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Asymptotic Behavior of distributions of the sum
of i.i.d. random variables with fat tail II

Hirotaka FUSHIYA and Shigeo KUSUOKA ∗

1 Introduction

It is a classical problem to find an efficient approximation formula for distributions of
sums of independent identically distributed random variables. The well-known one is the
central limit theorem. Let (Ω,F , P ) be a probability space and Xn, n = 1, 2, . . . , be
independent identically distributed random variables. If we assume that E[X2

1 ] = 1 and
E[X1] = 0 we have

sup
s∈R

|P (
nX
k=1

Xk > sn
1/2)− Φ0(s)|→ 0, n→∞, (1)

where

Φ0(x) =
1√
2π

Z ∞
x

exp(−y
2

2
)dy, x ∈ R.

Recently people in finance are interested in computing the quantile of the distribution
of
Pn

k=1Xk for the purpose of measuring market risk. However, it is said that the central
limit theorem is not efficient for their purpose. For large s > 0, both P (

Pn
k=1Xk > sn

1/2)
and Φ0(s) are small, and so Equation (1) does not give us a good information. Our aim
in the present paper is to give a new approximation formula which gives more efficient
information for P (

Pn
k=1Xk > sn

1/2).
Now let us explain our result. Let (Ω,F , P ) be a probability space, and let Xn,

n = 1, 2, . . . , be independent random variables with the same probability law μ. Also, let
F : R→ [0, 1] and F̄ : R→ [0, 1] be given by

F (x) = μ((−∞, x]) and F̄ (x) = μ((x,∞)), x ∈ R.

Throughout this paper we assume the following assumptions (A1), (A2), (A3) and (A4).

(A1) F̄ (x) is a regularly varying function of index −α for some α > 2, as x→∞, i.e., if
we let

L(x) = xαF̄ (x), x = 1,
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then L(x) > 0 for any x = 1, and for any a > 0

L(ax)

L(x)
→ 1, x→∞.

Also we assume the following.

(A2) |x|α+2F (x)→ 0, x→ −∞.
(A3) The probability law μ is absolutely continuous and has a density function ρ : R →
[0,∞) which is right continuous and has a finite total variation.
Since α > 2, we see that E[|X1|2] <∞. We assume furthermore the following.

(A4) E[X1] = 0 and E[X
2
1 ] = 1.

Let K be an integer such that K − 1 < α 5 K. Then K = 3. From the assumptions
(A1) and (A2), we see that the probability law μ has (K − 1)-th moment. So let ηk,
k = 1, . . . , K − 1, be given by

ηk =

Z
R

xkμ(dx).

Then we see that η1 = 0 and η2 = 1. Also, let us define Φk : R→ R, k = 1, 2, . . . , by

Φ1(x) =
1√
2π
exp(−x

2

2
) = − d

dx
Φ0(x),

and

Φk(x) = (−1)k−1
dk−1

dxk−1
Φ1(x), k = 2, 3, . . . .

Our main result is the following.

Theorem 1 There are δ > 0 and C > 0 such that

sup
s∈[1,logn]

|P (
nX
k=1

Xk > sn
1/2)−G(n, s)| 5 Cn−(α−2)/2−δ, n = 3, 4, . . . .

Here
G(n, s)

= Φ0(s) + n

Z s

−∞
F̄ ((s− x)n1/2)Φ1(x)dx−

K−1X
k=1

n−(k−2)/2

k!
Φk(s)

Z ∞
0

xkμ(dx)

+
n−(K−2)/2

K!
ΦK(s)

Z 0

−∞
xKμ(dx) +

K−1X
k=3

n−k/6qk(n
−1/3, η2, . . . , ηk)Φk(s)

+

3(K−1)X
k=K

n−k/6qk(n
−1/3, η2, . . . , ηK−1, 0, . . . , 0)Φk(s),

where qk’s are polynomials defined in the next section.

We also prove the following, as a consequence of the above theorem and Theorem 1
in [1]
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Theorem 2 Let γ ∈ (0,α/2− 1). Then we have

sup
s∈R

| P (
Pn

k=1Xk > s)

Φ0(n−1/2s) + ((nF̄ (s)) ∧ n−γ)
− 1|→ 0, n→∞.

2 Algebraic preparation

In this section, we think of formal power series in z. First, we think of the following formal
power series in z.

log(1 +

∞X
k=2

ak
k!
zk) =

∞X
`=1

(−1)`−1
`

(

∞X
k=2

ak
k!
zk)` =

∞X
`=2

c`(a2, . . . , a`)
z`

`!
(2)

Then we see that c`(a2, . . . , a`), ` = 2, are polynomials in a2, . . . , a`, and

c`(t
2a2, . . . , t

`a`) = t
`c`(a1, . . . , a`)

for any t, a1, . . . , a` ∈ R. Moreover, we see that

c2(a2) = a2 and c`(a2, . . . , a`−1, a`) = c`(a2, . . . , a`−1, 0) + a`, ` = 2.

We also think of the following formal power series in z.

exp(y−3
∞X
`=3

c`(a2, . . . , a`)
(yz)`

`!
)

= 1 +

∞X
k=1

1

k!
(

∞X
`=3

c`(a2, . . . , a`)
y`−3z`

`!
)k = 1 +

∞X
k=3

qk(y, a2, . . . , ak)z
k. (3)

Then we see that qk(y, a2, . . . , ak), k = 3, are polynomials in y, a2, . . . , a`. Note that

qk(y, t
2a2 . . . , t

kak) = t
kqk(y, a2, . . . , ak)

and that

qk(y, a2, . . . , ak) = qk(y, a2, . . . , ak−1, 0) +
yk−3

k!
ak, k = 3.

