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Seiji Nishioka

Abstract

We define the decomposable extensions of difference fields and
study the irreducibility of q-Painlevé equation of type A

(1)
7

′
. Every

strongly normal extension or Liouville-Franke extension, the latter of
which is a difference analogue of the Liouvillian extension, satisfies
that its appropriate algebraic closure is a decomposable extension.

1 Introduction

Notation. Throughout the paper we say a set is a field only when it is a field
of characteristic zero, namely when it contains the set of rational numbers.
Terms used here will be seen in [2, 7]. For a difference field extension L/K and
B ⊂ L, K〈B〉L denotes the difference field, the intersection of all difference
intermediate fields of L/K containing B.

In [8] the author introduced the definition and some examples of the
U -decomposable extensions of difference fields. In this paper we define the
decomposable extensions of difference fields, which do not require the fixed
difference field U , and study the irreducibility of q-Painlevé equation of type

A
(1)
7

′
.

We show that some algebraic closure of any U -decomposable extension is
decomposable in Proposition 4. Therefore some algebraic closure of Bialynicki-
Birula’s strongly normal extension or Infante’s is decomposable (see [1, 5,
6, 8, 9]). Moreover Corollary 8 implies that any algebraic closure of the
Liouville-Franke extension, a difference analogue of the Liouvillian exten-
sion, is decomposable (see [3, 4]).

We define the decomposable extensions and the U -decomposable exten-
sions.
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Definition 1 (decomposable extension). Let K be a difference field, and L
an algebraically closed difference overfield of K satisfying tr. degL/K < ∞.
We define decomposable extensions by induction on tr. degL/K.

(i) If tr. degL/K ≤ 1, then L/K is decomposable.

(ii) When tr. degL/K ≥ 2, L/K is decomposable if there exist a difference
overfield U of L, a difference overfield E of K in U of finite transcendence
degree which is free from L over K, and a difference intermediate field
M of LE/E satisfying tr. degLE/M ≥ 1 and tr. degM/E ≥ 1, such
that LE/M and M/E are decomposable, where LE is an algebraic
closure of LE and M the algebraic closure of M in LE .

Definition 2 (U -decomposable extension). Let U be a difference field and
L/K a difference field extension in U of finite transcendence degree. We
define U -decomposable extensions by induction on tr. degL/K.

(i) If tr. degL/K ≤ 1 then L/K is U -decomposable.

(ii) When tr. degL/K ≥ 2, L/K is U -decomposable if there exist a differ-
ence overfield E of K in U of finite transcendence degree which is free
from L over K, and a difference intermediate field M of LE/E such
that tr. degLE/M ≥ 1, tr. degM/E ≥ 1, LE/M is U -decomposable,
and M/E is U -decomposable.

This work was supported by KAKENHI (20 · 4941).

2 Decomposable extension

Proposition 3. Let K be a difference field, and L/K and N /L be decom-
posable extensions. Then N /K is decomposable.

Proof. (i) If tr. degN/K ≤ 1, then we find that N /K is decomposable by
the definition.

(ii) Suppose tr. degN/K ≥ 2.
(ii-1) If tr. degN/L = 0, then we obtain N = L because L is algebraically

closed. Therefore N /K is decomposable.
(ii-2) Suppose tr. degL/K = 0. Since N /L is a decomposable extension of

tr. degN/L ≥ 2, there exist a difference overfield U of N , a difference overfield
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E of L in U of finite transcendence degree which is free from N over L, and
a difference intermediate field M of NE/E satisfying tr. degNE/M ≥ 1 and
tr. degM/E ≥ 1, such that NE/M and M/E are decomposable, where NE
is an algebraic closure of NE and M the algebraic closure of M in NE .

Note tr. degE/K = tr. degE/L < ∞ and that N and E are free over K.
Then we find that N /K is decomposable.

(ii-3) Suppose tr. degN/L ≥ 1 and tr. degL/K ≥ 1. Putting U = N ,
E = K and M = L, we find that N /K is decomposable by the definition.

