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1 Introduction

In this paper we investigate control problems for a class of integro-differential equations

utt(t, x)− uxx(t, x) + β

∫ t

0
e−η(t−s)uxx(s, x)ds = 0 , t ∈ (0, T ) , x ∈ (0, π), (1.1)

(0 < β < η) with null initial data

u(0, x) = ut(0, x) = 0, x ∈ (0, π) , (1.2)

and boundary conditions

u(t, x) =

{
0 x = 0 ,
g(t) x = π .

(1.3)

If we regard g as a control function, our reachability problem consists in proving the existence of
g ∈ L2(0, T ) such that a weak solution of equation (1.1), subject to boundary conditions (1.3), moves
from the null state to a given one in finite control time. To be more precise, we adopt the same definition
of reachability problems for systems with memory given by several authors in the literature, see for
example [18, 7, 8, 12, 14, 15, 19, 20]. Indeed, we mean the following: given T > 0, u0 ∈ L2(0, π) and
u1 ∈ H−1(0, π), find g ∈ L2(0, T ) such that the weak solution u of problem (1.1)–(1.3) verifies the final
conditions

u(T, x) = u0(x) , ut(T, x) = u1(x) , x ∈ (0, π) . (1.4)

Our goal is to achieve such result without any smallness assumption on the convolution kernel, as sug-
gested by J.-L. Lions in [18, p. 258]. Moreover, due to the finite speed of propagation, we expect that
the controllability time T will be sufficiently large. Indeed, we will find that T > 2π/γ, where γ is the
gap of a branch of eigenvalues related to the integro-differential operator, see theorem 6.1.

As it is well-known, a common way for studying exact controllability problems is the so-called Hilbert
Uniqueness Method, introduced by Lagnese – Lions, see [11, 16, 17, 18]. We will apply this method
to equation (1.1). The HUM method is based on a “uniqueness theorem” for the adjoint problem. To
prove such uniqueness theorem we employ some typical techniques of harmonic analysis, see [24]. This
approach relies on Fourier series development for the solution v of the adjoint problem, that exhibits an
expansion in the variable t like this

v(t) =
∞∑

n=−∞

(
Cne

iωnt +Rne
rnt
)

ωn , Cn ∈ C, rn , Rn ∈ R . (1.5)

In this framework Ingham type estimates [6] play an important role. We need to establish for functions
of the type (1.5) inverse and direct inequalities, obtaining them in the same sharp time of the nonintegral
case.

Theorem 1.1 Let {ωn}n∈Z and {rn}n∈Z be sequences of pairwise distinct numbers such that rn 6= iωm
for any n ,m ∈ Z. Assume

<ωn −<ωn−1 ≥ γ > 0 ∀ |n| ≥ n′ ,
lim
|n|→∞

=ωn = α , rn ≤ −=ωn ∀ |n| ≥ n′ ,

|Rn| ≤
µ

|n|ν
|Cn| ∀ |n| ≥ n′ , |Rn| ≤ µ|Cn| ∀ |n| ≤ n′ ,

for some n′ ∈ N, α ∈ R, µ > 0 and ν > 1/2. Then, for any T > 2π/γ we have

c1(T )
∞∑

n=−∞
|Cn|2 ≤

∫ T

0

∣∣∣ ∞∑
n=−∞

(
Cne

iωnt +Rne
rnt
)∣∣∣2dt ,

where c1(T ) is a positive constant.
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Theorem 1.2 Assume
<ωn −<ωn−1 ≥ γ > 0 ∀ |n| ≥ n′ ,

lim
|n|→∞

=ωn = α ,

|Rn| ≤
µ

|n|ν
|Cn| ∀ |n| ≥ n′ ; |Rn| ≤ µ|Cn| ∀ |n| ≤ n′ ,

for some n′ ∈ N, α ∈ R, µ > 0 and ν > 1/2. Then, for any T > π/γ we have∫ T

−T

∣∣∣ ∞∑
n=−∞

(
Cne

iωnt +Rne
rnt
)∣∣∣2dt ≤ c2(T )

∞∑
n=−∞

|Cn|2 ,

where c2(T ) is a positive constant .

To prove the previous results, we need Haraux type estimates [5] for functions defined as in (1.5).

Proposition 1.3 Let {ωn}n∈Z be such that lim|n|→∞ |ωn| = +∞ . Assume that there exists a finite set
F of integers such that for any sequences {Cn} and {Rn} with Cn = Rn = 0 for n ∈ F , the estimates

c′1
∑
n6∈F
|Cn|2 ≤

∫ T

0

∣∣∣∑
n6∈F

(
Cne

iωnt +Rne
rnt
)∣∣∣2dt ≤ c′2 ∑

n6∈F
|Cn|2

are satisfied for some constants c′1 , c
′
2 > 0. Then, there exists c1 > 0 such that for any sequences {Cn}

and {Rn} the estimate

c1

∞∑
n=−∞

|Cn|2 ≤
∫ T

0

∣∣∣ ∞∑
n=−∞

(
Cne

iωnt +Rne
rnt
)∣∣∣2dt

holds.

Proposition 1.4 Assume that there exists a finite set F of integers such that for any sequences {Cn}
and {Rn} with Cn = Rn = 0 for n ∈ F , the estimate∫ T

−T

∣∣∣∑
n6∈F

(
Cne

iωnt +Rne
rnt
)∣∣∣2dt ≤ c′2 ∑

n6∈F
|Cn|2

is satisfied for some c′2 > 0. Then, for any sequences {Cn} and {Rn} verifying

|Rn| ≤ µ|Cn| for any n ∈ F ,

for some µ > 0, the estimate∫ T

−T

∣∣∣ ∞∑
n=−∞

(
Cne

iωnt +Rne
rnt
)∣∣∣2dt ≤ c2

∞∑
n=−∞

|Cn|2

holds for some c2 > 0.

The proofs of these results are rather technical, see sections 4, 5 and appendix. In particular, to prove
the inverse inequality we need to introduce a family of operators, which annihilate a finite number of
terms in the Fourier series. Our operators are slightly different from those proposed in [5] and [9]. Given
δ > 0, ω ∈ C and r ∈ R arbitrarily, we define the linear operators Iδ,ω and Iδ,ω,r as follows: for every
continuous function u : R→ C the function Iδ,ωu : R→ C is given by the formula

Iδ,ωu(t) := u(t)− 1
δ

∫ δ

0
e−iωsu(t+ s) ds , t ∈ R ,
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and
Iδ,ω,r := Iδ,ω ◦ Iδ,−ir .

For Ingham’s type estimates, our results can be compared with those proved in [19], where functions
of the type

v(t) =
∞∑

n=−∞

(
Cne

irnt + C ′ne
ir′nt
)

t ≥ 0

(rn, r′n ∈ R , Cn , C ′n ∈ C) are considered. Our analysis is different from that of [19], because our admissible
integral kernels are exponential functions. This class of kernels arises in linear viscoelasticity theory, such
as in the analysis of Maxwell fluids or Poynting -Thomson solids, see e.g. [21, 23]. For other references
in viscoelasticity theory see the seminal papers of Dafermos [1, 2] and [22, 13].

Concerning Haraux’s type estimates, in [9] functions of the type

v(t) =
∞∑

n=−∞
Cne

iωnt t ≥ 0 ,

(ωn , Cn ∈ C) have been studied.
Our analysis of the estimates changes completely with respect to that of cited papers, because the

functions under study are different. Indeed, as we shall see in section 6, exponential kernels lead to a new
form (1.5) of the functions, where the exponents iωn have also a non vanishing real part and some other
real terms Rnernt appear in the sum. Moreover, in the proofs of Ingham estimates the choice of weight
function is fundamental and we borrow from [3] the idea of a different weight function with respect to
the classical case [6], see also [10]. Other papers related to our problem are [15] and [25, 26], where the
approach is different to that of Ingham type.

The plan of our paper is the following. In section 2 we give some preliminary results. In section 3 we
describe the HUM method in an abstract setting. In section 4 we prove theorem 1.2 and proposition 1.4
and in section 5 we prove theorem 1.1. In section 6 we give a reachability result for an integro-differential
equation. Finally, in the appendix we prove some technical results and proposition 1.3.

2 Preliminaries

Let X be a real Hilbert space with scalar product 〈· , ·〉 and norm ‖ · ‖. For any T ∈ (0,∞] we denote
by L1(0, T ;X) the usual spaces of measurable functions v : (0, T )→ X such that one has

‖v‖1,T :=
∫ T

0
‖v(t)‖ dt <∞ .

We shall use the shorter notation ‖v‖1 for ‖v‖1,∞. We denote by L1
loc(0,∞;X) the space of functions

belonging to L1(0, T ;X) for any T ∈ (0,∞). In the case of X = R, we will use the abbreviations L1(0, T )
and L1

loc(0,∞) to denote the spaces L1(0, T ; R) and L1
loc(0,∞; R), respectively.

Classical results for integral equations (see, e.g., [4, Theorem 2.3.5]) ensure that, for any kernel
H ∈ L1

loc(0,∞) and any g ∈ L1
loc(0,∞;X), the problem

ϕ(t)−H ∗ ϕ(t) = g(t), t ≥ 0 , (2.1)

admits a unique solution ϕ ∈ L1
loc(0,∞;X). In particular, there is a unique solution % ∈ L1

loc(0,∞) of

%(t)−H ∗ %(t) = H(t), t ≥ 0 . (2.2)

Such a solution is called the resolvent kernel of H. Furthermore, the solution ϕ of (2.1) is given by the
variation of constants formula

ϕ(t) = g(t) + % ∗ g(t), t ≥ 0 , (2.3)

where % is the resolvent kernel of H.
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Lemma 2.1 Given H ∈ L1
loc(0,∞) and g ∈ L1

loc(−∞, T ;X), a function f ∈ L1
loc(−∞, T ;X) is a solution

of

f(t)−
∫ T

t
H(s− t)f(s)ds = g(t) t ≤ T , (2.4)

if and only if

f(t) = g(t) +
∫ T

t
%(s− t)g(s) ds t ≤ T , (2.5)

where % is the resolvent kernel of H.

Proof. If f is a solution of (2.4), then, substituting t with T − τ , τ ≥ 0, we get

f(T − τ)−
∫ T

T−τ
H(s− T + τ)f(s)ds = g(T − τ) τ ≥ 0 .

Set p(τ) = f(T − τ) and q(τ) = g(T − τ), we have

p(τ)−
∫ τ

0
H(τ − s)p(s)ds = q(τ) τ ≥ 0 .

Thanks to (2.3) one gets

p(τ) = q(τ) +
∫ τ

0
%(τ − s)q(s) ds ,

where % is the resolvent kernel of H. Recalling that p(τ) = f(T − τ) and q(τ) = g(T − τ), we have

f(T − τ) = g(T − τ) +
∫ τ

0
%(τ − s)g(T − s) ds

= g(T − τ) +
∫ T

T−τ
%(τ − T + s)g(s) ds τ ≥ 0 .

Finally, substituting T − τ with t, t ≤ T , we obtain

f(t) = g(t) +
∫ T

t
%(s− t)g(s) ds ,

that is (2.5) holds true.
Repeating the reasoning backward, we have that if f verifies (2.5), then (2.4) is satisfied. �

Corollary 2.2 The following are true.

(i) The resolvent kernel of t 7→ βe−ηt is t 7→ βe(β−η)t.

(ii) Given g ∈ L1
loc(−∞, T ;X), a function f ∈ L1

loc(−∞, T ;X) is a solution of

f(t)− β
∫ T

t
e−η(s−t)f(s)ds = g(t) t ≤ T ,

if and only if

f(t) = g(t) + β

∫ T

t
e(β−η)(s−t)g(s) ds t ≤ T .
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Proof. (i) The resolvent kernel of t 7→ βe−ηt is the solution of the integral equation

%(t)− β
∫ t

0
e−η(t−s)%(s)ds = βe−ηt t ≥ 0 ,

whence, multiplying by eηt, we obtain

eηt%(t) = β + β

∫ t

0
eηs%(s)ds t ≥ 0 .

Differentiating yields 
d

dt

[
eηt%(t)

]
= βeηt%(t) τ ≥ 0,

%(0) = β .

Solving the above Cauchy problem gives

eηt%(t) = βeβt ,

whence, multiplying by e−ηt, one gets

%(t) = βe(β−η)t .