Also we have

exp(y−6
∞X
`=3

c`(a2, . . . , a`)
(y3z)`

`!
)

= exp((y2)−3
∞X
`=3

c`(y
2a2, . . . , y

`a`)
(y2z)`

`!
)

= 1 +

∞X
k=3

qk(y
2, y2a2, . . . , y

kak)z
k = 1 +

∞X
k=3

ykqk(y
2, a2, . . . , ak)z

k (4)

as a formal power series in z.
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3 Preliminary facts

Proposition 3 We have

sup
1/25a52

L(ax)

L(x)
→ 1, x→∞,

and

inf
1/25a52

L(ax)

L(x)
→ 1, x→∞.

Proof. Since the proof is similar, we prove the first equation only. If not, there are ε > 0,
{an}∞n=1 and {xn}∞n=1 such that 1/2 5 an 5 2, xn = 1, n = 1, 2, . . . , xn →∞, n→ 1, and
that

L(anxn)

L(xn)
> 1 + ε, n = 1, 2, . . . .

Then taking a subsequence if necessary, we may assume that there is an a ∈ [1/2, 2] such
that an → a, n→∞. Then we see that for any m = 3 there is a n(m) = 1 such that

(a− 1

m
)−αL((a− 1

m
)xn) = F̄ ((a−

1

m
)xn) = F̄ (anxn) = a−αn L(anxn), n = n(m).

So we have

(1− 1

ma
)−α = lim

n→∞
L(anxn)

L(axn)
= 1 + ε, m = 3.

Since m is arbitrary, this implies a contradiction.

Proposition 4 For any ε ∈ (0, 1), there is an M = 1 such that

M−1y−ε 5 L(yx)

L(x)
5Myε x, y = 1.

Proof. For any ε ∈ (0, 1) there is an m = 1 such that

|L(ex)
L(x)

− 1| 5 ε x = em.

Let

C = sup
x∈[1,em]

(
L(ex)

L(x)
+
L(x)

L(ex)
) <∞.

Then we have

C−m(1− ε)n 5 L(enx)

L(x)
5 Cm(1 + ε)n, x = 1, n = 0.

For any y = 1, there is an n = 1 such that en−1 5 y 5 en. Then we have

F̄ (en−1x) = F̄ (yx) = F̄ (enx).

So we have for any x, y = 1

(e−1yx)−αL(en−1x) = (en−1x)−αL(en−1x) = (yx)−αL(yx)
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= (enx)−αL(enx) = (eyx)−αL(enx),
which implies

C−me−α(1− ε)n 5 L(yx)

L(x)
5 Cmeα(1 + ε)n−1.

Therefore we have

C−me−α(1− ε)ylog(1−ε) 5 L(yx)

L(x)
5 Cmeαylog(1+ε), x = 1, y = 1.

This implies our assertion.
The following is known as Karamata’s theorem, but we give a proof.

Proposition 5 (1) For any β < −1,

1

tβ+1L(t)

Z ∞
t

xβL(x)dx→ − 1

β + 1
, t→∞.

(2) For any β > −1,

1

tβ+1L(t)

Z t

1

xβL(x)dx→ 1

β + 1
, t→∞.

(3) Let f : [1,∞)→ (0,∞) be given by

f(t) =

Z t

1

x−1L(x)dx t = 1.

Then f is slowly varying.

Proof. Note that for t > 1

1

tβ+1L(t)

Z ∞
t

xβL(x)dx =

Z ∞
1

xβ
L(tx)

L(t)
dx, if β < −1

and
1

tβ+1L(t)

Z t

1

xβL(x)dx,=

Z 1

1/t

xβ(
L(t)

L(tx)
)−1dx if β > −1

Then the assertions (1) and (2) follow from this equation and Proposition 3.
Let us prove (3). If limt→∞ f(t) < ∞, the assertion is obvious. So we assume that

limt→∞ f(t) =∞. Then for any a > 0 and t0 > 1

f(at) =

Z t

1/a

x−1L(ax)dx =

Z t0

1/a

x−1L(ax)dx+

Z t

t0

x−1L(x)
L(ax)

L(x)
dx.

So we have

inf
x=t0

L(ax)

L(x)
5 lim

t→∞

f(at)

f(t)
5 lim

t→∞
f(at)

f(t)
5 sup

x=t0

L(ax)

L(x)
.

Therefore by Proposition 4 and Lebesgue’s convergence theorem, we have our assertion.
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4 Estimate for moments and characteristic functions

Remind that K is an integer such that K − 1 < α 5 K and

ηk =

Z ∞
−∞
xkμ(dx), k = 1, 2, . . . , K − 1.

Then by the assumption (A4) we have η1 = 0 and η2 = 1. Note that

1− F̄ (t) = 1−
Z ∞
2

x2

4
μ(dx) = 3

4

for any t = 2. Let

ηk(t) =

Z
(−∞,t]

xkμ(dx), t > 0, k = 1, 2, . . . , K + 1,

and

η̄k(t) =

Z
(t,∞)

xkμ(dx), t > 0, k = 1, 2, . . . , K − 1.

Then we have

ηk(t) =

Z
(−∞,0)

xkμ(dx) + k

Z t

0

xk−1F̄ (x)dx− tkF̄ (t), t > 0, k = 1, 2, . . . , K + 1,

and

η̄k(t) = k

Z ∞
t

xk−1F̄ (x)dx+ tkF̄ (t) t > 0, k = 1, 2, . . . , K − 1.

