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§ 1. Introduction

Middle convolutions introduced by Katz [Kz] and extensions and restrictions intro-
duced by Yokoyama [Yo2] give interesting transformations between Fuchsian systems
on the Riemannian sphere. The transformations are invertible, the solutions of the
systems are transformed by integrable transformations and the correspondence of their
monodromy groups can be concretely described (cf. [Ko], [Ha], [HY], [DG2], [HF] etc.).

In this note we review the Deligne-Simpson problem, a combinatorial structure of
middle convolutions and their relation to a Kac-Moody root system pointed out by
Crawley-Boevey [CB]. We show with examples that the Fuchsian systems with a fixed
number of accessory parameters are transformed into finite number of basic systems
by middle convolutions. In the last section we give an explicit connection formula for
solutions of Fuchsian differential equations without moduli.

The author thanks Y. Haraoka, A. Kato, H. Ochiai, K. Okamoto, H. Sakai and T.
Yokoyama since the discussions with them enabled the author to write this note.

§ 2. Tuples of partitions

Let m =
(
mj,ν

)
j=0,1,...
ν=1,2,...

be an ordered set of infinite number of non-negative integers

indexed by non-negative integers j and positive integers ν. Then m is called a (k + 1)-
tuple of partitions of n if the following two conditions are satisfied.

∞∑
ν=1

mj,ν = n (j = 0, 1, . . .),(2.1)
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mj,1 = n (j = k + 1, k + 2, . . .).(2.2)

The totality of (k + 1)-tuples of partitions of n are denoted by P(n)
k+1 and we put

Pk+1 :=
∞⋃

n=0

P(n)
k+1, P(n) :=

∞⋃
k=0

P(n)
k+1, P :=

∞⋃
k=0

Pk+1,(2.3)

ordm := n if m ∈ P(n),(2.4)

1 := (1, 1, . . .) =
(
mj,ν = δν,1

)
j=0,1,...
ν=1,2,...

∈ P(1),(2.5)

idx(m,m′) :=
k∑

j=0

∞∑
ν=1

mj,νm′
j,ν − (k − 1) ordm · ordm′ (m, m′ ∈ Pk+1).(2.6)

Here ordm is called the order of m. For m, m′ ∈ P and a non-negative integer p, pm
and m + m′ ∈ P are naturally defined. For m ∈ P(n)

k+1 we choose integers n0, . . . , nk so
that mj,ν = 0 for ν > nj and j = 0, . . . , k and we will sometimes express m as

m = (m0,m1, . . . ,mk)

= m0,1, . . . , m0,n0 ; . . . ; mk,1, . . . , mk,nk

= m0,1 · · ·m0,n0 , m1,1 · · ·m1,n1 , . . . , mk,1 · · ·mk,nk

if there is no confusion. Similarly m = (m0,1, . . . , m0,n0) if m ∈ P1. Here

mj = (mj,1, . . . , mj,nj
) and ordm = mj,1 + · · ·+ mj,nj

(0 ≤ j ≤ k).

For example m = (mj,ν) ∈ P(4)
3 with m1,1 = 3 and m0,ν = m2,ν = m1,2 = 1 for

ν = 1, . . . , 4 will be expressed by

(2.7) m = 1, 1, 1, 1; 3, 1; 1, 1, 1, 1 = 1111, 31, 1111 = 14, 31, 14.

Definition 2.1. A tuple of partition m ∈ P is called monotone if

(2.8) mj,ν ≥ mj,ν+1 (j = 0, 1, . . . , ν = 1, 2, . . .)

and m is called indivisible if the greatest common divisor of {mj,ν} equals 1.

Let S∞ be the restricted permutation group of the set of indices {0, 1, 2, 3, . . .} =
Z≥0, which is generated by the transpositions (j, j + 1) with j ∈ Z≥0. Put S′

∞ := {σ ∈
S∞ ; σ(0) = 0}, which is isomorphic to S∞.

Definition 2.2. The transformation groups S∞ and S′
∞ of P are defined by

S∞ := H � S′
∞, S′

∞ :=
∞∏

j=0

Gi, Gi � S′
∞, H � S∞,

m′
j,ν = mσ(j),σj(ν) (j = 0, 1, . . . , ν = 1, 2, . . .)