The point (ii) follows from lemma 2.1. �

Lemma 2.3 Given λ , β , η ∈ R \ {0}, a function f ∈ C2([0,∞)) is a solution of the integro-differential
equation

f
′′
(t) + λf(t)− λβ

∫ t

0
e−η(t−s)f(s)ds = 0 , t ≥ 0 , (2.6)

if and only if f is a solution of the problem
f
′′′

(t) + ηf
′′
(t) + λf

′
(t) + λ(η − β)f(t) = 0 , t ≥ 0 ,

f
′′
(0) = −λf(0) .

(2.7)

Proof. Let f be a solution of (2.6). It follows that f
′′
(0)+λf(0) = 0 and f ∈ C3([0,∞)). Differentiating

(2.6), we get

f
′′′

(t) + λf
′
(t) + ηλβ

∫ t

0
e−η(t−s)f(s)ds− λβf(t) = 0 .

Substituting in the above equation the identity

λβ

∫ t

0
e−η(t−s)f(s)ds = f

′′
(t) + λf(t) ,

we obtain
f
′′′

(t) + λf
′
(t) + ηf

′′
(t) + ηλf(t)− λβf(t) = 0 ,

whence f is a solution of (2.7).
On the other hand, if f is a solution of (2.7), multiplying the differential equation in (2.7) by eηt and

integrating from 0 to t, we obtain∫ t

0
eηsf

′′′
(s) ds+ η

∫ t

0
eηsf

′′
(s) ds+ λ

∫ t

0
eηtf

′
(t) ds+ λ(η − β)

∫ t

0
eηtf(t) ds = 0 .

Integrating by parts the first term and the third one, we have

eηtf
′′
(t)− f ′′(0) + λeηtf(t)− λf(0)− λβ

∫ t

0
eηsf(s) ds = 0 .

Using f
′′
(0) = −λf(0) and multiplying by e−ηt, we obtain (2.6). �
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It is easy to verify the following result.

Lemma 2.4 The third degree polynomial

F (t) := −32t3 + 108t2 − 243
2
t+

729
16

(2.8)

is strictly decreasing in [0,∞). Moreover, the unique real zero of F (t) is
9
8

.

3 Hilbert Uniqueness Method

In this section we formally describe the method in an abstract setting.
We introduce a linear operator A : D(A) ⊂ X → X on X with domain D(A) and H ∈ L1

loc(0,∞).
Let Y be another real Hilbert space with scalar product 〈· , ·〉Y and norm ‖ · ‖Y and B ∈ L(X0;Y ), where
X0 is a space such that D(A) ⊂ X0 ⊂ X. We consider the integro-differential equation

u′′(t) +Au(t)−
∫ t

0
H(t− s)Au(s)ds = 0 t ∈ (0, T ) , (3.1)

with null initial conditions
u(0) = u′(0) = 0, (3.2)

and
Bu(t) = g(t) t ∈ (0, T ) . (3.3)

In the applications B can be, for example, a trace operator. For a reachability problem we mean the
following: given T > 0, u0 ∈ X and u1 ∈ (Ker(B))′, find g ∈ L2(0, T ;Y ) such that the weak solution u
of problem (3.1)-(3.3) verifies the final conditions

u(T ) = u0 , u′(T ) = u1 . (3.4)

To explain how the HUM method can be used to solve a reachability problem, we proceed dividing the
reasoning into several steps.

STEP 1 A : D(A) ⊂ X → X denotes a self-adjoint positive linear operator on X with dense domain
D(A) ⊂ D(A) such that for any x ∈ D(A) Ax = Ax and D(

√
A) = Ker(B). We define by induction

D(Ak) := {x ∈ D(Ak−1) : Ax ∈ D(Ak−1)} , k ∈ N .

Given z0 ∈ D(Ak) and z1 ∈ D(Ak), we consider the adjoint equation of (3.1), that is

z′′(t) +Az(t)−
∫ T

t
H(s− t)Az(s)ds = 0 , t ∈ [0, T ] , (3.5)

with final data
z(T ) = z0 , z′(T ) = z1 . (3.6)

Problem (3.5)–(3.6) admits a unique solution z ∈ Ck−j([0, T ];D(Aj)), j = 0, 1, . . . , k. Indeed, set
v(t) = z(T − t), problem (3.5)–(3.6) is equivalent to

v′′(t) +Av(t)−
∫ t

0
H(t− s)Av(s)ds = 0 , t ∈ [0, T ] ,

v(0) = z0 , v′(0) = −z1 ,

(3.7)

and the above problem is well-posed, see e.g. [21]. We take k large enough to have the function z
sufficiently regular.
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STEP 2 We introduce another operator Dν : X0 → Y such that the following identity holds

〈Aϕ, ξ〉 = 〈ϕ,Aξ〉 − 〈Bϕ,Dνξ〉Y , ∀ϕ ∈ D(A) , ξ ∈ D(A) , (3.8)

and the problem 

ϕ′′(t) +Aϕ(t)−
∫ t

0
H(t− s)Aϕ(s)ds = 0 , t ∈ [0, T ] ,

Bϕ(t) = Dνz(t)−
∫ T

t
H(s− t)Dνz(s)ds, t ∈ [0, T ] ,

ϕ(0) = ϕ′(0) = 0 ,

(3.9)

admits a unique solution ϕ. Then, we define the linear operator

Ψ(z0, z1) = (ϕ′(T ),−ϕ(T )) , (z0, z1) ∈ D(Ak)×D(Ak) .

STEP 3 Let (ξ0, ξ1) ∈ D(Ak)×D(Ak) and ξ the solution of
ξ′′(t) +Aξ(t)−

∫ T

t
H(s− t)Aξ(s)ds = 0 , t ∈ [0, T ] ,

ξ(T ) = ξ0 , ξ′(T ) = ξ1 .

(3.10)

We prove that

〈Ψ(z0, z1), (ξ0, ξ1)〉X×X =
∫ T

0
〈Bϕ(t), Dνξ(t)−

∫ T

t
H(s− t)Dνξ(s)ds〉Y dt . (3.11)

Indeed, multiplying the equation in (3.9) by ξ(t) and integrating on [0, T ] we have∫ T

0
〈ϕ′′(t), ξ(t)〉 dt+

∫ T

0
〈Aϕ(t), ξ(t)〉 dt−

∫ T

0

∫ t

0
H(t− s)〈Aϕ(s), ξ(t)〉 ds dt = 0 .

Integrating by parts twice, in view also of (3.8) we have

〈ϕ′(T ), ξ(T )〉 − 〈ϕ(T ), ξ′(T )〉+
∫ T

0
〈ϕ(t), ξ′′(t) +Aξ(t)−

∫ T

t
H(s− t)Aξ(s)ds〉dt

−
∫ T

0
〈Bϕ(t), Dνξ(t)〉Y dt+

∫ T

0
〈Bϕ(t),

∫ T

t
H(s− t)Dνξ(s)ds〉Y dt = 0 .

Since ξ is the solution of (3.10), we have that (3.11) holds.

Now, taking (ξ0, ξ1) = (z0, z1) in (3.11), we have

〈Ψ(z0, z1), (z0, z1)〉X×X =
∫ T

0

∥∥∥Dνz(t)−
∫ T

t
H(s− t)Dνz(s)ds

∥∥∥2

Y
dt . (3.12)

So, we can introduce the semi-norm

(z0, z1) ∈ D(Ak)×D(Ak) ,

‖(z0, z1)‖F :=
(∫ T

0

∥∥∥Dνz(t)−
∫ T

t
H(s− t)Dνz(s)ds

∥∥∥2

Y
dt
)1/2

. (3.13)
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STEP 4 In view of lemma 2.1, ‖ · ‖F is a norm if and only if the following uniqueness theorem holds.

Theorem 3.1 If z is the solution of problem (3.5)–(3.6) such that

Dνz(t) = 0 , ∀t ∈ [0, T ] ,

then
z(t) = 0 ∀t ∈ [0, T ] .

If theorem 3.1 holds true, then we can define the Hilbert space F as the completion ofD(Ak)×D(Ak)
for the norm (3.13). Moreover, the operator Ψ extends uniquely to a continuous operator, denoted
again by Ψ, from F to the dual space F ′ in such a way that Ψ : F → F ′ is an isomorphism.

In conclusion if we prove a result like theorem 3.1 and that F = D(
√
A) × X, then we can solve

the reachability problem (3.1)–(3.4).

4 Ingham type direct inequality

In the next two sections, we consider functions of the type

f(t) :=
∞∑

n=−∞

(
Cne

iωnt +Rne
rnt
)

t ≥ 0

with ωn , Cn ∈ C and rn, Rn ∈ R such that the sequences {=ωn}, {rn} are bounded and

∞∑
n=−∞

|Cn|2 < +∞ ,
∞∑

n=−∞
|Rn|2 < +∞ .

Let T > 0.

Theorem 4.1 Assume
<ωn −<ωn−1 ≥ γ > 0 ∀ |n| ≥ n′ , (4.1)

lim
|n|→∞

=ωn = α , (4.2)

|Rn| ≤
µ

|n|ν
|Cn| ∀ |n| ≥ n′ ; |Rn| ≤ µ|Cn| ∀ |n| ≤ n′ , (4.3)

for some n′ ∈ N, α ∈ R, µ > 0 and ν > 1/2. Then, for any T > π/γ we have∫ T

−T

∣∣∣ ∞∑
n=−∞

(
Cne

iωnt +Rne
rnt
)∣∣∣2dt ≤ c2(T )

∞∑
n=−∞

|Cn|2 , (4.4)

where c2(T ) is a positive constant .

To proceed with the proof, we state the following two results, but the proof of the first one can be found
in the appendix, as it is quite long and complex.

Theorem 4.2 Under assumptions (4.1)–(4.3), for any 0 < ε < 1 and for any T > π
γ
√

1−ε there exists
n0 = n0(ε) ∈ N such that if Cn = 0 for |n| ≤ n0, then we have∫ T

−T
|f(t)|2dt ≤ c2(T )

∑
|n|≥n0

|Cn|2 , (4.5)

where c2(T ) > 0.
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Proposition 4.3 Assume that there exists a finite set F of integers such that for any sequences {Cn}
and {Rn} verifying

Cn = Rn = 0 for any n ∈ F , (4.6)

the estimate ∫ T

−T

∣∣∣∑
n 6∈F

(
Cne

iωnt +Rne
rnt
)∣∣∣2dt ≤ c′2 ∑

n6∈F
|Cn|2 (4.7)

is satisfied for some c′2 > 0. Then, for any sequences {Cn} and {Rn} verifying

|Rn| ≤ µ|Cn| for any n ∈ F , (4.8)

for some µ > 0, the estimate∫ T

−T

∣∣∣ ∞∑
n=−∞

(
Cne

iωnt +Rne
rnt
)∣∣∣2dt ≤ c2

∞∑
n=−∞

|Cn|2 (4.9)

holds for some c2 > 0.

Proof. Assume that {Cn} and {Rn} verify (4.8). If we use (4.7), then we have∫ T

−T

∣∣∣∑
n6∈F

(
Cne

iωnt +Rne
rnt
)∣∣∣2dt ≤ c′2 ∑

n6∈F
|Cn|2 . (4.10)

Now, we prove that ∫ T

−T

∣∣∣∑
n∈F

(
Cne

iωnt +Rne
rnt
)∣∣∣2dt ≤ c′′2 ∑

n∈F
|Cn|2 , (4.11)

for some constant c′′2 > 0. Indeed, applying the Cauchy-Schwarz inequality we get∣∣∣∑
n∈F

(
Cne

iωnt +Rne
rnt
)∣∣∣2 ≤

(∑
n∈F

(
|Cn|e−=ωnt + |Rn|ernt

))2

≤ 2|F|
∑
n∈F

(
|Cn|2e−2=ωnt + |Rn|2e2rnt

)
,

where |F| denotes the number of elements in the set F . If we use the previous inequality and (4.8), then
we get ∫ T

−T

∣∣∣∑
n∈F

(
Cne

iωnt +Rne
rnt
)∣∣∣2dt ≤ 2|F|

∑
n∈F
|Cn|2

∫ T

−T

(
e−2=ωnt + µ2e2rnt

)
dt ,

whence (4.11) follows with c′′2 = 2|F|max
n∈F

{∫ T

−T

(
e−2=ωnt + µ2e2rnt

)
dt
}
.

