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KATZ’S MIDDLE CONVOLUTION AND YOKOYAMA'’S
EXTENDING OPERATION

TOSHIO OSHIMA

ABSTRACT. We give a concrete relation between Katz’s middle convolution
and Yokoyama’s extension and show the equivalence of both algorithms using
these operations for the reduction of Fuchsian systems.

1. INTRODUCTION
Katz [Kz] introduces the operations addition and middle convolution of Fuchsian

system

(1.1) d“fz A

dxr = x —t;

of Schlesinger canonical form (SCF) on the Riemannian sphere and studies the
rigid local systems. It has regular singularities at x = ¢;,...,%, and oco. Here
A; € M(n,C) and M(n,C) denotes the space of n x n matrices with entries in C
and the number n is called the rank of the system. Katz shows that any irreducible
rigid system of SCF is reduced to rank 1 system, namely a system with n =1, by a
finite iteration of these operations, which implies that any irreducible rigid system
of SCF is obtained by applying a finite iteration of these operations to a rank 1
system since these operations are invertible.

The fact that the system is rigid is equal to say that it is free from accessory
parameters but these operations are also useful for the study of non-rigid systems.
In fact the Deligne-Simpson problem, the monodromies and integral representations
of their solutions, their monodromy preserving deformations and their classification
are studied by using these operations (cf. [DR2], [Ko], [HY], [HF], [O2] etc.).

Dettweiler and Reiter [DR] interpret these operations as those of tuples of ma-
trices A = (A4,...,Ap) as follows.

The addition M, (A) of A with p = (p1,...,pup) € CP is simply defined by

(1.2) My(A) = ME(A) := (A + puny e ooy Ap A+ pip).
The convolution (G1,...,Gp) € M(pn,C)? of A with respect to A € C is define by
(13)  G;= (au,j(Au + 5M,VA))1§MSP (G=1,....p)
1<v<p
J

~—

=y A Ay - Aj+X Ay - A, | € M(pn,C).
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Since the subspaces

uy

(1.4) K= {| |5 4m=0 G=1,...0)},
Up

(1.5) Ly :=ker(Gy+---+Gp)

are G -invariant, we put V := CP"/K+ L, and define G; € End(V) ~ M (dim V, C),
which are the linear maps induced by G;, respectively. Then the middle convolution
mex(A) of A equals (Gy,...,Gp).

For A = (Ay,...,A4,), B=(B1,...,By) € M(n,C)? we write A ~ B if there
exists g € GL(n,C) such that B; = gA;g~! for j =1,...,p and we will sometimes
identify A with B if A ~ B. The corresponding systems (1.1) will be also identified.

Yokoyama [Yo] introduces an extension and a restriction of the Fuchsian system

du
(1.6) (xI, — T)% = Au

of Okubo normal form (ONF) with A, T' € M (n,C) when T is a diagonal matrix
and A satisfies a certain condition.

Suppose
tIInl
tpln,
where n =nq + -+ n, is a partition of n and ¢; # t; if i # j. Put
Ay - Ay
(1.8) A=
Apl App

according to the partition, namely A;; € M (n;,n;; C) which is the space of n; x n;
matrices with entries in C. Here we note that the system (1.6) of ONF is equal to
the system (1.1) of SCF by putting

(1.9) Aj= gy Ay A - Ay, | € M(n,C).

Conversely we have the following lemma.
Lemma 1.1. Suppose (Ai,...,A,) € M(n,C)? satisfies

(1.10) rank A; + - -- +rank A, = n,
ImA; +---+ImA, =C"

Then there exists g € GL(n,C) such that the v-th row of g~ A;g is identically zero
ifv <rank A; 4 ---+rank A;_; orv >rank Ay +---+rank A;. Hence the system
of SCF is equivalent to a system of ONF if (1.10) holds.

Proof. The assumption implies that there exists a basis {v1,...,v,} of C™ such
that
Im Aj = E C’Uj.
rank Ay +---+rank Aj_; <v<rank A;+---4rank A;

Then the expression of A; under this basis has the required property, namely, we
may put g = (v1,...,v,) € GL(n,C). O
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Remark 1.2. If a system (1.6) of ONF is linearly irreducible (cf. Definition 3.2), it
satisfies (1.10) with (1.8) and (1.9).

Yokoyama [Yo] defines extentions (1, A) = E.(T,A) for ¢ = 0,1 and 2 with
respect to two distinct complex numbers p; and p2 when T and A; (i =1,...,p)
are diagonalizable. Here € is the number of the elements of {p1, p2} which are not
the eigenvalues of A.

Let

Niale;
(1.11) Aii ~
A’L‘,T‘,;IE

i,7y

with A; ; # X\ig (j # k) and n; =41+ - -+ ¢, -, and fix a matrix P € GL(n,C) so
that

/~L1[m1
(1.12) A= =P AP ~ A,

H“‘IImq

where n = my 4 --- 4+ my and p; # pj (i # j). Then Ey(T, A) = (T, A) with

- T
1.13 T .=
(113) (" or):

. A P
(1.14) A‘((AmaxmmmW1 @Hpﬂhﬁ)

When p; or ps is an eigenvalue of A, there exists a subspace invariant by T and A
and the extending operations FE, and Ey of (T, A) are defined as follows. Putting

U
(1.15) Vi = { v | ;ueC” vy =0eCFand v, € (C"_k}.
V2
we have
(116) E1 (T’ A) = (T|Vm1 ? A|Vm1) When pl = l”‘l?
(1.17) Eo(T,A) := (T|Vm1+m2aA|Vm1+m2) when p; = pq1 and py = po.

