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T. WEI1 AND M. YAMAMOTO2

Abstract. In this paper, we propose a new numerical method for determin-

ing a moving boundary from Cauchy data in one dimensional heat equation.

The numerical scheme is based on the use of fundamental solutions of the heat

equation as basis functions. In order to regularize the ill-conditioned linear sys-

tem of equations resulted by collocating boundary data, we apply successfully

the Tikhonov regularization with the generalized cross validation parameter

choice rule to obtain a stable numerical approximation to a moving boundary.

1. Introduction

The boundary identification problem for the Laplace equation or a heat equa-

tion arises in the ironmaking blast furnace where we are requested to monitor the

corroded thickness of the accreted refractory wall based on the measurement of

temperature and heat flux on an accessible part of boundary or some internal po-

sitions. This kind of problem is ill-posed in Hadamard’s sense (e.g., [39]). That

is, any small change on the input data can result in a dramatic change to the

solution. Hence, a special regularization technique is necessary for stabilizing the

computations [15, 19, 39]. Reconstruction of a corroded boundary from the Laplace

equation has been investigated in some papers [1, 2, 4, 8, 10, 20, 27, 30, 37, 38]. For

a heat conducting solid, a number of numerical methods for determining a portion

of steady state boundary where the temperature is fixed, have been proposed in

references [3, 5, 6, 7, 9, 11, 12, 13, 40]. However, for estimating a time-varying
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boundary of the heat conduction problem, as we know, not many papers can be

found [17, 31]. Most of the papers above mentioned used an iterative method to

reconstruct an unknown boundary, i.e. one starts with an initial guess of boundary

shape and adjusts it iteratively by minimizing a functional of defect between the

calculated boundary data and the measured data. This kind of method could be

time-consuming since at each iteration step a direct problem has to be solved. In

paper [17], Fredman gave a direct method, called the method of lines, to calculate

a moving boundary in one dimensional heat conduction problem, where the initial

values of temperature should be used. We note that Manselli and Vesella proved

the continuous dependence of moving boundary on noncharacteristic Cauchy data

under an a priori information even without using the initial temperature [31]. Thus,

for the boundary identification problem of heat equation, the initial condition is

not necessary. In this paper we proposed a meshless approach, called the method of

fundamental solutions (MFS) for estimating a moving boundary of the heat equa-

tion by using only Cauchy data on a part of boundary without using any initial

temperature. To our knowledge, the proposed approach has not previously been

used to solve a boundary identification problem.

The main idea of the MFS is to approximate an unknown solution by a linear

combination of fundamental solutions whose singularities are located outside the

solution domain. The coefficients in linear combination will be determined by solv-

ing a linear system of algebraic equations which is obtained by fitting the specified

data on boundary. The MFS has recently been used extensively for solving various

direct problems of linear elliptic equations. Details can be found in the review

papers of Fairweather and Karageorghis [16] and Golberg and Chen [18] as well as

the references therein. In the studies of inverse problems for elliptic equations, we

refer to papers using the MFS combined with the Tikhonov regularization to solve

a Cauchy problem: for Helmholtz-type equations , see Marin [33] and Marin and

Lesnic [35] and for a biharmonic equation and the three dimensional elastostatics

case, see Marin and Lesnic [34], Marin [32]. Jin and Zheng used the MFS combin-

ing the truncated singular value decomposition method to treat with the Cauchy

problem of a Helmholtz equation [29]. Recently, Hon and Wei have extended the

MFS to solve the inverse heat conduction problems [25, 26] and Mera employed the
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MFS to solve a backward heat conduction problem [36]. In this paper, we apply

the MFS to determine the moving boundary in a heat conduction problem. The

MFS is a kind of spatial-time continuation technique which extends the solution to

a desired boundary. Then we can determine an unknown boundary as a level set

of the solution. This approach is different from most existing numerical schemes

in solving dynamical problems where the finite difference quotient will be used to

discretize the time variable. Our method is simple and feasible for treating various

homogeneous heat conduction problems.