Finally, from (4.10) and (4.11) we deduce that∫ T

−T

∣∣∣ ∞∑
n=−∞

(
Cne

iωnt +Rne
rnt
)∣∣∣2dt

≤ 2
∫ T

−T

∣∣∣∑
n6∈F

(
Cne

iωnt +Rne
rnt
)∣∣∣2dt+ 2

∫ T

−T

∣∣∣∑
n∈F

(
Cne

iωnt +Rne
rnt
)∣∣∣2dt

≤ 2c′′2
∑
n 6∈F
|Cn|2 + 2c′2

∑
n∈F
|Cn|2 ,

so (4.9) holds with c2 = 2 max{c′′2, c′2} . �
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Proof of Theorem 4.1. Since T > π/γ, there exists 0 < ε < 1 such that T > π
γ
√

1−ε . By applying
theorem 4.2, there exist n0 ∈ N and c2(T ) > 0 such that if Cn = 0 for |n| ≤ n0, then we have∫ T

−T
|f(t)|2dt ≤ c2(T )

∑
|n|≥n0

|Cn|2 .

Finally, thanks also to (4.3) we can use proposition 4.3 to conclude. �

5 Ingham type inverse inequality

In this section {ωn}n∈Z and {rn}n∈Z are sequences of pairwise distinct numbers such that rn 6= iωm for
any n ,m ∈ Z. Let T > 0.

Theorem 5.1 Assume
<ωn −<ωn−1 ≥ γ > 0 ∀ |n| ≥ n′ , (5.1)

lim
|n|→∞

=ωn = α , rn ≤ −=ωn ∀ |n| ≥ n′ , (5.2)

|Rn| ≤
µ

|n|ν
|Cn| ∀ |n| ≥ n′ , |Rn| ≤ µ|Cn| ∀ |n| ≤ n′ , (5.3)

for some n′ ∈ N, α ∈ R, µ > 0 and ν > 1/2. Then, for any T > 2π/γ we have

c1(T )
∞∑

n=−∞
|Cn|2 ≤

∫ T

0

∣∣∣ ∞∑
n=−∞

(
Cne

iωnt +Rne
rnt
)∣∣∣2dt , (5.4)

where c1(T ) is a positive constant.

Remark 5.2 Since the sequence {=ωn} is bounded the inverse inequality (5.4) can be written in the
form

c1(T )
∞∑

n=−∞
(1 + e−2(=ωn−α)T )|Cn|2 ≤

∫ T

0

∣∣∣ ∞∑
n=−∞

(
Cne

iωnt +Rne
rnt
)∣∣∣2dt ,

which is similar to that proved in [26, Lemma 4.1] by different techniques.

We note that the direct inequality holds under weaker assumptions respect to the inverse one.
To prove theorem 5.1, we need the following results, whose proofs are given in the appendix, as they

are quite long and complex.

Theorem 5.3 Under assumptions (5.1)–(5.3), for any 0 < ε < 1 and T > 2π
γ

√
1+ε
1−ε there exist n0 =

n0(ε) ∈ N and c1(T, ε) > 0 such that if Cn = 0 for any |n| ≤ n0, then we have

c1(T, ε)
∑
|n|≥n0

(1 + e−2(=ωn−α)T )|Cn|2 ≤
∫ T

0
|f(t)|2dt . (5.5)

In addition, the constant c1(T, ε) is given by

c1(T, ε) = min(1, e−2αT )
( Tπ

π2 + T 2γ2ε/8
− 4π
Tγ2

(1 + ε)
)
.
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Proposition 5.4 Let {ωn}n∈Z be such that

lim
|n|→∞

|ωn| = +∞ . (5.6)

Assume that there exists a finite set F of integers such that for any sequences {Cn} and {Rn} verifying

Cn = Rn = 0 for any n ∈ F , (5.7)

the estimates

c′1
∑
n6∈F
|Cn|2 ≤

∫ T

0

∣∣∣∑
n6∈F

(
Cne

iωnt +Rne
rnt
)∣∣∣2dt (5.8)

∫ T

0

∣∣∣∑
n 6∈F

(
Cne

iωnt +Rne
rnt
)∣∣∣2dt ≤ c′2 ∑

n6∈F
|Cn|2 (5.9)

are satisfied for some constants c′1 , c
′
2 > 0. Then, there exists c1 > 0 such that for any sequences {Cn}

and {Rn} the estimate

c1

∞∑
n=−∞

|Cn|2 ≤
∫ T

0

∣∣∣ ∞∑
n=−∞

(
Cne

iωnt +Rne
rnt
)∣∣∣2dt (5.10)

holds.

Proof of Theorem 5.1. Since T > 2π/γ, there exists 0 < ε < 1 such that T > 2π
γ

√
1+ε
1−ε . By applying

theorems 5.3 and 4.1, there exist n0 ∈ N, c1(T, ε) > 0 and c2(T ) > 0 such that if Cn = 0 for |n| ≤ n0,
then we have

c1(T, ε)
∑
|n|≥n0

|Cn|2 ≤
∫ T

0
|f(t)|2dt ≤ c2(T )

∑
|n|≥n0

|Cn|2 .

Finally, we can use proposition 5.4 to conclude. �

6 A reachability result

To give the result announced in the introduction concerning reachability problems for a class of systems
with memory, first, we need to develop a detailed spectral analysis.

Let A : D(A) ⊂ X → X be a self-adjoint positive linear operator on X with dense domain D(A) and
let {λj}j≥1 be a strictly increasing sequence of eigenvalues for the operator A with λj > 0 and λj →∞
such that the sequence of the corresponding eigenvectors {wj}j≥1 constitutes a Hilbert basis for X.

For any v0 ∈ D(
√
A) and v1 ∈ X there exists a unique weak solution v ∈ C([0,∞);D(

√
A)) ∩

C1([0,∞);X) of equation

v′′(t) +Av(t)− β
∫ t

0
e−η(t−s)Av(s)ds = 0 , t ≥ 0 , (6.1)

verifying the initial conditions
v(0) = v0 , v′(0) = v1 . (6.2)

We have

v0 =
∞∑
j=1

αjwj , αj = 〈v0, wj〉 ,
∞∑
j=1

α2
jλj <∞ , (6.3)

v1 =
∞∑
j=1

γjwj , γj = 〈v1, wj〉 ,
∞∑
j=1

γ2
j <∞ . (6.4)
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First, we observe that we can approximate the initial data v0 and v1 by sequences {v0n} in D(A) and
{v1n} in D(

√
A) respectively. So, the sequence of strong solutions vn(t) of (6.1), corresponding to the

initial conditions v0n and v1n, approximates v(t). Thanks to this remark, we can make our computations
considering v(t) as a strong solution, and then we go back to weak solutions by standard approximation
arguments.

We want to write the solution v(t) as a sum of series, that is

v(t) =
∞∑
j=1

fj(t)wj , fj(t) = 〈v(t), wj〉 .

Substituting the above expression of v in (6.1) and multiplying the equation by wj , j ∈ N, we have that
fj(t) is the solution of

f
′′
j (t) + λjfj(t)− λjβ

∫ t

0
e−η(t−s)fj(s)ds = 0 . (6.5)

with initial conditions given by
fj(0) = αj f

′
j(0) = γj . (6.6)

Thanks to lemma 2.3, problem (6.5)–(6.6) is equivalent to the Cauchy problem
f
′′′
j (t) + ηf

′′
j (t) + λjf

′
j(t) + λj(η − β)fj(t) = 0 , t ≥ 0 ,

fj(0) = αj , f
′
j(0) = γj , f

′′
j (0) = −λjαj .

(6.7)

Therefore, we proceed to solve (6.7). To this end, we must compute the solutions of the characteristic
equation

Λ3 + ηΛ2 + λjΛ + λj(η − β) = 0 , (6.8)

following the well-known Scipione Del Ferro’s method to obtain the Cardano formula.
First, we transform equation (6.8) into one without second degree term. For this reason, we will make

a suitable change of variable. Indeed, set
Λ = σ − η

3
,

we have
σ3 + pjσ + qj = 0 , (6.9)

where

pj = λj −
η2

3
, qj =

2
27
η3 + 2

(η
3
− β

2

)
λj .

To solve (6.9), we look for solutions in the form

σ = y + z .

We observe that the cube of σ = y + z satisfies the following equation

σ3 − 3yzσ − (y3 + z3) = 0 . (6.10)

Equalling the coefficients of similar terms in equations (6.9) and (6.10), we have

yz = −pj/3 , y3 + z3 = −qj .

Since y3z3 = −p3
j/27 e y3 +z3 = −qj , it follows that y3 and z3 are solutions of the second order equation

r2 + qjr −
p3
j

27
= 0 . (6.11)
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Now, defining the discriminant of equation (6.9) as the 1
4 -discriminant of the above equation, that is

∆j :=
q2
j

4
+
p3
j

27
,

we note that
q2
j

4
=

η6

(27)2
+
(η

3
− β

2

)2
λ2
j +

η3

27

(2
3
η − β

)
λj ,

p3
j

27
=
λ3
j

27
− η2

27
λ2
j +

η4

81
λj −

η6

(27)2
,

so we have

∆j =
λj
27

(
λ2
j +

(
2η2 − 9ηβ +

27
4
β2
)
λj + η3(η − β)

)
. (6.12)

Now, to have ∆j > 0 it is sufficient that
(

2η2 − 9ηβ +
27
4
β2
)2
− 4η3(η − β) < 0 , that is

F
( η
β

)
= −32

( η
β

)3
+ 108

( η
β

)2
− 243η

2β
+

729
16

< 0 ,

where F is the polynomial defined in (2.8). Thanks to lemma 2.4 the above condition is satisfied for

η >
9
8
β, and hence ∆j > 0 for η >

9
8
β .

If β < η ≤ 9
8β, then we can write η = tβ, with 1 < t ≤ 9

8 . So, we have ∆j > 0 for
λj > β2 (9t − 2t2 − 27

4 + F (t)1/2)/2. Since 9t − 2t2 − 27
4 > 0 for 1 < t ≤ 9

8 , we get that ∆j > 0
if

β <
( 2λ1

9t− 2t2 − 27
4 + (−32t3 + 108t2 − 243

2 t+ 729
16 )1/2

)1/2
. (6.13)

Therefore, the solutions of equation (6.11) are given by

r1/2 = −qj
2
±

√
q2
j

4
+
p3
j

27
.

Now, to write the solutions σ = y + z of (6.9), we keep in mind not only that y3 and z3 are solutions
of (6.11), but also that y and z must satisfy the condition yz = −pj/3. Accordingly, if we consider the
following real numbers,

yj =

−qj
2

+

√
q2
j

4
+
p3
j

27

1/3

zj =

−qj
2
−

√
q2
j

4
+
p3
j

27

1/3

,

then the solutions of (6.9) are given by
σ1,j = yj + zj , (6.14)

σ2,j = yje
i2π/3 + zje

−i2π/3 = −1
2

(yj + zj) + i

√
3

2
(yj − zj) , (6.15)

σ3,j = yje
−i2π/3 + zje

i2π/3 = −1
2

(yj + zj)− i
√

3
2

(yj − zj) . (6.16)

We note that the numbers σ1,j , σ2,j , σ3,j are all distinct.
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Now, in view of (6.12) we evaluate the quantity

−qj
2

+

√
q2
j

4
+
p3
j

27

= −η
3

27
−
(η

3
− β

2

)
λj +

√
λ3
j

27
+
( 2

27
η2 +

β2

4
− ηβ

3

)
λ2
j +

η3

27
(η − β)λj

= −η
3

27
−
(η

3
− β

2

)
λj +

(λj
3

)3/2
√

1 +
( 2

27
η2 +

β2

4
− ηβ

3

)27
λj

+ η3(η − β)
1
λ2
j

=
(λj

3

)3/2
[
− η3

√
27λ3/2

j

−
(η

3
− β

2

)√27√
λj

+

√
1 +

( 2
27
η2 +

β2

4
− ηβ

3

)27
λj

+ η3(η − β)
1
λ2
j

]

=
(λj

3

)3/2[
− η3

√
27λ3/2

j

−
(η

3
− β

2

)√27√
λj

+ 1 +
27
2

( 2
27
η2 +

β2

4
− ηβ

3

) 1
λj

+O
( 1
λ2
j

)]
=

(λj
3

)3/2[
1−

(η
3
− β

2

)√27√
λj

+
(
η2 +

27
8
β2 − 9

2
ηβ
) 1
λj
− η3

√
27λ3/2

j

+O
( 1
λ2
j

)]
, j →∞ .