Then by Propositions 4 and 5 we have the following.

Proposition 6 For any ε > 0, there is a C(ε) > 0 such that

L(t) 5 C(ε)tε,

|ηK(t)| 5 C(ε)t−α+K+ε,
|η̄k(t)| 5 C(ε)t−α+k+ε, k = 1, 2, . . . K − 1,

and Z
(−∞,t]

|x|K+1μ(dx) 5 C(ε)t−α+K+1+ε

for any t = 1.

The following is well known.

Proposition 7 (1) For any m = 1, let re,m : R→ C be given by

re,m(t) = exp(it)− (1 +
mX
k=1

(it)k

k!
), t ∈ R.
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Then we have

|re,m(t)| 5
|t|m+1
(m+ 1)!

t ∈ R.

(2) For any m = 1, let rl,m : {z ∈ C; |z| 5 1/2}→ C be given by

rl,m(z) = log(1 + z)−
mX
k=1

(−1)k−1
k

zk, z ∈ C, |z| 5 1/2.

Then we have
|rl,m(z)| 5 2|z|m+1, z ∈ C, |z| 5 1/2.

Let μ(t), t > 0, be a probability measure on (R,B(R)) given by

μ(t)(A) = (1− F̄ (t))−1μ(A ∩ (−∞, t]),

for any A ∈ B(R).
Let ϕ(·;μ(t)), t > 0, be the characteristic function of the probability measure μ(t),

i.e.,

ϕ(ξ;μ(t)) =

Z
R

exp(ixξ)μ(t)(dx), ξ ∈ R.

By the assumption (A3), we see that the density function ρ(x)→ 0 as |x|→∞. Also
we see that the probability measure μ(t), t = 2, is absolutely continuous and its density
function is (1− F̄ (t))−1ρ(x)1(−∞,t](x), whose total variation is dominated by twice of that
of ρ.
Therefore we have the following.

Proposition 8 (1) For any t = 2 and ξ ∈ R,

iξϕ(ξ;μ(t)) = (1− F̄ (t))−1
Z
R

iξeiξxρ(x)1(−∞,t](x)dx

= −(1− F̄ (t))−1
Z
R

eiξxd(ρ(x)1(−∞,t](x)).

(2) There is a C > 0 such that

|ϕ(ξ,μ(t))| 5 C(1 + |ξ|)−1 for any t = 2 and ξ ∈ R.

Then we have the following.

Proposition 9 (1) There is a c0 > 0 such that

|ϕ(ξ,μ(t))| 5 (1 + c0|ξ|2)−1/4 for any t = 2 and ξ ∈ R.

(2) For any t = 2, ξ ∈ R, and integers n,m with n = m,

|ϕ(n−1/2ξ,μ(t))|n 5 (1 + c0
m
|ξ|2)−m/4.
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Proof. Let g(x) = ρ(x)1(−2,2)(x), x ∈ R. Then we have

p =

Z
R

g(x)dx = 1−
Z
R

x2

4
ρ(x)dx = 3/4.

Note that

|ϕ(ξ,μ(t))|2 = (1− F̄ (t))−2
Z
R

Z
R

exp(iξ(x− y))ρ(x)1(−∞,t](x)ρ(y)1(−∞,t](y)dxdy

5 (1− p2) +
Z
R

Z
R

exp(iξ(x− y))g(x)g(y)dxdy = 1− f(ξ),

where

f(ξ) =

Z
R

Z
R

(1− cos(ξ(x− y)))g(x)g(y)dxdy.

So we see that

lim
ξ→0

|ξ|−2f(ξ) = 1

2

Z
R

Z
R

(x− y)2g(x)g(y)dxdy > 0.

Also, it is easy to see that f(ξ) > 0, for all ξ ∈ R \ {0}, and so we see that

a(r) = inf
|ξ|5r

|ξ|−2f(ξ) > 0 for all r > 0.

Therefore we see that

|ϕ(ξ,μ(t))| 5 (1− a(r)|ξ|2)1/2 5 (1 + a(r)|ξ|2)−1/4, |ξ| 5 r.

Also by Proposition 8(2), we see that there is an r0 > 0 such that

|ϕ(ξ,μ(t))| 5 (1 + |ξ|2)−1/4, |ξ| = r0
So we have the assertion (1).
It is easy to chack that (1 + x/β)β = 1 + x for any β = 1 and x = 0. Therefore if

n = m, we have
(1 + c0|n−1/2ξ|2)n/m = 1 +

c0
m
|ξ|2.

This implies the assertion (2).

5 Asymptotic expansion of characteristic functions

Let

ϕ1(ξ, t) = −
K−1X
k=1

(iξ)k

k!
η̄k(t) +

(iξ)K

K!
ηK(t)

and

ψ0(n, ξ) =
K−1X
k=3

n−k/6qk(n
−1/3, η2, . . . , ηk)(iξ)

k

+

3(K−1)X
k=K

n−k/6qk(n
−1/3, η2, . . . , ηK−1, 0, . . . , 0)(iξ)

k
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for t = 2, n = 1 and ξ ∈ R. Let δ = ((α − 2) ∧ 1)/(4(K + 2)), δ0 = δ/(4(K + 2)), and tn
= n1/2−δ, n = 1, 2, 3, . . . . Then tn = 2 for any n = 8.
In this section, we prove the following.