For an ill-posed problem, the linear system of equations resulting from the bound-

ary collocation is highly ill-conditioned. Some regularization techniques usually give

better controls on levels of numerical accuracy to the original problem but requires a

good choice of regularization parameter for the optimal and stable performance. In

this paper, we use the Tikhonov regularization with the generalized cross validation

parameter choice rule for stabilizing the solution.

2. Formulation of the problem

Consider a heat conduction equation in one dimensional case with a moving

boundary s(t)

(2.1)
∂u(x, t)

∂t
= a2 ∂2u(x, t)

∂x2
, 0 < x < s(t), 0 < t < T.

Cauchy data are specified at the left boundary x = 0, i.e.,

u(0, t) = u0(t), 0 < t < T,(2.2)

∂u(0,t)
∂x = q0(t), 0 < t < T,(2.3)

where u(x, t) is the temperature distribution and T represents the maximum time of

interest for the time evolution of the problem. The boundary identification problem

of heat equation is then the determination of the boundary movement function s(t)

from a Dirichlet boundary condition

(2.4) u(s(t), t) = us(t),

where us(t) is a given function. In some case, us(t) ≡ us is a constant and the fusion

point of the medium under consideration. In general, this problem is severely ill-

posed because it is involved with an ill-posed Cauchy problem (2.1)-(2.3). On the
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instability of the boundary identification to the Cauchy data, refer to paper [31].

We can shown the uniqueness of moving boundary reconstructed from Cauchy data

for a general case, see to this paper’s appendix.

The following sections will explain the basic idea on the application of the MFS in

order to solve this kind of ill-posed problem. For obtaining a stable numerical result,

the standard Tikhonov regularization technique and the generalized cross validation

choice rule [22] are adopted for the resultant ill-conditioned linear systems.

3. The method of fundamental solutions

The fundamental solution of heat equation (2.1) is

(3.1) G(x, t) =
1

2a
√

πt
e−

x2

4a2t H(t),

where H(t) = 1 if t ≥ 0 and H(t) = 0 if t < 0.

Take some source points (x∗j , t
∗
j ), j = 1, 2, · · ·n and a positive real number τ such

that τ > maxj{t∗j}. All the source points are pairwise distinct in the spatial-time

space.

Following the idea of the method of fundamental solutions, we assume that an

approximate solution to the inverse problem for (2.1) can be expressed by the

following linear combination of basis functions:

(3.2) un(x, t) =
n∑

j=1

λjG(x− x∗j , t− t∗j + τ),

where λj are unknown coefficients to be determined. It is noted that the approxi-

mate solution un has already satisfied heat equation (2.1) for t > 0.

Take collocation points {(xi, ti), i = 1, 2, · · · , nD, nD + 1, · · · , nD + nN} on the

boundary x = 0. Let n = nD + nN , by fitting the boundary condition, we obtain a

linear system

(3.3) Aλ = b,

where A is an n× n matrix:

(3.4) A =


 G(xi − x∗j , ti − t∗j + τ)

∂G
∂x (xk − x∗j , tk − t∗j + τ)




1≤i≤nD,nD+1≤k≤n,1≤j≤n

,
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and λ, b are n-vectors:

(3.5) b =




u0(t1)
...

u0(tnD
)

q0(tnD+1)
...

q0(tn)




, λ =




λ1

λ2

...

λn




.

In the next section, we successfully apply both the Tikhonov regularization tech-

nique and the generalized cross validation method and obtain a stable numerical

solution to the linear system (3.3). The approximate temperature distribution (3.2)

can then be obtained by substituting the coefficient vector λ into equation (3.2).

4. Regularization method

For the ill-posed problem, the matrix resulting by a discretization will have a

large condition number. Hence, most standard numerical methods cannot achieve

good accuracy in solving linear system (3.3). Several regularization methods have

been developed for solving an ill-conditioned system [21, 22, 23]. In our computa-

tions we adapt the Tikhonov regularization technique to solve the equations (3.3).

The Tikhonov regularized solution λα for (3.3) is defined by the solution of the

following least square problem:

(4.1) min
λ
{‖Aλ− b‖2 + α2‖λ‖2},

where ‖ · ‖ denotes the usual Euclidean norm and α > 0 is called a regularization

parameter.