Therefore, using also the well-known formula

(1 + x)1/3 = 1 +
1
3
x− 1

9
x2 + o(x2) , x→ 0 , (6.17)

we obtain

yj =

−qj
2

+

√
q2
j

4
+
p3
j

27

1/3

(6.18)

=

√
λj
3

[
1−

(η
3
− β

2

) 33/2√
λj

+
(
η2 +

27
8
β2 − 9

2
ηβ
) 1
λj
− η3

(3λj)3/2
+O

( 1
λ2
j

)]1/3

=

√
λj
3

[
1−

(η
3
− β

2

)√ 3
λj

+
1
3

(
η2 +

27
8
β2 − 9

2
ηβ
) 1
λj
− η3

35/2λ
3/2
j

− 3
(η

3
− β

2

)2 1
λj

+
2√
3

(η
3
− β

2

)(
η2 +

27
8
β2 − 9

2
ηβ
) 1

λ
3/2
j

+O
( 1
λ2
j

)]
=

√
λj
3
− η

3
+
β

2
+

β

2
√

3

(3
4
β − η

) 1√
λj

+
( 5

27
η3 − 4

3
η2β +

9
4
ηβ2 − 9

8
β3
) 1
λj

+O
( 1

λ
3/2
j

)
, j →∞ .
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In a similar way we get

−qj
2
−

√
q2
j

4
+
p3
j

27

= −η
3

27
−
(η

3
− β

2

)
λj −

√
λ3
j

27
+
( 2

27
η2 +

β2

4
− ηβ

3

)
λ2
j +

η3

27
(η − β)λj

= −η
3

27
−
(η

3
− β

2

)
λj −

(λj
3

)3/2
√

1 +
( 2

27
η2 +

β2

4
− ηβ

3

)27
λj

+ η3(η − β)
1
λ2
j

= −
(λj

3

)3/2
[

η3

√
27λ3/2

j

+
(η

3
− β

2

)√27√
λj

+

√
1 +

( 2
27
η2 +

β2

4
− ηβ

3

)27
λj

+ η3(η − β)
1
λ2
j

]

= −
(λj

3

)3/2[ η3

√
27λ3/2

j

+
(η

3
− β

2

)√27√
λj

+ 1 +
27
2

( 2
27
η2 +

β2

4
− ηβ

3

) 1
λj

+O
( 1
λ2
j

)]
= −

(λj
3

)3/2[
1 +

(η
3
− β

2

)√27√
λj

+
(
η2 +

27
8
β2 − 9

2
ηβ
) 1
λj

+
η3

√
27λ3/2

j

+O
( 1
λ2
j

)]
, j →∞ .

Therefore, using again (6.17), we have

zj =

−qj
2
−

√
q2
j

4
+
p3
j

27

1/3

(6.19)

= −
√
λj
3

[
1 +

(η
3
− β

2

) 33/2√
λj

+
(
η2 +

27
8
β2 − 9

2
ηβ
) 1
λj

+
η3

(3λj)3/2
+O

( 1
λ2
j

)]1/3

= −
√
λj
3

[
1 +

(η
3
− β

2

)√ 3
λj

+
1
3

(
η2 +

27
8
β2 − 9

2
ηβ
) 1
λj

+
η3

35/2λ
3/2
j

− 3
(η

3
− β

2

)2 1
λj

− 2√
3

(η
3
− β

2

)(
η2 +

27
8
β2 − 9

2
ηβ
) 1

λ
3/2
j

+O
( 1
λ2
j

)]
= −

√
λj
3
− η

3
+
β

2
− β

2
√

3

(3
4
β − η

) 1√
λj

+
( 5

27
η3 − 4

3
η2β +

9
4
ηβ2 − 9

8
β3
) 1
λj

+O
( 1

λ
3/2
j

)
, j →∞ .

By (6.18) and (6.19) it follows

yj + zj = −2
3
η + β + 2

( 5
27
η3 − 4

3
η2β +

9
4
ηβ2 − 9

8
β3
) 1
λj

+O
( 1

λ
3/2
j

)
, j →∞ ,

yj − zj =
2√
3

√
λj +

β√
3

(3
4
β − η

) 1√
λj

+O
( 1

λ
3/2
j

)
, j →∞ .

In virtue of (6.14)–(6.16), the above relationships yield

σ1,j = −2
3
η + β + 2

( 5
27
η3 − 4

3
η2β +

9
4
ηβ2 − 9

8
β3
) 1
λj

+O
( 1

λ
3/2
j

)
, j →∞ ,

σ2,j =
η

3
− β

2
−
( 5

27
η3 − 4

3
η2β +

9
4
ηβ2 − 9

8
β3
) 1
λj

+O
( 1

λ
3/2
j

)
+i
[√

λj +
β

2

(3
4
β − η

) 1√
λj

+O
( 1

λ
3/2
j

)]
, j →∞ ,
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σ3,j =
η

3
− β

2
−
( 5

27
η3 − 4

3
η2β +

9
4
ηβ2 − 9

8
β3
) 1
λj

+O
( 1

λ
3/2
j

)
−i
[√

λj +
β

2

(3
4
β − η

) 1√
λj

+O
( 1

λ
3/2
j

)]
, j →∞ .

Finally, using also the condition Λ = σ− η/3, we are able to write the solutions of equation (6.8), that is

Λ1,j = β − η + 2
( 5

27
η3 − 4

3
η2β +

9
4
ηβ2 − 9

8
β3
) 1
λj

+O
( 1

λ
3/2
j

)
= β − η +O

( 1
λj

)
, j →∞ , (6.20)

Λ2,j = −β
2
−
( 5

27
η3 − 4

3
η2β +

9
4
ηβ2 − 9

8
β3
) 1
λj

+O
( 1

λ
3/2
j

)
+i
[√

λj +
β

2

(3
4
β − η

) 1√
λj

+O
( 1

λ
3/2
j

)]
= −β

2
+O

( 1
λj

)
+ i
[√

λj +
β

2

(3
4
β − η

) 1√
λj

+O
( 1

λ
3/2
j

)]
, j →∞ , (6.21)

Λ3,j = −β
2
−
( 5

27
η3 − 4

3
η2β +

9
4
ηβ2 − 9

8
β3
) 1
λj

+O
( 1

λ
3/2
j

)
−i
[√

λj +
β

2

(3
4
β − η

) 1√
λj

+O
( 1

λ
3/2
j

)]
= −β

2
+O

( 1
λj

)
− i
[√

λj +
β

2

(3
4
β − η

) 1√
λj

+O
( 1

λ
3/2
j

)]
, j →∞ . (6.22)

Therefore, we can write the solution of (6.7) in the following way

fj(t) = C1,je
tΛ1,j + C2,je

tΛ2,j + C3,je
tΛ3,j , (6.23)

where Ck,j , k = 1, 2, 3, are complex numbers to determine. To find the coefficients Ck,j we impose that
fj verifies the initial conditions

fj(0) = αj , f
′
j(0) = γj , f

′′
j (0) = −αjλj , (6.24)

so we obtain the system 
C1,j + C2,j + C3,j = αj ,

Λ1,jC1,j + Λ2,jC2,j + Λ3,jC3,j = γj ,
Λ2

1,jC1,j + Λ2
2,jC2,j + Λ2

3,jC3,j = −αjλj .
(6.25)

The matrix C of the coefficients of system (6.25) has determinant given by

det(C) = (Λ2,j − Λ1,j)(Λ3,j − Λ1,j)(Λ3,j − Λ2,j) ,

so we obtain

C1,j =
αjΛ2,jΛ3,j(Λ3,j − Λ2,j)− γj(Λ2

3,j − Λ2
2,j)− αjλj(Λ3,j − Λ2,j)

(Λ2,j − Λ1,j)(Λ3,j − Λ1,j)(Λ3,j − Λ2,j)

=
αjΛ2,jΛ3,j − γj(Λ3,j + Λ2,j)− αjλj

(Λ2,j − Λ1,j)(Λ3,j − Λ1,j)
,
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C2,j =
γj(Λ2

3,j − Λ2
1,j) + αjλj(Λ3,j − Λ1,j)− αjΛ1,jΛ3,j(Λ3,j − Λ1,j)
(Λ2,j − Λ1,j)(Λ3,j − Λ1,j)(Λ3,j − Λ2,j)

=
γj(Λ3,j + Λ1,j) + αjλj − αjΛ1,jΛ3,j

(Λ2,j − Λ1,j)(Λ3,j − Λ2,j)
,

C3,j =
−αjλj(Λ2,j − Λ1,j)− γj(Λ2

2,j − Λ2
1,j) + αjΛ1,jΛ2,j(Λ2,j − Λ1,j)

(Λ2,j − Λ1,j)(Λ3,j − Λ1,j)(Λ3,j − Λ2,j)

=
−αjλj − γj(Λ2,j + Λ1,j) + αjΛ1,jΛ2,j

(Λ3,j − Λ1,j)(Λ3,j − Λ2,j)
.

Plugging (6.20)–(6.22) into the above identities, we obtain the expressions of coefficients Ck,j . Indeed,

C1,j =
αj

{[
−β

2 +O
(

1
λj

)]2
+
[√

λj + β
2

(
3
4β − η

)
1√
λj

+O
(

1
λ2

j

)]2
}

+ γjβ + γjO
(

1
λj

)
− αjλj[

η − 3
2β +O

(
1
λj

)]2
+
[√

λj + β
2

(
3
4β − η

)
1√
λj

+O
(

1
λ2

j

)]2

=
αjβ

2 − αjηβ + γjβ +O
(

1
λj

)
(
η − 3

2β
)2

+ λj + 3
4β

2 − ηβ +O
(

1
λj

) =
αjβ

2 − αjηβ + γjβ +O
(

1
λj

)
λj + η2 + 3β2 − 4ηβ +O

(
1
λj

)
=

αjβ
2 − αjηβ + γjβ +O

(
1
λj

)
1 + (η2 + 3β2 − 4ηβ) 1

λj
+O

(
1
λ2

j

) 1
λj
. (6.26)

We note that C1,j ∈ R. To write explicitly C2,j we observe that

(Λ2,j − Λ1,j)(Λ3,j − Λ2,j)

= −2i
[√

λj +
β

2

(3
4
β − η

) 1√
λj

+O
( 1
λ2
j

)]{
η − 3

2
β +O

( 1
λj

)
+ i
[√

λj +
β

2

(3
4
β − η

) 1√
λj

+O
( 1
λ2
j

)]}
= 2λj +

3
2
β2 − 2βη +O

( 1
λj

)
− i
[
(2η − 3β)

√
λj +O

( 1√
λj

)]
,

whence

C2,j =
γj

{
β
2 − η +O

(
1
λj

)
− i
[√

λj + β
2

(
3
4β − η

)
1√
λj

+O
(

1
λ2

j

)]}
+ αjλj

2λj + 3
2β

2 − 2βη +O
(

1
λj

)
− i
[
(2η − 3β)

√
λj +O

(
1√
λj

)]

−
αj

[
β − η +O

(
1
λj

)]{
−β

2 +O
(

1
λj

)
− i
[√

λj + β
2

(
3
4β − η

)
1√
λj

+O
(

1
λ2

j

)]}
2λj + 3

2β
2 − 2βη +O

(
1
λj

)
− i
[
(2η − 3β)

√
λj +O

(
1√
λj

)] .

Therefore,

C2,j =
αjλj + γj(β2 − η) + αj(β − η)β2 + αjO

(
1
λj

)
+ γjO

(
1
λj

)
2λj + 3

2β
2 − 2βη +O

(
1
λj

)
− i
[
(2η − 3β)

√
λj +O

(
1√
λj

)]

−
i
[
(γj − αjβ + αjη)

√
λj + αjO

(
1√
λj

)
+ γjO

(
1√
λj

)]
2λj + 3

2β
2 − 2βη +O

(
1
λj

)
− i
[
(2η − 3β)

√
λj +O

(
1√
λj

)] , (6.27)
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from which it follows that there exist some c1 , c2 > 0 such that

c1

(
α2
j + γ2

jO
( 1
λj

))
≤ |C2,j |2 ≤ c2

(
α2
j + γ2

jO
( 1
λj

))
. (6.28)

Similarly,

(Λ3,j − Λ1,j)(Λ3,j − Λ2,j) = 2λj +
3
2
β2 − 2βη +O

( 1
λj

)
+ i
[
(2η − 3β)

√
λj +O

( 1√
λj

)]
,

and hence

C3,j =
−αjλj − γj

{
β
2 − η +O

(
1
λj

)
+ i
[√

λj + β
2

(
3
4β − η

)
1√
λj

+O
(

1
λ2

j

)]}
2λj + 3

2β
2 − 2βη +O

(
1
λj

)
+ i
[
(2η − 3β)

√
λj +O

(
1√
λj

)]

+
αj

[
β − η +O

(
1
λj

)]{
−β

2 +O
(

1
λj

)
+ i
[√

λj + β
2

(
3
4β − η

)
1√
λj

+O
(

1
λ2

j

)]}
2λj + 3

2β
2 − 2βη +O

(
1
λj

)
+ i
[
(2η − 3β)

√
λj +O

(
1√
λj

)] .