Lemma 10 Let

Rn,0(ξ) = exp(
1

2
ξ2)ϕ(n−1/2ξ,μ(tn))

n − (1 + ψ0(n, ξ) + nϕ1(n
−1/2ξ, tn))

Rn,1(ξ) = exp(
1

2
ξ2)ϕ(n−1/2ξ,μ(tn))

n − 1

Rn,2(ξ) = exp(
1

2
ξ2)ϕ(n−1/2ξ,μ(tn))

n−1 − 1

Then there is a C > 0 such that

|Rn,0(ξ)| 5 Cn−(α−2)/2−δ/4|ξ|

and
|Rn,1(ξ)|+ |Rn,2(ξ)| 5 Cn−2Kδ|ξ|

for any n = 8 and ξ ∈ R with |ξ| 5 nδ0 .

We make some preparations to prove this lemma. First we prove the following.

Proposition 11 Let

ϕ0(ξ) =

K−1X
k=2

(iξ)k

k!
ηk,

and
R0(ξ, t) = ϕ(ξ;μ(t))− (1 + ϕ0(ξ) + ϕ1(ξ, t)).

Then we have for any n = 8, and ξ ∈ R with |ξ| 5 nδ0 ,

|ϕ(n−1/2ξ;μ(tn))− 1| 5
2
√
3

3
n−1/2|ξ|,

|ϕ1(n−1/2ξ, tn)| 5 KC(δ)n−α/2+(K+1)δ|ξ|
and

|R0(n−1/2ξ, tn)| 5 3C(δ)n−α/2−δ/4|ξ|.
Here C(δ) is as in Proposition 6.

Proof. We can easily see that

ϕ(ξ;μ(t)) =

Z
R

exp(ixξ)μ(t)(dx)

= 1 +
KX
k=1

(iξ)k

k!
ηk(t) +

Z
(∞,t]

re,K(xξ)μ(dx) + F̄ (t)(1− F̄ (t))−1
Z
(∞,t]

re,0(xξ)μ(dx)
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So we see that

R0(ξ, t) = F̄ (t)(1− F̄ (t))−1
Z
(∞,t]

re,0(xξ)μ(dx) +

Z
(∞,t]

re,K(xξ)μ(dx).

By Proposition 6 we have

|ϕ1(ξ, t)| 5 C(δ)
KX
k=1

|ξ|k
k!
|t|−α+k+δ, ξ ∈ R, t = 2,

and

|R0(ξ, t)| 5 2C(δ)|ξ|t−α+δ(
Z
R

|x|μ(dx)) + C(δ)|ξ|K+1t−α+K+1+δ, ξ ∈ R, t = 2.

Also, we have

|ϕ(ξ;μ(t))− 1| 5 |ξ|
Z
R

|x|μ(t)(dx) 5 (1− F̄ (t))−1/2|ξ| 5 2
√
3

3
|ξ|, ξ ∈ R, t = 2.

Note that
(n−1/2+δ

0
)k(n1/2−δ)−α+k+δ = n−α/2+(α+1/2)δ−k(δ−δ

0)−δ2.

So we have our assertion.

Proposition 12 Let

ψ1(ξ) =

K−1X
k=3

(iξ)k

k!
ck(η2, . . . , ηk−1) +

(iξ)K

K!
cK(η2, . . . , ηK−1, 0), ξ ∈ R.

Also, for any n = 8, and ξ ∈ R with |ξ| 5 nδ0 , let

R1(n, ξ) = log(ϕ(n
−1/2ξ,μ(tn)))− {−

1

2n
ξ2 + ψ1(n

−1/2ξ) + ϕ1(n
−1/2ξ, tn)}.

Then there is a constant C > 0 such that

|R1(n, ξ)| 5 Cn−α/2−δ/4|ξ|

for any n = 8, and ξ ∈ R with |ξ| 5 nδ0 .

Proof. Let

R1,1(ξ) =

KX
k=1

(−1)k−1
k

(ϕ0(ξ))
k +

1

2
ξ2 − ψ1(ξ).

Note that

log(1 +

K−1X
k=2

ηk
zk

k!
)

=

K−1X
k=2

ck(η2, . . . , ηk)
zk

k!
+

∞X
k=K

ck(η2, . . . , ηK−1, 0, . . . , 0)
zk

k!
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as a formal power series of z. So we see that there is a constant C > 0 such that

|R1,1(ξ)| 5 C|ξ|K+1 (5)

for any ξ ∈ R with |ξ| 5 1.
We can easily see that

R1(n, ξ)

= log(1 + ϕ0(n
−1/2ξ) + ϕ1(n

−1/2ξ, tn) + R0(n
−1/2ξ, tn))

−{− 1
2n
ξ2 + ψ1(n

−1/2ξ) + ϕ1(n
−1/2ξ, tn)}

= R1,1(n
−1/2ξ) + rl,K(ϕ(n

−1/2ξ,μ(tn))− 1) + R0(n−1/2ξ, tn)

+
KX
k=2

(−1)k−1(ϕ0(n−1/2ξ))k−1(ϕ1(n−1/2ξ, tn) + R0(n−1/2ξ, tn))

+

KX
k=1

(−1)k−1
k

kX
j=2

µ
k

j

¶
(ϕ0(n

−1/2ξ))k−j(ϕ1(n
−1/2ξ, tn) + R0(n

−1/2ξ, tn))
j.

Then we have our assertion from Equation (5) and Proposition 11.

Proposition 13 Let

R2(n, ξ) = exp(nψ1(n
−1/2ξ))− (1 + ψ0(n, ξ)).