(2.9)

for g = (σ, σ1, . . .) ∈ S∞, m = (mj,ν) ∈ P and m′ = gm.
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§ 3. Conjugacy classes of matrices

For m = (m1, . . . , mN ) ∈ P(n)
1 and λ = (λ1, . . . , λN ) ∈ CN we define a matrix

L(m; λ) ∈M(n, C) as follows, which is introduced and effectively used by [Os]:
If m is monotone, then

L(m; λ) :=
(
Aij

)
1≤i≤N
1≤j≤N

, Aij ∈M(mi, mj , C),

Aij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

λiImi
(i = j)

Imi,mj
:=
(
δμν

)
1≤μ≤ni
1≤ν≤nj

=

⎛⎝Imj

0

⎞⎠ (i = j − 1)

0 (i �= j, j − 1)

.

(3.1)

Here Imi
denote the identity matrix of size mi and M(mi, mj, C) means the set of

matrices of size mi ×mj with components in C and M(m, C) := M(m, m, C).
For example

(3.2) L(2, 1, 1; λ1, λ2, λ3) =

⎛⎜⎜⎜⎝
λ1 0 1 0
0 λ1 0 0
0 0 λ2 1
0 0 0 λ3

⎞⎟⎟⎟⎠ .

If m is not monotone, fix a permutation σ of {1, . . . , N} so that (mσ(1), . . . , mσ(N))
is monotone and put L(m; λ) = L(mσ(1), . . . , mσ(N); λσ(1), . . . , λσ(N)).

When λ1 = · · · = λN = μ, L(m; λ) may be simply denoted by L(m, μ).
We denote A ∼ B for A, B ∈M(n, C) if and only if there exists g ∈ GL(n, C) with

B = gAg−1. If A ∼ L(m; λ), m is called the spectral type of A and denoted by spt A.

Remark. i) If m = (m1, . . . , mN ) ∈ P(n)
1 is monotone, we have

(3.3) A ∼ L(m; λ) ⇔ rank
k∏

ν=1

(A− λν) = n− (m1 + · · ·+ mk) (k = 0, 1, . . . , N).

ii) For μ ∈ C put

(3.4) (m; λ)μ = (mi1 , . . . , miK
, μ) with {i1, . . . , iK} = {i ; λi = μ}.

Then we have

(3.5) L(m; λ) ∼
⊕
μ∈C

L
(
(m; λ)μ

)
.
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iii) Suppose m is monotone. Then for μ ∈ C

(3.6)
L(m, μ) ∼

m1⊕
j=1

J
(
max{ν ; mν ≥ j}, μ),

J(k, μ) := L(1k, μ) ∈M(k, C). (Jordan cell)

iv) For A ∈M(n, C) we put ZM(n,C)(A) := {X ∈M(n, C) ; AX = XA}. Then

(3.7) dim ZM(n,C)

(
L(m; λ)

)
= m2

1 + m2
2 + · · · .

Note that the Jordan canonical form of L(m; λ) is easily obtained by (3.5) and
(3.6). For example L(2, 1, 1, μ) ∼ J(3, μ)⊕ J(1, μ).

Lemma 3.1. Let A(t) be a continuous map of [0, 1) to M(n, C). Suppose there
exists a partition m = (m1, . . . , mN ) of n and continuous function λ(t) of (0, 1) to
CN so that A(t) ∼ L

(
m; λ(t)

)
for any t ∈ (0, 1). If dim ZM(n,C)

(
A(t)

)
is constant for

t ∈ [0, 1), then A(0) ∼ L
(
m; limt→0 λ(t)

)
.

Proof. The proof is reduced to the result (cf. Remark 20) in [Os] but a more
elementary proof will be given. First note that limt→0 λ(t) exists.

We may assume that m is monotone. Fix μ ∈ C and put {i1, . . . , iK} = {i; λi(0) =
μ} with 1 ≤ i1 < i2 < · · · < iK ≤ N . Then

rank
(
A(0)− μ

)k ≤ rank
k∏

ν=1

(
A(t)− λiν

(t)
)

= n− (mi1 + · · ·+ mik
).

Putting m′
ik

= rank
(
A(0)− μ

)k−1 − rank
(
A(0)− μ

)k, we have

mi1 ≥ mi2 ≥ · · · ≥ miK
> 0, m′

i1
≥ m′

i2
≥ · · · ≥ m′

iK
≥ 0,

mi1 + · · ·+ mik
≤ m′

i1
+ · · ·+ m′

ik
(k = 1, . . . , K).

Then the following lemma and the equality
∑

m2
i =

∑
(m′

i)
2 imply mi = m′

i.

Lemma 3.2. Let m and m′ ∈ P1 are monotone and satisfy

(3.8) m1 + · · ·+ mj ≤ m′
1 + · · ·+ m′

j (j = 1, 2, . . .).