Restrictions are defined as inverse operations of these extensions. It is proved by
[Yo] that any irreducible rigid system of ONF with generic spectral parameters A; ;
and py, is reduced to a rank 1 system by a finite iteration of the extensions and
restrictions and it gives the monodromy of the system.

In this note we clarify the direct relation between Yokoyama’s operations and
Katz’s operations and then relax the assumption to define Yokoyama’s operations
(cf. Theorem 3.8 and Theorem 4.1). In particular we don’t assume that the local
monodromies of the system are semisimple (cf. Theorem 6.1). Moreover we show
in Theorem 5.5 that the both operations on Fuchsian systems are equivalent in
a natural sense. Hence the property of Katz’s operation can be transferred to
that of Yokoyama’s operations and vice versa. For example, it is proved by [HF]
that the middle convolution preserves the deformation equation and therefore so
do Yokoyama’s operations.

The author would like to express his sincere gratitude to Y. Haraoka and T.
Yokoyama for valuable discussions.
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2. KATZ’S MIDDLE CONVOLUTION

For a partition m = (mq,...,my) of n with n = m; + -+ my and A =
(A1,...,An) € CV we define a matrix L(m;\) € M(n,C) as a representative of a
conjugacy class, which is introduced and effectively used by [Os] (cf. [02, §3]):

If mi >mg >--->0, then

L(m; A) := (Aij>1§i§N, Aij € M(m;,m;,C),

1<G<N
Ailm, i=j
2.1) . (i=7)
Aij = Imi,mj = <5H’/)1§,u,§mi = ( 787> (7' = ] - 1)
1<v<m;
For example
A0 1 0
) 0 X 0 O
L(271717)\17A27>\3)_ 0 0 )\2 1
0 0 0 X3
Denoting Zy;(n,c)(A) := {X € M(n,C); AX = XA}, we have
k
(2.2) dimker [[(L(m;X) = Xj) =mi+--+mp (k=1,...,N),
j=1
(2.3) dim Zps (o) (L(m; A)) = mi + -+ miy.
In general we fix a permutation o of indices 1,..., N so that m,1) > mg@) > -

and define L(m; )\) = L(mg(l), <oy Mg (NS /\0(1)7 ceey )\U(N)).
Let A = (A4,...,4,) € M(n,C)?. Put

(2.4) Ag = — (A + -+ A).

Then Katz [Kz] defines

P
(2.5) idx A =) dim Zys(n,0)(45) — (p — 1)n?,

j=0
which is called the index of rigidity.

If A is irreducible, idx A < 2. Moreover an irreducible A is rigid if and only
if idx A = 2, which is proved by [Kz, §1.1.1]. Here A is called irreducible if any
subspace V' of C" satisfying A;V C V for j=1,...,pis {0} or C™.

Using the representatives L(m; \) of conjugacy classes of matrices, we can easily
describes the property of the middle convolution.

Definition 2.1. For A € M(n,C)? we choose a tuple of p + 1 partitions m =
(myg,...,m,) and A, , € C so that

(26) Aj ~ L(mj; )\]) with m; = (mj71, AN ,mj’nj) and )‘j = (Aj,la ey Aj,n_j)

for j =0,...,p. Here Ay is determined by (2.4). We define the Riemann scheme
of the corresponding system (1.1) of SCF by

T =00 T =1 T =1,

[A0,1](mo Ml 0 Potlomg,
(2.7) .( 1) '(,) P.( 1)

[Momo)(mong)  Pndlmin) o Pomglimgn,)
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Here Aj is called the residue matrix of the system at  =t; (j = 1,...,p) and
Ay is the residue matrix of the system at z = co. We also call (2.7) the Riemann
scheme of A. We will allow that some m,, are 0.

Theorem 2.2 ([DR], [DR2]). Let A = (A1,...,A4,) € M(n,C)?. Assume the
following conditions:

(2.8) (] kerA, Nker(4; +7) = {0} (i=1,...,p, V1 € C),
1<v<p
v#i
(2.9) > ImA, +Im(4; +7)=C" (i=1,...,p, V7 €C).
1<v<p
v#iL
Then G = (G, ...,Gp) :=mecx(A) satisfies (2.8) and (2.9) and
(2.10) idx G = idx A.
If A is irreducible, so is G. If A ~ B, then mcy(A) ~ mex(B). Moreover we have
(2.11) meo(A) ~ A,
(2.12) mey o mey(A) ~ meysa(A).
Let (2.7) be the Riemann scheme of A. We may assume
Ao, = A,
(213) )\,‘70 =0 (i: 1,...,p),
)\j7V:)‘j70 = m]'WSmj,o (Vil,...,nj, ]:07,[))

Note that mjo may be 0. Then the Riemann scheme

T = 00 r =1 e T =1,
[)‘](mo,l) [O](ml,l) o [O](mp,l)
(2.14) RUPIIES M2limis) 0 ezl
[/\O,no](mgﬁno) [Alynl](anl) T [)\pvnp}("lp,np)

of A is transformed into the Riemann scheme

T =00 rx =1t cee T =1,
[_A](moJ—d) [O}(m1,1—d) T [O}(mp,l—d)
(2.15) [)\072 - )‘](mo,z) [)‘1,2 + )\](ml,2) T [)‘p,2 + )‘](mpyg)
oo = Mimong) A + Nman) 0 Pomy T Monga,)
of mex(A) with
(2.16) d=mo1+---+mp1—(p—n.