The determination of a suitable value for the regularization parameter α is crucial

and is still under intensive researches (e.g., [15, 19]). In our computations we use

the generalized cross validation (GCV) method to determine a suitable value of

α. The GCV method was firstly investigated by Wabba et al in [14, 41] and more

recently Hansen et al [22, 24] gave the formulation of computations based on the

singular value decomposition (SVD).
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The GCV is a strategy which gives a good regularization parameter αg by min-

imizing the following GCV function

(4.2) G(α) =
‖A λα − b‖2

(trace(In −AAI))2
, α > 0,

where AI = (AT A+α2In)−1AT is a matrix which produces the regularized solution

when multiplied with b, i.e., λα = AI b.

In our computations, we used the Matlab code developed by Hansen [23] for

solving the discrete ill-conditioned system (3.3). Denote the regularized solution of

(3.3) by λαg . The approximate solution un,αg
for problem (2.1) is then given by

(4.3) un,αg
(x, t) =

n∑

j=1

λ
αg

j φ(x− x∗j , t− t∗j + τ).

Furthermore, find the values sj such that un,αg
(sj , t̄j) = 0 for t̄j = jh, h = T/m, j =

0, 1, · · · ,m, then we can obtain an approximation boundary {(t̄j , sj)} to the moving

boundary s = s(t).

The numerical results in the following section indicate that the proposed scheme

is stable, feasible, and efficient.

5. Numerical verification

For simplicity, we assume that the heat conduction coefficient is a = 1 and the

maximum time is T = 1.

For the numerical error estimation, we compute the root mean square error by

the following formula

(5.1) ε(s) =

√√√√ 1
m

m∑

i=1

(s(t̄i)− si)
2
,

where m is the total number of uniformly distributed test points on time internal

[0, T ]. In our computations, we always take m = 21. The numbers of collocation

points and source points are nD = 51 and nN = 51 for all tests and the parameter

τ is fixed at 5.2. The source points are always taken as x∗i = 0− ds, t∗i = 1/(ND −
1) ∗ (i− 1), i = 1, 2, · · · , ND and x∗j = 1 + ds, t∗j = 1/(nN − 1) ∗ (j − nD − 1), j =

nD + 1, nD + 2, · · · , nD + nN where ds = 1 is the distance of the source point to

the boundary except another statement. Refer to Figure 1 for the collocation and

source points.
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Figure 1. Dots (·) are collocation points for Dirichlet data; Stars

(*) are collocation points for Neumann data and circles (o) are

source points

When the measured Cauchy data include some random noises, we use noisy data

ũ0(ti) = u0(ti)(1 + δ · rand(i))

and

q̃0(ti) = q0(ti)(1 + δ · rand(i)),

where u0(ti) and q0(ti) are the exact data; rand(i) is a random number uniformly

distributed in [−1, 1] and the magnitude δ indicates a relative noise level.

Numerical experiments for five examples are investigated as follows.

Example 1: Let the exact solution for the problem (2.1)-(2.4) be

(5.2) u(x, t) = 1− x.

and take a steady state boundary s(t) ≡ 1, us(t) = 0. The Cauchy data can be

calculated as u0(t) = 1 and q0(t) = −1. Numerical results versus various levels δ of

relative noises are presented in Figure 2. It is seen that the numerical approximation

are very well and the proposed approach is effective and stable.

Example 2: The exact solution for the problem (2.1)-(2.4) is chosen as

(5.3) u(x, t) =
(

x +
5
4

)2

+ 2
(

t− 81
32

)



8 T. WEI1 AND M. YAMAMOTO2

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

t

x=s(t)

Exact
0%
1%
5%
10%
15%

Figure 2. Steady state boundary and its approximations for Ex-

ample 1 in the cases of noise levels 0, 1, 5, 15%.

and the moving boundary is a monotonously decreasing function of t given by

s(t) =
(

81
16
− 2t

)1/2

− 5
4
.

In this case, we have us(t) = 0. The Cauchy data can be calculated as

u0(t) =
25
16

+ 2
(

t− 81
32

)
, q0(t) = 2

(
x +

5
4

)
.

