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1 Introduction

In this paper we investigate control problems for a class of integro-differential equations
t
g (t, ) — Ugg (t, ) + ﬂ/ e My (s,z)ds =0, te(0,T), z e (0,n), (1.1)
0

(0 < B < n) with null initial data
u(0,2) = u (0, ) = 0, xz € (0,7), (1.2)

and boundary conditions
=0,

0
u(t,x) = {g(t) e (1.3)

If we regard g as a control function, our reachability problem consists in proving the existence of
g € L?(0,T) such that a weak solution of equation (1.1), subject to boundary conditions (1.3), moves
from the null state to a given one in finite control time. To be more precise, we adopt the same definition
of reachability problems for systems with memory given by several authors in the literature, see for
example [18, 7, 8, 12, 14, 15, 19, 20]. Indeed, we mean the following: given T' > 0, ug € L*(0,7) and
u; € H1(0,), find g € L?(0,T) such that the weak solution u of problem (1.1)—(1.3) verifies the final
conditions

u(T,x) = uo(x), w(T,x) =ui(z), x€(0,7). (1.4)

Our goal is to achieve such result without any smallness assumption on the convolution kernel, as sug-
gested by J.-L. Lions in [18, p. 258]. Moreover, due to the finite speed of propagation, we expect that
the controllability time 7" will be sufficiently large. Indeed, we will find that T > 2w/, where ~ is the
gap of a branch of eigenvalues related to the integro-differential operator, see theorem 6.1.

As it is well-known, a common way for studying exact controllability problems is the so-called Hilbert
Uniqueness Method, introduced by Lagnese — Lions, see [11, 16, 17, 18]. We will apply this method
to equation (1.1). The HUM method is based on a “uniqueness theorem” for the adjoint problem. To
prove such uniqueness theorem we employ some typical techniques of harmonic analysis, see [24]. This
approach relies on Fourier series development for the solution v of the adjoint problem, that exhibits an
expansion in the variable ¢ like this

o
u(t) = Z (Cnei“’"t + Rner"t) wn,CheC, r,,R,eR. (1.5)

n=—oo

In this framework Ingham type estimates [6] play an important role. We need to establish for functions
of the type (1.5) inverse and direct inequalities, obtaining them in the same sharp time of the nonintegral
case.

Theorem 1.1 Let {wy}nez and {r,}nez be sequences of pairwise distinct numbers such that ry, # iwm,
for any n,m € Z. Assume
Rwp — Rwp_1 > >0 Vin| >n',

|1|im Sw, = a, rn < —Swy, Vn|>n',
n|—oo
|Rn|§ﬁ|onr Vin|>n',  |Ra|<plCul ¥ |n| <7,

for somen’ €N, a € R, p >0 and v > 1/2. Then, for any T > 27 /y we have

[e.9]

c1(T) f: G2 < /O T‘ 3 (Cnei“"t—i—RneT”t)‘zdt,

n=—oo n=-—00

where ¢1(T) is a positive constant.



Theorem 1.2 Assume
Rwp, — Rwp1 > >0 Vn| >n',

lim Sw, = «a,
n|—o00

|Rnrsﬁ|cnr Vin|>n's  |Ra|<plCul V|n| <,

for somen’ €N, a € R, u >0 and v > 1/2. Then, for any T > 7/v we have

/ T‘ S (Cneiwannew)‘thSCQ(T) 3 ICuP,

T =0 n=-—00

where co(T) is a positive constant .

To prove the previous results, we need Haraux type estimates [5] for functions defined as in (1.5).

Proposition 1.3 Let {wn}nez be such that lim, o |wn| = +00. Assume that there exists a finite set
F of integers such that for any sequences {C,} and {R,} with C,, = R, =0 for n € F, the estimates

AP < /T > (Cuetrt + Rnernt)\zdt < > |0

ngF 0 Tngr ngF
are satisfied for some constants ¢y ,cy > 0. Then, there exists ¢y > 0 such that for any sequences {Cy}

and {R,} the estimate

oo

e T
o 3|0 < / B> (CneiWntJarernf)fdt
0

n=—oo n=-—00

holds.

Proposition 1.4 Assume that there exists a finite set F of integers such that for any sequences {Cy}
and {R,} with C,, = R,, =0 for n € F, the estimate

. 2
E n€ n€ S Co E n2
/T ‘ (C ant_'_R Tnt)‘ dt< / |C |
=T

ngF n@gF
is satisfied for some ¢ > 0. Then, for any sequences {Cy} and {R,} verifying
Ral < plC|  forany neF,

for some u > 0, the estimate

[e.e]

T o)
/ ‘ Z (C’neiw"t—FRneT”t)‘thgcz Z |C’n]2

-T n=-—00 n=—00

holds for some cg > 0.

The proofs of these results are rather technical, see sections 4, 5 and appendix. In particular, to prove
the inverse inequality we need to introduce a family of operators, which annihilate a finite number of
terms in the Fourier series. Our operators are slightly different from those proposed in [5] and [9]. Given
0 >0, w € C and r € R arbitrarily, we define the linear operators Is,, and Is,, , as follows: for every
continuous function v : R — C the function I5,u : R — C is given by the formula

1 1)

Isu(t) == u(t) — 5 e WSu(t + s) ds, teR,
0



and
I§,w,7‘ = [5,w © I(F,fir .

For Ingham'’s type estimates, our results can be compared with those proved in [19], where functions
of the type

o0
v(t) = Z (Cre™! + C;le";lt) t>0
n=-—oo
(rn,7), € R, Cy,,C! € C) are considered. Our analysis is different from that of [19], because our admissible
integral kernels are exponential functions. This class of kernels arises in linear viscoelasticity theory, such
as in the analysis of Maxwell fluids or Poynting -Thomson solids, see e.g. [21, 23]|. For other references
in viscoelasticity theory see the seminal papers of Dafermos [1, 2] and [22, 13].
Concerning Haraux’s type estimates, in [9] functions of the type

o0
u(t) = Z Cpetent t>0,

n=—oo

(wn , Cp, € C) have been studied.

Our analysis of the estimates changes completely with respect to that of cited papers, because the
functions under study are different. Indeed, as we shall see in section 6, exponential kernels lead to a new
form (1.5) of the functions, where the exponents iw, have also a non vanishing real part and some other
real terms R,e"! appear in the sum. Moreover, in the proofs of Ingham estimates the choice of weight
function is fundamental and we borrow from [3] the idea of a different weight function with respect to
the classical case [6], see also [10]. Other papers related to our problem are [15] and [25, 26], where the
approach is different to that of Ingham type.

The plan of our paper is the following. In section 2 we give some preliminary results. In section 3 we
describe the HUM method in an abstract setting. In section 4 we prove theorem 1.2 and proposition 1.4
and in section 5 we prove theorem 1.1. In section 6 we give a reachability result for an integro-differential
equation. Finally, in the appendix we prove some technical results and proposition 1.3.

2 Preliminaries

Let X be a real Hilbert space with scalar product (-, -) and norm || - ||. For any T € (0, 00| we denote
by L'(0,T; X) the usual spaces of measurable functions v : (0,7) — X such that one has

[

T
WARES /0 lv(t)] dt < oo
We shall use the shorter notation [|v|j1 for |[v]|1,.. We denote by L}, (0,00; X) the space of functions
belonging to L!(0,T; X) for any T € (0,00). In the case of X = R, we will use the abbreviations L!(0,T)
and Lj,.(0,00) to denote the spaces L'(0,T;R) and L, (0, c0; R), respectively.
Classical results for integral equations (see, e.g., [4, Theorem 2.3.5]) ensure that, for any kernel
Hc L} (0,00)and any g € L} (0, 00; X), the problem

loc loc

o(t) —Hxp(t)=gt), t=0, (2.1)
admits a unique solution ¢ € LZIOC(O, 00; X). In particular, there is a unique solution p € LZIOC(O, o0) of
o(t) = Hxo(t)=H(t), t=0. (2.2)

Such a solution is called the resolvent kernel of H. Furthermore, the solution ¢ of (2.1) is given by the
variation of constants formula

o(t) =g(t)+oxg(t), t>0, (2.3)

where ¢ is the resolvent kernel of H.



Lemma 2.1 Given H € L}, (0,00) and g € L}, (—00,T;X), a function f € L} (—o0,T; X) is a solution
of
T
- / H(s—1t)f(s)ds = g(t) t<T, (2.4)
t

if and only if

where o is the resolvent kernel of H.
Proof. If f is a solution of (2.4), then, substituting ¢ with 7' — 7, 7 > 0, we get

T
f(r—r)— - H(s—=T+T1)f(s)ds =g(T — 1) T>0.

Set p(1) = f(T' — 1) and ¢(7) = g(T — 7), we have

/HT—S Sds=g(r) r>0.

Thanks to (2.3) one gets

p(r) = q(r) + /0 "o — s)als) ds,

where g is the resolvent kernel of H. Recalling that p(7) = f(T'— 7) and ¢(7) = g(T — 7), we have
A=) = o =)+ [ olr=s)o(T =) ds

T
— g(T—T)—|-/T_ o(t =T+ s)g(s) ds 7>0.