Therefore chains of decomposable extensions are decomposable.

Proposition 4. Let L/K be a U-decomposable extension, U an algebraic clo-
sure of U , and L the algebraic closure of L in U . Then L/K is decomposable.

Proof. We prove this by induction on tr. degL/K. If tr. degL/K ≤ 1, then
tr. degL/K ≤ 1, and so L/K is decomposable.

Suppose tr. degL/K ≥ 2 and that the statement is true for ones of less
transcendence degree. Since L/K and L/L are U -decomposable, we find that
L/K is U -decomposable (see [8]). Therefore there exist a difference overfield
E ⊂ U of K satisfying tr. degE/K < ∞ and that E is free from L over K,
and a difference intermediate field M of LE/E satisfying tr. degLE/M ≥ 1
and tr. degM/E ≥ 1, such that LE/M and M/E are U -decomposable.

Let LE and M be the algebraic closures of LE and M in U respectively.

By the induction hypothesis we find that LE/M and M/E are decomposable,
which implies that L/K is decomposable.

The remaining results in this section are on a linear difference equation.
We include the following Lemma for readers convenience.

Lemma 5. Let K be a difference field, C = CK, n ∈ Z≥1, and b(1), . . . , b(n) ∈
K. Then the following are equivalent.

(i) b(1), . . . , b(n) are linearly dependent over C.

(ii) Cas (b(1), . . . , b(n)) = 0.

Proof. Let K = (K, τ). If b(1), . . . , b(n) are linearly dependent over C, there
are c1, . . . , cn ∈ C such that (c1, . . . , cn) 6= 0 and

∑n
i=1 cib

(i) = 0. Then we

obtain
∑n

i=1 cib
(i)
j = 0 for all 0 ≤ j ≤ n−1, which implies Cas (b(1), . . . , b(n)) =

0.
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Suppose Cas (b(1), . . . , b(n)) = 0. We prove (i) by induction on n. The
statement is true in the case n = 1. Suppose n ≥ 2 and the statement is true
for n − 1. There are c1, . . . , cn ∈ K such that (c1, . . . , cn) 6= 0 and b(1) · · · b(n)

...
. . .

...

b
(1)
n−1 · · · b

(n)
n−1


c1

...
cn

 = 0.

We may suppose c1 = 1. From
∑n

i=1 cib
(i)
j = 0 for any 0 ≤ j ≤ n − 1, we

obtain
∑n

i=1 τ(ci)b
(i)
j = 0 for any 1 ≤ j ≤ n. Therefore it follows that for any

1 ≤ j ≤ n − 1,

n∑
i=2

(τ(ci) − ci)b
(i)
j =

n∑
i=1

(τ(ci) − ci)b
(i)
j = 0,

which implies  b
(2)
1 · · · b

(n)
1

...
. . .

...

b
(2)
n−1 · · · b

(n)
n−1


τ(c2) − c2

...
τ(cn) − cn

 = 0.

Case 1. The case Cas (b
(2)
1 , . . . , b

(n)
1 ) 6= 0. In this case we find that τ(ci) =

ci for all 2 ≤ i ≤ n, which implies ci ∈ C for all 1 ≤ i ≤ n. Since we have∑n
i=1 cib

(i) = 0, we conclude that b(1), . . . , b(n) are linearly dependent over C.

Case 2. The case Cas (b
(2)
1 , . . . , b

(n)
1 ) = 0. We obtain Cas (b(2), . . . , b(n)) =

0. By the induction hypothesis we find that b(2), . . . , b(n) are linearly de-
pendent over C, which implies b(1), b(2), . . . , b(n) are linearly dependent over
C.

Lemma 6. Let K be a difference field,

(1) yn + an−1yn−1 + · · · + a0y = 0

a linear homogeneous difference equation over K, where n ≥ 1, f a solution
of (1), and L an algebraic difference overfield of K〈f〉. Then L/K is U-
decomposable for some difference overfield U of L.