Then there is a constant C > 0 such that

|R2(n, ξ)| 5 Cn−(α−2)/2−1/4|ξ|

for any n = 8, and ξ ∈ R with |ξ| 5 nδ0 .

Proof. Note that

exp(y−6(
K−1X
k=3

(y3z)k

k!
ck(η2, . . . , ηk) +

∞X
k=K

(y3z)k

k!
ck(η2, . . . , ηK−1, 0, . . . , 0)))

= 1 +

K−1X
k=3

ykqk(y
2, η2, . . . , ηk)z

k +

∞X
k=K

ykqk(η2, . . . , aK−1, 0, . . . , 0)))z
k

as a formal power series in z. This implies our assertion.

Now let us prove Lemma 10.
Note that for any n = 8, and ξ ∈ R with |ξ| 5 nδ0 ,

exp(
1

2
ξ2)ϕ(n−1/2ξ;μ(tn))

n

= exp(nϕ1(n
−1/2ξ, tn) + nψ1(n

−1/2ξ) + nR1(n, ξ)))

= (1+nϕ1(n
−1/2ξ, tn)+ re,1(nϕ1(n

−1/2ξ, tn)))(1+ψ0(n, ξ)+R2(n, ξ))(1+ re,0(nR1(n, ξ))).

11



So we see that
Rn,0(n, ξ)

= re,0(nR1(n, ξ)) exp(nϕ1(n
−1/2ξ, tn) + nψ1(n

−1/2ξ)) + R2(n, ξ) exp(nϕ1(n
−1/2ξ, tn))

+re,1(nϕ1(n
−1/2ξ, tn)).

Thus we have the first equation from Propositions 11, 12, 13.
Also, we have

Rn,1(n, ξ) = exp(nϕ1(n
−1/2ξ, tn) + nψ1(n

−1/2ξ) + nR1(n, ξ)))− 1,

and

Rn,2(n, ξ) = exp((n− 1)ϕ1(n−1/2ξ, tn) + (n− 1)ψ1(n−1/2ξ) + (n− 1)R1(n, ξ))−
ξ2

n
)− 1.

So, again from Propositions 11, 12, 13 we have the second equation.

6 Proof of Theorem 1

First, we prove the following.

Lemma 14 Let ν be a probability measure on (R,B(R) such that
R
R
x2ν(dx) <∞. Also,

assume that there is a constant C > 0 such that the characteristic function ϕ(·, ν) : R→ C
satisfies

|ϕ(ξ; ν)| 5 C(1 + |ξ|)−2, ξ ∈ R.
Then for any x ∈ R

ν((x,∞)) = Φ0(x) +
1

2π

Z
R

e−ixξ

iξ
(ϕ(ξ, ν)− exp(− |ξ|

2

2
))dξ.

Proof. From the assumption, ν has a continuous density function β and

β(x) =
1

2π

Z
R

e−ixξϕ(ξ, ν)dξ.

So we have

ν((x, x+ n])) = Φ0(x)− Φ0(x+ n) +
1

2π

Z
R

(

Z x+n

x

e−izξdz)(ϕ(ξ, ν)− exp(− |ξ|
2

2
))dξ.

= Φ0(x)− Φ0(x+ n) +
1

2π

Z
R

e−ixξ − e−i(x+n)ξ
iξ

(ϕ(ξ, ν)− exp(− |ξ|
2

2
))dξ.

Since Z
R

1

|ξ| |ϕ(ξ, ν)− exp(−
|ξ|2
2
)|dξ <∞,

letting n→∞, we have the assertion.
We remark that

Φk(x) =
1

2π

Z ∞
−∞
(iξ)k−1 exp(−iξx− ξ2

2
)dξ, k = 1, 2, . . . .

12



Note that

P (

nX
k=1

Xk > sn
1/2) =

nX
m=0

Im(n, s),

where

Im(n, s) = P (

nX
k=1

Xk > sn
1/2,

nX
k=1

1{Xk>tn} = m), m = 0, 1, . . . , n.

Then we have

Im(n, s) =

µ
n

m

¶
P (

nX
k=1

Xk > sn
1/2, Xi > tn, i = 1, . . . ,m, Xj 5 tn, j = m+ 1, . . . , n),

for m = 0, 1, . . . , n.

Proposition 15 There is a C > 0 such that

nX
m=2

Im(n, s) 5 Cn−(α−2)/2−δ

for any s = 1 and n = 8.

Proof. We see that

nX
m=2

Im(n, s) 5
nX

m=2

n(n− 1)
m(m− 1)

µ
n− 2
m− 2

¶
F̄ (tn)

m(1− F̄ (tn))n−m

5 n(n− 1)
2

F̄ (tn)
2 5 C(δ)2n2−α+2(K+1)δ 5 C(δ)2n−(α−2)/2−δ.

This implies our assertion.

Proposition 16 There is a C > 0 such that

sup
s∈[1,logn]

|I0(n, s)− {(1− nF̄ (tn))Φ0(s)−
K−1X
k=1

n−(k−2)/2

k!
η̄k(tn)Φk(s)

+
(n1/2)K−2

K!
ηK(tn)ΦK(s) + g(n, s)}| 5 Cn−(α−2)/2−δ/4

for any n = 8. Here

g(n, s) =
K−1X
k=3

n−k/6qk(n
−1/3, η2, . . . , ηk)Φk(s)

+

3(K−1)X
k=K

n−k/6qk(n
−1/3, η2, . . . , ηK−1, 0, . . . , 0)Φk(s).