Finally, substituting T"— 7 with ¢, ¢ <T', we obtain

that is (2.5) holds true.
Repeating the reasoning backward, we have that if f verifies (2.5), then (2.4) is satisfied. [
Corollary 2.2 The following are true.
(i) The resolvent kernel of t — Be™" is t — GeB—M,
(ii) Given g € L}

(—00,T; X), a function f € L} (—o0,T;X) is a solution of

loc loc

T
_ 5/t e f(s)ds = g(t) t<7T,

if and only if

T
f(t) = g(t) + 8 / (B g(s) ds < T



Proof. (i) The resolvent kernel of ¢ — Be™" is the solution of the integral equation

t
- ﬁ/ e_"(t_s)g(s)ds = Be~ ™M t>0,
0

whence, multiplying by €, we obtain

t
eo(t) = B+ ﬁ/ e o(s)ds t>0.
0

Differentiating yields

& [emo(t)] = evolt) 720,
0(0) =5.

Solving the above Cauchy problem gives

emo(t) = Bet,
whence, multiplying by e~ one gets

o(t) = pelP=
The point (ii) follows from lemma 2.1. OJ

Lemma 2.3 Given \,3,n € R\ {0}, a function f € C?([0,0)) is a solution of the integro-differential
equation

() + Af () )\ﬂ/ =) f(s)ds =0,  t>0, (2.6)
if and only if f is a solution of the problem

"

FrO)+nf O+M @) +An-B)ft)=0, t>0,
(2.7)
F(0) = =Af(0).

Proof. Let f be a solution of (2.6). It follows that f*(0)+Af(0) = 0 and f € C3([0, 00)). Differentiating
(2.6), we get

TOESYAC +nw/ ) f(s)ds — MBS (t) =

Substituting in the above equation the identity

v [ L) f(s)ds = £ (1) + (D)

we obtain
FU@ AL @)+ nf () +0Af () = ABF(H) =
whence f is a solution of (2.7).
On the other hand, if f is a solution of (2.7), multiplying the differential equation in (2.7) by € and
integrating from 0 to ¢, we obtain

t t t t
s o s ! nt o B nt _
/0ve (s)ds—l—n/oe”f () ds—l—)\/oe £(#) ds+ A(n 5)/06 F(t) ds =0,

Integrating by parts the first term and the third one, we have
L) = F7(0) + MM f () = Af(0) = A8 / e f(s

Using f"(0) = —Af(0) and multiplying by e, we obtain (2.6). O



It is easy to verify the following result.

Lemma 2.4 The third degree polynomial

24 2
F(t) := —32t3 + 108t> — 7315 + % (2.8)

9
is strictly decreasing in [0,00). Moreover, the unique real zero of F(t) is 3

3 Hilbert Uniqueness Method

In this section we formally describe the method in an abstract setting.

We introduce a linear operator A : D(A) C X — X on X with domain D(A) and H € L], (0, 0).
Let Y be another real Hilbert space with scalar product (-, -)y and norm || - ||y and B € L(Xy;Y), where
X is a space such that D(A) C Xo C X. We consider the integro-differential equation

) + Ault / H(t — 5) Au(s)ds te(0,7), (3.1)
with null initial conditions
u(0) = 4/(0) = 0, (3.2)
and
Bu(t) = g(t) te(0,7T). (3.3)

In the applications B can be, for example, a trace operator. For a reachability problem we mean the
following: given T > 0, ug € X and u; € (Ker(B)), find g € L?(0,T;Y) such that the weak solution u
of problem (3.1)-(3.3) verifies the final conditions

u(T) = uog, W' (T) = uy . (3.4)

To explain how the HUM method can be used to solve a reachability problem, we proceed dividing the
reasoning into several steps.

STEP 1 A: D(A) C X — X denotes a self-adjoint positive linear operator on X with dense domain
D(A) C D(A) such that for any 2 € D(A) Az = Az and D(v/A) = Ker(B). We define by induction

D(AF) .= {z e D(A*Y): Az e D(AF 1},  keN.

Given zy € D(A*) and z; € D(A*), we consider the adjoint equation of (3.1), that is

1) + Ax(t / H(s — t)Az(s)ds = 0, t€[0,T], (3.5)
with final data
2(T) = 29, 2 (T)= 2. (3.6)
Problem (3.5)—(3.6) admits a unique solution z € C*¥=J([0,T]; D(A?)), 7 = 0,1,...,k. Indeed, set
v(t) = z(T —t), problem (3.5)—(3.6) is equivalent to
t) + Av(t / H(t — s)Av(s)ds = tel0,1],
(3.7)
U(O)_ZOa v’ ):_Zlv

and the above problem is well-posed, see e.g. [21]. We take k large enough to have the function z
sufficiently regular.



STEP 2 We introduce another operator D, : Xg — Y such that the following identity holds

(Ap, &) = (p, AE) — (Bp, D)y, Vo € D(A),§ € D(4), (3.8)
and the problem
t) + Ap(t) / H(t — s)Ap(s te 0,77,
T
- / H(s—t)Dyz(s)ds, te][0,T], (3:9)
¢
©(0) = ¢'(0) =0,
admits a unique solution ¢. Then, we define the linear operator
U(z,21) = (¢'(T), —p(T)),  (20,21) € D(A*) x D(4").
STEP 3 Let (£0,&1) € D(AF) x D(A*) and ¢ the solution of
t) + AL(t) / H(s —t)A&(s te[0,77,
(3.10)
§(T) =&, §(T) =6
We prove that
T T
(W (20, 21), (§05 1)) x xx 2/0 (Bo(t), Dy&(t) —/ H(s —t)Dy€(s)ds)y dt. (3.11)
t

Indeed, multiplying the equation in (3.9) by £(¢) and integrating on [0, 7] we have
T T T ot
[ raneoyars [ soewyd- [ HE-9A0), €0) ds de=o.
0 0 o Jo
Integrating by parts twice, in view also of (3.8) we have
T
D) ~ (. €Y + [ 0.0 + A5 - [ HG - Dage)aa

T T
- / (Bo(t), Doe(t))y dt + / (Bo(t), / H(s — )Dy(s)ds)ydt = 0.
0 0 t

Since ¢ is the solution of (3.10), we have that (3.11) holds.
Now, taking (£o,&1) = (20, 21) in (3.11), we have

(U (20, 21), (zg,zl))XXx—/ ] / H(s — t)Dy2( dsH dt . (3.12)
So, we can introduce the semi-norm
(20,21) € ( ) x D Ak)
(20, 20) | 1= / |p. / H(s —t)Dy(s dsH )’ ? (3.13)



STEP 4 In view of lemma 2.1, || - || is a norm if and only if the following uniqueness theorem holds.

Theorem 3.1 If z is the solution of problem (3.5)—(3.6) such that
Dyz(t) =0,  vtel[o0,T],

then
z(t) =0 vt € [0,T].

If theorem 3.1 holds true, then we can define the Hilbert space F as the completion of D(AF)x D(A¥)
for the norm (3.13). Moreover, the operator ¥ extends uniquely to a continuous operator, denoted
again by ¥, from F to the dual space F’ in such a way that ¥ : F' — F” is an isomorphism.

In conclusion if we prove a result like theorem 3.1 and that F' = D(v/A) x X, then we can solve
the reachability problem (3.1)-(3.4).

4 Ingham type direct inequality

In the next two sections, we consider functions of the type

fE) = > (Cpe™' + Rpe™)  t20

n=—oo

with wy, ,C,, € C and 7, R,, € R such that the sequences {Swy,}, {r,} are bounded and

oo o
Y CuP <400, Y [Ra)* < 40,
n=-—oo n=-—oo
Let T > 0.
Theorem 4.1 Assume
Rw,, — Rwp—1 > v >0 Vin| >n, (4.1)
lim SQw, = «a, (4.2)
|n|—o0
|Ry| < |ICnl Y |n| >n; Ry < u|Cnl VY |n| <0, (4.3)

n !”
for somen’ €N, a € R, u >0 and v > 1/2. Then, for any T > 7/v we have

/ i’ i (C’nei“’”t—i-RneT"t)‘thSCQ(T) i Cl?, (4.4)

n=—oo n=—oo

where co(T) is a positive constant .

To proceed with the proof, we state the following two results, but the proof of the first one can be found
in the appendix, as it is quite long and complex.

Theorem 4.2 Under assumptions (4.1)—(4.3), for any 0 < e < 1 and for any T > 7\/7{: there exists
no = no(e) € N such that if C,, =0 for |n| < ng, then we have

T
JRECRE AN SRlEN (45)

In|>no

where co(T) > 0.



Proposition 4.3 Assume that there exists a finite set F of integers such that for any sequences {Cy}

and { Ry} verifying
C,=R,=0 for any neF,

the estimate

/ ‘ Z e“nt + Rye™t) ‘th < Z 1C,|?

n¢F ng¢F

is satisfied for some ¢, > 0. Then, for any sequences {C,} and {R,} verifying
2
|Ry| < u|Cyl forany neF,

for some > 0, the estimate

C,e™nt + R,e™ th < co C,
T t t 2

-T' o n=—00
holds for some co > 0.