Proof. We may suppose tr. degK〈f〉/K ≥ 2. Let L = (L, τL) and choose

b
(i)
j , 1 ≤ i ≤ n, 0 ≤ j ≤ n − 1 to be algebraically independent over L. Put
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B = {b(i)
j | 1 ≤ i ≤ n, 0 ≤ j ≤ n − 1}, b(i) = b

(i)
0 and b

(i)
n = −an−1b

(i)
n−1 − · · · −

a0b
(i). Define the isomorphism τ of L(B) into L(B) sending b

(i)
j to b

(i)
j+1 for

all 1 ≤ i ≤ n and 0 ≤ j ≤ n− 1, and x ∈ L to τLx ∈ L. Put N = (L(B), τ).
Then N is difference overfield of L. Note the following,

n2 = tr. degN /L = tr. degK〈f, B〉/K〈f〉 = tr. degK〈B〉/K,

which implies K〈f〉 and L are free from K〈B〉 over K.
Since we have

f f1 · · · fn

b(1) b
(1)
1 · · · b

(1)
n

...
...

. . .
...

b(n−1) b
(n−1)
1 · · · b

(n−1)
n

b(n) b
(n)
1 · · · b

(n)
n




a0

a1
...

an−1

1

 =


0
0
...
0
0

 ,

we obtain Cas (f, b(1), . . . , b(n)) = 0. Put C = CK〈f,B〉. By Lemma 5 we
find that f, b(1), . . . , b(n) are linearly dependent over C. On the other hand
we have Cas (b(1), . . . , b(n)) 6= 0, which implies that b(1), . . . , b(n) are linearly
independent over C. Therefore we find that there are c1, . . . , cn ∈ C such
that f =

∑n
i=1 cib

(i).
Put Mi = K〈B, c1, . . . , ci〉 ⊂ K〈f, B〉 for all 1 ≤ i ≤ n and M0 =

K〈B〉. Note Mn = K〈f, B〉 and Mi = M0(c1, . . . , ci). Then we obtain
tr. degMi/Mi−1 ≤ 1 for any 1 ≤ i ≤ n, and so

tr. degK〈f, B〉/K〈B〉 = tr. degK〈f〉/K ≥ 2

implies that there is some 1 ≤ k ≤ n − 1 such that tr. degMk/M0 = 1.
We also find that Mi/Mi−1 is N -decomposable for any 1 ≤ i ≤ n, and so
Mk/M0 and Mn/Mk are N -decomposable. Since N /K〈f, B〉 is algebraic,
N /Mk is N -decomposable of tr. deg ≥ 1.

Note N = LM0, and it follows that L/K is N -decomposable.

Proposition 7. Let K be a difference field,

(2) yn + an−1yn−1 + · · · + a0y = b

a linear difference equation over K, where n ≥ 1, f a solution of (2), and L
an algebraic difference overfield of K〈f〉. Then L/K is U-decomposable for
some difference overfield U of L.
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Proof. We may suppose b 6= 0. Let L = (L, τ), and put an = 1. The solution
f satisfies

∑n
i=0 aifi = b and

∑n+1
i=1 τ(ai−1)fi = b1. Then we have

0 =
n+1∑
i=1

τ(ai−1)fi −
bi

b

n∑
i=0

aifi

= fn+1 +
n∑

i=1

(τ(ai−1) −
bi

b
ai)fi −

b1

b
a0f.

Therefore by Proposition 6 there is a difference overfield U of L such that
L/K is U -decomposable.

Corollary 8. Let K be a difference field,

(3) yn + an−1yn−1 + · · · + a0y = b

be a linear difference equation over K, where n ≥ 1, and f a solution of (3).
Then K〈f〉/K is decomposable for any algebraic closure K〈f〉 of K〈f〉.

Proof. Let L = K〈f〉 be an algebraic closure of K〈f〉. By Proposition 7 we
find that L/K is U -decomposable for some difference overfield U of L. Let
U be an algebraic closure of U . The algebraic closure of L in U equals L
because L is algebraically closed. Therefore by Proposition 4 we conclude
that L/K is decomposable.