Remark 2.3. If A is irreducible, then (2.8) and (2.9) are valid.
Suppose A # 0. Since

A AN A
(2.17) T
A, Al o Ay

Ar+X - Ay A

Ay o A+ A,
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and the linear map A; induces the isomorphism C"/ker A; ~ Im A;, we put

Ay
(2.18) A= ;

J

(2.19) Gi= )| A A - Aj+X A - A | eM(pn,C)

for j=1,...,p and define

Gy :=—(GL+---+Gy),

G;- =G

(2.20) ,
J|ImA/kerG6 (]:077]7),

Lemma 2.4. Suppose A # 0 and put Go = —(G1 + --- + G,). Then under the
above notation

(2.21) AG; =GlA (j=0,...,p),
P
(2.22) GiImACImA, kerGj= ﬂkerG; (j=0,...,p),
j=1
(2.23) A(K+ L)) =ker G c Im A,

and therefore A € End(CP") induces the isomorphism

_ _ p
(G1,...,Cp) =mex(Ay,..., Ay)) € (End(cpn//ug))
(2.24) ) ) ~ p
~ (G, G € (End(ImA/kerGg)) .

In particular if —X is not the eigenvalue of Ay +-- -+ A,, the middle convolution

mex(A) transforms the system (1.1) of SCF to the system of ONF
t1In/1 p

u
(2.25) xI"’1+"'+"; - dr (_G6 |ImA1€B~~@ImAp)u

tpl

with n; =dimIm A;.

Proof. Note that AGy = G)A, which corresponds to (2.17), and moreover that
(2.21) and (2.22) are also clear.

Since K = ker A and £ = ker Gy, Gf)fl(/C—i—EA) = Gf)fl ker Gy = AGo ker Go = 0
and therefore A(K 4 £)) C ker Gf. Let u € ker G, Putting

Ul v
vu=| 11, u;€C" wvi=u+---+u, and v:= | : |,
Up v

we have Au; = —A;v and therefore Av + (A1 +--- + Ap)v = 0. Hence ¥ € ker Gy
and u = —\"'A% € Aker Go. Thus we have (2.23). O
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3. YOKOYAMA’S EXTENDING OPERATION

First we examine the conditions (2.8) and (2.9) for the Fuchsian system (1.6) of
ONF with (1.7).
For a partition n = ky + - - + kg and C; € M (k;,C) we denote

Ch
diag(Cy,...,Cq) == € M(n,C),
Cp
Oy, =0 € M(k;,C).

Then A; given by (1.9) equals diag(On, 4-..4n; 15 In;> Onjpr 4 dny ) A

Lemma 3.1. The pair of conditions (2.8) and (2.9) for A; given by (1.9) is equiv-
alent to the pair of conditions

(3.1) rank A =n

and

(32) rank((A + T) diag(0n1+...+ni71 ’ Ini? Onz‘+1+'“+np)) = Ny,
rank (diag(On, +tns_y s Inis Onisyboogn, ) (A + 7)) =1y

foranyT € Candj=1,...,p.

Proof. Note that the condition (2.8) with 7 = 0 equals (3.1), which implies (3.2)
with 7 = 0.
Uy

Suppose 7 # 0 and (3.1). Put u= | ! | with u, € C". Then > _,ImA, =
Up

{u € C"; u; = 0} and therefore the condition (2.9) is equivalent to the second

condition of (3.2). Since ker(4;+7) ={ueC"; (A4;;+7)u;=0and u, =0 (v #

i)}, the condition (2.8) is equivalent to the condition {u; € C™; (A; + 7)u; =

0and A, ;u; =0 (v #4)} = {0}, which is equivalent to the second condition of

(3.2). O

Definition 3.2. The system (1.1) of SCF is called linearly irreducible if A; have
no non-trivial common invariant subspace of C", namely, A = (A1,...,4,) is
irreducible. Then

(3.3) irreducible = linearly irreducible = (3.1) and (3.2).

Remark 3.3. The conditions (3.1) and (3.2) are valid if the system (1.6) of ONF is
irreducible as a differential equation or linearly irreducible.

Assume (3.1) and (3.2) for the system (1.6) of ONF. Put A = —p; # 0 and apply
Lemma 2.4 to A = (Ayq,...,A,) given by (1.9). Then (3.1) assures ImA; ~ C™.
Under the notation in the proof Lemma 3.1 the projection defined by

U
t;:C"su=|: | —u; Cv

Up
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gives this isomorphism and hence we have the isomorphism ¢ : Im A ~ C™ 47 —
C™. Under the identification of this isomorphism ¢ we have
J

—

Gilma=Gj=j)| Ay Ajp -+ Aj—p1 Ajn - Ay | €MM0,0),

Gi+--+Gy=A—p,
G;IImA/ ker G|, = G;I = G;/|Cn/ ker(A—p1)

for j=1,...,p and
p
(3.4) me_p (A1,..., Ay) € (End((Cp”/IC + LA))
~(GY,... ,Gg) € (End((C"/ ker G'O))p.
In particular we have

Corollary 3.4. Suppose the system (1.6) of ONF satisfies (3.1) and (3.2). If =\ is
not the eigenvalue of A, then the middle convolution mecx(A1,...,Ap) corresponds
to the transformation A — A+ X\ of the system (1.6).