Numerical results versus various levels δ of relative noises are presented in Figure

3. We can see that the proposed scheme works very well even for a little large noise

level.

Example 3: Take an exact solution for the problem (2.1)-(2.4) as

(5.4) u(x, t) =
(

x− 13
4

)2

+ 2
(

t− 81
32

)

and the moving boundary is a monotonously increasing function of t given by

s(t) =
(

81
16
− 2t

)1/2

+
13
4

.

For this example, us(t) = 0. The Cauchy data can be calculated as

u0(t) =
169
16

+ 2
(

t− 81
32

)
, q0(t) = 2

(
x− 13

4

)
.

Numerical results with respect to various levels δ of relative noises are presented in

Figure 4. It is observed that the numerical solution is accurate when using exact

Cauchy data and become a little bad for noisy data in the time interval 0.5 ≤ t ≤ 1.
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Figure 3. Moving boundary and its approximations for Example

2 in the cases of noise levels 0, 1, 5, 15%.
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Figure 4. Moving boundary and its approximations for Example

3 in the cases of noise levels 0, 1, 5, 15%.

Example 4: The moving boundary is a piecewise smooth function given by

s(t) =





1− t, for 0 < t ≤ 1
3 ,

2
3 , for 1

3 < t ≤ 2
3 ,

4
3 − t, for 2

3 < t ≤ 1,

and us(t) ≡ 0. The Neumman data is q0(t) = 1 and the Dirichlet data at the

end x = 0 is obtained by solving a direct problem from the Neumann condition
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Figure 5. Moving boundary and its approximations for Example

4 in the cases of noise levels 0, 1, 5, 15%.

∂u(0,t)
∂x = 1 and the Dirichlet condition u(s(t), t) ≡ 0 as well as an initial condition

u(x, 0) = x− 1 by the finite difference method.

The estimated moving boundary versus the various relative noise levels are shown

in Figure 5. It is shown that the calculated boundary matches the exact one quite

well everywhere except the small neighborhood of two non-smooth points.

Example 5: Suppose that the moving boundary is

s(t) = 1− 0.3 cos(π(t− 0.5))

and us(t) = 0. The Neumman data at the end x = 0 is q0(t) = 1 and the Dirichlet

data is obtained by solving a direct problem from the Neumann condition ∂u(0,t)
∂x = 1

and the Dirichlet condition u(s(t), t) = 0 as well as an initial condition u(x, 0) =

x− 1 by the finite difference method.

The estimated moving boundary with respect to the different levels δ of relative

noises are presented in Figure 6. Numerical approximation are accurate in the time

interval 0 ≤ t ≤ 0.8 and then became useless for t > 0.8.

In Figure 7, we display the root mean square errors ε(s) given by (5.1) for

Example 2 with respect to the distance ds of source points in which we fixed a

relative noisy level δ = 1% and τ = 5.2. It can be seen that numerical accuracy

keeps stable to small values ds and then becomes increaseing with respect to values

of ds. It is still a open problem for choosing the optimal source points.
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Figure 6. Moving boundary and its approximations for Example

5 in the cases of noise levels 0, 1, 5, 15%.
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Figure 7. Root mean square errors for Example 2 versus the dis-

tances ds

In Figure 8, we display the root mean square errors ε(s) for Example 2 with

respect to parameters τ in which we fixed a relative noisy level δ = 1% and ds = 2.

It can be seen that the numerical accuracy decreases quickly as τ increase and then

keeps stable to the values of τ > 12. It indicates that we need to use a little large

parameter τ to get an accurate solution.
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Figure 8. Root mean square errors for Example 2 versus param-
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80 100 120 140 160 180 200 220
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

−3

n

ε(
s)

Figure 9. Root mean square errors for Example 2 versus the num-

bers of source points n

In Figure 9, we show the root mean square errors ε(s) for Example 2 with

respect to the numbers of source points n. We note that numerical errors oscillate

in a certain range with respect to the number of source points. It indicates that

there is no need to use a lot of source points in computation.
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6. Conclusion

In this paper, we study the application of the method of fundamental solutions

to reconstruct a moving boundary for a heat problem based on the Tikhonov regu-

larization with the generalized cross validation choice strategy for the regularization

parameter. Examples for various moving boundaries are presented. The numerical

results show that the proposed method is efficient and stable.