Moreover,

C3,j = −
αjλj + γj(β2 − η) + αj(β − η)β2 + αjO

(
1
λj

)
+ γjO

(
1
λj

)
2λj + 3

2β
2 − 2βη +O

(
1
λj

)
+ i
[
(2η − 3β)

√
λj +O

(
1√
λj

)]

−
i
[
(γj − αjβ + αjη)

√
λj + αjO

(
1√
λj

)
+ γjO

(
1√
λj

)]
2λj + 3

2β
2 − 2βη +O

(
1
λj

)
+ i
[
(2η − 3β)

√
λj +O

(
1√
λj

)] , (6.29)

and

c1

(
α2
j + γ2

jO
( 1
λj

))
≤ |C3,j |2 ≤ c2

(
α2
j + γ2

jO
( 1
λj

))
. (6.30)

By (6.26), (6.28) and (6.30), one deduces that there exists a positive constant c such that for any j ∈ N
we have

|C1,j |
|C2,j |

≤ c

λj
,

|C1,j |
|C3,j |

≤ c

λj
. (6.31)

In conclusion, thanks into account (6.23) we have proved that the solution v(t) of the Cauchy problem
(6.1)–(6.2) can be written as

v(t) =
∞∑
j=1

(
C1,je

tΛ1,j + C2,je
tΛ2,j + C3,je

tΛ3,j (t)
)
wj t ≥ 0 ,

where Λk,j and Ck,j are given by (6.20)–(6.22) and (6.26)–(6.29) respectively, and condition (6.31) holds.
We will show as the function v can be written in the form

v(t) =
∞∑

n=−∞

(
Cne

iωnt +Rne
rnt
)
w|n| t ≥ 0 , (6.32)

where Cn , ωn ∈ C and Rn , rn ∈ R. Indeed, we define ωn as the complex numbers having real and
imaginary parts given by

<ωn := sign(n)
√
λ|n| + sign(n)

β

2

(3
4
β − η

) 1√
λ|n|

+O
( 1

λ
3/2
|n|

)
|n| ≥ 1 ,
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=ωn :=
β

2
+
( 5

27
η3 − 4

3
η2β +

9
4
ηβ2 − 9

8
β3
) 1
λ|n|

+O
( 1

λ
3/2
|n|

)
|n| ≥ 1 .

Moreover, we set

rn := β − η + 2
( 5

27
η3 − 4

3
η2β +

9
4
ηβ2 − 9

8
β3
) 1
λ|n|

+O
( 1

λ
3/2
|n|

)
, |n| ≥ 1 ,

Cn :=


C2,n if n ≥ 1 ,

C3,−n if n ≤ −1 ,

Rn := C1,n n ≥ 1 , w0 = C0 = Rn = 0 n ≤ 0.

Finally, applying the abstract results of sections 4 and 5 we can show our reachability result.

Theorem 6.1 Let η > 3β/2. For any T > 2π, u0 ∈ L2(0, π) and u1 ∈ H−1(0, π) there exists g ∈ L2(0, T )
such that the weak solution u of problem

utt(t, x)− uxx(t, x) + β

∫ t

0
e−η(t−s)uxx(s, x)ds = 0 , t ∈ (0, T ), x ∈ (0, π),

u(0, x) = ut(0, x) = 0, x ∈ (0, π),
u(t, 0) = 0 u(t, π) = g(t) , t ∈ (0, T ),

(6.33)

verifies the final conditions

u(T, x) = u0(x) , ut(T, x) = u1(x) , x ∈ (0, π) . (6.34)

Proof. To prove our claim, we apply the HUM method described in section 3. Let X = L2(0, π) be
endowed with the usual scalar product and norm

‖u‖ :=
(∫ π

0
|u(x)|2 dx

)1/2

u ∈ L2(0, π) .

We consider the operator A : D(A) ⊂ X → X defined by

D(A) = H2(0, π) ∩H1
0 (0, π)

Au = −uxx u ∈ D(A) .

It is well-known that A is a self-adjoint positive operator on X with dense domain D(A), {j2}j≥1 is the
sequence of eigenvalues for A and the sequence of the corresponding eigenvectors is {sin(jx)}j≥1. The
fractional power

√
A of A is well defined and D(

√
A) = H1

0 (0, π). Therefore, we can apply our spectral
analysis to the adjoint problem of (6.33). Indeed, the solution z of the adjoint problem can be written
in the form (6.32), that is

z(t, x) =
∞∑

n=−∞

(
Cne

iωn(T−t) +Rne
rn(T−t)) sin(|n|x) (t, x) ∈ [0, T ]× [0, π] ,

whence

zx(t, π) =
∞∑

n=−∞
(−1)n|n|

(
Cne

iωn(T−t) +Rne
rn(T−t)) (t, x) ∈ [0, T ]× [0, π] .
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Since η > 3β/2 we can apply theorems 4.1 and 5.1 to function zx(t, π). Therefore, thanks to inequalities
(4.4) and (5.4) the uniqueness theorem 3.1 holds true. In addition, by estimates (6.28) and (6.30) we
have that

c1(‖v0‖2H1
0

+ ‖v1‖2) ≤
∫ T

0
|zx(t, π)|2 dt ≤ c2(‖v0‖2H1

0
+ ‖v1‖2) ,

so the space F introduced at the end of section 3 is H1
0 (0, π) × L2(0, π). So, our proof is complete.

�

A Appendix

To prove theorem 4.2 we need to introduce an auxiliary function. Let T > 0. We define

k∗(t) :=


cos πt

2T if |t| ≤ T ,

0 if |t| > T .
(A.1)

For the reader’s convenience, we list some easy to check properties of k∗ in the following lemma.

Lemma A.1 Set
K∗(u) :=

4Tπ
π2 − 4T 2u2

, u ∈ C ,

the following properties hold for any u ∈ C∫ ∞
−∞

k∗(t)eiutdt = cos(uT )K∗(u) , (A.2)

K∗(u) = K∗(u) , (A.3)∣∣K∗(u)
∣∣ =

∣∣K∗(u)
∣∣ , (A.4)∣∣K∗(u)

∣∣ ≤ 4Tπ
|4T 2(<u)2 − 4T 2(=u)2 − π2|

. (A.5)

Proof of Theorem 4.2. First, without loss of generality, it may be assumed that the sequence {=ωn}
converges to 0, that is

α = 0 . (A.6)

Indeed, suppose for a moment that we have proved inequality (4.5) under this extra condition. For the
general case α 6= 0, we consider the function

g(t) := eαtf(t) =
∞∑

n=−∞

(
Cne

iω′nt +Rne
(rn+α)t

)
,

where ω′n = ωn − iα and lim
|n|→∞

=ω′n = 0. So, inequality (4.5) holds for g, that is

∫ T

−T
|g(t)|2dt ≤ c2(T )

∑
|n|≥n0

|Cn|2 .

Since f(t) = e−αtg(t), we have

|f(t)| ≤ max{eαT , e−αT }|g(t)| , ∀t ∈ [−T, T ] ,

21



whence it follows∫ T

−T
|f(t)|2dt ≤ max{e2αT , e−2αT }

∫ T

−T
|g(t)|2dt ≤ max{e2αT , e−2αT }c2(T )

∑
|n|≥n0

|Cn|2 ,

that is (4.5) also holds for f .
Let k∗(t) be the function defined by (A.1). If we use (A.2), then we have∫ ∞

−∞
k∗(t)|f(t)|2 dt (A.7)

=
∫ ∞
−∞

k∗(t)
∑
n

(
Cne

iωnt +Rne
rnt
)∑

m

(
Cme

−iωmt +Rme
rmt
)
dt

=
∑
n,m

CnCm cos((ωn − ωm)T )K∗(ωn − ωm) +
∑
n,m

CnRm cosh((iωn + rm)T )K∗(ωn − irm)

+
∑
n,m

RnCm cosh((rn − iωm)T )K∗(irn + ωm)

+
∑
n,m

RnRm cosh((rn + rm)T )K∗(i(rn + rm)) .

We may write the first sum on the right-hand side as follows∑
n,m

CnCm cos((ωn − ωm)T )K∗(ωn − ωm)

=
∑
n

|Cn|2 cosh(2=ωnT )K∗(ωn − ωn) +
∑

n,m, n 6=m
CnCm cos((ωn − ωm)T )K∗(ωn − ωm) .

Plugging the above identity into (A.7) and using (A.3), we obtain∫ ∞
−∞

k∗(t)|f(t)|2 dt

=
∑
n

|Cn|2 cosh(2=ωnT )K∗(ωn − ωn) +
∑

n,m, n 6=m
CnCm cos((ωn − ωm)T )K∗(ωn − ωm)

+2
∑
n,m

Rm<
[
Cn cosh((iωn + rm)T )K∗(ωn − irm)

]
+
∑
n,m

RnRm cosh((rn + rm)T )K∗(i(rn + rm)) .

Notice that the terms on the right-hand side of the previous identity are real. Therefore, applying the
elementary estimates θ ≤ |θ|, θ ∈ R, and | cosh z| ≤ cosh(<z), z ∈ C, we obtain∫ ∞

−∞
k∗(t)|f(t)|2 dt (A.8)

≤
∑
n

|Cn|2 cosh(2=ωnT )K∗(ωn − ωn) +
∑

n,m, n 6=m
|Cn||Cm| cosh((=ωn + =ωm)T ) |K∗(ωn − ωm)|

+2
∑
n,m

|Cn| |Rm| cosh((=ωn − rm)T )|K∗(ωn − irm)|+
∑
n,m

|Rn| |Rm| cosh((rn + rm)T )K∗(i(rn + rm)) .

Since the sequences {=ωn} and {rn} are bounded, there exists a positive constant c(T ) such that for any
n,m ∈ Z we have

cosh((=ωn + =ωm)T ) + cosh((=ωn − rm)T ) + cosh((rn + rm)T ) ≤ c(T ) ,
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and hence from (A.8) it follows∫ ∞
−∞

k∗(t)|f(t)|2 dt

≤ c(T )
∑
n

|Cn|2K∗(ωn − ωn) + c(T )
∑

n,m, n 6=m
|Cn||Cm| |K∗(ωn − ωm)|

+2c(T )
∑
n,m

|Cn| |Rm||K∗(ωn − irm)|+ c(T )
∑
n,m

|Rn| |Rm|K∗(i(rn + rm)) .

In virtue of the definition of K∗ we have

K∗(ωn − ωn) =
4Tπ

π2 + 16T 2(=ωn)2
≤ 4T

π
,

whence ∫ ∞
−∞

k∗(t)|f(t)|2 dt (A.9)

≤ 4T
π
c(T )

∑
n

|Cn|2 + c(T )
∑

n,m, n 6=m
|Cn||Cm| |K∗(ωn − ωm)|

+2c(T )
∑
n,m

|Cn| |Rm||K∗(ωn − irm)|+ c(T )
∑
n,m

|Rn| |Rm|K∗(i(rn + rm)) .

To evaluate the second sum on the right-hand side of the above inequality, we note that, in virtue of
(A.4), we have

|K∗(ωn − ωm)| = |K∗(ωn − ωm)| ,

whence ∑
n,m, n 6=m

|Cn| |Cm| |K∗(ωn − ωm)| (A.10)

≤ 1
2

∑
n,m, n 6=m

(
|Cn|2 + |Cm|2

)
|K∗(ωn − ωm)|

=
1
2

∑
n

|Cn|2
∑

m,m 6=n
|K∗(ωn − ωm)|+ 1

2

∑
m

|Cm|2
∑
n,n 6=m

|K∗(ωn − ωm)|

=
1
2

∑
n

|Cn|2
∑

m,m 6=n
|K∗(ωn − ωm)|+ 1

2

∑
m

|Cm|2
∑
n,n 6=m

|K∗(ωm − ωn)|

=
∑
n

|Cn|2
∑

m,m 6=n
|K∗(ωn − ωm)| .