Definition 3.5. We denote this operation of the system of ONF by E) and call it
a generic Fuler transformation, which is defined if —\ is not the eigenvalue of A.
Note that E/\ o] E>\/ = E)\+,\/.

The transformation A — A 4+ A of (1.6) corresponds the Riemann-Liouville
integral
1 €T
35 Du(z) = —— —8)* tu(s)d
(35) duta) = g7 [ (=Ml
of the solution u(x) of the system (cf. [Kh, Chapter 5]). Here t € {t1,...,tp,00}.

Definition 3.6. Define the linear maps

Tjocy:  MM@n,CP  — M(n,C)?
w w
(Bl,...,Bp) = (Bl,...,Bj_l,—(Bl—|—'~'—|—Bp),Bj+1,...,Bp)

for j=1,...,p and

T,: MMnCP — M(n,C)?
w w
(Bl,...7Bp) — (30(1)7...,30@)).
Here ¢ is a permutation of the indices 1,...,p. Under the natural identification

(3.6) M(n,C)? ~{(Bi,...,Bps1) € M(n,C)P*'; B,y; =0} C M(n,C)PH!
we have T(p—i—l,oo)(Blv ey Bp) = (Bl, ey Bp, —(Bl + -+ Bp))

Remark 3.7. i) Let B € M(n,C)?. Then T(,;1 «)B is irreducible if and only if B
is irreducible. Similarly 7,11 )B satisfies (2.8) and (2.9) if and only if so does B.
ii) The map 7{;,+1,00) corresponds to the transformation of the Fuchsian system
of SCF induced from the automorphism of the Riemannian sphere defined by x —
%. Here c€ C, c # 12, and tyy #t; for j=1,...,p.
iii) The middle convolution mcy clearly commutes with T,, namely,

(3.7) mey o Ty, = T, o mcy.
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Fix py # 0 and examine mc,, © M(o,....0,p,—p1) © T(p+1,00) ©MC—p, (A1,..., Ap).
Since G/ ker(A — p1) = 0, it follows from (3.2) that Im G/ = Im G/ / G/ ker(A —
p1) =~ C". Note that

M(O ..... 0,p2—p1) © T(p+1,oo)< _Il/a ceey G;)/) = ( _/1lv ey ng _Glll — G;,/ + P2 — pl)

= ( /1/, N G;jl7 (_A + p2) (C"/ker(Afpl))’

Vi=TIm(GY + - + Gy + p1 — p2) = Im(A — pa) /(A — p2) ker(A — p1)
_ ) Im(A —p2)/ker(A—p1)  (p1 # p2)
Im(A — p2) (p1 = p2)

and (GY,..., G;’, G+ + GZ + p1 — p2) satisfies the conditions corresponding to
(2.8) and (2.9).

Moreover we remark that the last claim on the conditions corresponding to (2.8)
and (2.9) doesn’t necessarily imply that (GY,...,G}) satisfies the conditions.

Applying Lemma 2.4 to mc,, (GY,...,Gy,—=G{ —--- = G}j + p2 — p1), we have
chl(_ll/w“aGga_élll_ _G;+p2 —p1)~ (Allv""A;7A;)+1)7
p+y
A= gy A - A, Ap - Ajj—p1 - A, | € M(2n,0),
;o On On
P+l (—A+p2 ~A4pi+p2) © M(2n.C)
for j=1,...,p. Here A; and A; 11 are endomorphisms of the linear space
(3.8) U::{(Q;) ;ueCt, veVy.
Since
A A=p
/ / _
(3.9) AL+ +AP+1_(A+p2 A+p2+p1>

and

In A A_pl
3.10
( ) ( A‘Pl) <—A+02 —A+01+P2>

“ (s nen) (7 asn)
C\—(A-p1)(A=p2) —A+pi+p2 A—p1
and A —py : V = Im(A — p1)(A — p2), we have

mcp1(_/1/""7ég’_é/1,_ —Gg—‘rpg _pl) ~ (Al,...,Ap,Ap+1)
with
o A I _

3.11 A= " € End(V),
(311 (i) At pn) PRI
(3.12) V:=C"®Im(4—p1)(A - p2)

= {(Z) ;u€C”, velIm(A—p)(A—p2)} CC,
(313) Aj = diag(onl-‘r'“-‘rn,’_l ) Inj ’ On]+1+"'+np+n)A (] = 17 s ap)v

(3.14) Apiq = diag(Oy, I,) A.

Thus we have the following theorem.
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Theorem 3.8 (Extending operation). Suppose that the Fuchsian system (1.6) of
ONF satisfies (3.1) and (3.2). Then for any complex numbers p1 and ps with

pip2 # 0, (Al’ ‘e 7Ap+1) ‘= Mmcep, © M(Iz)t_l_7o,,,2_pl) © T(p+1,00) © MC—p, (A1, Ap)
defines a Fuchsian system
~. du X
3.15 I,-T)—=A
( ) (az )dm Y

of ONF satisfying (3.1) and (3.2). Here T = diag(tidn,,- .- tpln, tpy1ln,,,) €
End(V), V ~ C" and A € End(V) are defined by (3.11) and (3.12) and

(3.16) A=dimV =n+ny1, npp1 =dimIm(A — p;)(A— pg).