Proof. Assume that {C,} and {R,} verify (4.8). If we use (4.7), then we have

/ ‘Z <C’ e“rt + Ry, erntﬂ dt < ch Y |Cl®.

ngF

Now, we prove that
T
/| 3 (@t R IEEL DA
-T neF

for some constant ¢ > 0. Indeed, applying the Cauchy-Schwarz inequality we get

‘ S (Cpent + RneTnt)r - (Z (ICple3nt + |Rn\e”lt))2
neF neF
< 2‘]:| Z (|Cn’26—2%wnt + \Rnfze%"t) :

neF

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

where |F| denotes the number of elements in the set F. If we use the previous inequality and (4.8), then

we get

T
/ ‘Z zwnt+R ernt)’ dt < 2|f’ Z |C ‘2/ ( Q\M"t"i‘,UQ 2rnt) dt,
T

neF

T
whence (4.11) follows with ¢ = 2|F| max {/ (e723wnt 4 2e?rnt) dt} .
€ T

Finally, from (4.10) and (4.11) we deduce that

T, X 2
/_ T‘ > (Cac™rt 4 Roem!) |t

n=—0oo

T
= 2/ ‘ Z (Cneiwnt + Rnernt ’ dt + 2/ ’ Z ant T Rn€rnt)’2dt
T e

<25 Y [Cul? +2¢5 ) [Cul?,

ngF

0 (4.9) holds with ¢y = 2max{c,ch}. O

10

neF



Proof of Theorem 4.1. Since T' > m /7, there exists 0 < € < 1 such that T > 7\/7{:. By applying

theorem 4.2, there exist ng € N and c2(T") > 0 such that if C,, = 0 for |n| < ng, then we have

T
[ iopa e 3 (el

In|>no

Finally, thanks also to (4.3) we can use proposition 4.3 to conclude. O

5 Ingham type inverse inequality

In this section {wy, }nez and {ry,}nez are sequences of pairwise distinct numbers such that r, # iw,, for
any n,m € Z. Let T > 0.

Theorem 5.1 Assume

Rwp — Rwp1 > >0 Vin| >n', (5.1)
| l|im Swp = o, rn < —Swy, Y |n| >n', (5.2)
R < #my Vinl>n',  [Ral SplCal Y n| <0, (5.3)

for somen’ €N, a € R, u >0 and v > 1/2. Then, for any T > 27 /v we have

o T o

a(T) > 1G> < /O \ > (Cneiw"t+RneT“t)‘2dt, (5.4)

n=—oo n=—oo

where ¢1(T) is a positive constant.

Remark 5.2 Since the sequence {Swy,} is bounded the inverse inequality (5.4) can be written in the

form
o0 o0

Cl(T) Z (1+e—2(§wn—a)T)’Cn‘2 < /T‘ Z (Cneiw"t+Rn€T”t)‘2dt,
0

n=—oo n=—oo

which is similar to that proved in [26, Lemma 4.1] by different techniques.
We note that the direct inequality holds under weaker assumptions respect to the inverse one.

To prove theorem 5.1, we need the following results, whose proofs are given in the appendix, as they
are quite long and complex.

Theorem 5.3 Under assumptions (5.1)—(5.3), for any 0 < e <1 and T > 27” T there exist ng =
no(e) € N and ¢1(T,e) > 0 such that if Cp, = 0 for any |n| < ng, then we have

T
aTe) Y (e 2manie < [ (55)
Inl>no 0
In addition, the constant c1(T,¢) is given by

Tr 47
w2+ T242¢/8 T2

c1(T,e) = min(1, e_QO‘T)< (1+ 6)) .

11



Proposition 5.4 Let {wy}nez be such that

lim |w,| = +00. (5.6)

In|—o00
Assume that there exists a finite set F of integers such that for any sequences {Cy} and {Ry} verifying
C,=R,=0 for any n € F, (5.7)

the estimates

43O < / |3 (et 1 Ry (5.8)

ngF ngF
2
/ ‘ > (Cuent + Rne’""t)‘ dt <> |Cpl? (5.9)
ngF ngF

are satisfied for some constants ¢y ,cy > 0. Then, there exists ¢y > 0 such that for any sequences {Cy}
and {Ry} the estimate

o)

. 2
c1 Z O |? < / ‘ Z (Cnew"t+RneT"t)‘ dt (5.10)
n=—00 n=—00
holds.
Proof of Theorem 5.1. Since T' > 2w /~, there exists 0 < ¢ < 1 such that T" > %’H/%—i‘i. By applying

theorems 5.3 and 4.1, there exist ng € N, ¢1(T,e) > 0 and c2(T") > 0 such that if C,, = 0 for |n| < ny,

then we have -
aTe) 3 [ < /0 @R <o) S (2.

In|>no [n|>no

Finally, we can use proposition 5.4 to conclude. [J

6 A reachability result

To give the result announced in the introduction concerning reachability problems for a class of systems
with memory, first, we need to develop a detailed spectral analysis.

Let A: D(A) C X — X be a self-adjoint positive linear operator on X with dense domain D(A) and
let {)\;};>1 be a strictly increasing sequence of eigenvalues for the operator A with A\; > 0 and \; — oo
such that the sequence of the corresponding eigenvectors {w;};>1 constitutes a Hilbert basis for X.

For any vy € D(V/A) and v; € X there exists a unique weak solution v € C([0,00); D(v/A)) N
C1(]0,00); X) of equation

v (t) + Av(t ﬁ/ n=5) Ap(s)ds =0, t>0, (6.1)
verifying the initial conditions
v(0) = v, V'(0) = vy . (6.2)
We have
o
vy = Zajwj , a; = (v, wj) ZaQ)\ < 0, (6.3)
o0
v =Y ywy, vj = (v1, w;) Zvj < 0. (6.4)
j=1

12



First, we observe that we can approximate the initial data vy and v by sequences {vp,} in D(A) and
{v1,} in D(v/A) respectively. So, the sequence of strong solutions v, (t) of (6.1), corresponding to the
initial conditions vy, and vi,, approximates v(t). Thanks to this remark, we can make our computations
considering v(t) as a strong solution, and then we go back to weak solutions by standard approximation
arguments.

We want to write the solution v(t) as a sum of series, that is

=Y filw;,  fit)=(vt),w).
=1

Substituting the above expression of v in (6.1) and multiplying the equation by wj;, j € N, we have that
f;(t) is the solution of

£+ A f(8) Jﬁ/ ”=5) f(s)ds = 0. (6.5)

with initial conditions given by

fi(0) =5 f;(0) =1;. (6.6)
Thanks to lemma 2.3, problem (6.5)—(6.6) is equivalent to the Cauchy problem

fi (O + 085 (1) + Xif5(0 + (= A f;(0) =0, >0,
(6.7)
fi(0) = aj, fj(o):'Yja fj (0) = =Aja;.
Therefore, we proceed to solve (6.7). To this end, we must compute the solutions of the characteristic
equation
A+ A2+ XA+ Xj(n—B) =0, (6.8)

following the well-known Scipione Del Ferro’s method to obtain the Cardano formula.
First, we transform equation (6.8) into one without second degree term. For this reason, we will make
a suitable change of variable. Indeed, set

n
A=g— 2L
g 3,
we have
o} +pjo+q =0, (6.9)
where ) 3
n 2 4 (77 )
=\ — = = — 2(= —Z )\
Pi=AiT g G A3 T g )N

To solve (6.9), we look for solutions in the form
oc=y+z.
We observe that the cube of o = y + z satisfies the following equation
3

03 —3yzo — (y° +2°)=0. (6.10)

Equalling the coefficients of similar terms in equations (6.9) and (6.10), we have

yz = —p;/3, y3—|—z3:—qj.
Since 3323 = —p; 3/27 e y® + 23 = —qj , it follows that y3 and 23 are solutions of the second order equation
p3
7 +q]7“—2—7 0. (6.11)
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Now, defining the discriminant of equation (6.9) as the i—diseriminant of the above equation, that is

2 3
@ P
A =22 21
iI= Ty o
we note that ) \
q; n n o B\2,2, " /2
'l Z_F M DV
4 (27)2+(3 2) J+27(3” 5)3’
ﬁ )\7]3_7772 2,_|_7L4 ._Lﬁ
271 21 2777 T 8177 (27)27
so we have N o7
Aj=32 <A§+(2n2—9n6+452)Aj+n3(n—ﬂ)> : (6.12)

27 2
Now, to have A; > 0 it is sufficient that (2772 —9nG + Zﬂ2> —4n?(n—B) <0, that is

F(%) - —32(2)3 + 108(2)2 - 2;‘277 + % <0,

where F is the polynomial defined in (2.8). Thanks to lemma 2.4 the above condition is satisfied for
n > gﬂ, and hence A; > 0 for n > gﬁ.