13



Proof. Note that
I0(n, s) = (1− F̄ (tn))nμ(tn)∗n((sn1/2,∞))

= I0,0(n, s) + I0,1(n, s) + I0,2(n, s),

where
I0,0(n, s) = μ(tn)

∗n((sn1/2,∞)),
I0,1(n, s) = −nF̄ (tn)μ(tn)∗n((sn1/2,∞)),

I0,2(n, s),= ((1− F̄ (tn))n − 1 + nF̄ (tn))μ(tn)∗n((sn1/2,∞)).
By Proposition 9 and Lemma 14, we have

I0,0(n, s)

= Φ0(s) + (
1

2π
)

Z
R

e−isξ

iξ
(ϕ(n−1/2ξ,μ(tn))

n − exp(−ξ
2

2
))dξ.

Let

R̃0,,0(n, s) = I0,0(n, s)− {Φ0(s) + (
1

2π
)

Z
R

e−isξ

iξ
(ψ0(n, ξ) + nϕ1(n

−1/2ξ, tn))e
−ξ2/2dξ}

Then by Lemma 10 we have
|R̃0,0(n, s)|

5
Z
|ξ|5nδ0

|Rn,0(ξ)|
|ξ| exp(−ξ

2

2
)dξ +

Z
|ξ|>nδ0

1

|ξ|(|ϕ(n
−1/2ξ,μ(tn))|n + exp(−

ξ2

2
))dξ

+

Z
|ξ|>nδ0

(|ψ0(n, ξ)|+ n|ϕ1(n−1/2ξ, tn)|)e−ξ
2/2dξ

So by Proposition 9 and Lemma 10, we see that there is a C0 > 0 such that

|R̃0,0(n, s)| 5 C0n−(α−2)/2−δ/4, n = 8, s = 1. (6)

Also, we see that

(
1

2π
)

Z
R

e−isξ

iξ
nϕ1(n

−1/2ξ, tn) exp(−
1

2
|ξ|2)dξ

= −
K−1X
k=1

(n−1/2)k−2

k!
η̄k(tn)Φk(s) +

(n1/2)K−2

k!
ηK(tn)ΦK(s),

and

(
1

2π
)

Z
R

e−isξ

iξ
ψ0(n, ξ) exp(−

1

2
|ξ|2)dξ = g(n, s)

Similarly by Lemma 10, we see that there is a C1 > 0 such that

sup
s∈[1,logn]

|I0,1(n, s)− nF̄ (sn1/2)Φ0(s)| 5 C1n−(α−2)/2−δ, n = 8. (7)

Note that |(1− x)n − (1− nx)| 5 n2x2 for any x ∈ [0, 1], n = 1. So we have

|I0,2(n, s)| 5 n2F̄ (tn)2 5 C(δ)2n(α−2)/2−δ.

This and Equations 6, 7 imply our assertion.
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Proposition 17 There is a C > 0 such that

sup
s∈[1,logn]

|I1(n, s)− {n
Z s

−∞
F̄ ((s− x)n1/2)Φ1(x)dx+ nF̄ (tn)Φ0(s)

−
KX
k=1

n−(k−2)/2

k!
Φk(s)

Z tn

0

xkμ(dx)}| 5 Cn−(α−2)/2−δ/4.

Proof. We see that

I1(n, s) = n(1− F̄ (tn))n−1
Z
R

P (X1 + x > sn
1/2, X1 > tn) μ(tn)

∗(n−1)(dx)

= n(1− F̄ (tn))n−1
Z ∞
−∞
F̄ ((sn1/2 − x) ∨ tn)μ(tn)∗(n−1)(dx)

= nJ0(n, s) + nJ1(n, s) + nJ2(n, s),

where

J0(n, s) =

Z ∞
−∞
F̄ ((s− x)n1/2 ∨ tn)Φ1(x)dx, (8)

J1(n, s) =

Z ∞
−∞
F̄ ((sn1/2 − x) ∨ tn)(μ(tn)∗(n−1)(dx)− n−1/2Φ1(xn1/2)dx), (9)

and
J2(n, s) = −(1− (1− F̄ (tn))n−1)I1(n, s). (10)

Note that
J0(n, s) = J0,0(n, s) + J0,1(n, s) + J0,2(n, s),

where

J0,0(n, s) =

Z s

−∞
F̄ ((s− x)n1/2)Φ1(x)dx,

J0,1(n, s) = −
Z s

s−n−δ
F̄ ((s− x)n1/2)Φ1(x)dx = −

Z n−δ

0

F̄ (xn1/2)Φ1(s− x)dx,

and

J0,2(n, s) = F̄ (tn)

Z ∞
s−n−δ

Φ1(x)dx = F̄ (tn)Φ0(s− n−δ).

We see that

J0,1(n, s) = −
KX
k=1

1

(k − 1)!Φk(s)
Z n−δ

0

F̄ (xn1/2)xk−1dx+ RJ,1(n, s),

where

RJ,1(n, s) = −
Z n−δ

0

F̄ (xn1/2)(Φ1(s− x)−
KX
k=1

xk−1

(k − 1)!Φk(s))dx.

Then
|RJ,1(n, s)|

15



5 sup
x∈[0,n−δ]

|ΦK+1(s− x)|(
Z n−δ

n−1/2
xK(xn1/2)−αL(xn1/2)dx+

Z n−1/2

0

xKdx).

