN 5€(0,1] [T/3]

Also, by Equation (8) we have for 7' > 0

E[ max max |Y(5)(t,z) — Y5 ((n — 1)s,2)|*]

n=1,...,[T/s] t€[(n—1)s,ns)

10



[T/s]
B[y, max [Yio(t,2) = Yio((n — 1)s, )|
n=1

[IA

n—1)s,ns)

< PIT/s)(d + 177 max [[Vi]l)* / 7, () 2dr )P
Therefore by (G-1) we see that for any p € (1, oo) and T>0
-1/3 pil/p
sup sup s E| max max Yiolt,z) — Yo((n—1)s,z < 00.
xEIBV 86(01?1] [nzl ,,,,, [T'/s] te[(n—1)s,ns) | ( )( ) ( )(( ) )| ]

Similarly we have

up sup B[ max max |X(a) - X((n - Ds,m)]V0 < oo
zeRN s€(0,1] n=1,..., [T/s] t€[(n—1)s,ns)

These and Equation (10) imply our assertion.

5 Approximation of Linear SDE

Let M 21, a0 € RM and ¢; ;5 € C°(RY;R),i=0,1,...,dand j,k=1,... M.

Let A:[0,00) x RY x @ — RM and Let Z,) : [0,00) x R x @ — R be solutions

to the following equations.

d M t
() = ao+ZZ/ i k(X (1, 2))Ag(r; z) oclBi(r).
i=0 k=170
d M t ‘
Z( )7] t .I' = Qo +ZZ/ C’L]k (T, x>>Z(S),k(r7'r>nzs)(r)dT
i=0 k=1

Proposition 6 For any T > 0 and p € (1,00)

sup sup E[max |Z)(t,z)F] < co.
zeRN s€(0,1] t€[0,T]

Proof. Tt is easy to see that for F € C°(RY;RM), j=1,...m,

d
d i i
5 FXe(t2)) - Zy(t,2))) = D E(Yig(t2); F) - Zi(t,2))niy (1),
i=0
where
) M
Fij(z; F) =) Fu(z)cip(x) + ViFy(z) z€RY, j=1,...,M.
k=1
Note that p
d— log(1 + | Z(5)(t, @) I")
= (1+1|Z(t, =) Z Z Z6),;(t, )5 i (Yo (7, x))Z(S)ﬁk(t;x)nfs)(t),
1=0 j,k=1

11

(11)

(12)



and so

d M
|_10g(1 +1Z (L, 2)[7)] = Z Z ||ka||oo|77 (t)]-

=0 j,k=1
So we have
max 1+ |72, t,x 2
te[(n—1)s, ns)( 1Zs)(t, 2))I°)
= (14126 ((n = Ds, 2) ) exp(y0s’ Z/ (6)2dt)2) (13)
n 1)s

where 7o = Zi:o Zj,k:l [l gl |oo-
Also, we see that there are bounded smooth functions Gy; : RN x RM — R, i =
0,1...d, and Ga;; : RY x R® - R, 4,5 =0,1...d, such that

log(1 4 |Z(s)(ns, z)|*) —log(1 + | Zs)((n — 1)s,2)|?)

— Z Gri(Yio((n—1)s,2), Zio((n — 1)s,2))(Bi(ns) — B'((n — 1)s)) + Ry(n, =),

and

A

R (n, x)

d ns r1 '
> /( | dTﬂ?Z;)(Tl)(/( ) drangy (r2) Ga,iv.in (Yis) (r2, @), Z(s) (r2, 7))
n—1)s n—1)s

11,i2=0

Note that
o, )1 £ (Y [Gai il z/

i1,52=0

Since e** < 1+ s(e® — 1) for any = 0 and s € (0, 1], we see from the assumption (G-1)

(T/s] d ns
sup Elexp(sy Z Z Ms) (r)%dr)]
s€(0,1/~] n=1 j=0 (n—1)s
d
< sup (1 + Eexp EOZ / 171 )27 < o (14)
s€(0,1/9] i—0

for any v > 1 and 7" > 0. Also we see that

n d
exp(Y (7Y GralYig((k = 1)s,2), Ziy ((k — 1)s,2))(B' (ks) = B'((k — 1)s)))
k=1 i=1

is a {Fﬁs)}ngo—martingale for any v > 0. Also it is obvious from Equation (13) that

sup sup B[ max (1+|Z)(ns,z)]*)"] < o

2€RN s€(so,1]  n=1,[T/s]

12



for any so > 0 and 7' > 0. So we seefrom Equation (13) and (14) that

sup sup E[ max (14 |Z(ns,z)*)?] < co.
zeRN 5€(0,1] n=1,...,[T/s]

By Equation (13) we see that

sup (1+]Z(t,2)]?)
te[0,7)

d (n+l)s
< max (L4 Zg (s ) epbos Y [ lafy(r)ldn),
i=0 “ "¢

n=0,...,[T/s]
Since (14]Zs)(ns, z)|)* and S L. (nﬂ)s (r)|dr are independent, we have by Burkholder’s
inequality
E[ sup (1+|Z(t,z)]*)"H?
te[0,T)
< k(s)E[ max (1+ |Zy(ns,z)|?)P]H?
n=0,...,[T"/s] ()

(T/s] (n+1)s
+C,E[( Z{ (1+ |Z(s) (ns, z)*)* (exp(yos' Z/ 8) V2V V2dr) — k(s))?)P/2HP

< B[_max (14| (ns,2))7]>

[T/s]

(n+1)s
(x(e) + CpEI(Y (explros'” Z / Pldr) — w(s) 2P
where

K(s) = expvsmz | gtreary

This implies our assertion. 1
By using Proposition 6, we can prove the following similarly to Proposition 5.