Moreover (3.15) is linearly irreducible if and only if (1.6) is linearly irreducible.
Let

T = 00 =1t cee T =1,
[_Ml](ml) [0](n7n1) T [0](71,”}7)
(3.17) [Fh2lmay  Paadey o Poalen
[7/%1](7%) [)\117"1](51,71) e [)\pv""q](ep,rq)

be the Riemann scheme of the system (1.6) of ONF, which is compatible with the
notation in (1.11) and (1.12) etc. when Ay and A are diagonalizable. We may
assume

pr=p1 and py = 2,
(3.18) By =p1 = my <my,
y =p2 andv>1 = m, < mao.

Here my and mg may be 0. Then the Riemann scheme of the system (3.15) equals

Tr = 00 r =1 T =1 T =1tp11
[—p1)n—ma)  Oa—ny) =+ [0l(a—n,) [0](n)
(3.19) [—r2ln-my Ml o Pealey 1+ w2 — 13)ong)
M@,y o P @) 1+ 02 = bglgny)

with . = 2n — m1 — mo.

Remark 3.9. 1) Suppose that the system (1.6) satisfies (3.1) and (3.2). Then

(3.20) 722,

(3.21) f # 0 (v=1,....9),

(3.22) Ly, <n—n, v=1,...,r;, j=1,...,p),
(3.23) m, < min{nq,...,np} v=1,...,9)

under the notation in the Theorem 3.8. For example the condition ker(A4; —X; )N
,.; ker A, = {0} with dimker A, = n, assures (3.22).

ii) Yokoyama [Yo] defines the extending operation for generic parameters A; ,,
ty, p1 and po. It is assumed there that Ay, A, A“ and A are diagonalizable,
rank A;; = n;, p1 # p2 etc. In this note we don’t assume these conditions.

iii) Applying the extending operation to the equation (x — tl)% = A\u with the
r=00 =1

Riemann scheme _\ N

}, we have a Gauss hypergeometric system with
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r=00 x =11 T =t
the Riemann scheme -1 0 0 , which is linearly irreducible.
—p2 A p1+p2— A

Here A, p1 and ps are any complex numbers satisfying p1paA(p1 — A)(p2 — A) # 0.
Theorem 3.8 follows from Theorem 2.2 and the argument just before Theo-
rem 3.8. We will examine the Riemann scheme of (3.15). In fact Theorem 2.2

proves that the operation M&T.,sz—pl) 0 T(p+1,00) © MC_p, transforms (3.17) to
T = 00 =1 T =1, T =1pi1
[pl - pQ](n—ml) [O](n—nl—ml) e [O](n—np—ml) [pQ - ,UQ](mg)
M=oy o Pea—nilen (2=l
M = ol 0 Doy = Pl 12 = talmy)

and then the farther operation mc,, to this gives (3.19) because ps — po = 0 and
p1— p2 # p1.
4. YOKOYAMA’S RESTRICTING OPERATION

Yokoyama’s restriction is the inverse of his extension and we have the following
theorem.

Theorem 4.1 (Restricting operation). Let (1.6) be a linearly irreducible Fuchsian
system of ONF. Under the notation in Theorem 3.8 we assume q = 2 and

(4.1) w1+ pe #F Apy (v=1,...,rp).
Then mcy, oT(pm)oMfO ____ 01 —piz) OVC— 1y (A1,...,A,) defines a linearly irreducible
Fuchsian system
. du .
4.2 I, —T)—= =4
(42) (33 )dx Y
of ONF, whose Riemann scheme is
T = 00 T =1 T=1p
[= 1) my—ny) 0)Gi—ny - O (—n,-1)
(4.3) [7'u2](m2—"p) [/\171](41,1) T P‘P—lvl](fp—l,l)
’ Ap1 — 1 — p2] (e, 1)
Py = b1 = p2)e,,) Pirdeny 0 Po-rmoil@nn, )

Here the rank of the resulting system equals n =n —np, =n; +---+np_1 and

t1l,, A e Ay p1
(4.4) T= , A= : : :
tp—llnp_l Ap—l,l e Ap—l,p—l
Proof. Suppose ¢ = 2. The operation M(ZZ),..‘,O,mfuz) omec_,, transforms (3.17) to
T = 00 r =1t T =1y T =1,
Olma)  [Oltn—ny=my) - [0)(n—rp -1 —m1) (11 = B2)(n—n,—m1)
Mg —mley o Pe—ra =l o1 = m2]e, )
M =l o Doty —malonn, o Porg = 12l

and the farther application mc,, o T(; o) to the above gives (4.3) because u; #
p1— 2 and pg # A, —po for v =1, ..., 7,, which corresponds to a system of ONF
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as is claimed in Lemma 2.4. Here we note that the rank of the resulting system
equals

mo— ((n—n1—m1) 4+ (n—np_1 —m1)+0— (p— 2)my)
=ni+-+np—@E—n+(p—1)(mi+ms)

=n—np.

Since the restricting operation defined in the theorem is the inverse of the extending
operation in Theorem 3.8, we have (4.4). O

Remark 4.2. Suppose (4.1) is not valid. If we apply F, with generic 7 € C to
the original system of ONF preceding to the restriction, the resulting restriction
satisfies (4.1). Note that mec, corresponding to the transformations of A, A;, and
pe to A+ 7, A\j, + 7 and pg + 7, respectively (cf. Corollary 3.4).