If m �= m′, then
∞∑

j=1

m2
j <

∞∑
j=1

(m′
j)

2.
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Proof. Let K be the largest integer with mK �= 0. Let p be the smallest integer j

such that the inequality in (3.8) holds. Note that the lemma is clear if p ≥ K.
Suppose p < K. Then m′

p > 1. Let q and r be the smallest integers satisfying
m′

p > m′
q+1 and m′

p − 1 > m′
r. Then mp < m′

q and the inequality in (3.8) holds for
k = p, . . . , r − 1 because mk ≤ mp ≤ m′

r−1.

m′
1, . . . , m

′
p−1, m

′
p, . . . , m

′
q , m

′
q+1, . . . , m

′
r−1, m

′
r= = > > ≥ ≥

m1, . . . , mp−1, mp, . . . , mq , mq+1, . . . , mr−1, mr

Here p ≤ q < r ≤ K + 1. Put

m′′
j = m′

j − δj,q + δj,r.

Then m′′ is monotone,
∑

(m′′
j )2 < (

∑
m′

j)
2 and m1 + · · ·+ mj ≤ m′′

1 + · · ·+ m′′
j (j =

1, 2, . . .). Thus we have the lemma by the induction on the lexicographic order of the
triplet (K − p, m′

p, q) for a fixed m.

Proposition 3.3. Let A(t) be a real analytic function of (−1, 1) to M(n, C) such
that dimZg

(
A(t)

)
doesn’t depend on t. Then there exist a partition m = (m1, . . . , mN )

of n and a continuo functions λ(t) = (λ1(t), . . . , λN (t)) of (−1, 1) satisfying

(3.9) A(t) ∼ L
(
m; λ(t)

)
.

Proof. We find cj ∈ (−1, 1), monotone m(j) ∈ P(n)
1 and real analytic functions

λ(j)(t) = (λ(j)
1 (t), . . .) on (cj , cj+1) such that

cj−1 < cj < cj+1, lim
±j→∞

cj = ±1, A(t) ∼ L
(
m(j); λ(j)(t)

)
(∀t ∈ Ij).

Lemma 3.1 assures that we may assume λ(j)(t) is continuous on the closure Īj of Ij

and A(t) ∼ L
(
m(j); λ(j)(t)

)
for t ∈ Īj . Hence m(j) doesn’t depend on j, which we

denoted by m. We can inductively define transformations σ±j of indices {1, . . . , N}
for j = 1, 2, . . . so that σ0 = id, mσ±j(p) = mp for p = 1, . . . , N and moreover that(
λ

(ν)
σν(1)(t), . . . , λ

(ν)
σν(N)(t)

)
for −j ≤ ν ≤ j define a continuous function on (c−j , cj+1).

Remark. Suppose that dim ZM(n,C)

(
A(t)

)
is constant for a continuous map A(t)

of (−1, 1) to M(n, C). For c ∈ (−1, 1) we can find tj ∈ (−1, 1) and m ∈ P(1) such that
limj→∞ tj = c and spt A(tj) = m. The proof of Lemma 3.1 shows spt A(c) = m. Hence

(3.10) spt A(t) doesn’t depend on t ⇔ dimZM(n,C)(A) doesn’t depend on t.

It is easy to show that Proposition 3.3 is valid even if “real analytic” is replaced by
“continuous” but it is not true if “real analytic” and “(−1, 1)” are replaced by “holo-
morphic” and “{t ∈ C ; |t| < 1}”, respectively. The matrix A(t) = ( 0 1

t 0 ) is a counter
example.



6 Toshio Oshima

§ 4. Deligne-Simpson problem

For simplicity we put g = M(n, C) and G = GL(n, C) only in this section.
Let A = (A0, . . . , Ak) ∈ gk+1. Put

M(n, C)k+1
0 := {(C0, . . . , Ck) ∈ gk+1 ; C0 + · · ·+ Ck = 0},(4.1)

Zg(A) := {X ∈ g ; [Aj, X ] = 0 (j = 0, . . . , k)}.(4.2)

A tuple of matrices A ∈ gk+1 is called irreducible if any subspace V ⊂ Cn satisfying
AjV ⊂ V for j = 0, . . . , k is {0} or Cn.

Suppose trace(A0 + · · · + Ak) = 0. The additive Deligne-Simpson problem is to
determine the condition to A for the existence of an irreducible B = (B0, . . . , Bk) ∈
M(n, C)k+1

0 satisfying Aj ∼ Bj for j = 0, . . . , k. The condition is concretely given by
[CB] (cf. [Ko]).