Proposition 7 For any T > 0 and p € (1,00)

sup sup s~ B[ masx [|A(t, 2) — Z(o(t,2) P17 < oc.
zeRN 5€(0,1] t€[0,T]

Corollary 8 For any T > 0 and p € (1, 00)

sup sup /OB max [[VX(t,2) — V¥ (t,2)|[]' < co.
zeRN s€(0,1] t€[0,T]

and

sup sup s~ PE[max [[(VX(t,2)) ™ = (VYo (t,2)) 7" |[P]V7 < oo

z€RN s5€(0,1] t€[0,T]

13



Proof. Since

d
dVX(t,x) =Y _ VVi(X(tx)) o dB'(t)
i=0
and
d d |
= VYo (t,2) =D VVi(Yio (t2)) (2),
i=0
we have our first assertion from Proposition 7. 1

Proposition 9 For any T >0, m 20, p € (1,00) and any multi-index o € Z];Vo

o
8B —D™(X(t,x) — Yio(t, z))|? 1p :
sup s 5 B 155 DK, 8) = Yo 62 ] <
Proof. Note that for any h € H
L py, it 2)h)
dt (s)
. d A .
- Zvv \(t,2) DY, (1, 2) (B () + D Vi(¥io (1, 2) Dy (6)(1).
i=0
Therefore we have )
(VY (t,2)) " DYy (1, 2)(R)
d t
=3 [ (9 ilYio () Dy 1)
i=0
and so R
(VY(S)(ns,a;))_lDY(S)(ns,x)(h)
d n

3N (VY ((k = 1)s,2) WVi(Yig ((k — 1)s,2)) (b (ks) — k' ((k — 1)s) + Ro(n; s, z)(h),
=1 k=1
where

Ry(n;s,x)(h)
=Y [ (Y ) i) — (Vi (= s, ) iV (k — D)5, )

Dnfy(r)(Rh)dr.
Since n(,(r), 7 € (k—1)s,ks), i =0,1,...,dis o{B(u) = B((k—1)s);u € ((k—1)s,ks)}V
o{Z}-measurable, k = 1,2,..., we see that
|| Ro(n; 5, 2)|[%

n d ks

= I|Z/ (VY (r,2)) " Vi(Yis) (r, 2)) = (V¥ (o) ((k = 1)s,2)) " ViV ((k = 1)s, 7))

k=1 =1 7 (k=1)s

14



Dy (r)drllz

<w%2§: max (VY (r,2) " Vi(Yiy (r, 2) = (VYo (k=1)s,2)) 7 Vi(Yig (k—1)s, )

klsks]
k= 121

ks
w/ Dy () )

k—1)s

and so we see by the assumption (G-4) that

sup sup s Y3E[ max ||Ro(n;s,z)|[5]"? < oo
zeRY s€(0,1] n=1,2,...[T/s]

for any p € (1,00) and T' > 0. Note that

(VX (t,2)) ' DX (t,2)(h)

~ [ s dh'
=3 [ ) o) e

So by Propositions 5 and 7, we have the assetion for m = 1.
Also, we have our assertion inductively in m and «a. 1
Similarly we have the following.

Proposition 10 Let A and Z) be the solutions to Equations (11) and (12). For any
T>0,mz20,pée(1,00) and any multi-index o € Zgo

8(1

—-1/3 m » p
sup sup s F|max —D A(t,x) — Zo(t, N < 0.
z€RN s€(0,1] [te[o T] ] (A(t, ) ()( >>HH® ®RM] 00

6 Structure of vector fields

From now on, we assume that that the condition (UFG) and the conditions (G-1)-(G-4)
are satisfied.
Let J!(t,x) = 6‘2in(1€ z). Then for any C° vector field W on RY, we see that

(X ()W) (X(t,z)) = SN, Ji(t, z)W(x), where X(t), is a push-forward operator with

J=1%J
respect to the diffeomorphism X (¢,-) : RY — RY. Therefore we see that

d

d(X (). W)(z) = Y (X (O)'[Vi, W])(=) o dB'(t)

=0

for any Cg° vector field W on RY (cf. [2]). So we have

d(X(t), @ (r(u)))(z)

d
=Y (X7 0 (r(viw)) (@) o dw'(t),

=0
for any u € A*\ {1}.

15



Also, we see that ;
(Vi () (r(w) (@)
- i(m (8); @ (00))) () (),
for any u € A*\ {1}. h

Proposition 11 There are ¢, € CP(RY), u € A* v € A%, such that

O(r(u) = > uuwd(r()), uweA™

/ *k
u 6A§lo

Proof. 1t is obivious that our assertion is valid for u € A*<*£0 4o Suppose that our assertion

is valid for any u € AY , m 2 ;. Then we have for any i = 0,1,...,d and u € AY |

O(r(vu)) = [V, 8(r(w)] = Y [Vis puuw®(r(w))]

/ *k
U €A§40

= Y Vieu)2r@)) + Y puw®(r(viu))

weAZ, weAZ,
= Y (Vipu)2rW) + Y uwpwwr®(r(u”))
wEAZ, €AY,

So we see that our assertion is valid for any v € AZ, . Thus by induction we have our
Proposition. 1

Let m = ¢y. Let cgm)(-,u, u') € CP(RY,R),i=0,1,...,d, u,u’ € A , be given by

1, if [Jv;u|| £ m and v’ = vu,
A (@u ) = puuw (@), if ||| > m and |[u]] £ b,
0, otherwise.

Here ¢,y is one as in Proposition 11. Then we have

d(X(t), '@ (r(u)))(z)
d
:Z (™ (X (¢, 2);u, 0 ) (X () @(r(w))(2) 0 dBi(t), u € o

and

16



Note that cgm)(-; u,u') € C°(RYN). Asis shown in [1], there exists a solution a™ (¢, z; u, u'),
u,u’ € AZ | to the following SDE

da"™ (t, z;u, ) Z Z z);u,u”)a"™ (t, z;u”  u')) o dBY(t). (15)

1/ 0 ul/eA**

a™(0, 5 u,u') = (u, o),
such that
(1) al™ (¢, z;u,u’) is smooth in z and Z=a™ (¢, z;u,v) is continuous in (t,z) € [0, 00) X
RY for any multi-indez o € ZJEVO with probability one,
and
(2) for any multi-indez a € Z¥, and T > 0

(67

sup E[ sup |=—a™ (t,z;u,u)P] < oo.

zeRN  t€[0,T] 396

Then the uniqueness of SDE implies

(X 2(r(w)(@) = Y a™(tz5u,u)(r(W))(2), u € AZ,. (16)

/ T3
in €A§m

Similarly we see that there exists a unique good solution 5™ (t,z;u,u'), u,u’ € A’;*m,
to the SDE

o (t, 2y u, ) = (u, W) Z Z / (r,x;u,u ))(cfm)(X(r, z);u”,u')) o dB(r).