Now, using (A.5) we get ∑
m,m 6=n

|K∗(ωn − ωm)| (A.11)

≤ 4Tπ
∑

m,m 6=n

1∣∣∣4T 2(<ωn −<ωm)2 − 4T 2(=ωn + =ωm)2 − π2
∣∣∣ .

From assumption (4.1) it follows

|<ωn −<ωm| ≥ γ|n−m| , ∀|n| , |m| ≥ n′ . (A.12)
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Fix 0 < ε < 1, thanks to (A.6), there exists n1 ∈ N, n1 ≥ n′, such that for any n ∈ Z, |n| ≥ n1 ,

|=ωn| <
γ
√
ε

4
.

Therefore, for any n ,m ∈ Z, |n|, |m| ≥ n1 , we have

4T 2(<ωn −<ωm)2 − 4T 2(=ωn + =ωm)2 − π2 ≥ 4T 2γ2(n−m)2 − T 2γ2ε− π2 .

Now, for any T > π
γ
√

1−ε we have T 2γ2ε+ π2 < T 2γ2, so from the above inequality it follows

4T 2(<ωn −<ωm)2 − 4T 2(=ωn + =ωm)2 − π2 ≥ 4T 2γ2(n−m)2 − T 2γ2 > 0 , for m 6= n .

Putting the previous formula into (A.11), we obtain∑
|m|≥n1,m 6=n

|K∗(ωn − ωm)|

≤ 4Tπ
∑

m,m 6=n

1
4T 2γ2(m− n)2 − T 2γ2

=
4π
Tγ2

∑
m,m 6=n

1
4(m− n)2 − 1

≤ 8π
Tγ2

∞∑
j=1

1
4j2 − 1

=
4π
Tγ2

∞∑
j=1

( 1
2j − 1

− 1
2j + 1

)
=

4π
Tγ2

.

Assuming Cn = 0 for |n| ≤ n1 and putting the above formula into (A.10), we get∑
|n|,|m|≥n1, n 6=m

|Cn||Cm| |K∗(ωn − ωm)| ≤ 4π
Tγ2

∑
|n|≥n1

|Cn|2 . (A.13)

Notice that, thanks to (4.3), we have Rn = 0 for |n| ≤ n1. Therefore, from (A.9) and (A.13) it follows∫ ∞
−∞

k∗(t)|f(t)|2 dt (A.14)

≤ c(T )
(

4T
π

+
4π
Tγ2

) ∑
|n|≥n1

|Cn|2 + 2c(T )
∑

|n|,|m|≥n1

|Cn| |Rm||K∗(ωn − irm)|

+c(T )
∑

|n|,|m|≥n1

|Rn| |Rm|K∗(i(rn + rm)) .

To estimate the second term on the right-hand side, we use (4.3) to obtain

2
∑

|n|,|m|≥n1

|Cn||Rm| |K∗(ωn − irm)| (A.15)

≤ 2µ
∑

|n|,|m|≥n1

|Cn|
|Cm|
|m|ν

|K∗(ωn − irm)|

≤ µ
∑
|n|≥n1

|Cn|2
∑
|m|≥n1

|K∗(ωn − irm)|
m2ν

+ µ
∑
|m|≥n1

|Cm|2
∑
|n|≥n1

|K∗(ωn − irm)| .

Applying (A.5), one gets

|K∗(ωn − irm)| ≤ 4Tπ∣∣4T 2(<ωn)2 − 4T 2(=ωn − rm)2 − π2
∣∣ . (A.16)
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Now, we observe that, by (A.12) it follows

|<ωn| ≥ γ|n− n′| − |<ωn′ | , ∀n ∈ Z , |n| ≥ n′ ,

whence

|<ωn| ≥
γ

2
|n| , ∀|n| ≥ 2n′ + 2

[
|<ωn′ |
γ

]
+ 1 .

Therefore, since the sequences {=ωn}, {rn} are bounded, there exists n0 ∈ N,

n0 ≥ max
{
n1, 2n′ + 2

[
|<ωn′ |
γ

]
+ 1
}

such that for any n ,m ∈ Z, |n|, |m| ≥ n0 , we have

4T 2(<ωn)2 − 4T 2(=ωn − rm)2 − π2 ≥ 1
2
T 2γ2n2 ;

so, plugging the above inequality into (A.16) we have

|K∗(ωn − irm)| ≤ 8π
Tγ2n2

.

Assuming Cn = 0 for |n| ≤ n0, and hence also Rn = 0 for |n| ≤ n0, by (A.15) it follows

2
∑

|n|,|m|≥n0

|Cn||Rm| |K∗(ωn − irm)| (A.17)

≤ 8πµ
Tγ2

∑
|n|≥n0

|Cn|2
∑
m 6=0

1
m2ν

+
8πµ
Tγ2

∑
|m|≥n0

|Cm|2
∑
n6=0

1
n2

=
16πµ
Tγ2

 ∞∑
j=1

1
j2ν

+
∞∑
j=1

1
j2

 ∑
|n|≥n0

|Cn|2 .

At last, we must consider the term ∑
|n|,|m|≥n0

|Rn| |Rm|K∗(i(rn + rm)) .

Recalling the definition of K∗ we have

K∗(i(rn + rm)) =
4Tπ

π2 + 4T 2(rn + rm)2
≤ 4T

π
,

so, in virtue of (4.3) we get ∑
|n|,|m|≥n0

|Rn| |Rm|K∗(i(rn + rm)) (A.18)

≤ 4Tµ2

π

∑
|n|,|m|≥n0

|Cn|
|m|ν

|Cm|
|n|ν

≤ 2Tµ2

π

∑
m 6=0

1
m2ν

∑
|n|≥n0

|Cn|2 +
2Tµ2

π

∑
n6=0

1
n2ν

∑
|m|≥n0

|Cm|2

=
4Tµ2

π

∑
n6=0

1
n2ν

∑
|n|≥n0

|Cn|2 =
8Tµ2

π

∞∑
j=1

1
j2ν

∑
|n|≥n0

|Cn|2 .
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Putting (A.17) and (A.18) into (A.14), we obtain∫ ∞
−∞

k∗(t)|f(t)|2 dt

≤ c(T )

4T
π

+
4π
Tγ2

+
16πµ
Tγ2

∞∑
j=1

1
j2

+ 8µ
( 2π
Tγ2

+
Tµ

π

) ∞∑
j=1

1
j2ν

 ∑
|n|≥n0

|Cn|2 .

Now, if we consider the auxiliary function k∗ defined by (A.1) with T replaced by 2T , then from the
above inequality we get

∫ 2T

−2T
cos

πt

4T
|f(t)|2 dt ≤ c(2T )

8T
π

+
2π
Tγ2

+
8πµ
Tγ2

∞∑
j=1

1
j2

+ 8µ
( π

Tγ2
+

2Tµ
π

) ∞∑
j=1

1
j2ν

 ∑
|n|≥n0

|Cn|2 ,

whence∫ T

−T
|f(t)|2 dt ≤

√
2c(2T )

8T
π

+
2π
Tγ2

+
8πµ
Tγ2

∞∑
j=1

1
j2

+ 8µ
( π

Tγ2
+

2Tµ
π

) ∞∑
j=1

1
j2ν

 ∑
|n|≥n0

|Cn|2 .

So, the proof is complete. �

As for the direct inequality, to prove theorem 5.3 we need to introduce an auxiliary function. We
define

k(t) :=


sin

πt

T
if t ∈ [0, T ] ,

0 otherwise .

(A.19)

For the reader’s convenience, we list some easy to check properties of k in the following lemma.

Lemma A.2 Set
K(u) :=

Tπ

π2 − T 2u2
, u ∈ C , (A.20)

the following properties hold for any u ∈ C∫ ∞
−∞

k(t)eiutdt = (1 + eiuT )K(u) , (A.21)

K(u) = K(u) , (A.22)∣∣K(u)
∣∣ =

∣∣K(u)
∣∣ , (A.23)∣∣K(u)

∣∣ ≤ Tπ

|T 2(<u)2 − T 2(=u)2 − π2|
. (A.24)

Proof of Theorem 5.3. As in the proof of theorem 4.2, without loss of generality, it may be assumed
that

α = 0 . (A.25)

Indeed, suppose for a moment that we have proved inequality (5.5) under this extra condition. For the
general case α 6= 0, we consider the function

g(t) := eαtf(t) =
∞∑

n=−∞

(
Cne

iω′nt +Rne
(rn+α)t

)
,
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where ω′n = ωn − iα and lim
|n|→∞

=ω′n = 0. So, inequality (5.5) holds for g, that is

∫ T

0
|g(t)|2dt ≥

( Tπ

π2 + T 2γ2ε/8
− 4π
Tγ2

(1 + ε)
) ∑
|n|≥n0

(1 + e−2=ω′nT )|Cn|2 .

Since f(t) = e−αtg(t), we have

|f(t)| ≥ min{1, e−αT }|g(t)| , ∀t ∈ [0, T ] ,

whence it follows∫ T

0
|f(t)|2dt ≥ min{1, e−2αT }

∫ T

0
|g(t)|2dt ≥ c1(T, ε)

∑
|n|≥n0

(1 + e−2(=ωn−α)T )|Cn|2 ,

that is (5.5) also holds for f .
Let k(t) be the function defined by (A.19). If we use (A.21), then we have∫ ∞

−∞
k(t)|f(t)|2 dt

=
∫ ∞
−∞

k(t)
∑
n

(
Cne

iωnt +Rne
rnt
)∑

m

(
Cme

−iωmt +Rme
rmt
)
dt

=
∑
n,m

CnCm(1 + ei(ωn−ωm)T )K(ωn − ωm) +
∑
n,m

CnRm(1 + e(iωn+rm)T )K(ωn − irm)

+
∑
n,m

RnCm(1 + e(rn−iωm)T )K(irn + ωm) +
∫ ∞
−∞

k(t)
∣∣∣∑
n

Rne
rnt
∣∣∣2 dt . (A.26)

We may write the first sum on the right-hand side as follows∑
n,m

CnCm(1 + ei(ωn−ωm)T )K(ωn − ωm)

=
∑
n

|Cn|2(1 + e−2=ωnT )K(ωn − ωn) +
∑

n,m, n 6=m
CnCm(1 + ei(ωn−ωm)T )K(ωn − ωm) .

Plugging the above identity into (A.26) and using (A.22), we obtain∫ ∞
−∞

k(t)|f(t)|2 dt

=
∑
n

|Cn|2(1 + e−2=ωnT )K(ωn − ωn) +
∑

n,m, n 6=m
CnCm(1 + ei(ωn−ωm)T )K(ωn − ωm)

+2
∑
n,m

Rm<
[
Cn(1 + e(iωn+rm)T )K(ωn − irm)

]
+
∫ ∞
−∞

k(t)
∣∣∣∑
n

Rne
rnt
∣∣∣2 dt .

Notice that, by difference, the second term on the right-hand side of the previous identity is real. There-
fore, using the elementary estimate θ ≥ −|θ|, θ ∈ R, we obtain∫ ∞

−∞
k(t)|f(t)|2 dt

≥
∑
n

|Cn|2(1 + e−2=ωnT )K(ωn − ωn)−
∑

n,m, n 6=m
|Cn||Cm|(1 + e−(=ωn+=ωm)T ) |K(ωn − ωm)|

− 2
∑
n,m

|Cn| |Rm|(1 + e(rm−=ωn)T )|K(ωn − irm)|+
∫ ∞
−∞

k(t)
∣∣∣∑
n

Rne
rnt
∣∣∣2 dt . (A.27)
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Now, arguing as in the proof of (A.10) and using |K(ωn − ωm)| = |K(ωn − ωm)| , we have∑
n,m, n 6=m

|Cn||Cm| |K(ωn − ωm)| ≤
∑
n

|Cn|2
∑

m,m 6=n
|K(ωn − ωm)| . (A.28)

Similarly, we get∑
n,m, n 6=m

|Cn||Cm|e−(=ωn+=ωm)T |K(ωn − ωm)| ≤
∑
n

|Cn|2e−2=ωnT
∑

m,m 6=n
|K(ωn − ωm)| . (A.29)

Therefore, plugging (A.28) and (A.29) into (A.27) and being k a non-negative function, we have∫ ∞
−∞

k(t)|f(t)|2 dt ≥
∑
n

|Cn|2(1 + e−2=ωnT )
(
K(ωn − ωn)−

∑
m,m 6=n

|K(ωn − ωm)|
)

− 2
∑
n,m

|Cn| |Rm|(1 + e(rm−=ωn)T )|K(ωn − irm)| . (A.30)

Now, fixed n ∈ Z, we have to estimate the sum∑
m,m 6=n

|K(ωn − ωm)| .