Remark 4.3. 1) The extension and restriction give transformations between linearly
irreducible systems of ONF. These operations do not change their indices of rigidity.

ii) The system (1.6) is called strongly reducible by [Yo] if there exists a non-
trivial proper subspace of C™ which is invariant under 7" and A. It is shown there
that if the system is not strongly reducible, this property is kept by these operations.

5. EQUIVALENCE OF ALGORITHMS

In this section the system (1.1) of SCF defined by A = (44,...,4,) € M(n,C)?
is identified with the system defined by B € M(n,C)? if A ~ B and then the
system is ONF if a representative of A has the form (1.9).

Proposition 5.1. Let A = (A1,...,Ap) € M(n,C)? with (2.8) and (2.9). Then
mex(A) is of ONF if and only if X is not the eigenvalue of Ay := —Ay —--- — A,.
In this case the corresponding system of ONF is given by (2.25).

Proof. Putting d = dimker A; + --- + dimker A, + dimker(4p — X) — (p — 1)n,
the rank of the system defined by mcy(A) equals n — d. Lemma 1.1 implies that
mcy(A) is of ONF if and only if Z§:1 (n — dimker A;) = n — d, which means
dimker(4g — A) = 0. O

Definition 5.2. We denote by EF , the extending operation of the system of ONF
given in Theorem 3.8 and by RP the restricting operation given in Theorem 4.1.
Then the restricting operation R? is defined by RP o T};, for j = 1,...,p. Here
(4,p) is the transposition of indices j and p (cf. Definition 3.6). Note that the
restricting operation is defined only when ¢ = 2.

We have proved that the extension and the restriction of the system of ONF is
realized by suitable combinations of additions, middle convolutions and the auto-
morphism of P*(C) written by T(;11,00) and T, (cf. Definition 3.6).

In fact, we have the following equalities for operations to linearly irreducible
systems (1.6) of ONF.

+1
(5.1) E517/72 = MCp, © M(p07~--»07pz—/71) ° T(erl’OO) O ME—ps>
(5:2) RP = mey, ° T(P»OO) © M(%w.,O,M*#z) O ME—pys
(53) Rp+1 ° Eg1ﬁp2 =id.

Here py and po € C are determined by
(5.4) (A—p1)(A—p2) =0.
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Lemma 5.3. We have the following relations for j =1,...,p.

+1
(5.5) R? °©Eeo Egl,P2 = MCprte© M(ZZJ>~-70,92—P170,~~70) ° T(j’oo) O MC—pys
i
(5.6) ord Rﬁ»’“ oE.oEP (A)=ordA +dimIm(A — p1)(A — pz) — dimIm Ay,
(5~7) R?'H o Ep1+e,P1+p2+p3+e © R§+1 oFEco Eﬁl,pz
:mclerEOM(% ) ©MC—p,.

y--0,p1+p3,0,...,0

J

Here p1 and py are any non-zero complex numbers and € is a generic complex
number (cf. Remark 4.2) and ord A denotes the rank of the corresponding system
(1.1) of SCF.

Proof. We may assume j = 1. It follows from (5.1) and (5.2) that

p+1 D
Ry oE.0 Ep1,p2
— p+1
= MCp,te © T(pt1,00) © M(O,A..,O,pl—pz) O MC_p;—¢ 0T (1 py1) O MCe

p+1

o o
MmCp, M(O7"'707p2_p1)

0 T(p41,00) © MC—p,

_ p+1 p+1

= MCpy+e © T(p+1’°°) © M(O,M’O,Plfpz) © T(l’p'H) © M(an,O’Pz*Pl) © T(p+1’oo)
©Me—p,

= me oT, o MPT! oT, oT, omc

- p1te (p+1,00) (p2—p1,0,...,0,p1 —p2) (1,p+1) (p+1,00) —pP1

_ P
= MCp, ye O M(p2—p1,0,...,0) 0 T(1,00) ©MC_p,
and therefore
p+1 D p+1 D
Rl o Ep1+e’p1+p2+p3+e °© Rl oEco EP1,P2

P
(p2+p3,0,...,0)

p
omep e M, 4, 0,..0)

=mcp,+e o M 0 T{(1,00) ©MC_p, —c

© T(1,00) © MC—p,

= Mpyre © MG 1o 0,...0) © MC=p1-
The equality (5.6) follows from Theorem 3.8 and Theorem 4.1. O

We show Riemann schemes related to (5.7).

Remark 5.4. By the extension E” g, We have

T =00 =1 s T =1p
Polmony  Olminy o [Olom, 0
[)‘0,2](m0,2) [)‘1;2](m1,2) [)‘%2}("‘;7,2) ~
Tr =00 xr =1 -T:tp+l
P‘Oal}(n*mo,z) [O](m1,1+n*m0,1*m0,2) [0](n)