Z 0 ul/eA**

(17)

Then we see that

Z a™ (t, z,u, u" O™ (¢, z,u" u) = (u, '), u,u' € AT,
U,IGA*gm

and so we see that

O(r(u))(z) = Y b(tmu,w) (X (@), 0(r(w)(x), ue AZ,. (18)

! * %
u EAgm

Also, there exists a solution aEZ)L) (t, z;u,u'), bES))(t ryu,u') u,u’ € AY | to the following
ODE -

d i
T Es) t,z;u,u) Z Z Y(S) (t,z);u,u")a Es))(t z;u”,u'))ngg) (1) (19)

i=0 u”EA**

agg)(O,x;u,u’) = (u,u’).

17



and

ib(m)

7% (t, z;u,u') = —Z Z bgg)(t,m;u’,u"))(cgm)(Y(S)(t,x);u”,u')nés)(t). (20)
i=0 u/ €A
ET)(O z;u,u') = (u,u’)
Then we see that
Vo' @r) (@) = Y al(t,zu,u)0(r(w))(z), ue AZ,. (21)
u' €AY
P(r(u))(x) = bé’;;)@,x;u,u')ms)(t);l@(r(u')))(x), ue AL, (22)
cA

Then we have the followmg similarly to proofs of Propositions prop:5 and prop:6.

Proposition 12 For any T > 0 o € ZY, and u,u' € AZ

~1/3
sup sup s /°FE|max
zeRN 5€(0,1] [te (0,77 | Oz

D™ (0™ (¢, 23 u,u') — E:;)(t,x;uaul>)”1{®n]1/p < 00

0 m
sup sup s~ Y/3E[max ||—D"(b(m)(t,x;u, u') — bgs))(t,x;u,u’))||H®n]1/p < 00
z€RN 5€(0,1] t€[0,T]

Let
Ryo=A, JUA, Ry, =A i=1,....4d,
and
= Hvwsu € Ry, i [[ul| = m}. (23)
i=0
Then we have the following.

Proposition 13 For any m = {g + 1,
a™ (t, x,u,u)

= Z (uyu, u') B(t;uy)

ul EA*ém

+ Z Z S(Qomu,uz(X('?x))a(m)(':x7u27u/)7u1)(t)

u1 €EA* uueERS, UQEAE‘ZO

for any t € [0,00), x € RN, and u,u’ € A¥ .

18



Proof. Note that for u,u’ € AY

a™ (t, z;u,u)

d

=)+ D SE™(X(x);uun)al™ (w5 u, @), 0) ().

i=0 uy € A**
So the assertion is obvious from the definition, if ||u|| = m. If ||u|| = m — 1, we have
a™ (t, z;u, ')

d

= (u,u’) + Z S((vu, uYa™ (-, z; viu, u'), v;) (1)

+ Z S(@vou,m (X(, x))a(m)('a T, UL, ul)a vo) (1)

* 3k
Ul 6A§lo

ED Y S (X )™ ), 03),00) 1)

+ Z S(@vou,m (X(7 x))a(m)(_’ x, U, u/)’ UO)(t)'

weAY,
So we have our assertion. Similarly by induction in m — ||u|| we have our assertion.
Corollary 14 For any m = {y + 1,
a™ (t, 3 u,u)
= (X(t)u, o)
+ ) D S Puruun (X (- 2))al™ (-, up, ), ) (£)

w €A uruE Ry, up€AL,
for any t € [0,00), z € RN, and u,u’ € A*g*m'
Similarly we have the following .
Proposition 15 For any m = £y + 1,
b (t, x5 u, )

A

= (X (t) " u,u’)

—|—Z Z Z g(b(m)(-,x;u,ug)@viUS’uz(X<~,x)),u1>(t)

=0 wuj€A* ug EA;ZO w'=ujus usg eRjn,i

19



= (X() ", )

+ > 3 SUX )t us) Py (X (- 7)), ur) (0)

1=0 u1€A*,u2€A;£O:u’:u1u2 ugER:n’i

Y Y Y Y

4,7=0 u1€A*,uz€A;é0:u’:u1u2 u3€ER* U4€A*,U5€A*§£0:u3:u41u5 UGER;,J‘

m,i

S(S’(b(m)('v T U, u6)907)iu67U5 (X(’ il]‘)), u4)(pviu37u2 (X(7 13)), ul)(t)
for any t € [0,00), z € RN, and u,u’ € A¥ .

Finally let yo : R x RY — R be a solution to the following ODE.

d
ayo(t,ﬂf) = Vo(yo(t, z)), teR

y(0,2) =z € RY.
Let co(-;u,u') € C°(RY), u, v’ € AL, be given by

1, ifllul] £ 4y — 1 and v’ = vyu,
CO(CL',U,’LL/) = vaou,u’(x)a ZfHUH = 60 -1,
0, otherwise .

Let ao(t, z;u,u'), bo(t, z;u,u'), u,u’ € Az, be solutions to the following ODE.

d
_aO(t7 x;u, U,) = Z C(yO(t7 m)v u, ’U,”)ao(t, xZ, uﬂa U,/>

dt
weAL,

d

Ebo(t,x;u,u'):— Z bo(t, z;u, u”)e(yo(t, z), u”, u)
u”EA*gZO

ao(0, z,u,u") = bo(0, z,u, u') = (u,u)

Then we see that

Yo(t); 'r(u) = Z ao(t, z, u,u’)r(u’) (24)

’ *
u6A§£O

r(w)= Y boltsz,u,u)(yo(t), r(u)) (25)

! *
ueAélO

for any u € A*yo.
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7 A certain class of Wiener functionals

For any separable real Hilbert space E let l@o(E) be the set of F': (0,00) x RN x Q — F
such that

(1) F(t,-,w) : RN — E is smooth for any ¢ € (0,00) and w € 2,

(2) 0°F/0z°(-, *,w) : (0,00) x RN — E is continuous for any w € Q and o € Z%,

(3) O*F /8x°(t,x,-) € W™ for any r,p € (1,00), a € ZJ;V()? t € (0,00) and z € RV,

and

(4) for any r,p € (1,00), o € Zgo, and T > 0

(0%
sup sup ||=—F(t, )|y, < 00.
t(0,T) zeRN 0T &) s

Then it is easy to see the following.