3 Irreducibility of q-P (A′
7)

Notation. Throughout this section let C be an algebraically closed field of
characteristic zero, t transcendental over C and q ∈ C×.

The q-Painlevé equation of type A
(1)
7

′
, the object here, appears in Sakai’s

paper [11]. The system over (C(t), t 7→ qt) is the following,

y1y = z2
1 ,

z1z =
y(1 − ty)

t(y − 1)
.

We prove that if q is not a root of unity and (f, g) a solution in a decomposable
extension of (C(t), t 7→ qt), then f and g are algebraic functions of the form
c/
√

t, c ∈ C.
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Lemma 9. Let K be a difference field, D a decomposable extension of K and
f ∈ D. Suppose that if L is a difference overfield of K of finite transcendence
degree and U a difference overfield of L such that K〈f〉D ⊂ U , then the
following holds,

tr. degL〈f〉U/L ≤ 1 ⇒ f is algebraic over L.

Then f is algebraic over K.

Proof. Assume that f is transcendental over K. Choose (L,N ) be an element
of

{(L,N ) | K ⊂ L ⊂ N , tr. degL/K < ∞, N /L is decomposable,

K〈f〉D ⊂ N , and f is transcendental over L}

which has the minimal transcendence degree tr. degN/L. The choice is guar-
anteed because (K,D) satisfies the conditions. If we assume tr. degN/L ≤ 1,
we obtain tr. degL〈f〉N/L ≤ 1, which implies that f is algebraic over L by
the hypothesis, a contradiction. Therefore it follows that tr. degN/L ≥ 2.

Since N /L is decomposable, there exist a difference overfield U of N , a
difference overfield E of L in U of finite transcendence degree which is free
from N over L, and a difference intermediate field M of NE/E satisfying
tr. degNE/M ≥ 1 and tr. degM/E ≥ 1, such that NE/M and M/E are
decomposable, where NE is an algebraic closure of NE and M the algebraic
closure of M in NE .

From K〈f〉D ⊂ N ⊂ NE and tr. degNE/M < tr. degN /L we find that
f is algebraic over M , namely f ∈ M . Note that

K〈f〉D = K〈f〉NE = K〈f〉M ⊂ M.

Then from tr. degM/E < tr. degN /L we find that f is algebraic over E.
Since N and E are free over L, we find that f is transcendental over E,

a contradiction. Therefore f is algebraic over K.

Lemma 10. Let q ∈ C× be not a root of unity, K an inversive difference
overfield of (C(t), t 7→ qt), U = (U, τ) a difference overfield of K, L ⊂ U a
difference overfield of K satisfying tr. degL/K < ∞, and f ∈ U a solution
of the equation over K,

q2t2(y1 − 1)2y2y = (1 − qty1)
2.

Then we obtain

tr. degL〈f〉/L ≤ 1 ⇒ f is algebraic over L.
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Proof. We may suppose that L is algebraically closed. Then L is inversive.
Assume tr. degL〈f〉/L = 1. We find that f and f1 are transcendental over
L. Choose an irreducible polynomial over L,

F =

n0∑
i=0

n1∑
j=0

aijY
iY j

1 ∈ L[Y, Y1] \ {0}, n0 = degY F , n1 = degY1
F,

such that F (f, f1) = 0, and an0n1 = 0 or 1. Define the following three
polynomials,

F ∗ =

n0∑
i=0

n1∑
j=0

τ(aij)Y
iY j

1 ,

F1 = (q2t2Y (Y1 − 1)2)n1F ∗
(

Y1,
(1 − qtY1)

2

q2t2Y (Y1 − 1)2

)
∈ L[Y, Y1] \ {0},

F0 = (q2t2Y1(Y − 1)2)n0F

(
(1 − qtY )2

q2t2Y1(Y − 1)2
, Y

)
∈ L[Y, Y1] \ {0}.