5 sup
x∈R

|ΦK+1(x)|(C(δ)n−α/2+δ/2
Z n−δ

0

xδ+(K−α)dx+ n−(K+1)/2)

5 sup
x∈R

|ΦK+1(x)|(C(δ) + 1)n−α/2−δ/2. (11)

Also, we see that
J0,2(n, s)

= F̄ (tn)Φ0(s) +

KX
k=1

F̄ (tn)
(nδ)k

k!
Φk(s) + RJ,2(n, s),

where

RJ,2(n, s) = F̄ (tn)(Φ0(s− n−δ)−
KX
k=0

(−nδ)k
k!

dkΦ0
dxk

(s)).

We see that

|RJ,2(n, s)| 5 F̄ (tn)n−(K+1)δ sup
x∈R

|ΦK+1(x)| 5 C(δ) sup
x∈R

|ΦK+1(x)|n−α/2−δ/4. (12)

It is easy to see thatZ n−δ

0

F̄ (xn1/2)xk−1dx = n−k/2
Z tn

0

F̄ (x)xk−1dx

= n−k/2(−1
k

Z tn

0

xkμ(dx) +
nδk

k
F̄ (tn)), k = 1, . . . , K.

So we have
J0,1(n, s) + J0,2(n, s)

= F̄ (tn)Φ0(s)−
KX
k=1

n−k/2

k!
Φk(s)

Z tn

0

xkμ(dx) + RJ,1(n, s) + RJ,2(n, s) (13)

Also, we have
J1(n, s) = J1,1(n, s) + J1,2(n, s)

where
J1,1(n, s) = F̄ (tn)(μ(tn)

∗(n−1)((s− n−δ)n1/2,∞)− Φ0(s− n−δ))
and

J1,2(n, s) =

Z s−n−δ

−∞
dxF̄ ((s− x)n1/2) 1

2π

Z
R

e−ixξ(ϕ(n−1/2ξ;μ(tn))
n−1 − exp(−ξ

2

2
))dξ

By Proposition 9 and Lemma 14, we see that there is a C1 > 0 such that

|μ(tn)∗(n−1)((xn1/2,∞))− Φ1(x)| 5 |
Z ∞
−∞

e−ixξ

ξ
(ϕ(n−1/2ξ;μ(tn))

n−1 − exp(−ξ
2

2
))dξ|
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5
Z
|ξ|>nδ0

1

|ξ|(|ϕ(ξ;μ(tn))|
n−1 + exp(−ξ

2

2
))dξ +

Z
|ξ|<nδ0

1

|ξ| |Rn,2(ξ)| exp(−
ξ2

2
))dξ

5 C1n−2Kδ, for any x ∈ R and n = 8.
Therefore we have

|J1,1(n, s)| 5 C1F̄ (tn)n−2Kδ 5 C(δ)C1n−α/2−δ.
Similarly by Lemma 14, we see that there is a C2 > 0 such that

|
Z
R

e−ixξ(ϕ(n−1/2ξ;μ(tn))
n−1 − exp(−ξ

2

2
))dξ|

5 C2n−2Kδ, for any x ∈ R and n = 8.
Then we have

|J1,2(n, s)| 5 C2n−2KδC(δ)
Z ∞
n−δ
(xn1/2)−α+δdx 5 C2C(δ)n−α/2−δ

So we see that there is a C > 0 such that

sup
s∈[1,logn]

|J1(n, s)| 5 Cn−(α−2)/2−δ (14)

Note that
|J2(n, s)| 5 n2F̄ (tn)2 (15)

So Equations (8) - (15) imply our assertion.

Now Theorem 1 is an easy consequence of Propositions 15, 16, 17, since

η̄k(tn) +

Z tn

0

xkμ(dx) =

Z ∞
0

xkμ(dx), k = 1, 2, . . . , K − 1,

and

ηK(tn)−
Z tn

0

xKμ(dx) =

Z 0

−∞
xKμ(dx).

This completes the proof of Theorem 1.

7 Proof of Theorem 2

It is well known (e.g. Williams [2]) that there is a C0 > 0 such that

|Φk(x)| 5 C0(1 + x)k−1Φ1(x), x = 0, k = 1, . . . , 3K,
and

C−10 Φ1(x) 5 xΦ0(x) 5 C0Φ1(x), x = 1.
Let

H(n, s) = Φ0(s) + nF̄ (n
1/2s),

and

A(n, s) = n

Z s

−∞
F̄ ((s− x)n1/2)Φ1(x)dx−

2X
k=1

n−(k−2)/2

k!
Φk(s)

Z ∞
0

xkμ(dx).

First we prove the following.
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Proposition 18

sup
s∈[1,logn]

|A(n, s)− nF̄ (n1/2s)|
H(n, s)

→ 0, n→∞.

Proof. Let us take a γ ∈ (0, (α− 2)/(4α)) and fix it. Let s = 0 and n = 3. Note thatZ s

−∞
F̄ ((s− x)n1/2)Φ1(x)dx =

4X
k=1

Ik(n, s),

where

I1(n, s) =

Z s

s−n−γ
F̄ ((s− x)n1/2)Φ1(x)dx,

I2(n, s) =

Z 7s/8

−s
F̄ ((s− x)n1/2)Φ1(x)dx,

I3(n, s) =

Z s−n−γ

7s/8

F̄ ((s− x)n1/2)Φ1(x)dx,

and

I4(n, s) =

Z −s
−∞

F̄ ((s− x)n1/2)Φ1(x)dx.

Note that

I1(n, s) = n
−1/2

Z n(1/2−γ)

0

F̄ (y)Φ1(s− n−1/2y)dy.