Suppose A ∈ M(n, C)k+1
0 . Then A is called rigid if A ∼ B for any element

B = (B0, . . . , Bk) ∈ M(n, C)k+1
0 satisfying Bj ∼ Aj for j = 0, . . . , k. Here we denote

A ∼ B if there exists g ∈ G with (B0, . . . , Bk) = (gA0g
−1, . . . , gAkg

−1).

Remark. Note that the local monodromy at ∞ of the Fuchsian system

(4.3)
du

dz
=

k∑
j=1

Aj

z − zj
u

on a Riemannian sphere corresponds to A0 with A = (A0, . . . , Ak) ∈M(n, C)k+1
0 . Then

the quotient M(n, C)k+1
0 /∼ classifies the Fuchsian systems.

Under the identification of g with its dual space by the symmetric bilinear form
〈X, Y 〉 = trace XY for (X, Y ) ∈ g2, the dual map of adA : X �→ [A, X ] of g equals
− adA and therefore adA(g) is the orthogonal compliment of ker adA under the bilinear
form:

(4.4) adA(g) := {[A, X ] ; X ∈ g} = {X ∈ g ; trace XY = 0 (∀Y ∈ Zg(A))}.

For A = (A0, . . . , Ak) ∈ gk+1 we put

πA : Gk+1 → g

∈ ∈

(g0, . . . , gk) �→∑k
j=0 gjAjg

−1
j

The image of πA is a homogeneous space Gk+1/H of Gk+1 with

H := {(g0, . . . , gk) ∈ Gk+1 ;
k∑

j=0

gjAjg
−1
j =

k∑
j=0

Aj}
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and the tangent space of the image at A0 + · · ·+ Ak is isomorphic to

k∑
j=0

adAj
(g) =

{
X ∈ g ; trace XY = 0

(∀Y ∈ Zg(A) :=
k⋂

j=0

Zg(Aj)
)}

.

Hence the dimension of the manifold
∑k

j=0 adAj
(g) equals n2−dim Zg(A) and therefore

the dimension of H equals kn2 + dimZg(A). Since the manifold

(4.5) ÕA := {(C0, . . . , Ck) ∈ gk+1 ; Cj ∼ Aj and
∑

Cj =
∑

Aj}

is naturally isomorphic to H/
(
ZG(A0) × · · · × ZG(Ak)

)
, its dimension equals kn2 +

dim Zg(A)−∑k
j=0 dim Zg(Aj). Note that the dimension of the manifold

(4.6) OA :=
⋃
g∈G

(gA0g
−1, . . . , gAkg

−1) ⊂ gk+1

equals n2 − dim Zg(A).
Suppose A ∈M(n, C)k+1

0 . Then ÕA ⊃ OA and we have

Proposition 4.1. dim ÕA−dim OA = (k−1)n2−
k∑

j=0

dim Zg(Aj)+2 dim Zg(A).

Definition 4.2. The index of rigidity idxA of A is introduced by [Kz]:

idxA :=
k∑

j=0

dimZg(Aj)− (k − 1)n2 = 2n2 −
k∑

j=0

dim{gAjg
−1 ; g ∈ G},

PidxA := dim Zg(A) + 1
2(k − 1)n2 − 1

2

k∑
j=0

dimZg(Aj) = dim Zg(A)− 1
2 idxm.

Note that PidxA ≥ 0 and dim{gAjg
−1 ; g ∈ G} are even.

Corollary 4.3. dim ÕA−dimOA and idxA are even and idxA ≤ 2 dimZg(A).

Note that if A is irreducible, dim Zg(A) = 1.
The following result is fundamental.

Theorem 4.4 ([Kz]). Suppose A ∈ M(n, C)k+1
0 is irreducible. Then idxA = 2

if and only if A is rigid, namely, ÕA = OA.

§ 5. Middle convolutions

We will review the additive middle convolutions in the way interpreted by [DG]
and [DG2].
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Definition 5.1 ([DG]). Fix A = (A0, . . . , Ak) ∈ M(n, C)k+1
0 . The addition

M ′
μ(A) ∈ gk+1 of A with respect to μ′ ∈ Ck is (A0−μ′

1−· · ·−μ′
k, A1+μ′

1, . . . , Ak +μ′
k).