Since the solution f satisfies

q2t2(f1 − 1)2f2f = (1 − qtf1)
2,

we obtain F1(f, f1) = F0(f1, f2) = 0, and so F | F1 and F ∗ | F0. These imply

n1 = degY1
F ∗ ≤ degY1

F0 ≤ n0 = degY F ≤ degY F1 ≤ n1.

Therefore we obtain n0 = n1. Put n = n0 = n1 ≥ 1. Let P ∈ L[Y, Y1] \ {0}
be the polynomial such that F1 = PF . We find P ∈ L[Y1] because degY P =
degY F1 − degY F = 0.

We have

F1 = (q2t2Y (Y1 − 1)2)n

n∑
i=0

n∑
j=0

τ(aij)Y
i
1

(
(1 − qtY1)

2

q2t2Y (Y1 − 1)2

)j

=
n∑

j=0

(q2t2Y (Y1 − 1)2)n−j(1 − qtY1)
2j

n∑
i=0

τ(aij)Y
i
1

=
n∑

j=0

(q2t2Y (Y1 − 1)2)j(1 − qtY1)
2(n−j)

n∑
i=0

τ(ai,n−j)Y
i
1

=
n∑

j=0

{
(qt)2j(Y1 − 1)2j(1 − qtY1)

2(n−j)

n∑
i=0

τ(ai,n−j)Y
i
1

}
Y j
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and

PF = P
n∑

i=0

n∑
j=0

aijY
iY j

1 = P
n∑

j=0

n∑
i=0

ajiY
jY i

1 =
n∑

j=0

{
P

n∑
i=0

ajiY
i
1

}
Y j.

Therefore for all k ∈ {0, 1, . . . , n} we obtain

(∗k) (qt)2k(Y1 − 1)2k(1 − qtY1)
2(n−k)

n∑
i=0

τ(ai,n−k)Y
i
1 = P

n∑
i=0

akiY
i
1 .

The equation (∗n) and (∗0) are the following,

(∗n) (qt)2n(Y1 − 1)2n

n∑
i=0

τ(ai0)Y
i
1 = P

n∑
i=0

aniY
i
1 (6= 0),

(∗0) (1 − qtY1)
2n

n∑
i=0

τ(ain)Y i
1 = P

n∑
i=0

a0iY
i
1 (6= 0).

Note that
∑n

i=0 aniY
i
1 6= 0 and

∑n
i=0 τ(ain)Y i

1 6= 0.
By (∗n) we find (Y1 − 1)n | P , and so by (∗0), (Y1 − 1)n |

∑n
i=0 τ(ain)Y i

1 .
Therefore we obtain

∑n
i=0 τ(ain)Y i

1 = τ(ann)(Y1−1)n, which implies ann = 1.
Comparing the terms of degree 0 of the equation

(4)
n∑

i=0

τ(ain)Y i
1 = (Y1 − 1)n,

we find

(5) a0n = (−1)n 6= 0.

By this the equation (∗0) yields deg P = 2n, and so

P = p(Y1 − 1)n(1 − qtY1)
n, p ∈ L×.

Then from (∗0) we obtain

(1 − qtY1)
n = p

n∑
i=0

a0iY
i
1 ,
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which implies 1 = pa00 and (−qt)n = pa0n. By (5) we find p = (qt)n and
a00 = (qt)−n.

Since we have (1 − qtY1)
n | P , we obtain (1 − qtY1)

n |
∑n

i=0 τ(ai0)Y
i
1 by

the equation (∗n), and so

n∑
i=0

τ(ai0)Y
i
1 = τ(a00)(1 − qtY1)

n = (q2t)−n(1 − qtY1)
n.

Then from (∗n) we obtain

(Y1 − 1)nq−n =
n∑

i=0

aniY
i
1 .

Comparing the terms of degree n, we find q−n = ann = 1, a contradiction.
Therefore we conclude that tr. degL〈f〉/L 6= 1, which implies

tr. degL〈f〉/L ≤ 1 ⇒ tr. degL〈f〉/L = 0 ⇒ f is algebraic over L,

the required.