Using (A.24), we get∑
m,m 6=n

|K(ωn − ωm)| ≤ Tπ
∑

m,m 6=n

1∣∣∣T 2(<ωn −<ωm)2 − T 2(=ωn + =ωm)2 − π2
∣∣∣ . (A.31)

From assumption (5.1) it follows

|<ωn −<ωm| ≥ γ|n−m| , ∀|n| , |m| ≥ n′ . (A.32)

Moreover, if we fix 0 < ε < 1, then, thanks to (A.25), there exists n1 ∈ N, n1 ≥ n′, such that for any
n ∈ Z, |n| ≥ n1 ,

|=ωn| <
γ

4

√
ε

2
. (A.33)

Therefore, for any n ,m ∈ Z, |n|, |m| ≥ n1 , we have

T 2(<ωn −<ωm)2 − T 2(=ωn + =ωm)2 − π2 ≥ T 2γ2(n−m)2 − T 2γ2 ε

4
− π2 .

Now, for any T > 2π
γ
√

1−ε we have T 2γ2ε+ 4π2 < T 2γ2, so from the above inequality it follows

T 2(<ωn −<ωm)2 − T 2(=ωn + =ωm)2 − π2 ≥ T 2γ2(n−m)2 − 1
4
T 2γ2 > 0 , for m 6= n .

Putting the previous formula into (A.31), we obtain∑
|m|≥n1,m 6=n

|K(ωn − ωm)|

≤ 4Tπ
∑

m,m 6=n

1
4T 2γ2(m− n)2 − T 2γ2

=
4π
Tγ2

∑
m,m 6=n

1
4(m− n)2 − 1

≤ 8π
Tγ2

∞∑
j=1

1
4j2 − 1

=
4π
Tγ2

∞∑
j=1

( 1
2j − 1

− 1
2j + 1

)
=

4π
Tγ2

.
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If we assume Cn = 0 for |n| ≤ n1, then due to (5.3) we also have Rn = 0 for |n| ≤ n1. Therefore, putting
the above estimate into (A.30), for T > 2π

γ
√

1−ε we get

∫ ∞
−∞

k(t)|f(t)|2 dt ≥
∑
|n|≥n1

|Cn|2(1 + e−2=ωnT )
(
K(ωn − ωn)− 4π

Tγ2

)
− 2

∑
|n|,|m|≥n1

|Cn| |Rm|(1 + e(rm−=ωn)T )|K(ωn − irm)| . (A.34)

It remains to estimate the second sum on the right-hand side. Thanks to (5.3) we have

2
∑

|n|,|m|≥n1

|Cn||Rm| |K(ωn − irm)| ≤ 2µ
∑

|n|,|m|≥n1

|Cn|
|Cm|
|m|ν

|K(ωn − irm)|

≤ µ
∑
|n|≥n1

|Cn|2
∑
|m|≥n1

|K(ωn − irm)|
|m|2ν

+ µ
∑
|m|≥n1

|Cm|2
∑
|n|≥n1

|K(ωn − irm)| . (A.35)

Again by (A.24) we have

|K(ωn − irm)| ≤ Tπ∣∣T 2(<ωn)2 − T 2(=ωn − rm)2 − π2
∣∣ . (A.36)

Now, we observe that, by (A.32) it follows

|<ωn| ≥ γ|n− n′| − |<ωn′ | , ∀n ∈ Z , |n| ≥ n′ ,

whence

|<ωn| ≥
γ√
2
|n| , ∀|n| ≥

[
γn′ + |<ωn′ |
γ(1− 1/

√
2)

]
+ 1 =: n2 .

Therefore, for any n ∈ Z, |n| ≥ n2, we get

T 2(<ωn)2 − T 2(=ωn − rm)2 − π2

≥ T 2
(1

2
γ2n2 − (=ωn − rm)2

)
− π2 ≥ T 2γ2n2

(1
2
− (=ωn − rm)2

γ2n2

)
− π2 . (A.37)

Since the sequences {=ωn} and {rn} are bounded, there exists n3 ∈ N, such that

1
2
− (=ωn − rm)2

γ2n2
≥ 1

4
, ∀|n| , |m| ≥ n3 . (A.38)

Choosing n0 ∈ N such that
n0 ≥ max

{
n1, n2, n3, 2

}
, (A.39)

and putting (A.38) into (A.37), for any |n|, |m| ≥ n0 we have

T 2(<ωn)2 − T 2(=ωn − rm)2 − π2 ≥ 1
4

(T 2γ2n2 − 4π2) .

Moreover, since T > 2π/γ we have 4π2 < T 2γ2n
1/2
0 , so

T 2(<ωn)2 − T 2(=ωn − rm)2 − π2 ≥ 1
4
T 2γ2(n2 − n1/2

0 ) ≥ 1
4
T 2γ2n

1/2
0 (|n|3/2 − 1) .
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Therefore from (A.36), thanks to the above inequality, we get

|K(ωn − irm)| ≤ 4π

Tγ2n
1/2
0 (|n|3/2 − 1)

, ∀|n| , |m| ≥ n0 , (A.40)

and hence, assuming Cn = 0 for |n| ≤ n0, (A.35) can be written as

2
∑

|n|,|m|≥n0

|Cn||Rm| |K(ωn − irm)|

≤ 4πµ

Tγ2n
1/2
0

∑
|n|≥n0

|Cn|2
∑
m6=0

1
|m|2ν

+
4πµ

Tγ2n
1/2
0

∑
|m|≥n0

|Cm|2
∑
|n|≥2

1
|n|3/2 − 1

=
8πµ

Tγ2n
1/2
0

 ∞∑
j=1

1
j2ν

+
∞∑
j=2

1
j3/2 − 1

 ∑
|n|≥n0

|Cn|2 . (A.41)

Moreover, by (5.2) and (5.3) we have

2
∑

|n|,|m|≥n0

|Cn||Rm|e(rm−=ωn)T |K(ωn − irm)|

≤ 2µ
∑

|n|,|m|≥n0

|Cn|e−=ωnT |Cm|e
−=ωmT

|m|ν
|K(ωn − irm)|

≤ µ
∑
|n|≥n0

|Cn|2e−2=ωnT
∑
|m|≥n0

|K(ωn − irm)|
|m|2ν

+ µ
∑
|m|≥n0

|Cm|2e−2=ωmT
∑
|n|≥n0

|K(ωn − irm)| .

If we use again (A.40), then, reasoning as in (A.41), we obtain

2
∑

|n|,|m|≥n0

|Cn||Rm| e(rm−=ωn)T |K(ωn − irm)|

≤ 8πµ

Tγ2n
1/2
0

 ∞∑
j=1

1
j2ν

+
∞∑
j=2

1
j3/2 − 1

 ∑
|n|≥n0

|Cn|2e−2=ωnT . (A.42)

Set

S := 2µ

 ∞∑
j=1

1
j2ν

+
∞∑
j=2

1
j3/2 − 1

 ,

(A.41) and (A.42) yield

2
∑

|n|,|m|≥n0

|Cn| |Rm|(1 + e(−=ωn+rm)T ) |K(ωn − irm)| ≤ 4πS

Tγ2n
1/2
0

∑
|n|≥n0

|Cn|2(1 + e−2=ωnT ) .

Plugging the above formula into (A.34), we get∫ ∞
−∞

k(t)|f(t)|2 dt ≥
∑
|n|≥n0

|Cn|2(1 + e−2=ωnT )
(
K(ωn − ωn)− 4π

Tγ2

(
1 +

S

n
1/2
0

))
.

Now, in virtue of (A.20) we note that

K(ωn − ωn) =
Tπ

π2 + 4T 2(=ωn)2
,
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so ∫ ∞
−∞

k(t)|f(t)|2 dt ≥
∑
|n|≥n0

|Cn|2(1 + e−2=ωnT )
( Tπ

π2 + 4T 2(=ωn)2
− 4π
Tγ2

(
1 +

S

n
1/2
0

))
. (A.43)

If we use (A.33) and take
n0 ≥ S2/ε2 ,

then we get, for any |n| ≥ n0,

Tπ

π2 + 4T 2(=ωn)2
− 4π
Tγ2

(
1 +

S

n
1/2
0

)
≥ Tπ

π2 + T 2γ2ε/8
− 4π
Tγ2

(1 + ε) . (A.44)

Now, we prove that for T > 2π
γ

√
1+ε
1−ε

Tπ

π2 + T 2γ2ε/8
− 4π
Tγ2

(1 + ε) > 0 .

Indeed,

Tπ

π2 + T 2γ2ε/8
− 4π
Tγ2

(1 + ε)

= π
T 2γ2 − 4(1 + ε)(π2 + T 2γ2ε/8)

(π2 + T 2γ2ε/8)Tγ2
= π

T 2γ2(1− (1 + ε)ε/2)− 4π2(1 + ε)
(π2 + T 2γ2ε/8)Tγ2

.

Since ε < 1, we have (1 + ε)ε/2 < ε, whence for T > 2π
γ

√
1+ε
1−ε

Tπ

π2 + T 2γ2ε/8
− 4π
Tγ2

(1 + ε) > π
T 2γ2(1− ε)− 4π2(1 + ε)

(π2 + T 2γ2ε/8)Tγ2
> 0 .

Finally, by (A.43), (A.44) and the definition of k(t) we obtain∫ T

0
|f(t)|2 dt ≥

( Tπ

π2 + T 2γ2ε/8
− 4π
Tγ2

(1 + ε)
) ∑
|n|≥n0

|Cn|2(1 + e−2=ωnT ) ,

so the proof is complete. �

To prove proposition 5.4, we first introduce some auxiliary tools. Indeed, we introduce a family of
operators, which will be needed to annihilate a finite number of terms in the Fourier series. Our operators
are slightly different from those introduced in [5] and [9]. For that reason and for the reader’s convenience,
we then proceed to recall and prove some of their properties.

Given δ > 0 and ω ∈ C arbitrarily, we define the linear operator Iδ,ω as follows: for every continuous
function u : R→ C the function Iδ,ωu : R→ C is given by the formula

Iδ,ωu(t) := u(t)− 1
δ

∫ δ

0
e−iωsu(t+ s) ds , t ∈ R . (A.45)

The following result states some properties connected with operators Iδ,ω.

Lemma A.3 (a) If u(t) = eiωt, then Iδ,ωu = 0.
(b) If u(t) = eiω

′t with ω′ 6= ω, then

Iδ,ωu(t) =
(

1− ei(ω
′−ω)δ − 1

i(ω′ − ω)δ

)
u(t) .
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(c) The linear operators Iδ,ω commute, that is

Iδ,ωIδ′,ω′u = Iδ′,ω′Iδ,ωu

for all δ, ω, δ′, ω′ and u.

Proof. (a) By definition, we have

Iδ,ωu(t) = u(t)− 1
δ

∫ δ

0
e−iωseiω(t+s) ds = u(t)− eiωt = 0 .

(b) Again by definition, we obtain

Iδ,ωu(t) = u(t)− 1
δ

∫ δ

0
e−iωseiω

′(t+s) ds = u(t)− 1
δ

[ ei(ω′−ω)s

i(ω′ − ω)

]δ
0
eiω
′t =

(
1− ei(ω

′−ω)δ − 1
i(ω′ − ω)δ

)
u(t) .