Proposition 16 (1) Let F € Ko(E) and v = 0. Let F; : (0,00) x RN x Q — E, i =
0,...,d be given by

t
Fy(t,x) = t_(7+””i”/z)/ v F(r,z)dB(r) (t,z) € (0,00) x R,
0

Then F; € l@oA(E), i=0,1...,d, if we take a good version.
(2) Let F; € Ko(E), c € C*(RN; E). Let F : (0,00) x RY x A* x Q — E, be given by

d

F(t,z;1) = c(z) + Z/o Fi(r,x)dB'(r),

=0

and

B(t,3u) = S(F(, 2); ) (1)
for (t,z) € (0,00) x RN. Then t1u2F(t, 2;u) € Ko(E), if we take a good version.
Let us define ™ : [0,00) x RN x A% x Q — H by

m

tA-
k(m) (t7 X; ’U,) = (/ a(m) (Tv X5 Vi, u)dr)i:17...d-
0
Let M™)(t,2) = {M™ (¢, z;u,u') }ywe A= be a matrix-valued random variable given by

M™) (t, x5 u,u') = t—(||u||+\|u’\\)/2(k(m) (t, z;u), k(¢ zu')) g
Then it has been shown in [1]

sup sup ET[|detM ™ (t,2)|™P] < oo for any p € (1,00) and T > 0.
t€(0,T) zeRN
Let M7t 2) = {M™ (¢, z;u,u') uwear be the inverse matrix of M (¢, z)
Note that )

(67

o b0
k,(m) (t7 ZL’; U,) | |§—[®(n+1) = / ||Dn%a(m) (Ta J:; Uiu) | |?—[®nd7’
0

D

Therefore we have the following by Corollary 14, Propositions 15 and 16.

||D"
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Proposition 17 Let m = 2{y + 1.

(1) @™ (t, z;u, u'), B (t, 23 u,u'), MO (t, 25 u, '), and MOt z;u,1) belong to Ko(R)
for any u,u’ € AZ .

(2) =D (@lm) (¢, u, ) (X (E)u, w')) and ¢~ D260 (¢, 22 0, 0)— (X (8) " Hu, o))
belong to Ko(R) for any u,u' € AZ . In particular, t= U l=lD/2g(m) (¢ 22w, u!) and

¢~ U =1D/2p0m) (8 022w, ') belong to Ko(R) for any u,u' € AT .
(3) t—HUH/Qk(m)(t,x; u) belongs to I&O(H) for any u,u’ € AL

Let us define kés :[0,00) x RN x AZ x Q — H by

d t
k((:;) (t; x; U) = Z /O QEZ)‘) (r, T;v;, u)DnES) (T)(h)d?“.
=0

Note that
(m) d [t/s] o) | |
=0 k=1
4 5] s |
+ZZ/(k 1) (GES)(T,x;vi,u) B aé:;)((k - 1)371:3Ui,u))DUZS)(T)(h)dT
=0 k=1 —1)s
d ¢
+Z/[/] (LEZ)L)(T T; V5, )Dn( )( )(h)d?“,
i=0 Y t/sls

s[t/s] ,
+/ (agg)l)(r,x; Vi, U) — agg)(s[r/s],x; vi,u))DnES)(r)dr
0

+ Z / CLES) (r, z; vi, w) Dl (r)dr. (26)

(s)
d s[t/s] (m)
<5 [ slr/s) i) o (sl /sl i)
=1 0
d st/s]
+5Z/ |a™ (7, 2; v, u) — ™ (s[r/s], x; v, u) dr
=1 0
d [t/s] ks )
(053>, e oD i) ~aff) slr/sh v ) [ |IDaly ()
i=0 k=1 —1)s
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t
+5s max |a§$)(r,x;vi,u)|2/ ||D77 )| dr+5sz max (7, z; vy, u)|?

—o "Elslt/s)it] [t/s]s o r€[sft/s] t]
This implies that

sup s V3 sup Ef[sup ||k (¢, z;u) — ) ta;u)||5]YP < oo 27
(s) H
s€(0,1] z€RN te[0,T]

for any u € AZ and T > 0.
Also note that

s[t/s]A o« (m)
:(/0 5pa D sy (8lr/s] @ v, u)dr)im,...a

s[t/s] 9% .
D" (m) SV, _
—l—/o pye (agy (1, @305, u) —a

d t

0~ n i
—i—Z/{t/ss %D alm ))(r,x;vi,u)Dn(s)(T)dr.

—~—

Z)L)<3[7’/5]7 T; Vi, U))DUES) (r)dr

So by a similar argument we have the following.

Proposition 18 For anyn =0, a € Z>o7 u e AZ and T > 0 we have

sup 5™ sup B[ sup || 2 D (K 1, 2:0) — K (0, 250)) o] < 00
5€(0,1] zeRN t€[0,7) e

8 Random linear operators

Let Ny, k = 0,1,..., be the dimension of R-vector space R**(A4)<;. Then there are a

basis {e,}22, of R**(A) such that ey = 1, and that {en}N’“ ! is a basis of R*(A)y,

k=1,2,... For each e; belongs to R**(A); for some k = 0. We denote this k by ||e:]]-
Let us define random linear operators U (t), U)(t), and Up(t) in C°(RY) by

U f)(z) = f(X(t2),  Us®)f)(x) = (Yt ),
for t € [0,00) and f € C*(RY), and

Us(t) = Bap(tVa),  Uyolt) = Eap(( / my(r)dr)Vs) € [0,00).

Then we have

d
dU(t) =Y U(t)@(v;) 0 dB(t)
% (1) = D Ut ()2 (vi)ni,) (1)
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iUo(t) = Uo(t)<1>(v0) = @(Uo)Uo(t)

dt
d 1 -1 — -1
2 Uo(t)™! = ~Uo(t) @ (vo) = ~2(wo)Un(t) ™,
and d

ZUwo()™ = = ()2 (v0)Uo(t) ™.

Note that for any u € Ag*m
(U6 (r(w))f)(x) = (X(&)"df, X (£), @(r(u)))e
= D (X df, ™ ()R (W) = Y al™ (t,msu, 0 ) (@(r(W)U () f)(2),

/ sk ’ *%
” eAgm u EAgm

Let a™ (t;u,u'), u,u’ € Az, be multiplier operators in C*°(R") defined by

(0 (t;u, ) f) (@) = a®™ (¢, 23,0 f(2).

Then we have

So we have the following.