Ifpg < n < %B, then we can write n = t6, with 1 < ¢t < %. So, we have A; > 0 for
Aj > B2 (9t — 262 — 2T 4+ F(¢)Y/2)/2. Since 9t — 2t2 — 2L > 0 for 1 < t < 3, we get that A; > 0
if 5 ( 2\ >1/2
9t — 2t2 — 2T 4 (—32¢3 + 108¢2 — 23¢ 4 T29)1/2) -

(6.13)

Therefore, the solutions of equation (6.11) are given by

2 3
_ % 4 P
7'1/2——5:1: Z‘i‘ﬁ

Now, to write the solutions o = y + z of (6.9), we keep in mind not only that y3 and 23 are solutions
of (6.11), but also that y and z must satisfy the condition yz = —p;/3. Accordingly, if we consider the
following real numbers,

2 2\ P 2 2\ P
P R Y
Y=\ T VT Tar A N IRl
then the solutions of (6.9) are given by

0-17j = y] -+ Zj s (614)

A A 1 3
02 = Y23 4+ zjeT /3 = —i(yj +zj) + i\g(yj —zj), (6.15)

—i2r/3 i2r/3 1 V3
03, = yje + zje = —§(yj + zj) — z7(yj — 2j). (6.16)

We note that the numbers o1, 09,03 ; are all distinct.
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Now, in view of (6.12) we evaluate the quantity

SRRt
_773776,\/@222% ,
- (-t (e TN -
- G ()i G T )T o
- (Asj)w [_\/%i?/z - (g - g) \/\/z \/1Jr <22777 * ﬂ: B ?)ij =B ]
, 3 oY 2
G S O O (I )
@D T )k ()] s
Therefore, using also the well-known formula
(1+a:)1/3:1+éx—$x2+0(x2), x—0, (6.17)
we obtain
o | P v
b - (5 VA ) (6.18)
S I A . Y
I RIS (R T P G
(5 5) (P 57 =500) 5 -0 ()
B 2yl (s )L sl
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In a similar way we get

G _ G5 P
2 27
- -G G D B
- —zi—<z—§>Aj—<§>3/vl+<;nz+:—"£>ij+n 0=
. 3 \/>
) [ G D e D e
A% s B\ V27
) (- D T S o)
3
R (D P, S
Therefore, using again (6.17), we have
~\ 13
= (‘JQJ qu ;’37) (6.19)
Aj n B 32 . 3 1\11/3
- 3[1+(3_2>\/g+< +2 ﬂ _*ﬁ) (3)\j)3/2+0()\32.)}
. 3
- 30+ G- §;+;<n2+862—2@“35/;;/2—3<z—§>2;
-5 T ) ool
- A:s]g+§2\ﬁ/§(iﬁ”)a (25777**7725+ no - gﬂ);j O(A?l/z)’ J =0
By (6.18) and (6.19) it follows
yj+Zj=—§?7+ﬁ+ (25777 —*n2ﬁ+ s — 2ﬂ3)/\1j+0()\§/2), j— o0,
zj—jg\/rj+5§(iﬂ—n>\/1xj+0(/\§/2>, j — 0.
In virtue of (6.14)-(6.16), the above relationships yield
o15 = —an+ 0+ 2( o’ — SnP0 4 nd - ﬂ)jﬁO(A;ﬂ), j— o0,
i
T s TR DI
R

16

J



w3

733 = 27"
J

AV H-n) o)) s

G- (-t - ) ol

)

Finally, using also the condition A = o — /3, we are able to write the solutions of equation (6.8), that is

Mg = 5_7”2(25777 _7’76+ ”ﬁg ﬁ3)>\1-+0<)\31/2>

J

J

= 5-n+0(3). i

b = (G S D)L o( L)
i 3 ol
p - B3 1

As; = _5_(27 _777ﬁ+ e Z A
_i[m+§<zﬁ—ﬁ)a+0(>\;ﬂ)}
rolg) - ivn 5 G o))

Therefore, we can write the solution of (6.7) in the following way

Aq Ao ; Asg ;
fi(t) = Cy et + Cy je't29 + Oy je'230

j — 00.

(6.20)

(6.22)

(6.23)

where Cy, ;, k = 1,2, 3, are complex numbers to determine. To find the coefficients C}, ; we impose that

fj verifies the initial conditions

[0)=a;,  £0) =7, £ (0)=—a;)\;,

so we obtain the system
Ci;+ Cy; + C3; = aj,
Al,jCLj + AQJ‘CQJ' + AgJCgJ =,
A%’jClJ + A%JCQJ + Ag,jc&j = —Oéj)\j .

The matrix C' of the coefficients of system (6.25) has determinant given by
det(C) = (A2; — A1j)(As; — A1) (As; — Agy)

so we obtain

Coi = ajMg A3 j(As; — Naj) — 7 (A3, — A3 ) — oy (A3,
7‘7 -

—Agj)

(Agj — A1 j)(Asj — A1) (As; — Agj)
_ o oyhaihs i — (Mg + Agy) — ajA;
(Agj — A1j)(Asj — A1) ’

17
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V(A3 — AT ;) + aidi(As — Avg) — ajAg jAs (Mg — Ary)

Co; =
2 (A2 = M) (Asy — A1) (Asj — Agy)
vi(As; + A1j) + oA — A A
(A2j — A1) (Asj — Agj)
o —ajNj(Aay — Avj) — (A5 — AT ) + il jAg (Mg — Ary)
3,7 —

(A2 — A1 j)(Asj — A1) (Asj — Agyj)
—Ozj)\j — "}/j(AQJ‘ + Al,j) + OéjALjAQJ '
(Azj — A1j)(Asj — Aaj)

Plugging (6.20)-(6.22) into the above identities, we obtain the expressions of coefficients Cj, ;. Indeed,

o]+ [V 5 (1) g+ 0 ()] e w0(3) -

) R R (U E A l]

GF —amB+uB+0(%) B —amB+ys+0(%)

(n—%ﬂ)2+Aj+%ﬂQ—nﬂ+O(%) >\j+n2+3ﬁ2—4n5+0(%>
oy —amp+y8+0(%) 4
1+(n2+3ﬁ2—4n5)%+0<%§) Aj

Cij; =

(6.26)

We note that (1 ; € R. To write explicitly C3 ; we observe that

(Ag; — A1 j)(As; — Ao j)
. 3 3 1 1 1
= 2[Vn 5 (o) ol go o) +ilva e 5 () i +o ()]}
= 2+ 52 2ﬁ77+0()\—) [277 38) f+0( ! )}

<.

VA
whence
B o O R e R )| A
ol -£+0(8) {5 10~k o]
- 2%+ 367 = 28+ 0(%) - Z[<277_3/8)\//\7j+0<%j):| |
Therefore,

Cy. — ajAj +’YJ(2 n) + (8 — 77) +oz]0</\%.)+’7j0<>\%>
Y + 332 - 2ﬁn+0( ) [277 WV O %)}
}

[(’YJ ;B + ajn) /A + <\F) +’7j0(%j>
1

2>\ +382— 257”0(%) i[(2n—3ﬂ)¢7j+0<Tj)}’ (6.27)
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from which it follows that there exist some c;,co > 0 such that

(o +70()) < el < oo+ 0( L)) 625

J

Similarly,

(A~ M)A — Aog) = 24+ 55° — 26+ 05 )+z[2n 38)V/A; +0(

)

and hence
) %{ﬁ_ﬁo(;)ﬂ[ﬁ%(iﬁ—n)\/&.+0(1;)]}
2), +2ﬁ2—2ﬁn+0( )“[277 35\ﬁ+0<\/1¥)

osfp s o()] {4+ o(h) +i[va+ () o+ o))}

2%+ 362 — 280+ O(1) +i| (20— 38) /% + O( = )|

Aj

Cs; =

5

Moreover,

aj)\~+’Yj( —n) + (8- 77) +O‘JO< >+%O(>‘i>

o) +362 280+ 0(3) +i[ (20 - 38) /A, + O )}
z'[( i — B+ am)/Aj + ;0 <W)+’Vﬂ ( }

Y +362—25n+0( )H[?n 36)VAi +0 )}

Csj

(6.29)

and
cl(a +7; O<)\J)) <054 < 02<a +7; O<)\j>> (6.30)

By (6.26), (6.28) and (6.30), one deduces that there exists a positive constant ¢ such that for any j € N
we have

1C14] < |C1,4 <L

Coil = Aj G5l = A
In conclusion, thanks into account (6.23) we have proved that the solution v(t) of the Cauchy problem
(6.1)—(6.2) can be written as

(6.31)

(o)
= (Cre™i 4 Cyjeh2a 4 Oy jettsa(t))w;  £20,
j=1

where Ay, ; and C}, j are given by (6.20)—(6.22) and (6.26)—(6.29) respectively, and condition (6.31) holds.
We will show as the function v can be written in the form
o
v(t)= Y (Coue™' + Rpe™)wy, >0, (6.32)

n=—oo

where C), ,w, € C and R, ,r, € R. Indeed, we define w, as the complex numbers having real and
imaginary parts given by

+0(5) In > 1,

VAN

Rwy, = sign(n)/ A, + sign(n )g( B — 77)
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Sun =5+ (2 — 28 + n - 6ﬂAm O<€f) n > 1.

Moreover, we set

o 2 2 3 1
=0 - -z 373 >
rui= =+ 2( e = P8+ 0 ﬂ)Am o@ﬁg, nl > 1,
Cz,n ifn>1,
C, =
Cg,_n ifn<-1,

Rn::CLn nZl, wngoan:O TlSO

Finally, applying the abstract results of sections 4 and 5 we can show our reachability result.

Theorem 6.1 Letn > 33/2. For anyT > 27, ug € L*(0,7) anduy € H~1(0,7) there exists g € L?(0,T)
such that the weak solution u of problem

t
e (t, @) — g (t, ) + B / e My (s, 2)ds =0,  t€(0,T), x € (0,m),
0

u(0,2) = w(0,2) =0, € (0,7), (6.33)
u(t,0) =0 wu(t,m)=g(t), te(0,7),
verifies the final conditions
u(T,x) = up(x), w(T,x) =ui(z), =€ (0,m). (6.34)

Proof.  To prove our claim, we apply the HUM method described in section 3. Let X = L?(0,7) be
endowed with the usual scalar product and norm

ul == (/OW u(z)[? d:c> R e L*(0, 7).

We consider the operator A : D(A) C X — X defined by
D(A) = H%(0,7) N H}(0, )
Au = —ugy u€ D(A).