[A0,2](n—mo 1) A12](mi 2) o [Xo3 — Aot — Ao ,2](mo 5)
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Here n = mj1 +mj2+--- and my 3 +--- +mp1 = (p — 1)n. By applying the
restriction RP™! o E, to this result we have

xr = 00 xr =1t x =19
[)‘OJ - 6} (m1,1—mo,2) [0](m1,1) [0](m2,1—m0,1—m0,2+m1,1) T

[Mo,2 = €lmi 1 —mo.1) [Mo,3 — Ao,1 — Ao,2 + €] (mog.5) [A2,2 + €]ma 5

M2+ Xo1 + Aoz — 6](m1,2)
A3+ X014 Aoz = €](m, 4

whose rank equals n — (mg 1 + mo 2 —m1,1). By applying the extending operation
B e Aa—doi—A to what we obtained we have
0,11¢€, 1,2 0,1 0,2F¢€

xr = 00 xr =1

D\O,l - 6](n—mo,17mo,2+m1,1*m1,2) [0]("7m0~1+m1117m1’2)
A2 + Aot + A0,2 = €] (n—mg.1) [Mo,3 — Ao,1 — A0,2 + €] (mg.5)
[)\0,4 —Xo,1 — Ao,2 + 6](7n0,4)

xr = t2 e xr = tp+1
[0](71*27"0,1*m0,2+m1,1*m1,2+m2,1) [Ol(n*m0,1*m0,2+m1,1)

[A2.2 + €] (ms.2) o [=2X00 = A2+ € my  —mo 1)
: A3 —A1,2 = Ao,1 + €] (my 5)

and by applying the restriction Rf“ to this result we finally have

T =00 T=1 T =t2
[Ao.1 = €]mo,1-a) [0 (my,1) [0](ma,1—a)
Moz + 20,1 +A1,2 = €(mg)  [F220,1 = A2 + €l (my 1 —mo1) 22,2 F €l(ma.0)
[Xo3 + Aot + A2 — 6](m013) M3 — A2 — Ao+ 6](m113) .
o4+ Aot +A12 = €(moq)  [Aa— A2 = Xo,1 + €m0

with d = mo,1 —Mi11 -+ mi.2.

Theorem 5.5. Suppose A = (Aq,...,A,) € M(n,C)P is irreducible and suppose
B = (By,...,B,) € M(n,C)? is obtained from A by a finite iteration of additions,
middle convolutions and operations T(, o) and Ty in Definition 3.6.

Let a and (3 be generic complex numbers so that mco(A) and meg(B) are of
ONF. Then mcg(B) can be obtained from mcq(A) by a finite iteration of the suitable
operations R?‘H oE.oED ., namely, extensions, restrictions and generic Euler
transformations. Here o = 0 is generic if A is of ONF.

Proof. The theorem follows from Lemma 5.3 since Ré’“ o Eb i =T(oo)s Liig) =

T5,00) L (i,00) © T ,00), My oMy = My, meyxomey = mexgn and meg = id. U

6. REDUCTION PROCESS

For the system (1.1) of SCF the spectral type of A = (A4,...,A,) denoted by
spt A is the tuple of p + 1 partitions of n

(6.1) SPtA i=m = (M0,1,- -, M0, M1, M ngs - 5Mp 1y Mpn,)
under the notation (2.6). This tuple may be expressed by

(6.2) mO,l e m07n07 m171 e m].,’l’bl e 7mp,1 e mp)np
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and in this case (2.3) shows

(6.3) idxA= Y m?,—(p—1)(ordA).
1<v<n;
0<j<p

We put n; =1 and m;; =ordm :=mg + - - + Mg p, if j > p. Moreover we put
mjy = 0 lfj > nj.

For p + 1 non-negative integers 7 = (79, ..., 7,) we define
(6.4) A () = o+ + 1y — (p— 1) ord A
and 7(m) = (7(m)o, ..., 7(m),) so that
(6.5) M 7(m), = My v=1,...,n;, 7=0,...,p).

Moreover we put
(66) dmax(m) = d‘r(m) (III)
Suppose A is irreducible. Put
(6.7) MCmax(A) 1= MECX 7 (m)o++Ap,r(m)p © M(*Al,ﬂm)l»~~~ﬁ/\p,r<m>p)(A)

under the notation (2.6). If n > 1, then Theorem 2.2 proves

)

(6.8) spt Memaz(A) = Omae(m) := (... m;-’l, . ,m;-’n]_; o)
m;-’l, =My, — dmax(M)0y, +(m), v=1,...,n;, 7=0,...,p)
(6.9) ord Oppar(m) = ordm — dypa,(m).

If A is rigid, namely, idx m = 2, then we have d,4,(m) > 0 because

p oy P
idxm + Z Z(mjﬂ' — M) My, = (Z mj -, — (p—1)ord m) -ordm
§=0

j=0v=1

and thus we have ord mcqa.(A) < ord A. Hence if the system of SCF is linearly
irreducible and rigid, the system is connected to a rank 1 system by a finite iteration
of additions and middle convolutions and conversely any linearly irreducible system
of SCF is constructed from a rank 1 system by a finite iteration of additions and
middle convolutions (cf. [Kz], [Ko], [DR], [02]).

Since any rank 1 system is transformed into ONF by a suitable addition, The-
orem 5.5 implies the following theorem, which is given in [Yo, Theorem 4.6] when
the parameters \; , and u; are generic.

Theorem 6.1. Any linearly irreducible rigid system of ONF is connected to a rank
1 system of ONF by a finite iteration of extensions, restrictions and generic Euler
transformations.

Remark 6.2. i) For a given A € M(n,C)P, if there exists j with dpez(Spt A) >
M 7 (spt A);» A is not irreducible. This is a consequence of Theorem 3.8.

ii) It follows from Proposition 5.1 that memax(A) is not of ONF for any linearly
irreducible system (1.1) of SCF.

iii) In virtue of Lemma 6.3 a more explicit construction of the reduction pro-
cess within ONF using extensions, restrictions and generic Euler transformations
is obtained as follows.