Proposition 19 For anyn =1 and uy,...,u, € AY

sm’

U#)®(r(u1) -~ 7(un))

=3 S A d)R(() () (),

<m
where a(™ (B U1y ooy Uns1; Uy, - -, uy) s are multiplier operators iductively defined by
a™ (tuy, . Ul )
= a™ (¢, up;u))a™ (tug, . un; b, . ul)
+ a™ (t;uy, @) [®(r (@), a™ (L ug, . .., uns ... ul)].
aeAY
In particular, o™ (tug, .. ups Uy, ..., uy)’s are multiplier operators multiplying
a ™ (t, iU, U1 U, - uk) belonging to Ko(R).

Similarly we have the following.

Proposition 20 For anyn =1 and uy,...,u, € AY

<

U(S)(t)q)(r(ul) o1 (un))
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3

= Do al (i, )R ((w) () Ui (1),
k=11, uf €Az,
where agg) (t, T U1y ..oy Upg1; U, ..oy uy) s are multiplier operators inductively defined by

(m

the following. a(s))(t; u,u'), u,u’ € A*<*m, are multiplier operators in C*°(RYN) defined by

(@) (t5u, ) f) (@) = a) (¢, 50,0 f (),

and
agg)(t; Uly ooy Upg 1 Uy ooy UY)
— ag";)(t; ug;ul)a ES))(t Uy e vy U Uy o vy U
+ 3 a5, un, W@(@), o (tur, sl )]
uEAi*
In particular, CLES) (t;ury ... upsul, ..., uy)’s are multiplier operators multiplying
agg)(t, TiUL, ooy Upg1; U, - ., UY,) Such that
sup sup sup ||=— ( )(t TUL, ey Un 15U - o W) || < 0O

5€(0,1] t(0,T] zeRN oz
for any r,p € (1,00), a € Z];Vov and T > 0.

By the above two Propositions, we have the following.

A

Proposition 21 For anyi 2 0, there are M; 2 1 and a;5, ags);; € Ko(R), j =0,1,...

s € (0, 1] satisfying the following.

(1) Forany j =1,2,...,M;; T >0, r,p € (1,00) and o € Z>0,
sup  sup sup |2 ags).ij(t, @)l < oo
5€(0,1] t€(0,T) zeRN Oz~

(2)For any t =2 0,

U0 (e) = 3 Ble)as (U ()
and .
U ()®(er) = D ®(ej)as).i; (1) Ucs) (¢)

Here a;;(t) and as);;(t) are multiplier operators multiplying a;;(t,z) and as;(t,x) re-

spectively.

Similarly we have the following.
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Proposition 22 For anyi 2 0, there are M; = 1 and b;j, b5 € Ko(R),j=0,1,..., M,
s € (0, 1] satisfying the following.
(1) Forany j=1,2,...,M;; T >0, r,p € (1,00) and o € Z>ov

sup sup sup H ~b(4),ij (t, T) |37 < 00

s€(0,1] t(0,T] zeRN

(2)For any t =2 0,

¢@W@=ZENW@W®
and o
W@WN@=2F@MW@@M%

Here by(t) and b ;;(t) are multiplier operators multiplying b;;(t, ) and b(s):;(t, ) respec-
tively.

Also, by Equations (24) and (25), we have the following.

Proposition 23 For any i = 0, there are M; 2 1 and a continuous map c;j : [0, 00) —
CR(RY), j=0,1,..., M;, k= 0,1 satisfying the following.

ez UO Z Cljl UO )

and
M;

Uo(t)®(e;) = > ®(ej)cijn ()T (t).

§=0
As a corollary to Propositions 21 and 22, we have the following.

Proposition 24 For any i = 0, there are M; = 1 and linear operators R;j,(t), in
CRRMN),t=20,s€(0,1,j=1,...,M; k=0,1, such that
(1) For any T > 0, there is a C' > 0 such that

[[Riko(£) floo + [|1Rir1 () flloo = Cl[fl]oo

for any f € CP(RN), t€ (0,T] j=0,..., M,
(2) For anyt =0

Pd(e;) = Z ®(e;)Rixolt),

and

®(e;) P = ZRZ-,j,l(t)@(e,-).
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Let @™ (t, z;u,u'), u,u’ € A% be given by

and let @™ (t;u,u’), be a corresponding multiplier operators in C*(R"). By Proposi-
tion 17, we see that @™ (-, *;u, u) belongs to Ko(R).
Then we have

HPT6R(r(w) = D @™ (tu; )P (r () U (),

weAT,
where @™ (t; u,u') is a multiplier given by
@™ (t;u, ) f) () = @™ (¢, 25 u,0) f ().
So we have the following.

Proposition 25 For anyn =1 and uq, .. A*;*m,

tmul\\+...+\\unl\)/2U(t)c1>(r(u1) -1 (un))

“3 3 A i OO0 ) )V

F=1 uf,euf €AT,

where @™ (t; Uty ooy Upy13 UL, - ., ul) s are multiplier operators inductively defined by
a"™ (tuy, . Ul )
= &(m)(t wy; uh)a™ (tug, . . U, )
+ Z V(s uy, D)2 (D (r (@), a™ (8 ug, . .. up; ), . .. ul)].
acAY

In particular, @™ (t;uy, . .., up;uj, ... ,up)’s are multiplier operators multiplying
A (t, iU, Upy iU, . uk) belonging to KCo(R).

By the above Propositions, we have the following.

Proposition 26 For any i = 0, there are M; =2 1 and a;; € I@O(R), j=0,1,..., M,
such that

tlleall 27 (¢) ZtHeJIW(I) ay (1)U (t), t>0.

Here a;;(t) is a multiplier operators multzplymg a;;(t, ).
Similarly we have the following.

Proposition 27 For anyi = 0, there are M; 2 1 and B,:j € ICO(R), j=0,1,..., M, such
that

glledll/ 2, Ztuem/zb U(H)o(e,).

Here by;(t) is a multiplier operator multiplying b;(t, ).
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Note that o~
X(0).(2) DX () = (| (X0 V@),
0
Then we see that

X(t)(z) ' DX (t,z) = Zk (t, z;u)®(r(u))(z),

uc AL

and so we have
D(f(X(t,x))) = (X(t)*df)(x), X (t).(x) ' DX (t,))
= > (R(r(w)U) F) @)k (t, 2; ) (28)

uEA’g‘m

for any f € C°(RY).
Then we have the following.