It is well-known that A is a self-adjoint positive operator on X with dense domain D(A), {j?};>1 is the
sequence of eigenvalues for A and the sequence of the corresponding eigenvectors is {sin(jz)};>1. The
fractional power v/A of A is well defined and D(v/A) = H}(0, 7). Therefore, we can apply our spectral
analysis to the adjoint problem of (6.33). Indeed, the solution z of the adjoint problem can be written
in the form (6.32), that is

st,)= Y (Coer T 4 RoemT D) sin(|n|z)  (t,2) € [0,7] x [0,7],
whence -
z(t,m)= Y (=1)"n|(Cue™" T + Ry T=0)  (t,2) € [0,T] x [0,7].
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Since 1 > 3(3/2 we can apply theorems 4.1 and 5.1 to function z, (¢, 7). Therefore, thanks to inequalities
(4.4) and (5.4) the uniqueness theorem 3.1 holds true. In addition, by estimates (6.28) and (6.30) we
have that

T
erlloly +0l?) < [ [za(t. ) d < eal ool + ).

so the space F' introduced at the end of section 3 is H}(0,7) x L?(0,7). So, our proof is complete.
|

A  Appendix
To prove theorem 4.2 we need to introduce an auxiliary function. Let 7" > 0. We define

cos & if |t| <T,
E*(t) := (A.1)
0 if [t| > T.

For the reader’s convenience, we list some easy to check properties of k* in the following lemma.

Lemma A.1 Set
4T

K*(u)::m7 UEC,
the following properties hold for any u € C
/ E*(t)e®dt = cos(uT)K*(u), (A.2)
K (u) = K*(a), (A.3)
|K*(u)| = [K* (@), (A4)
4Tr

* < . .

K] < (e — 2 snr =27 (A-5)

Proof of Theorem 4.2. First, without loss of generality, it may be assumed that the sequence {Sw,,}

converges to 0, that is
a=0. (A.6)

Indeed, suppose for a moment that we have proved inequality (4.5) under this extra condition. For the
general case o # 0, we consider the function

J1) = ) = 3 (Cueht + Ryelrmta),

where w!, = wy, — i and ‘ 1|1m Sw!, = 0. So, inequality (4.5) holds for g, that is
n|—oo

T
/T| (Ot < ea(T) 3 [Cal?.

In|=no
Since f(t) = e~ *g(t), we have

f(t)] < max{e®, e”*"Yg(t)|,  Vte [-T.T],
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whence it follows

T T
/ |f(®)|?dt < max{e?*T, e~29T} /T lg(t))?dt < max{e®*T, e 20T} ey (T) Z |C |2,

-T In|>no

that is (4.5) also holds for f.
Let k*(t) be the function defined by (A.1). If we use (A.2), then we have

| rwlrop (A7)

— 00

= /OO k*(t) Z (Cneiw”t + Rnernt> Z (Umefiwmt + Rmer’"t) dt

= Z CnC cos((wy, — Om)T)K* (wy, — W) + Z Ch Ry, cosh((iwp, + 7)) T) K™ (wp, — irim)
+ Z R, Cop, cosh((ry, — i@ )T)K* (iry, + Wi)

+ Z Ry Ry cosh((ry, + m)T) K" (i(rn + 1)) -

n,m

We may write the first sum on the right-hand side as follows

> CuCincos((wn — @) T) K™ (wn — D)

= Z |C|? cosh (28w, T) K * (wy, — @p) + Z CnC, cos((wn — 0m)T)K* (wn, — W) -

n n,m,n#Em
Plugging the above identity into (A.7) and using (A.3), we obtain

| wwlsop a

—00

= > [Cul? cosh(23w,T)K* (wp —@n) + Y CnClycos((wn — D) T) K™ (wn — @)

n n,m, nEm

+2 Z Ry R[Ch, cosh((iwn + 7m)T) K™ (wn, — irm)]

n,m

+ Z Ry Ry, cosh((ry + 1) T)K* (i(1 + ) -

n,m

Notice that the terms on the right-hand side of the previous identity are real. Therefore, applying the
elementary estimates 6 < |6], 6 € R, and | cosh z| < cosh(Rz), z € C, we obtain

| wwlrop a (A.8)

< Z |C,u|? cosh(28w, T) K* (wy, — @y ) + Z |Cn||Cn| cosh((Swy, + Swi )T) | K™ (Wi, — W)

n n,m,n#m

+2 Z |Cl| | R | cosh((Swy, — rp)T)|K* (wn, — )| + Z |Ry| |Rum| cosh((ry + 1) T) K" (i(1 + Tm)) -

n,m n,m

Since the sequences {Sw,, } and {r,} are bounded, there exists a positive constant ¢(7") such that for any
n,m € Z we have

cosh((Swy, + Swi,)T) + cosh((Swy, — 1) T) + cosh((ry, + )T < ¢(T),
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and hence from (A.8) it follows

JICCICIRT
< oD S ICPE wn - @)+ eT) S [CollCon 1K (w0 — @)

n,m,n#m

+2¢(T) Y |Col [Ron | K* (wn — irm)| + ¢(T) Y | Rl [Ron| K*(i(rn + 7im)) -

In virtue of the definition of K* we have

4T 4T

K*(u)n _wn) = 7-[-2 T 16T2(%wn)2 S T )

whence

| wwlrop a (A.9)

< gC(T)Z|Cn|2+C(T) Z G ICo| 1K (Wi — @)

n n,m,nEm

+2¢(T) Y [Col [Renl| K™ (wn — irm)| +¢(T) Y | Ral |Rin K (i(rn +1m))

n,m n,m

To evaluate the second sum on the right-hand side of the above inequality, we note that, in virtue of
(A.4), we have

| K (wn — @m)| = [K(Wn — wm)|,

whence
Z |Cn| |Crl K™ (wn — Wiy)| (A.10)
n,m,n#m
1
< 9 Z (|Cn|2+|0m’2)|K*(wn_wm)|
n,m,n#m
1 . 1 ) B
= 52 ‘Cn|2 Z K (wn_wm)’"i_iz ’Cm|2 Z | K (wn — W)
n m,m##n m n,n#m
1 . o 1 . .
= XGPS K By 3 1O Y K (0]
n m,m#n m n,n#m
= Z |Cn’2 Z | K™ (wn — @) -
n m,m#n

Now, using (A.5) we get

> K (wn — ) (A.11)

From assumption (4.1) it follows

|Rwp, — Rwp,| > vn —m|, Vin|,|m| >n'. (A.12)
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Fix 0 < € < 1, thanks to (A.6), there exists ny € N, n; > n/, such that for any n € Z, |n| > nq,

'yf

ISwy| <

Therefore, for any n,m € Z, |n|,|m| > ny, we have

AT (Rwy, — Rwm)? — 4T (Swy, + Sw)? — 72 > 47?42 (n — m)? — T?~%e — 2.

Now, for any T > 5 \/7{: we have T?~%¢ + 12 < T?~2, so from the above inequality it follows
4T?(Rwy, — Rwm)? — 4T (Swy, 4 Swin)? — 72 > 4T%y%3(n —m)? = T?4? >0, for m #n.

Putting the previous formula into (A.11), we obtain

Z | K™ (wn — @)

\m\an MmN

1 A 1
< 4T Y _ 3
= T AT22(m —n)2 — T22 T2 Alm—n)? — 1

mm;ﬁn m,m#n
87 1 dr ( 1 1 ) _dm
T'y?j_l 452 -1  TH? o \2j-1 241  TH?

Assuming C), = 0 for |n| < n; and putting the above formula into (A.10), we get

47
CollConl |1 K* (wp, — @i)| < —— Col?. A.13
Z |Cn||Crm | | K ( ) T2 |Cnl ( )

Notice that, thanks to (4.3), we have R,, = 0 for |n| < ny. Therefore, from (A.9) and (A.13) it follows

| rwisr a (A.14)
< ) (T 4+75) T IGPH2T) T (Cal IRl — ir)
[n|>n1 In|,lm|>n1
+e(T) Y Rl [Ra| K (i(rn + 1)) -
[n],|m|>n1

To estimate the second term on the right-hand side, we use (4.3) to obtain

2 ) [Cul[Runl [K* (wn — irm)| (A.15)

‘nHm‘an
< 2y ol ke — i
= H | n‘|m|y | (wn ’LTm)’

], lm|>n1
K*(w, —1ir )

S SECHED B LD N N CHED DR}

[n|>n1 Im|>n1 Im|>n1 [n|>n1

Applying (A.5), one gets

4Tr

K*(wp, —ir .
| m)l < |AT?(Rwn)? — AT?(Swy, — rp)? — 72|

(A.16)
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Now, we observe that, by (A.12) it follows
|Rwn| > yIn —n'| — [Rwy|, Vn €Z,|n| >n',

whence
Rewn| > g|n| . Vin|> 20/ +2 [m‘:’”‘} +1.
Therefore, since the sequences {Swy, }, {r,} are bounded, there exists ng € N,
ng > max {n1,2n' + 2 [W;M] + 1}
such that for any n,m € Z, |n|,|m| > ng, we have

AT* (Rwy)? — AT (Swy — 1m)? — 72 > —T%y%n?;

N |

so, plugging the above inequality into (A.16) we have

8

Assuming C,, = 0 for |n| < ng, and hence also R, =0 for |n| < ng, by (A.15) it follows

2 ) [CullRunl [K*(wn — irm)| (A.17)
], lm| =m0
871',u 9 1 871',u
< 72 2 |Gl > 1Y o
|n|>n0 m#O |m|>n0 n;éO
167 =1 1 9
S5 -1 SR SR P oNEAD
J=1 J=1 [n|>n0

At last, we must consider the term
Z |Ru| [Ron | K™ (i(rn + 7m)) -
In[,|m|=no
Recalling the definition of K* we have

. ATr AT
K (Z(Tn +Tm)) = 7T2 +4T2(Tn +Tm)2 S 7)

so, in virtue of (4.3) we get

> | Ral [Ru|K*(i(rn +1m)) (A.18)
Inl,|m|=no
AT p? Cnl |Cm
<
- Z |m‘1/ |n|y
|n"|m|2n0
2Tp° 1 o 2Tu? 1 )
S Tl LGP == X (Gl
m##0 [n|>ng n#0 [m|>ng
4T,LL 2 ST/L 2
- ZnZVZ‘C| Z2VZ‘C|
n7#0 [n|>no [n|>no
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Putting (A.17) and (A.18) into (A.14), we obtain

| rwisr a

< «T) ng in 167wz 5+ 8u (+)Z];y > e

Jj=1 |n|>ng

Now, if we consider the auxiliary function k* defined by (A.1) with T replaced by 2T, then from the
above inequality we get

2T
e 9 8T 27‘(’ 871',u T 2T 1 9

j=1 [n|>ngo
whence
T 5 8T 27r 87m 1 2T = 1 )
/_T\f(t)| dt < Vac(ar) | 2 4 Z . (T2+W);ﬂ |n|§>%0|ony.