Put m = spt(A) for a linearly irreducible system (1.6) of ONF. Assume that
m satisfies the assumption of Lemma 6.3 and A;; = 0 for j = 1,...,p. Then
Lemma 6.3 assures that we can find j > 1 with

(6.10) mo,1 — My 1 +Mmj2 > 0
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because diq, (M) = mo,1. Applying the operation (5.7) with p1 = o1, p2 = Ao2
and p3 = A1 2, it follows from Remark 5.4 that the resulting A’ satisfies

(6.11) ord A’ =ord A —mg1 +mj1 —mj2 < ord A.

iv) The existence of j > 1 satisfying (6.10) is given by [Yo, Lemma 4.2] when
the rigidity index of the system of ONF equals 2. Note that any linearly irreducible
rigid system of SCF with rank > 1 always satisfies the assumption of Lemma 6.3.

Lemma 6.3. Let m be a spectral type of a linearly irreducible system (1.1) of SCF
with ordm > 1. Put m’ = O,00(m). We may assume mjq > mjo > -+ > Mjn,; -
If dpmaz(m) > 0 and dper(m’) > 0, then

p
(6.12) > max{0, dpas (M) = (M1 —mj2)} > dyas(m).
=0
Proof. Put d = dpqaq(m). Since max{mj,,...,m}, } = max{m;2,m;1 — d}, the

assumption implies

P
Zmax{mjﬁg,ij —d}>(p—1)ordm’ = (p—1)(n —d).
§=0

Hence we have

> max{d — (mj1 —m;2),0} > (p—1)(n—d) — Y (mj1 —d)
j=0

j=1
=p-1)(n—-d) —(p—-1n+pd=d O

A linearly irreducible system (1.1) of SCF satisfying dnq.(spt A) < 0 is called
basic, which is not rigid and not of ONF. It is known that the basic systems of
SCF with different spectral types cannot be connected by any iteration of middle
convolutions, additions, T} o and T,,. Moreover there exist a finite number of basic
systems with a fixed index of rigidity and an indivisible spectral type (cf. [CB], [02,
Proposition 8.1]). Here m = (...;mj1,...,Mjpn;;...) is indivisible if there doesn’t
exist a non-trivial common divisor of {m;,;j = 0,1,..., v = 1,2,...} and two
tuples are identified if a permutation of indices j and permutations of indices v
within the same j transform one of the two into the other.

It is shown by [CB] that the basic systems with a given index of rigidity corre-
spond to the positive imaginary roots with a fixed norm in the closure of a negative
Weyl chamber of a Kac-Moody root system with a star-shaped Dynkin diagram
(cf. [Kc], [02, §7]). Any linearly irreducible system of SCF which is not rigid is
connected to a basic system by an iteration of mc,,., and therefore we have the
following theorem.

Theorem 6.4. By a finite iteration of extensions, restrictions and generic Fuler
transformations, any linearly irreducible system of ONF which is not rigid is con-
nected to a system of ONF transformed by a middle convolution of a basic system
of SCF (cf. Proposition 5.1).

We will give some examples.

Example 6.5. There exist 4 different spectral types of basic systems with index
of rigidity 0 (cf. [Ko2], [02, Proposition 8.1]):
type || ord | basic system || ord | ONF

D, | 2 11111111 3 | 111,21,21,21
Eg || 3 [111,111,111 4 | 1111,211,211
E; || 4 1111111122 || 5 | 11111,2111,32
Es || 6 |111111,222,33 ] 7 |1111111,322,43
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The following is the list of spectral types of basic systems with index of rigidity

—2 (cf. [O2, Proposition 8.4]):

ord | basic system ord | ONF

2| 11,11,11,11,11 41 211,31,31,31,31

3 111,111,21,21 4| 1111,211,31,31

41 1111,22,22,31 5 11111,32,32,41

4| 1111,1111,211 5| 11111,2111,311

41 211,22,22,22 6 | 2211,42,42,42 222,411,42,42

5| 11111,221,221 6| 111111,321,321

5| 11111,11111,32 6| 111111,21111,42

6| 111111,2211,33 7 [ 1111111,3211,43

6 | 2211,222,222 8 | 22211,422,422 2222422 4211
8 | 11111111,332,44 | 9| 111111111,432,54

8 | 22211,2222,44 10 | 222211,4222,64  22222,42211,64
10 | 22222.3331,55 12 | 222222,5331,75

12 | 2222211,444,66 14 | 22222211,644,86

Here we give the spectral types of systems of ONF with minimal rank corre-
sponding to a basic system, which are not necessarily unique but transformed to
each other by suitable iterations of extensions, restrictions and generic Euler trans-
formations.

Definition 6.6. For a (p + 1)-tuple m = (m;,) of partitions of n we put

(6.13) Oidxm := (p—1)-ordm — Or%lg%(p .
0<j<p
J#k

We define that m is of Okubo type if Oidxm = 0.

max{mj,l, mjo,.. }

Remark 6.7. Let m be the spectral type of a linearly irreducible system (1.1) of
SCF. Then Oidxm > 0. Moreover it follows form Lemma 1.10 and Remark 1.2
that the system is equivalent to a system of ONF after applying a suitable addition
(and Ty, o) if and only if Oidxm = 0.

If m is basic, then Oidx m > 0 and there exists a system of ONF with the minimal
rank ordm + Oidx m among the systems obtained from the original system (1.1)
by a finite iteration of additions and middle convolutions (cf. Proposition 5.1).
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