Proposition 28 For any u € AY and F € Ko(R), we have

tZEP[F(t,2)((r(w))U (1) £)(2))] = BV [(R(u)F)(t,2)(U (1)) ()],
where
(Rw)F)(t,z) = > D (M7 (t,z;u,u)F(t,z)t WIPE" (¢, 2, 1))
for any f € C°(RN), t > 0 and € RY. Moreover R(u)F belongs to Ko(R.).
Then we have the following.

Proposition 29 For anyi,j > 0 and F € Ko(R), there is an Fy; € Ko(R) such that
il DZEP [F(t,2)(D(e)U (1) @(ej) ) (2))] = BY[Fy(t, 2)(U (1)) ().

9 Basic lemma

Let Q) (t), t > 0,s € (0,1] be linear operators in C;°(RY) given by
QM) )(@) = E"[f(Yy(t,2)],  f€CFRY).
In this section, we prove the following lemma

Lemma 30 There are linear operators Q(s)0(t), and Q1 (t), t > 0,s € (0,1], in Cg°(RN)
satisfying the following.

(1) Q1) = Qe5),0(t) + Q)1 (1)
(2) For any w,w" € R*(A) and Ty > Ty > 0, there is a C > 0 such that

[1W(w)Q(s) 0 (B) ¥ (w) flloo = Cllfllo

for any t € [Ty, T1], s € (0,1], and any f € C(RY).
(3) For anyn =2 1 and Ty > Ty > 0, there is a C > 0 such that

Qo)1) flloo = C57"[[ fllo0
for any t € [Ty, T1], s € (0,1], and any f € CP(RY).
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We make some preparations to prove this lemma.
Let M((;;L) (t,x) = {M((:;) (t, 2;u, ) buwear be a matrix-valued random variable given
by )

M (b o) = ¢ IO (R 8, o), R (8 25 ))

Then we have

(D(f (Vo () k() (82 = > M (b 0, 0) (R (w)) £) (@) (¢, 2.).

uEAg%
Let 6.7 (t,2), t > 0, 2 € RN, 5 € (0,1] be given by
o (t,x) = det M™(t,z) 7" det M (t,z) — 1

Then we see that

sup s /3 sup sup t7m|| (5((;”)(t,x)||wr,p < 00 (29)
s€(0,1] 2€RN te(0,T) Oz

forany T >0, 7,p =1 and a € Z];VO' Here

Y= Y lull:

uEA;m

Let us define M((:;L)_l(t, x) = {M((:;)_l(t, T;u, ') buwear be a matrix-valued random

variable given by

m)—1 . m m —
M (1 w) = lim M (1, 2) (e, + M (1,2)) .

Then one can easy to see that for any ¢ € C5°((—1/2,1/2)), go(é((;n) (, x))M((:;)fl(t, z;u, u')
belongs to W™ for all r,p € (1, 00),

D (000 (8, 2)) M (1 @00, u2) MUY (¢, 350z, us) = (ur,us),  wi,us € AZ,

u2€AL,,
and

aa m m)—
sup s~ 1/3 sup sup t(r+1+la\)wm||_(90(5((s )(t,gc))M((5 ) 1(t,m;u1,u2))||wryp < oo (30)
s€(0,1] z€RN t€(0,T] ox®

for any T > 0, r,p € (1,00), a € ZY, and uy,uz € AZ .

Note that
Ly (ta)(h) = Z Vi(Y¥io(t,2)) Dy (£)(h) + iwvnms) (1)) DY,y 2) (B (1)
Therefore we have - -
Yo (O DY ()() (@) = Z / Vi ()7 @ (R



Then we see that for any f € C°(RY)
D(f (Yis)(t,2))) = (Y5 df) (), Yis) ()< (2) T DY) (1, 2))

= Y ((r(w) U () ) (@) ks (t, z.0).

ueA*é*m
= Y s ) (U (OB () @D (0,0, (31)
u,u’EA*é*m
Then we have the following by using Equation (31).
Proposition 31 Let ¢,1p € CF((=1/2,1/2)) and F : (0,00) x RN — W~ pe q

continuous map. We assume that 1 = 1 in the neighborhood of the clousure of {z €
(=1/2,1/2); ¢(z) > 0}. Then we see that for any u € ALY

EP[F(t, 2)p(8) (U ()@ (r(u) £)(z))]

= BP[(Ro F)(t, z;u, @) (65 (£, 2)) (U (1) ) ()],
where

(R F)(t, 25 u, )
= 3 DOt x)) MMt w5 ur, un)al™ (8 w5 u, us) F(t, @)k (¢, 2, u1))

ul,’LLQEA*é*m

for any f € C(RN), t > 0 and = € RN. Moreover, (R(S)F)(t,x;u,@)@D(é((gn)(t,x)) is
independent of a choice of .

Let ¢, € C5°((—1/2,1/2)) such that ¢» = 1 in the neighborhood of the clousure of
{z € (—1/2,1/2); ¢(z) > 0}. Then for any n = 1 we can find ¢, € C§°((—1/2,1/2)),
kE = 0,1,...,n, such that o9 = ¢, ¢, = ¥, and that ¢, = 1 in the neighborhood of
the clousure of {z € (—1/2,1/2); vr_1(z) > 0}, k = 1,...,n. Then we see that for any
Uy, ..., u, € A¥ and continuous map F : (0,00) x RN — T/ o000

EP[F(t,2)p(0{))(@(r(u) -+ (un) Uy (£) £) ()]

= BP (R F)(t, z3un, .., ) (50 (£, 2)) (U (£) ) (),
where
(R(S)F)(tv TiULy -y Up, 90) = (R(s)(unv Qpn—l) T R(s)(ub SOO)F)(tv .11)

for any f € C2°(RN), ¢t >0 and x € RY.
So conbining this with Proposition 31 we have the following.

Proposition 32 Let ¢,9 € C5°((—1/2,1/2)) such that ¢ = 1 in the neighborhood of the
clousure of {z € (=1/2,1/2); ¢(2) > 0}. For anyi,j =0, Ty > Ty > 0 and F € Ky, there
is an F' € Ky, such that

EP[F(t,2)p(0{) (t,2))(®(e:) U ()2 (e;) f) ()]
= EP[(F'(t,2)p (0 (t, 2)) (U (1) £) ()],
for any f € CX(RN), t € [Ty, Th], and x € RN.