So, the proof is complete. [

As for the direct inequality, to prove theorem 5.3 we need to introduce an auxiliary function. We
define

sin%t if t € (0,77,
k(t) = (A.19)

0 otherwise .

For the reader’s convenience, we list some easy to check properties of k in the following lemma.

Lemma A.2 Set

Tr
the following properties hold for any u € C
/ k(£ dt = (14 eTVK (), (A.21)
K(u) = K(u), (A.22)
‘K(u)‘ = }K(ﬂ)‘ ) (A.23)

Tn
K < .
K (u)] < IT2(Ru)? — T2(Su)? — 72
Proof of Theorem 5.3. As in the proof of theorem 4.2, without loss of generality, it may be assumed
that

(A.24)

a=0. (A.25)

Indeed, suppose for a moment that we have proved inequality (5.5) under this extra condition. For the
general case o # 0, we consider the function

oo

g(t) = e f(t)y = > (cneiwiu Rn(i(ma)t),

n=—oo
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where w/, = w, —ia and lim Sw!, = 0. So, inequality (5.5) holds for g, that is

In|—o0
/T‘ (t)|2dt>< T 47 1+ )) Z (1+ 72$w;T)|C 2
0 g =\ 4+ T272/8  TH2 c s ¢ e
n|>ng
Since f(t) = e *g(t), we have
[f(®)] = min{L, e }g(t)],  Vte0,T],

whence it follows

T
/ F(O)Rdt > min{1, e M}/ HI2dt > er(T,e) 3 (1+ e 2Sen-aT) 0, 2,
0

[n|>no

that is (5.5) also holds for f.
Let k(t) be the function defined by (A.19). If we use (A.21), then we have

| molsop d

— 00

= /OO k(t )Z (C eiwnt 4 Rnernt> Z (éme_iwmt + Rmermt) dt

o0

= Zc Crn(14 ) K (W — @) + Y Cp B (1 + e T K (w0, — i)

n,m

S 2
+ZR Con(1 + =TV (i) + @) + / k(t) ‘ZRne“t dt . (A.26)

We may write the first sum on the right-hand side as follows

Z CpCn (1 + @ m)TY K (0, — @,,)

Zrcw TR K (w0 ~ @)+ Y. Cal(1+ @)K (1, — @y)

n,m,n#m

Plugging the above identity into (A.26) and using (A.22), we obtain

| molsop

— 00

= Y ICPA+ e K (wn = @)+ Y CuCrm(l + ) K (0, — @)

n n,m,nEm

423 " RpR[Cp(1 4 e@rntrmITY K (w, — iry,)] + / k(t) ‘ > Rye ’
n,m -0 n

dt .

Notice that, by difference, the second term on the right-hand side of the previous identity is real. There-
fore, using the elementary estimate 6 > —|6|, 6 € R, we obtain

| molsoP d

—00

> Y G+ e K (wn @) = Y [Cul|Conl (14 €7 30T 1K (wr, — )|

n,m,n#Em

dt. (A.27)

S & 2
=23 (Gl 1Rl (1 4+ e S K = i)+ [ K(0) |3 R

n,m
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Now, arguing as in the proof of (A.10) and using |K(w, — @ )| = | K (@n — wm)|, we have

Y 1ClICul K (wn — @ |<Z Cal? Y K (wn — @) - (A.28)
n,m,n#m m,m#n
Similarly, we get
D> C[Crnle CentSemIT | K (0, — @y )| <Z CulPe 25T N " | K(wn —@m)| . (A.29)
n,m,n#m m,m#n

Therefore, plugging (A.28) and (A.29) into (A.27) and being k a non-negative function, we have

/ T ROIFOP a2 Y 04+ e (Ko -3 — Y (K~ )

— 00

m,m#n
—2) " |Chl | R (1 4 €S9 | K (wy, — i) (A.30)
n,m
Now, fixed n € Z, we have to estimate the sum
> K (wn —@m)] -

m,m#n

Using (A.24), we get

S K —@n) <Tr Y ! . (A.31)

m,mtn momen | T2 (Rwn — Rwp,)? — T2 (Swy + Swip)? — 72

From assumption (5.1) it follows
|Rwp, — Rwp,| > yn —m|, Vin|,|m| >n'". (A.32)

Moreover, if we fix 0 < & < 1, then, thanks to (A.25), there exists ny € N, n; > n/, such that for any
ne Z7 ‘n‘ > ny )

o T /e A.33
]\swn|<4 5" (A.33)

Therefore, for any n,m € Z, |n|,|m| > ni, we have

T2 (Rwn — Rwm)? — T2(Swp + Swm)? — 72 > T2 (n — m)? — T2 :- 2

Now, for any T > we have T?~%¢ 4 472 < T?~2, so from the above inequality it follows
yT> -2

1
T?(Rwp — Rwp)? — T (Swn + Swm)? — 72 > T4 (n — m)? — ZT272 >0, form#n.

Putting the previous formula into (A.31), we obtain

Z | K (wn — W)

|m|>n1,m#n

1 47 1
<4Tn Y _ 3
g AT 2(m —n)2 —T22 T2 Am—n)32—1

m,m#n m,m#n
8T — 1 _ A & ( 1 1 ) _ 47
_T72j:1 4j2—1_Ty2j:1 2j—1 2j+1/) TH2°
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If we assume C,, = 0 for |n| < ny, then due to (5.3) we also have R,, = 0 for |n| < n;. Therefore, putting

the above estimate into (A.30), for 7' > %%’TE we get

[ RO OR a2 3 1G0T (Ko ) — )

In|>n1

=2 > |Co] [Ri| (1 €SI K (wy, — irn)| . (AL34)

\”Hm\ZTM

It remains to estimate the second sum on the right-hand side. Thanks to (5.3) we have

. C .
2 Y IR K = i) <2 30 G B = i)
n|,Im|>na In],[m|>n
K(wp —ir )
<u S lep ¥ el S il S K~ in)l. (139
[n|>n1 [m|>n1 [m|>n1 In|>n1
Again by (A.24) we have
T
K —1 < . A.36
| (wn l’l”m)| — ‘TQ(%Q)”)2 o T2<%u)n o rm)Q _ 71_2‘ ( )
Now, we observe that, by (A.32) it follows
|Rwn| > yIn —n'| — |Rwy|, VneZ,|n|>n',
whence
!/
v ' + [Rwp|
|Rwy,| > —=|n|, V|n| > [ =:ng.
T2 y(1-1/v2)
Therefore, for any n € Z, |n| > na, we get
T2 (Rwn)? — T?*(Swp — 1m)? — 72
1 1 Swn — Tm )?
> 77 (§,an2 — (Swy — rm)2) — 72 > T%y%n? (5 - (fr;anm)) — 7. (A.37)
Since the sequences {Sw;, } and {r,} are bounded, there exists ng € N, such that
1 Swp —rm)? 1
R R REeS (A39)
Choosing ng € N such that
ng > max {nl,ng,ng, 2} , (A.39)

and putting (A.38) into (A.37), for any |n|,|m| > ng we have

T?(Rwn)? — T*(Swp — 1) — 72 > ~(T?42n? — 47?).