The convolution (G0. . . . , Gk) ∈M(kn, C)k+1
0 of A with respect to λ ∈ C is defined by

Gj =
(
δp,j(Aq + δp,qλ)

)
1≤p≤k
1≤q≤k

(j = 1, . . . , k)(5.1)

=

⎛⎜⎜⎝
j
�

j ) A1 A2 · · · Aj + λ Aj+1 · · · Ak

⎞⎟⎟⎠,

G0 = −(G1 + · · ·+ Gk).(5.2)

Put K = {t(v1, . . . , vk) ; vj ∈ ker Aj (j = 1, . . . , k)} and L = ker G0. Then K and L
are Gj-invariant subspaces of Ckn and we define Ḡj := Gj |Ckn/(K+L) ∈ End(Cn′

) �
M(n′, C) with n′ = kn− dim(K + L). The middle convolution mcλ(A) ∈ M(n′, C)k+1

0

of A with respect to λ is defined by mcλ(A) := (Ḡ0, . . . , Ḡk).

The conjugacy classes of Ḡj in the above definition are given in [DG2], which is
simply described using the normal form in §3 (cf. Proposition 3.3):

Theorem 5.2 ([DG], [DG2]). For A = (A0, A1, . . . , Ak) ∈M(n, C)k+1
0 and μ =

(μ0, . . . , μk) ∈ Ck+1 put

mcμ := M−μ′ ◦mc|μ| ◦M−μ′ ,

μ′ := (μ1, . . . , μk), |μ| := μ0 + μ1 + · · ·+ μk.
(5.3)

Assume the following conditions (which are satisfied if n > 1 and A is irreducible):⋂
1≤j≤k

j �=i

ker(Aj − μj) ∩ ker(A0 − τ) = {0} (i = 1, . . . , k, ∀τ ∈ C)(5.4)

∑
1≤j≤k

j �=i

Im(Aj − μj) + Im(A0 − τ) = Cn (i = 1, . . . , k, ∀τ ∈ C)(5.5)

Then A′ := mcμ(A) satisfies (5.4) and (5.5) with replacing −μj by +μj and

(5.6) idxA′ = idxA.

If A is irreducible, so is A′. If |μ| = 0, then A′ ∼ A. If A ∼ B, then mcμ(A) ∼
mcμ(B). Moreover we have

mc(−μ̄0,−μ′) ◦mc(μ0, μ′)(A) ∼M2μ′ ◦mc(2μ0−μ̄0−|μ|, μ′)(A),(5.7)

mc−μ ◦mcμ(A) ∼ A.(5.8)
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Choose m ∈ P(n)
k+1 and λj,ν ∈ C so that

(5.9) Aj ∼ L
(
mj ; λj) with mj := (mj,1, . . . , mj,nj

) and λj := (λj,1, . . . , λj,nj
).

Denoting Ij := {ν ; λj,ν = μj} and putting

�j =

⎧⎨⎩min
{
p ∈ Ij ; mp = max{mν ; ν ∈ Ij}

}
(Ij �= ∅)

nj + 1 (Ij = ∅)
,(5.10)

d�(m) := m0,�0 + m1,�1 + · · ·+ mk,�k
− (k − 1)n,(5.11)

m′
j,ν := mj,ν − δ�j ,ν · d�(m),(5.12)

λ′
j,ν :=

⎧⎨⎩λj,ν + |μ| − 2μj (ν �= �j)

−μj (ν = �j)
,(5.13)

we have A′
j ∼ L(m′

j ; λ
′
j) (j = 0, . . . , k) if |μ| �= 0.

Example 5.3. Suppose λi, μj and τk are generic. Starting from A = (−λ1 −
λ2, λ1, λ2) ∈ M(1, C)30, we have the following list of eigenvalues of the matrices under
the application of middle convolutions to A (cf. hypergeometric family in Example 6.1):

1, 1, 1 (H1) ←→ 11, 11, 11 (H2 : 2F1)←→ 111, 111, 12 (H3 : 3F2){
−λ1 − λ2 λ1 λ2

}
mcμ0,μ1,μ2−−−−−−−→{

−λ1 − λ2 − μ0 + μ1 + μ2 λ1 + μ0 − μ1 + μ2 λ2 + μ0 + μ1 − μ2

−μ0 −μ1 −μ2

}
mcτ0,τ1,−μ2−−−−−−−−→⎧⎪⎨⎪⎩

−λ1 − λ2 − μ0 + μ1 − τ0 + τ1 λ1 + μ0 − μ1 + τ0 − τ1 λ2 + μ0 + μ1 + τ0 + τ1

−μ0 − τ0 + τ1 − μ2 −μ1 + τ0 − τ1 − μ2 μ2

−τ0 −τ1 μ2

⎫⎪⎬⎪⎭
Here the eigenvalues are vertically written. Note that the matrices are semisimple if
the parameters are generic. Denoting A′ = (A′