30



Now let us prove our lemma.
Note that

Q) ()f)(x) = BX[(Us) (1) £) ().
Let us fix p € C§°((—1/2,1/2)) such that ¢(z) =1 for z € (—1/4,1/4), and let Q) ,(t),
i=0,1,t> 0, be linear operators in C;°(R”Y) given by

(Qeeyo ) )(@) = EX[p(65 (£, 2)) (U (1) ) ()],

and
Qi) (@) = ET[(1 = (0 (t,2)) (U (£) f) ().
Since

P61 (t, )| > 1/4) < 4"E[6{1) (¢, )|,

we have by Equation (29)

sup s~"% sup sup "™ P(|6)(t,x))| > 1/4) < 0o
s€(0,1] xRN t€(0,T

for any n = 1. Then we see that for any n = 1 and 77 > T > 0,

n

_ o~ m
sup 57" sup - sup |5 (1= @(8(3 (t,2))) s < 00 (32)
s€(0,1] zeRN te[To,T1] <z

Now our lemma is a consequence of Proposition 32 and Equations (29) and (32).

10 Commutation and Infinitesimal Difference
Let A, : A* x R(A) — R(A), 1 = 0,1, be a map inductively defined by

flj(l)w =w, flj(vi)w =vw, i=1,...,d, j=0,1,

d
~ 1
Ap(vo)w = [vg, w], Ag(vo)w = 3 Zlvf + [vo, w],
and . . .
Aj(uvl-)w = AJ(U1)<AJ(U>U)), 1= O, R ,d, u A*, w c R<A>
Then we have the following.

Proposition 33 flj(u)w € R*(A)nyy for any j = 0,1, w € R™(A),, n = 0, and
ue A*.
Proof. We have our assertion, noting that

n

[vo, r(uy) -+ r(u,)] = Z r(uy) - r(ug—1)7r(vour)r(Ugs1) - - - (up).

k=1
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It is easy to see that

d

U(t)®(w)Up(t) ™ = ®(Ag(Dw) + Z/O U (r)®(Ag(v)w)Uy(r) "t 0 dB(r)

=0

+Z/ Yw)Us(r) " dB(r)

for any w € A*. Therefore we have for any n = 0

= N 1) () @A (w)1)

uEA;n

+ZI (w)1)Uo(-) ™

ueR?

Here R} is as in (23).
Remind that X (¢) is a solution to the following SDE over R((A)).

_1+Z/X v; o dBY(r).
1 d
_1+Z/X Yu:d B (r /X 2;U3+U0 )dB°(r

Let Xo(t) }A/(s) (t) and Y(S)p (t) are solutions to the following ordinary differential equations
over R((A))

and



we have

Ut)Uo(t)™
= @(jza(jzn(X(O)Xo(6) ™)) + D LU ()2(Ai(w))Uo(-) (33)

Similarly we have

+ Z / Mgy (r1)dry -+ / nf;) (r)drmUs) (Tms1) @ (Ao (v, -+ - 0, ) Up (1)

-5, ERY
(34)
Note that by the assumption (G-3) we have

Utsyo(s) = Un(s) and Y5 o(s) = Xo(s) = exp(sup). (35)
Then by Propositions 21, 22, and Equation (33), we have the following,.

Proposition 34 For anyn =0, and 1,7’ = 0, there are M = 1 and measurable functions
dniik: By = Ko(R), 7=0,1,...,M, k=0,1, such that

O (e)U (1) D (er) — P(erjzn(izn(X (1)) exp(—tw0))))Uo(t)(er)

M

= > D (e (dusigol % WU ()o(t —);u) (1),

uERE j=0

D HUE)Us(t = Ydniira (- %, u); w) () (e;).

ueR} 7=0

By Equation (34), we see that for any m = 1 and w,w’ € R*(A)

O(w)(Us)(s))2(w')

= B(wjic (2 (Vi (5)) exp(—500)))) Vo (5) B(w)

s rg—1
w02 e [T e,

Viy - Vig EA:’Uil ""UiQERf,"L

q)(w)U(s)(Tqul)(I)(AO(Uiq o 'Uill)Exp((/ néi)(f)df)%ﬂ)(w’)-
Then by Propositions 21, 22, and Equations (34) and (35) we have the following.

Proposition 35 For anyn =0, and i, = 0, there are M = 1 and measurable functions
()% - (0,8] x Rt — Ko(R), 7=0,1,...,M, s € (0,1], k= 0,1, such that

®(e1)Uts) (5)(eir) — ®(eisin(n(Vis) (5)) exp(—s00)))) Un(s) @ (ex)
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Tq-1
= Z ZCID e / y(ri)dry - / Nisy(rq)drq
0

vil,...vinA:vil ) GR* 7=0

dn,(s),3,.5,0(+ %, Viy =+ Vi, ) (Tg) Ugs) (Tq)Exp((/ N(s)(T)d7) Vo)

M s Tq—1
= Z Z /0 7‘1 )dry - - /0 s) L (ry)dr,

Viq s EA Wiq vquR* j=0

Uiy () Bz / D EAIWVE)E 510y 01, ) B(ey).

q

Note that

B[( / Jit )l - / " dr it () llg(r )1

<E / 7 (1)) / it () dr) / 7t () g(r)dr) P17

sl 2B (57 / o)+ 3 | gtPanyepeE [ gt

for any v;, - --v;, € R, and progressively measurable function g.
Therefore as a corollary to the above propositions, we have the following.

Corollary 36 For any n = 0, and 1,7 = 0, there are M = 1 and linear operators
R&k’j = Rn,s,k,@iﬁj; R(s),j,k = Rn,(s),i,z",j,k; =0,1....M, k=0,1, s € (0, 1] defined in
C(RYN) satisfying the following.