=

2, 1/2
ny s

Moreover, since T > 27/ we have 472 < T2y 0

1/2

1
T2 (Ren)? = T%(Swn — )’ = 7 > T2 (0% = /) 2 27°9ng* (" - 1).
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Therefore from (A.36), thanks to the above inequality, we get

4m
K (s — )| <
LT (2 - )

) V|’I’L| ; |m’ > no, (A4O)

and hence, assuming C,, = 0 for |n| < ng, (A.35) can be written as

2 Z |Cnl [ Rin| | K (wn — i)

nl,Jm[=>no
47TM 2 Amp 2
T2 /2 Z |Cnl Z |m|21/ T2 1/2 Z [Coml Z In ,3/2

Ny [n|>no m##0 0 |m|>no [n|>2

8
:T,Y;Tnﬁi/Q Z j2 Z 3/2 Z [Cnl*. (A41)
0

=2 In|>no

Moreover, by (5.2) and (5.3) we have

2 3 |CullRule ST | K (wy — i)

n,|m|=no
o C efgme .
< 2u Z |Cn|€ \rwnT’m:TnP |K(wn—ZT‘m)|
[n|,Jm|>ng
—235 Z?" )| —28wm, .
<p Y |CufPem e Z —|m’2y "R Y Gk P T ST K (W — i)
[n|>no [m|>no [m|>n0 [n|>no
If we use again (A.40), then, reasoning as in (A.41), we obtain
2 3 (Gl Bl €T K (w0 — )|
n,|m|=no
8mp 23
2, 1/2 Z 21/ Z 3/2 Z |Cn‘2€ 2wn T’ (A.42)
T Jj= 2/ [n|>ng
Set
S =2y ZQV 233/2 ’
j=2
(A.41) and (A.42) yield
2 (Gl [l 4 T Ky — )| € o ST G (14 T,
], |m|>n0 Tv?ng In|>no

Plugging the above formula into (A.34), we get

[ HOOP @z 3 1P+ e (K @) - 25 (14 7).
LN

e [n|>no

Now, in virtue of (A.20) we note that

Tr

K(wn =) = 57 AT?(Swy)?
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SO

< Tr 47 S
2 72\m) T
dt > C )( - (1 ). (A3
JALCIECIRTE DAL (rimeay e (1 (A.43)
|n|>no 0
If we use (A.33) and take
ng > S%/e%,
then we get, for any |n| > ny,
T 47 S Tn 47
- 1 = —C(1l+e). A4
w2 +4T2(Swy,)? T2 < + n(l)/2 T w24+ T?42%/8 T’y?( e ( )
Now, we prove that for T > 27”\ / %
T a7
72 4+ T242:/8 T'yZ(l +€)>0.
Indeed,
T a7

1
2 + T2%72¢/8 T’y( +e)

T2y —A(1+e)(m? 4+ T%4%¢/8)  T?*y*(1— (1 +¢)e/2) —4r?*(1+¢)

- (72 4+ T2~2%¢/8)T~? -7 (72 4 T?~2%¢/8)T~?
Since € < 1, we have (1 +¢)e/2 < ¢, whence for T' > 27” 1
Tr 4 (146)> T?~4%(1 —¢) — 4n%(1 +¢) -0
— 8 ﬂ_ .
2+ T242¢/8  TH2 (72 4 T2~2¢/8) T2
Finally, by (A.43), (A.44) and the definition of k(t) we obtain
[ s as (0 (148) 3 1CaP(1+e2T)
E n
0 = \n2 4 T242¢/8 T’y ’

=m0
so the proof is complete. [

To prove proposition 5.4, we first introduce some auxiliary tools. Indeed, we introduce a family of
operators, which will be needed to annihilate a finite number of terms in the Fourier series. Our operators
are slightly different from those introduced in [5] and [9]. For that reason and for the reader’s convenience,
we then proceed to recall and prove some of their properties.

Given 0 > 0 and w € C arbitrarily, we define the linear operator Is,, as follows: for every continuous
function u : R — C the function I5,u : R — C is given by the formula

1 6

Isu(t) == u(t) — S

e"wSu(t+s)ds, teR. (A.45)
The following result states some properties connected with operators Is,,.

Lemma A.3 (a) If u(t) = ™', then I5,u=0.
(b) If u(t) = e“'t with W' # w, then

I u(t) = (1 — %)u(t).

31



(c) The linear operators Is,, commute, that is
Iﬁ,wlzﬁ/,w/u = IJ’,w’Iﬁ,wu
for all §,w,d’,w’" and u.
Proof. (a) By definition, we have

1
Tswult) = u(t) - 3

e—iwseiw(t+s) ds — u(t) _ etwt — 0.
(b) Again by definition, we obtain

1[0 — i’ 1 ei("-’l*‘”)s 5 .,
hout) = ult) 3 [ e 09 ds —uge) - L[]

(W —w)

(c) It follows at once by definition of operators I5,,. O

Lemma A.4 For any T > 0 and every continuous function u : R — C we have

T T+6
/ Tsou(®)2 dt < 2(1 + 62%5)/ W) dt,  §€(0,T), weC. (A.46)
0 0

Proof. For every t € [0,T], by (A.45) one has

2 2 1 ’ —iWws 2
Isou®)? < 2ut)? + 2\5 e~y (t + s) ds
0

9 5 5
2]u(t)\2+52/ i 2 ds/ fu(t + )| ds
0 0

) é o 9
2|u(t)|2+2/ (23ws ds/ lu(t + 5)|? ds
d 0 0
2 e t+6
2fut)f+ 30 [ (o) da

Integrating the above inequality from 0 to T, we obtain

T T t5
[ P ar < [ a2 [ o a ar (A7)
0 0

Since ¢ € (0,7) we have that
0 T T T T+6 T
/ |u(:c)|2/ dt dﬂs+/ |u(:c)|2/ dt daz+/ |u(:p)|2/ dt dx
0 0 0 x—0 T z—0

t+6
/ / (z)? dz dt
T+6 min{z,T'}
= / |u(a:)|2/ dt dx
0 max{0,z—¢}
T+0 x T+0
/ |u(x)|2/ dt dx = 5/ lu(z)|* dz .
0 x—4 0

Plugging this inequality into (A.47), we get

T T N T+6
/ Tsou(®)? dt < 2/ u(t)]? dt+262“‘”|5/ (@) da
0 0 0
o T+6
< 2(1+e2l‘”’5)/ lu(t)|? dt,
0

IN

IN

VAN

IN

that is (A.46). O
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We now proceed to define another operator, namely:
Ispr = I50 0 Is _ir, §>0,weC,reR.
Some properties of that operator are collected in the following results.

Lemma A.5 (a) If u(t) = ™ oru(t) = €™, then Isy,u =0.
(b) If u(t) = e“'t with ' # w and W' # —ir, then

etw'=w)s _ 4

T u(t) = (1~ m) (1- W)u(t) |

(¢) If u(t) = et with v’ # v and v’ # iw, then

(r'=r)s _ (r'—iw)é _

Ly ult) = (1 B e(r’ — 7“)51> <1 B e(r’ — iw)él)u(t)'

(d) The linear operators I, , commute, that is
IS,w,rI(S’,w’,r’u = Ié’,w’,r’Ié,w,ru

for all 6,w,r, 0", ', 7" and u.

Proof. (a) Thanks to (c) and (a) of lemma A.3, we have

I&w,r(eth) = Id,w(lé,—ir(eiwt)) = 167—ir(15,w(€th)) = I&,—ir(o) = 07

I&,w,r(ert) = I(S,w(IzS,fir(ert)) = Ié,w (O) =0.
(b) By lemma A.3-(a) we get

i ei(w’—w)6 1 i
I§7w7ru(t) = I&_Z'T(I(S’w(e t)) = (1 — m)l&_ir(e t)

i(w'41r)d

(W' —w)s _ R _
= (-G ) Sy ) = 0 S (1

(c) It follows by (b) with o’ = —ir’.
(d) It is a consequence of lemma A.3-(c). O

Corollary A.6 For any T > 0 and every continuous function u : R — C we have

T T+26
/ L5 o ru(t))? dt < 4(1 + 2301 4 62|T5)/ lw@)? dt, € (0,T),weC,reR.
0 0

Proof. Applying (A.46) two times, first to function I5 _;u(t) and next to u(t), we obtain

T
/ |Ié,w,ru(t)|2 dt
0

- T+26
<A1 4 2BB)(1 4 2l9) / fu(t)? dt,
0

that is (A.49). O
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T N T+6
/ L5 oI5 —ipu(t))? dt < 2(1 + €2I3¢19) / | I5_iru(t)|? dt
0 0

(A.48)

i(w' —w)d e(iw’—r)(s _ 1)eiw’t .
(i —1)d

(A.49)



Proof of Proposition 5.4. To begin with, we will transform the function

o0

Ft)= Y (Cue™" + Roe™)

n=—oo

in a series such that the terms corresponding to indices in F are null, so we can apply assumption (5.8).

To this end, we fix £ > 0 and choose § € (0, ﬁ A T), where |F| indicates the number of elements
in the set F. Let us denote by I the composition of all linear operators Is, ,,, where j € F; by lemma
A.5-(d) the definition of I does not depend on the order of the operators Isu;r;- Therefore, we can use
lemma A.5 to get

elwn—w;)d _ 1 ellwn=ri)d 1 iwn
e = Y GJ] (1 T (W —w;)0 >(1  (iwn —15)0 >e t

ngF  jEF
e(rnfrj)é -1 e(rnfiwj)J -1 .
+%Rf£ (- ) )
If we define for any n ¢ F
ei(wn_wj)(S -1 e(iwn—rj)(S -1
= L0~ os ) (s )
e(Tn—Tj)5 1 e(rn—iwj)(S -1
R, = RHf (- ) )

then we have '
If(t) = Z (Cre™n + Rie™?).
ngF

Therefore, applying estimate (5.8) to I f(t) we obtain
T
JRECIRTETD oy eAT (A.50)
0 ngF

Next, we choose § € (0, 55= A T') such that none of the products
2|7

H (1 B ei.(wn*wg')tS — 1) (1 B eliwn=r;)6 _ 1) i .