Theorem 11. Let q ∈ C× be not a root of unity, K an inversive difference
overfield of (C(t), t 7→ qt), D a decomposable extension of K, and f, g ∈ D
satisfy two equations,

f1f = g2
1, g1g =

f(1 − tf)

t(f − 1)
.

Then f and g are algebraic over K.

Proof. We may suppose f 6= 0 and g 6= 0. The two equations yield

f2f
2
1 f = (f2f1)(f1f) = g2

2g
2
1 = (g2g1)

2 =
f2

1 (1 − qtf1)
2

q2t2(f1 − 1)2
,

q2t2(f1 − 1)2f2f = (1 − qtf1)
2.

If we let L be a difference overfield of K satisfying tr. degL/K < ∞, and U a
difference overfield of L satisfying K〈f〉D ⊂ U , by Lemma 10 we obtain the
following,

tr. degL〈f〉U/L ≤ 1 ⇒ f is algebraic over L.

Therefore by Lemma 9 we find that f is algebraic over K, which implies g is
also algebraic over K.

10



It remains to find the algebraic solutions. We have

Lemma 12 (Lemma 9 in [10]). Let q ∈ C× be not a root of unity, t tran-
scendental over C, F/C(t) a finite algebraic extension of degree n, and τ an
isomorphism of F into F over C sending t to qt. Then F = C(x), xn = t.

Theorem 13. Let q ∈ C× be not a root of unity, put K = (C(t), t 7→ qt),
and let K = (C(t), τ) be an algebraic closure of K. Suppose that f, g ∈ K
satisfy the following two equations,

f1f = g2
1,(6)

g1g =
f(1 − tf)

t(f − 1)
.(7)

Then one of the following holds.

(i) (f, g) = (0, 0).

(ii) (f, g) = (−1/x,−α/x), (−1/x, α/x), (1/x,−α/x) or (1/x, α/x), where
α ∈ C× satisfies α4 = q and x ∈ C(t) satisfies x2 = t and τx = α2x.

Proof. We may suppose f 6= 0 and g 6= 0. Put L = K〈f, g〉 ⊂ K. Then
we have L = C(t)(f, g). Put n = [L : C(t)] < ∞. By Lemma 12 we find
L = C(x), xn = t. Since we have (τx/x)n = q ∈ C×, we obtain τx/x ∈ C×.
Put r = τx/x ∈ C×, which satisfies rn = q and τx = rx. Note that
f, g ∈ L = C(x) and L is inversive.

Express f and g as f = P/Q and g = R/S, where P, Q,R, S ∈ C[x]\{0},
P and Q are relatively prime, R and S are relatively prime, and Q and S are
monic. From the equation (6) we obtain

(8) P1PS2
1 = Q1QR2

1 (6= 0),

and from the equation (7),

(9) xn(P − Q)QR1R = P (Q − xnP )S1S (6= 0).

By these equations we find x | P (Q − xnP )S1S, and so x | P or x | Q.
Let v0 be the normalized discrete valuation of C(x)/C with the prime

element x. We prove x | Q in C[x]. Assume x | P . Put m = v0(P ) ∈ Z>0,
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namely xm | P and xm+1 - P . We obtain x | R from (8), and so x - S. Then
it follows that

2m = v0(P1PS2
1) = v0(Q1QR2

1) = v0(R
2
1) = 2v0(R1),

which implies v0(R) = m. Therefore by (9) we find n + 2m = m, a contra-
diction.

Put m = v0(Q) ∈ Z>0. From the equation (8) we obtain x | S and x - R,
and so v0(S) = m. Then from the equation (9) we obtain v0(Q − xnP ) =
n−m. Since we have 0 ≤ n−m < n, we find v0(Q) = n−m, which implies
n = 2m.

Express f and g as f =
∑∞

i=−m aix
i, a−m 6= 0 and g =

∑∞
i=−m bix

i,
b−m 6= 0. Seeing the first terms of the equation (6), we obtain a2

−m = b2
−mr−m.