(1) There is a C > 0 such that

1Rs o0 flloo + 1Rt flloo + 1 Risy g0 f oo + [1Ris) 1 flloo S O™ 72| f] |

for any f € CX(RY), s € (0,1] and j =0,1..., M.
(2) .
D(e;) Ps®(er) — P(eij<n(Eli<a(X(s))]) exp(—svo)))Un(s)P(ex)

M M
= Z ®(ej)Rsjo = Z R ;19(ej)
7=0 7=0

D(e:) Qo) P (err) — (eijzn(Eljzn(Yis)(5))]) exp(—sv0)))Uo(s)®(ex)
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11 Proof of Theorems 3

Let us assume the assumption of Theorem 3. Note that

Pos = Q) = D Poe-1)s(Ps = Q) Q) ((n — k)s)
k=1

= R(s),n,O + R(s),n,l;

where
[n/2] n

Rs)no = Z Ple-1)s(Ps — Q(5))Q(s),0((n — k)s) + Z Ple-1)s(Ps — Q) Q) ((n — k)3),
k=1 k=[n/2]+1

and

[n/2]
Rgmi =Y Pu—1)s(Ps — Q) Qs 1((n — k)s).
K1

Here Q5)0(t) and Qs),1(t) are as in Lemma 30.
Then we have the following.

Proposition 37 Let T} > Ty > 0. Then we have the following.
(1) For any w € R**(A), there is a C > 0 such that

12 (w) Risynofl| < Cs™ D2 ||

for any f € CX(RN), s € (0,1], n = 1 with Ty < ns < Ty.
(2) For any v > 0, there is a C' > 0 such that

1B mafll = O] flloe

for any f € CX(RN), s € (0,1], n = 1 with Ty < ns < Ty.
(3) There is a C > 0 such that

[1(Pos = QU FII < Cs™ V2| fll
for any f € C(RN), s € (0,1], n = 1 with Ty < ns < Ty.

Proof. The assertion (2) is an easy consequence of Lemma 30. The assertion (3)
follows from the assertions (1) and (2). So it is sufficient to prove the assertion (1).

Fix w € R*(A). Applying Proposition 22, we see that there are I = 1 and linear
operators P, ; in C2°(RN) such that

and that there is a Cy > 0 such that

1Piflloo < Col|floo
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for any f € C°(RN) and i =0,...,1.
_ Applying Corollary 36 to n = m, we see that for there are K 2 1 and linear operators
Ris),iky; in C°(RY), s € (0,1],i=0,...,] k=0,1, j=0,...,J such that

J

q)(ei)(Ps_Q(S)):Zq)eJRS)ZOJ ZRS)HJ (e5)

=0
and that there is a C; > 0 such that
|1 R(s).ikjiflloo < Crs™ 2| fllo

for any f € C°(RN), s € (0,1],i=0,...,l and k= 0,1, and j = 0,...,J. Then we see
that
||q)(w)R(s),n,Of||oo

1 J
<> Z [ Ple—1)s,i 51,0, 2 (€5) Qs) 0 (= K)3) oo

+ Z [|®(w sP(€)) R0 Qs) (n — k)3) £ o0

J=0 k=[n/2]+1

I J [n/2]

D RN " CoC D (e5) Qs 0((n — k)s) f o

=0 7=0 k=1

A

J
+ s Z Crsup || (w) Po-1)s®(e;) fllooi £ € CZRY), [Iflloo < 131 £]]oc-
j=0

=[n/2]+1

Then we have the assertion (1) from Proposition 29 and Lemma 30 . 1
Theorem 3 is an easy consequence of the above Proposition.

12 Proof of Theorem 4

We assume the assumption of Theorem 4. Note that

(log(f((s) exp(—svg)), vo) = (10g(f/(5)(s) exp(—swp)), vg) = 0

with probability 1. Therefore we see that

~

wo = s~ "B g 1 (X(s) — Vi) (s)) exp(—sv))] € R™(A).
Also, by Corollary 36, there are M = 1 and linear operators Rskj, g =0,1... M,
k=0,1, s € (0,1] defined in Ci°(RY) satisfying the following.
(1) There is a C' > 0 such that
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for any f € C°(RYM), s € (0,1] and j =0,1..., M.

(2)
Ps - Q(s) + 8(m+1)/2¢(w0)U0(3)

M

M
=Y ®(ej)Rajo = Y Raja®(e))

j=0 J=0

Now by applying Corollary 36 for n = m + 2, we see that

Pns_Q?s)
k=1 k=1

= Z I(s)m,ia
=0

where .
Igymo = s/ Z P—1)s®(wo)Uo(8) Pn—1)s
k=1
M [n/2] A
I(s),n,l = Z P(k 1)s Rq+253 1@ e] (n—k)s + Z Z P(k: 1)s Rq+2ngP(n k)s
j=0 k=1 J=0 k=[n/2]+1
n n—k
I, — Z Z Pii—1)s(Ps = Q) Pr—1(Ps — Q(5)) Q(s),n—k.0
k=1 ¢=1
n n—k
Is7n3 Zzpk 1)s P Q(s)PE 1(P Qs))@sm k,1
k=1 £=1

Then by using a similar argument in the proof of Proposition, we see that for any 7; >
Ty > 0, there is a C > 0 such that

a1 flleo < Cs 2| £

||I(5),n,2f||oo < CSm_leHoo
HI(S),n,SfHoo < C‘SZmeHOO

for any f € C°(RY), n = 1, s € (0,1], with ns € [T, T1].
Also, note that

/O Pr(b(wO)Pns—'rdT - 8—(771—1)/2](5)7”70

n

= Pl /O S(PTCD(wO)PS_T — ®(wo)Up(s))dr) Pry—p)s-

k=1
Note that for r € (0, s),
P, ®(wg) P,_,Up(s) ™"

= P,Uo(r) ™" (Uo(r)®(wo)Un(r) ™) Uo(r)(Ps—rUs(s — 1)) Uo(r)
Therefore appliying Corollary 36 for n = 1, we have the following.
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Proposition 38 For any s € (0,1], there are M 2 1, and linear operators defined R, ; ;,
=0,1,...,M, j=0,1, in C*(R") satisfying the following.
(1) There is a C' > 0 such that

||R87i7jf||oo < CSHfHoo

for any f € CP(RN), s € (0,1],i=0,1,...,M, j=0,1.

(2)

/0 (PO (w0) Py Uo(s)V)ds

M M
= ®(wo) + Y B(ei)Rajo = P(wo) + > Reju®(es).
1=0 =0

Then again similarly to the proof of Proposition 37 we see that for any T} > Ty > 0,

there is a C' > 0 such that

||5(m_1)/2 / Prq)(wO)Pns—rfdr - I(s),n,OfHoo é CVs(m—s_l)/szHOO
0

for any f € C°(RY), n = 1, s € (0,1], with ns € [Ty, T1].

So we have Theorem 4.
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