(c) It follows at once by definition of operators Iδ,ω. �

Lemma A.4 For any T > 0 and every continuous function u : R→ C we have∫ T

0
|Iδ,ωu(t)|2 dt ≤ 2(1 + e2|=ω|δ)

∫ T+δ

0
|u(t)|2 dt , δ ∈ (0, T ), ω ∈ C . (A.46)

Proof. For every t ∈ [0, T ], by (A.45) one has

|Iδ,ωu(t)|2 ≤ 2|u(t)|2 + 2
∣∣∣1
δ

∫ δ

0
e−iωsu(t+ s) ds

∣∣∣2
≤ 2|u(t)|2 +

2
δ2

∫ δ

0
|e−iωs|2 ds

∫ δ

0
|u(t+ s)|2 ds

≤ 2|u(t)|2 +
2
δ2

∫ δ

0
e2=ωs ds

∫ δ

0
|u(t+ s)|2 ds

≤ 2|u(t)|2 +
2
δ
e2|=ω|δ

∫ t+δ

t
|u(x)|2 dx .

Integrating the above inequality from 0 to T , we obtain∫ T

0
|Iδ,ωu(t)|2 dt ≤ 2

∫ T

0
|u(t)|2 dt+

2
δ
e2|=ω|δ

∫ T

0

∫ t+δ

t
|u(x)|2 dx dt . (A.47)

Since δ ∈ (0, T ) we have that∫ T

0

∫ t+δ

t
|u(x)|2 dx dt =

∫ δ

0
|u(x)|2

∫ x

0
dt dx+

∫ T

δ
|u(x)|2

∫ x

x−δ
dt dx+

∫ T+δ

T
|u(x)|2

∫ T

x−δ
dt dx

=
∫ T+δ

0
|u(x)|2

∫ min{x,T}

max{0,x−δ}
dt dx

≤
∫ T+δ

0
|u(x)|2

∫ x

x−δ
dt dx = δ

∫ T+δ

0
|u(x)|2 dx .

Plugging this inequality into (A.47), we get∫ T

0
|Iδ,ωu(t)|2 dt ≤ 2

∫ T

0
|u(t)|2 dt+ 2e2|=ω|δ

∫ T+δ

0
|u(x)|2 dx

≤ 2(1 + e2|=ω|δ)
∫ T+δ

0
|u(t)|2 dt ,

that is (A.46). �
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We now proceed to define another operator, namely:

Iδ,ω,r := Iδ,ω ◦ Iδ,−ir , δ > 0 , ω ∈ C , r ∈ R . (A.48)

Some properties of that operator are collected in the following results.

Lemma A.5 (a) If u(t) = eiωt or u(t) = ert, then Iδ,ω,ru = 0.
(b) If u(t) = eiω

′t with ω′ 6= ω and ω′ 6= −ir, then

Iδ,ω,ru(t) =
(

1− ei(ω
′−ω)δ − 1

i(ω′ − ω)δ

)(
1− e(iω′−r)δ − 1

(iω′ − r)δ

)
u(t) .

(c) If u(t) = er
′t with r′ 6= r and r′ 6= iω, then

Iδ,ω,ru(t) =
(

1− e(r′−r)δ − 1
(r′ − r)δ

)(
1− e(r′−iω)δ − 1

(r′ − iω)δ

)
u(t) .

(d) The linear operators Iδ,ω,r commute, that is

Iδ,ω,rIδ′,ω′,r′u = Iδ′,ω′,r′Iδ,ω,ru

for all δ, ω, r, δ′, ω′, r′ and u.

Proof. (a) Thanks to (c) and (a) of lemma A.3, we have

Iδ,ω,r(eiωt) = Iδ,ω(Iδ,−ir(eiωt)) = Iδ,−ir(Iδ,ω(eiωt)) = Iδ,−ir(0) = 0 ,

Iδ,ω,r(ert) = Iδ,ω(Iδ,−ir(ert)) = Iδ,ω(0) = 0 .

(b) By lemma A.3-(a) we get

Iδ,ω,ru(t) = Iδ,−ir(Iδ,ω(eiω
′t)) =

(
1− ei(ω

′−ω)δ − 1
i(ω′ − ω)δ

)
Iδ,−ir(eiω

′t)

=
(

1− ei(ω
′−ω)δ − 1

i(ω′ − ω)δ

)(
1− ei(ω

′+ir)δ − 1
i(ω′ + ir)δ

)
eiω
′t =

(
1− ei(ω

′−ω)δ − 1
i(ω′ − ω)δ

)(
1− e(iω′−r)δ − 1

(iω′ − r)δ

)
eiω
′t .

(c) It follows by (b) with ω′ = −ir′.
(d) It is a consequence of lemma A.3-(c). �

Corollary A.6 For any T > 0 and every continuous function u : R→ C we have∫ T

0
|Iδ,ω,ru(t)|2 dt ≤ 4(1 + e2|=ω|δ)(1 + e2|r|δ)

∫ T+2δ

0
|u(t)|2 dt , δ ∈ (0, T ), ω ∈ C , r ∈ R . (A.49)

Proof. Applying (A.46) two times, first to function Iδ,−iru(t) and next to u(t), we obtain∫ T

0
|Iδ,ω,ru(t)|2 dt =

∫ T

0
|Iδ,ωIδ,−iru(t)|2 dt ≤ 2(1 + e2|=ω|δ)

∫ T+δ

0
|Iδ,−iru(t)|2 dt

≤ 4(1 + e2|=ω|δ)(1 + e2|r|δ)
∫ T+2δ

0
|u(t)|2 dt ,

that is (A.49). �
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Proof of Proposition 5.4. To begin with, we will transform the function

f(t) =
∞∑

n=−∞

(
Cne

iωnt +Rne
rnt
)

in a series such that the terms corresponding to indices in F are null, so we can apply assumption (5.8).
To this end, we fix ε > 0 and choose δ ∈ (0, ε

2|F| ∧ T ), where |F| indicates the number of elements
in the set F . Let us denote by I the composition of all linear operators Iδ,ωj ,rj , where j ∈ F ; by lemma
A.5-(d) the definition of I does not depend on the order of the operators Iδ,ωj ,rj . Therefore, we can use
lemma A.5 to get

If(t) =
∑
n6∈F

Cn
∏
j∈F

(
1− ei(ωn−ωj)δ − 1

i(ωn − ωj)δ

)(
1− e(iωn−rj)δ − 1

(iωn − rj)δ

)
eiωnt

+
∑
n6∈F

Rn
∏
j∈F

(
1− e(rn−rj)δ − 1

(rn − rj)δ

)(
1− e(rn−iωj)δ − 1

(rn − iωj)δ

)
ernt .

If we define for any n 6∈ F

C ′n := Cn
∏
j∈F

(
1− ei(ωn−ωj)δ − 1

i(ωn − ωj)δ

)(
1− e(iωn−rj)δ − 1

(iωn − rj)δ

)
,

R′n := Rn
∏
j∈F

(
1− e(rn−rj)δ − 1

(rn − rj)δ

)(
1− e(rn−iωj)δ − 1

(rn − iωj)δ

)
,

then we have
If(t) =

∑
n6∈F

(
C ′ne

iωnt +R′ne
rnt
)
.

Therefore, applying estimate (5.8) to If(t) we obtain∫ T

0
|If(t)|2dt ≥ c′1

∑
n6∈F
|C ′n|2 . (A.50)

Next, we choose δ ∈ (0, ε
2|F| ∧ T ) such that none of the products

∏
j∈F

(
1− ei(ωn−ωj)δ − 1

i(ωn − ωj)δ

)(
1− e(iωn−rj)δ − 1

(iωn − rj)δ

)
n 6∈ F ,

vanishes. This is possible because the analytic function 1− ez − 1
z

does not vanish identically and, since
the numbers ωn − ωj and iωn − rj are all different from zero, we have to exclude only a countable set of
values of δ.

Now, we note that there exists a constant c′ > 0 such that∣∣∣∣∣∣
∏
j∈F

(
1− ei(ωn−ωj)δ − 1

i(ωn − ωj)δ

)(
1− e(iωn−rj)δ − 1

(iωn − rj)δ

)∣∣∣∣∣∣
2

≥ c′ ∀n 6∈ F . (A.51)

Indeed, it is sufficient to observe that for any fixed j ∈ F we have∣∣∣ei(ωn−ωj)δ − 1
i(ωn − ωj)δ

∣∣∣ ≤ e−=(ωn−ωj)δ + 1
|ωn − ωj |δ

→ 0 as |n| → ∞ ,
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∣∣∣e(iωn−rj)δ − 1
(iωn − rj)δ

∣∣∣ ≤ e−(=ωn+rj)δ + 1
|ωn + irj |δ

→ 0 as |n| → ∞ ,

in view of (5.6). As a result, the product

∏
j∈F

(
1− ei(ωn−ωj)δ − 1

i(ωn − ωj)δ

)(
1− e(iωn−rj)δ − 1

(iωn − rj)δ

)
tends to 1 as |n| → ∞, so that it is minorized, e.g., by 1/2 for all sufficiently large |n|.

Therefore, (A.50) and (A.51) yield∫ T

0
|If(t)|2dt ≥ c′1c′

∑
n6∈F
|Cn|2 . (A.52)

On the other hand, applying (A.49) repeatedly with ω = ωj and r = rj , j ∈ F , we have∫ T

0
|If(t)|2dt ≤ 4|F|

∏
j∈F

(1 + e2|=ωj |δ)(1 + e2|rj |δ)
∫ T+2|F|δ

0
|f(t)|2 dt ,

from which, using (A.52) and 2|F|δ < ε, it follows

∑
n6∈F
|Cn|2 ≤

4|F|

c′1c
′

∏
j∈F

(1 + e|=ωj |ε/|F|)(1 + e|rj |ε/|F|)
∫ T+ε

0
|f(t)|2 dt ,

whence ∑
n6∈F
|Cn|2 ≤

42|F|

c′1c
′

∫ T

0
|f(t)|2 dt . (A.53)

In addition, thanks to the triangle inequality, (5.9) and (A.53) we get∫ T

0

∣∣∣∑
n∈F

(
Cne

iωnt +Rne
rnt
)∣∣∣2dt =

∫ T

0

∣∣∣f(t)−
∑
n6∈F

(
Cne

iωnt +Rne
rnt
)∣∣∣2dt

≤ 2
∫ T

0
|f(t)|2dt+ 2

∫ T

0

∣∣∣∑
n6∈F

(
Cne

iωnt +Rne
rnt
)∣∣∣2dt

≤ 2
∫ T

0
|f(t)|2dt+ 2c′2

∑
n 6∈F
|Cn|2

≤ 2
(

1 + c′2
42|F|

c′1c
′

)∫ T

0
|f(t)|2dt . (A.54)

Let us note that the expression ∫ T

0

∣∣∣∑
n∈F

(
Cne

iωnt +Rne
rnt
)∣∣∣2dt

is a positive semidefinite quadratic form of the variable
(
{Cn}n∈F , {Rn}n∈F

)
∈ C|F|×R|F|. Moreover, it

is positive definite, because the functions eiωnt, ernt, n ∈ F , are linearly independent. Hence, there exists
a constant c′′ > 0 such that∫ T

0

∣∣∣∑
n∈F

(
Cne

iωnt +Rne
rnt
)∣∣∣2dt ≥ c′′∑

n∈F

(
|Cn|2 + |Rn|2

)
,

35



so, from (A.54) and the above inequality we deduce that

∑
n∈F
|Cn|2 ≤

2
c′′

(
1 + c′2

42|F|

c′1c
′

)∫ T

0
|f(t)|2dt .

Finally, from the above estimate and (A.53) the desired inequality (A.50) follows with
c1 = 2

c′′

(
1 + c′2

42|F|

c′1c
′

)
+ 42|F|

c′1c
′ . �
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Mathématiques Appliquées (1988), Masson, Paris.

[12] I. Lasiecka, Controllability of a viscoelastic Kirchhoff plate Control and estimation of distributed
parameter systems (Vorau, 1988), Internat. Ser. Numer. Math., 91, Birkhuser, Basel, 1989, 237–247.

[13] G. Lebon, C. Perez-Garcia, J. Casas-Vazquez, On the thermodynamic foundations of viscoelasticity
J. Chem. Phys., 88 (1988), 5068–5075.

[14] G. Leugering, Exact boundary controllability of an integro-differential equation, Appl. Math. Optim.,
(1987), 223–250.

[15] G. Leugering, Boundary controllability of a viscoelastic string, in G. Da Prato and M. Iannelli editors,
Volterra integrodifferential equations in Banach spaces and applications, Harlow, Essex, Longman
Sci. Tech., (1989), 258-270.

36



[16] J.-L. Lions, Exact controllability, stabilization and perturbations for distributed systems, SIAM Rev.
30 (1988), 1–68.
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