On the other hand from the equation (7) we obtain b2
−mr−m = 1. Then it

follows that a2
−m = 1.

Combining the equations (6) and (7) as

f2f
2
1 f = (f2f1)(f1f) = g2

2g
2
1 = (g2g1)

2 =
f2

1 (1 − qtf1)
2

q2t2(f1 − 1)2
,

we obtain

(10) q2t2(f1 − 1)2f2f = (1 − qtf1)
2.

We prove that for any i ≥ −m,

m - i ⇒ ai = 0,

which yields f ∈ C(xm). Assume that there is i ≥ −m such that m - i and
ai 6= 0. Let

km + l = min{i ≥ −m | m - i and ai 6= 0}, 0 < l < m.

The left side of the equation (10) is

q2x4m(−1 + a−mr−mx−m + · · · + akmrkmxkm + akm+lr
km+lxkm+l + · · · )2

× (a−mr−2mx−m + · · · + akmr2kmxkm + akm+lr
2(km+l)xkm+l + · · · )

× (a−mx−m + · · · + akmxkm + akm+lx
km+l + · · · )

and the right side is

(−1 + qa−mr−mxm + · · · + qakmrkmx(k+2)m + qakm+lr
km+lx(k+2)m+l + · · · )2.
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On the one hand the first term of the right side whose exponent is not divisible
by m is 2(−1)qakm+lr

km+lx(k+2)m+l. On the other hand the term of degree
(k + 1)m + l of the left side is

q2x4m(2akm+lr
km+lxkm+l · a−mr−mx−m · a−mr−2mx−m · a−mx−m

+ akm+lr
2(km+l)xkm+l(a−mr−mx−m)2a−mx−m

+ akm+lx
km+l(a−mr−mx−m)2a−mr−2mx−m)

= q2x(k+1)m+lakm+la
3
−m(2r(k−3)m+l + r2((k−1)m+l) + r−4m).

Therefore it follows that

(r(k−1)m+l + r−2m)2 = r2((k−1)m+l) + 2r(k−3)m+l + r−4m = 0,

which implies q2((k+1)m+l) = 1, a contradiction.
Put z = xm. Then we have f =

∑∞
i=−1 amiz

i. The left side of the equation
(10) is

q2z4(a−mr−mz−1 + (a0 − 1) + amrmz + · · · )2

× (a−mr−2mz−1 + a0 + amr2mz + · · · )
× (a−mz−1 + a0 + amz + · · · )

and the right side is

(−1 + qa−mr−mz + qa0z
2 + qamrmz3 + · · · )2.

Comparing the terms of degree 1, we find a0(r
m + 1)2 = 0. Since rm + 1 = 0

implies q = 1, we obtain a0 = 0.
We prove that ami = 0 for all i ≥ 1 by induction. Firstly we deal with the

case i = 1. Comparing the terms of degree 2 of the above two expansions,
we find am(r−2m + 1)2 = 0, which implies am = 0. Secondly we suppose
i ≥ 2 and the statement is true for the numbers < i. Comparing the terms
of degree i + 1, we find ami(r

m(i+1) + 1)2 = 0, which implies ami = 0.
Therefore we obtain f = a−m/z = a−m/xm ∈ C(xm). The equation (6)

yields S2 = r−mx2mR2. Since S is monic, we find S2 = x2m, and so S = xm.
Then we have R2 = rm ∈ C×, which implies R ∈ C×. Therefore we obtain
g = R/S ∈ C(xm).

By L = C(t)(f, g) ⊂ C(xm) ⊂ C(x) = L we find L = C(xm). Then we
have

2 ≤ 2m = n = [L : C(t)] = [C(xm) : C(x2m)] ≤ 2,

13



which implies n = 2 and m = 1. Let α ∈ C× be a root of the polynomial
X2 − r ∈ C[X]. We have f = a−1/x, a−1 = −1 or 1, and g = R/x, R = −α
or α. Note that α4 = r2 = q.
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