F i(wp —wj)d (iwp —1j)0

Z_

e
vanishes. This is possible because the analytic function 1 — does not vanish identically and, since

z
the numbers w, — w; and iw, — r; are all different from zero, we have to exclude only a countable set of

values of 4.
Now, we note that there exists a constant ¢ > 0 such that

2
i(wn—wj;)0 _ | (fwn—15)0 _ 1
-5 —)(-5——7) =2¢ wer (A.51)
oF i(wp —wj)d (twpn, —15)0
Indeed, it is sufficient to observe that for any fixed j € F we have
etlwn—w;)d _ q e~ S(wn—w;)d +1
: < —0 as |n| — oo,
i(wp —wj)d |lwn, — w;|0
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e(iwn—rj)é -1 e—(%wn—&-’/‘j)& +1
‘ — 0 as |n| — oo,

(twp, —15)0 | = |wp +irj|6
in view of (5.6). As a result, the product
H (1 B ei(wn—wj)(s _ 1) (1 B e(iwn—rj)5 _ 1)
F i(wp —wj)d (twn, —15)6

tends to 1 as |n| — oo, so that it is minorized, e.g., by 1/2 for all sufficiently large |n|.
Therefore, (A.50) and (A.51) yield

/ TF@)RdE > A S |Gl (A.52)
ngF
On the other hand, applying (A.49) repeatedly with w = w; and r =r;, j € F, we have
T+2|F|5
/ 11f ()Pt < 47T T (1 +e2|%|5)(1+62l’v|5)/ |f(8)% dt
JjeEF 0

from which, using (A.52) and 2|F|é < e, it follows

T+e
Z\CnP < (1+el%wjls/f|)(1+erje/|f)/ 1£(0)]2 dt,
ng¢F I jer 0
whence
42171
Z|C ? < o / |f()|? dt . (A.53)
ngF 1

In addition, thanks to the triangle inequality, (5.9) and (A.53) we get

/OT ’ T; <Cnei“’”t + Rne“t> ’2dt = /OT ‘f(t) - Z (Cnei”"t + Rner"t) )th

ngF

T T ) 2
< 2/ ]f(t)|2dt+2/ | (et + e [
0 0 ngr
T
< 2 [ IfoPd 1243 (P
0 ngF
42171 )
< 2(1+02 )/ F(0)|2dt (A.54)
0

Let us note that the expression
t N
/ S (et Ryt
neF

is a positive semidefinite quadratic form of the variable ({Cy}ner, {Rn}ner) € C’1 x RIFI. Moreover, it
is positive definite, because the functions e®nt, ¢! n € F, are linearly independent. Hence, there exists
a constant ¢’ > 0 such that

/\Z nert - Roe) [t > S (10U + 1 RaP).

neF neF
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so, from (A.54) and the above inequality we deduce that

Finally, from the above estimate and (A.53) the desired inequality (A.50) follows with

o= 21422 + 22 0

7
2 de cc

References

1]

2]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970),
297-308.

C. M. Dafermos, An abstract Volterra equation with applications to linear viscoelasticity, J. Differ-
ential Equations, 7 (1970), 554-569.

J. Edward, Ingham-type inequalities for complex frequencies and applications to control theory J.
Math. Anal. Appl., 324 (2006), 941-954.

G. Gripenberg, S. O. Londen, O. J. Staffans, Volterra Integral and Functional Equations, Encyclo-
pedia Math. Applications, 34 (1990), Cambridge Univ. Press, Cambridge.

A. Haraux, Séries lacunaires et contréle semi-interne des vibrations d’une plaque rectangulaire J.
Math. Pures Appl., 68 (1989), 457-465.

A. E. Ingham, Some trigonometrical inequalities with applications to the theory of series, Math. Z.,
41 (1936), 367-379.

J. U. Kim, Control of a plate equation with large memory, Differential Integral Equations, 5 (1992),
261-279.

J. U. Kim, Control of a second-order integro-differential equation, SIAM J. Control Optim., 31
(1993), 101-110.

V. Komornik, P. Loreti, Ingham type theorems for vector-valued functions and observability of coupled
linear system, SIAM J. Control Optim., 37 (1998), 461-485.

V. Komornik, P. Loreti, Fourier series in control theory, Springer Monographs in Mathematics
(2005), Springer-Verlag, New York.

J. E. Lagnese, J.-L. Lions, Modelling analysis and control of thin plates, Recherches en
Mathématiques Appliquées (1988), Masson, Paris.

1. Lasiecka, Controllability of a viscoelastic Kirchhoff plate Control and estimation of distributed
parameter systems (Vorau, 1988), Internat. Ser. Numer. Math., 91, Birkhuser, Basel, 1989, 237-247.

G. Lebon, C. Perez-Garcia, J. Casas-Vazquez, On the thermodynamic foundations of viscoelasticity
J. Chem. Phys., 88 (1988), 5068-5075.

G. Leugering, FExact boundary controllability of an integro-differential equation, Appl. Math. Optim.,
(1987), 223-250.

G. Leugering, Boundary controllability of a viscoelastic string, in G. Da Prato and M. Tannelli editors,
Volterra integrodifferential equations in Banach spaces and applications, Harlow, Essex, Longman
Sci. Tech., (1989), 258-270.

36



[16]

[17]

18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

J.-L. Lions, Fzact controllability, stabilization and perturbations for distributed systems, STAM Rev.
30 (1988), 1-68.

J.-L. Lions, Contrélabilité exacte, perturbations et stabilisation de systémes distribués. Tome 1.
Controélabilité exacte, with appendices by E. Zuazua, C. Bardos, G. Lebeau and J. Rauch. Recherches
en Mathématiques Appliquées, 8 ( 1988), Masson, Paris.

J.-L. Lions, Contraélabilité exacte, perturbations et stabilisation de systéemes distribués. Tome 2. Per-
turbations, Recherches en Mathématiques Appliquées, 9 (1988), Masson, Paris.

P. Loreti, V. Valente, Partial ezact controllability for spherical membranes, SIAM J. Control Optim.,
35 (1997), 641-653.

J. E. Munoz Rivera, M. G. Naso, Ezact controllability for hyperbolic thermoelastic systems with large
memory, Adv. Differential Equations, 9 (2004), 1369-1394.

J. Priiss, Fvolutionary integral equations and applications, Monographs in Mathematics, 87 (1993),
Birkhauser Verlag, Basel.

M. Renardy, W. J. Hrusa, J. A. Nohel, Mathematical problems in viscoelasticity, Pitman Monographs
Pure Appl.Math., 35 (1988), Longman Sci. Tech., Harlow, Essex.

M. Renardy, Are viscoelastic flows under control or out of control? Systems Control Lett., 54 (2005),
1183-1193.

D. L. Russell, Controllability and stabilizability theory for linear partial differential equations: recent
progress and open questions SIAM Rev., 20 (1978), 639-739.

X. Zhang, E. Zuazua, Polynomial decay and control of a 1-d model for fluid-structure interaction C.
R. Math. Acad. Sci. Paris, 336 (2003), 745-750.

X. Zhang, E. Zuazua, Polynomial decay and control of a 1 — d hyperbolic-parabolic coupled system J.
Differential Equations, 204 (2004), 380-438.

37



Preprint Series, Graduate School of Mathematical Sciences, The University of Tokyo

UTMS
2009-1

2009-2

2009-3

20094

2009-5

2009-6

20097

2009-8
2009-9

2009-10

2009-11
2009-12

Tadayuki Watanabe: On Kontsevich’s characteristic classes for higher dimen-
stonal sphere bundles II : higher classes.

Takashi Tsuboi: On the uniform perfectness of the groups of diffeomorphisms
of even-dimensional manifolds.

Hitoshi Kitada: An implication of Géddel’s incompleteness theorem.

Jin Cheng, Junichi Nakagawa, Masahiro Yamamoto and Tomohiro Yamazaki:
Uniqueness in an inverse problem for one-dimensional fractional diffusion equa-
tion.

Y. B. Wang, J. Cheng, J. Nakagawa, and M. Yamamoto : A numerical method
for solving the inverse heat conduction problem without initial value.

Dietmar Homberg, Nataliya Togobytska, Masahiro Yamamoto: On the evalu-
ation of dilatometer experiments.

Toshio Oshima and Nobukazu Shimeno: Heckman-Opdam hypergeometric func-
tions and their specializations.

Atsushi Yamashita: Compactification of the homeomorphism group of a graph.

Jingzhi Li, Masahiro Yamamoto, and Jun Zou: Conditional stability and nu-
merical reconstruction of initial temperature.

Taku Ishii and Takayuki Oda: Calculus of principal series Whittaker functions
on SL(n,R).

Atsushi Nitanda: The growth of the Nevanlinna proximity function.

Paola Loreti and Daniela Sforza: Reachability problems for a class of integro-
differential equations.

The Graduate School of Mathematical Sciences was established in the University of
Tokyo in April, 1992. Formerly there were two departments of mathematics in the Uni-
versity of Tokyo: one in the Faculty of Science and the other in the College of Arts and
Sciences. All faculty members of these two departments have moved to the new gradu-
ate school, as well as several members of the Department of Pure and Applied Sciences
in the College of Arts and Sciences. In January, 1993, the preprint series of the former
two departments of mathematics were unified as the Preprint Series of the Graduate
School of Mathematical Sciences, The University of Tokyo. For the information about
the preprint series, please write to the preprint series office.

ADDRESS:

Graduate School of Mathematical Sciences, The University of Tokyo
3-8-1 Komaba Meguro-ku, Tokyo 153-8914, JAPAN

TEL +81-3-5465-7001 FAX +81-3-5465-7012