7. Appendix

Theorem 7.1. For j = 1, 2, we set Qj = {(x, t) | 0 < x < sj(t), 0 < t < T}, where

sj ∈ C2[0, T ], sj(t) > 0 for 0 < t ≤ T . Let uj = uj(x, t) ∈ C2(Qj) ∩ C(Qj) satisfy

(7.1)
∂uj

∂t
(x, t) = a2 ∂2uj

∂x2
(x, t), (x, t) ∈ Qj

and

(7.2) uj(0, t) = u0(t), 0 < t < T,

(7.3) uj(sj(t), t) = 0, 0 < t < T.

We assume that

(7.4) uj(x, 0) ≥ 0, 0 ≤ x ≤ sj(0),

and

(7.5) u0(t) ≥ 0, 0 < t < T and u0(t) 6≡ 0.

If there exist t1, t2 ∈ (0, T ) such that

∂u1

∂x
(0, t) =

∂u2

∂x
(0, t), t1 < t < t2,

then s1(t) = s2(t), 0 < t < T .

In Chapko, Kress and Yoon [11] and [12], the uniqueness is proved under the

assumption that the initial value is zero. However in many applications such as on-

line processes related with continuous casting, we do not know the initial conditions,

while we can know a priori that the temperature u(x, t) is higher than the fusion

point which is assumed to be zero.
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Proof. Let s1 6≡ s2 in (0, T ). Then there exists t0 ∈ (0, T ) such that s1(t0) 6= s2(t0).

Without loss of generality, we may assume that x0 = s2(t0) < s1(t0). By the

unique continuation for u1 − u2, we see that u1 = u2 on Q1 ∩Q2. In particular,

u1(x0, t0) = u2(x0, t0) = u2(s2(t0), t0) = 0 by (7.3). By (7.4) and (7.5) we apply

the maximum principle, we see that

(7.6) u1 ≥ 0 on Q1.

We choose t′1, t
′
2, α, β such that

(7.7) 0 < t′1 < t0 < t′2 < T, α < x0 < β, [α, β] ⊂ (0, s1(t)), t′1 < t < t′2.

Let U(t, x, y) be the fundamental solution for ∂
∂t − a2 ∂2

∂x2 in (α, β) with the zero

Dirichlet boundary condition. Then we have

(7.8)
∂U

∂ξ
(t, x, α) ≥ 0,

∂U

∂ξ
(t, x, β) ≤ 0, U(t, x, y) ≥ 0, x, y ∈ (α, β), t > 0.

(e.g., Itô [28]). Moreover

u1(x, t) =
∫ β

α
U(t− t′1, x, y)u1(y, t′1)dy +

∫ t

t′1
∂U
∂ξ (t− s, x, α)u1(α, s)ds(7.9)

+
∫ t

t′1
−∂U

∂ξ (t− s, x, β)u1(β, s)ds, α < x < β, t > t′1.

Substituting x = x0 and t = t0 in (7.9) and using u1(x0, t0) = 0, u1(α, s) ≥ 0 and

u2(β, s) ≥ 0 for 0 ≤ s ≤ T by (7.6), we see from (7.8) that
∫ β

α

U(t0 − t′1, x0, y)u1(y, t′1)dy = 0.

By U(t0−t′1, x0, y) > 0 for α < y < β (e.g., Itô [28]) and u1(y, t′1) ≥ 0 for α ≤ y ≤ β,

we have u1(y, t′1) = 0 for α ≤ y ≤ β. Since t′1 can be arbitrary provided that (7.7)

holds, we have u1(y, t) = 0 for α ≤ y ≤ β and t0 − δ < t < t0 with some δ > 0.

By the unique continuation, we obtain u1 ≡ 0 in Q1, which contradicts (7.5). Thus

the proof is completed. ¤
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