Let
R(n, s, y) = Φ1(s− n−1/2y)− (Φ1(s) + n−1/2yΦ2(s))

Then for y ∈ [0, sn1/2−γ ]

|R(n, s, y)| 5 n−1y2 sup
z∈[s−n−γ ,s]

|Φ3(z)|

5 C0n−1y2(1 + s)2Φ1(s− n−γ) = C0n−1y2(1 + s)2Φ1(s) exp(sn−γ − n−2γ/2)
5 C0n−1y2(1 + s)3 exp(n−γs)Φ0(s).

So we see that

n|I1(n, s)−
2X
k=1

n−k/2

k!
Φk(s)

Z ∞
0

xkμ(dx)|

5 C0(1 + s)3n−1/2 exp(n−γs)(
Z n1/2−γ

0

y2F̄ (y)dy)Φ0(s)

+C0(1 + s)n
1/2(

Z ∞
n1/2−γ

F̄ (y)dy)Φ0(s) + C0(1 + s)
2(

Z ∞
n1/2−γ

yF̄ (y)dy)Φ0(s)

This implies that

sup
s∈[1,logn]

Φ0(s)
−1|nI1(n, s)−

2X
k=1

n−(k−2)/2

k!
Φk(s)

Z ∞
0

xkμ(dx)|→ 0, n→∞. (16)
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Note that

I2(n, s) = F̄ (sn
1/2)

Z 7s/8

−s
(1− x

s
)−α

L((s− x)n1/2)
L(sn1/2)

Φ1(x)dx

It is easy to see that

sup
s∈[(logn)1/4,logn]

|
Z 7s/8

−s
(1− x

s
)−α

L((s− x)n1/2)
L(sn1/2)

Φ1(x)dx− 1|→ 0, n→∞

Also we see that

n|I2(n, s)| 5 nF̄ (sn1/2)8α
Z 7s/8

−s

L((s− x)n1/2)
L(sn1/2)

Φ1(x)dx

Therefore we have

sup
s∈[1,(logn)1/4]

Φ0(s)
−1(n|I2(n, s)|+ nF̄ (sn1/2))→ 0, n→∞.

Thus we have

sup
s∈[1,logn]

H(n, s)−1|nI2(n, s)− nF̄ (sn1/2)|→ 0, n→∞. (17)

Note that
√
3/2 5 7/8. Then we have

Φ1(7s/8) 5 (Φ1(s))3/4,

and so we have

nI3(n, s) 5 nsF̄ (n1/2−γ)Φ1(7s/8) 5 (nF̄ (n1/2 log n))1/2(sΦ1(s))3/4
ns1/4F̄ (n1/2−γ)

(nF̄ (n1/2 log n))1/2
.

Since

sup
n=3

sup
s∈[1,logn]

ns1/4F̄ (n(1/2−γ))

(nF̄ (n1/2 log n))1/2
<∞,

we see that there is a constant C > 0 such that

nI3(n, s) 5 C(nF̄ (sn1/2))1/2Φ0(s)3/4 5 C(nF̄ (sn1/2))1/4H(n, s), n = 3, s ∈ [1, log n].

So we have
sup

s∈[1,logn]
H(n, s)−1|nI3(n, s)|→ 0, n→∞. (18)

Also we have
n|I4(n, s))| 5 nF̄ (2sn1/2)Φ0(s).

So this equation, Equations (16) (17) and (18) imply our assertion.

Proposition 19

sup
s∈[1,∞)

|P (
Pn

k=1Xk > sn
1/2)

Φ0(s) + nF̄ (n1/2s)
− 1|→ 0, n→∞.
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Proof. It is easy to see that there is a C > 0 such that

|G(n, s)− (Φ0(s) + A(n, s))| 5 Cn−1/2max{|Φk(s)|; k = 3, . . . , 3K}

So we see that

sup
s∈[1,logn]

H(n, s)−1|G(n, s)− (Φ0(s) + A(n, s))|→ 0, n→∞.

Therefore by Proposition 18, we see that

sup
s∈[1,logn]

|H(n, s)−1G(n, s)− 1|→ 0, n→∞.

So by Theorem 1, we see that

sup
s∈[1,logn]

|P (
Pn

k=1Xk > sn
1/2)

H(n, s)
− 1|→ 0 n→∞.

Now it is obvious that

sup
s∈[logn,∞)

|nF̄ (sn
1/2)

H(n, s)
− 1|→ 0 n→∞.

Then by Theorem 1 in [1], we have

sup
s∈[logn,∞)

|P (
Pn

k=1Xk > sn
1/2)

H(n, s)
− 1|→ 0 n→∞.

So we have our assertion.

Now let us prove Theorem 2. It is well known that

P (
nX
k=1

Xk > sn
1/2)→ Φ0(s), n→∞

for any s ∈ R. Since both of P (Pn
k=1Xk > sn

1/2) and Φ0(s) are nondecreasing in s, and
Φ0(s) is continuous in s, we see that

sup
s∈R

|P (
nX
k=1

Xk > sn
1/2)− Φ0(s)|→ 0, n→∞.

So we have

sup
s∈(−∞,1]

|P (
Pn

k=1Xk > sn
1/2)

Φ0(s)
− 1|→ 0, n→∞.

Since

sup
s∈[1,∞)

|nF̄ (sn
1/2) ∧ n−γ

nF̄ (sn1/2)
− 1|→ 0, n→∞,

we have Theorem 2 from Proposition 19.
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