0, A
′
1, A

′
2) = mcμ0,μ1,μ2(A) and A′′ =

(A′′
0 , A′′

1 , A′′
2) = mcτ0,τ1,−μ2(A

′), we have

A′
0 ∼ L(1, 1;−λ1 − λ2 − μ0 + μ1 + μ2,−μ0),

A′
j ∼ L(1, 1; λj + μ0 + μ1 + μ2 − 2μj ,−μj) (j = 1, 2),

(5.14)

A′′
2 ∼ L(1, 2; λ2 + μ0 + μ1 + τ0 + τ1, μ2), etc.(5.15)

Then Theorem 5.2 implies that the irreducible rigid A = (A′
0, A

′
1, A

′
2) ∈ M(2, C)30

satisfying (5.14) exists if and only if λ1 �= μ1, λ2 �= μ2, λ1+λ2+μ0 �= 0 and μ0+μ1+μ2 �=
0. Moreover all the irreducible rigid A ∈M(2, C)30 are obtained in this way.
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Definition 5.4. Under the notation in Theorem 5.2 the tuple of partitions m ∈
P(n)

k+1 is called the spectral type of A and denotes by spt(A) = m.

A tuple of partitions m ∈ P(n)
k+1 is called realizable if there exists A ∈M(n, C)k+1

0

such that (5.9) holds for a generic λj,ν satisfying the condition

(5.16)
k∑

j=0

nj∑
ν=1

mj,νλj,ν = 0.

A realizable m is called irreducibly realizable if for a generic λj,ν satisfying (5.16) there
exists an irreducible A ∈ M(n, C)k+1

0 with (5.9). An irreducibly realizable m is called
rigid if idxm := idx(m,m) = 2, namely, the corresponding irreducible A is rigid.

For m ∈ P and � = (�0, . . . , �k) ∈ Zk+1
≥1 we define ∂�(m) = m′ by (5.11) and (5.12)

and define s(m) the unique monotone element in S′∞m and moreover

∂(m) := ∂(1,1,...)(m) = ∂1(m),(5.17)

∂max(m) := ∂�(m) with �j = min
{
ν ; mj,ν = max{mj,1, mj,2, . . .}

}
.(5.18)

Under the notation (5.18) and (5.9) we put

(5.19) mcmax(A) := mcλ�0 ,λ�1 ,...(A).

Remark. i) If m ∈ P is irreducibly realizable, m is indivisible ([Ko], [CB]).

ii) Suppose m is irreducibly realizable. Then mc�(m) ∈ Pk+1 if #{(j, ν) ; mj,ν >

0 and ν �= �j} > 1. Moreover if A ∈ M(n, C)k+1
0 is a generic element satisfying (5.9)

and μ is generic under the condition μj = λj,�j
for any �j satisfying mj,�j

> 0, mcμ(A) ∈
M(n, C)k+1 is a generic element with the spectral type ∂�(m).

iii) Let A ∈M(n, C)k+1
0 with spectral type m. Let (�0, �1, . . . ) with �j ∈ Z>0 and

�ν = 1 for ν > k. Define 1� = (m′
j,ν) ∈ P(1) by m′

j,ν = δj,�j
. Then

idxA = idxm := idx(m,m),(5.20)

d�(m) = idx(m, 1�).(5.21)

Theorem 5.5. i) ([Kz]) Let A ∈ M(n, C)k+1
0 and put m = sptA. Then A

is irreducible and rigid if and only if n = 1 or mcmax(A) is irreducible and rigid and
ord ∂max(m) < n. Hence if A is irreducible and rigid, A is constructed by succes-
sive applications of suitable middle convolutions mcμ in Theorem 5.2 to an element of
M(1, C)k+1

0 .

ii) ([Ko], [CB]) An indivisible m ∈ P is irreducibly realizable if and only if one of
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the flowing three conditions holds.

ordm = 1(5.22)

m is basic, namely, m is indivisible and ord∂max(m) ≥ ordm(5.23)

∂max(m) ∈ P is well-defined and irreducibly realizable.(5.24)

Note that ∂�(m) ∈ P is well-defined if and only if mj,�j
≥ d�(m) for j = 0, 1, . . ..

Example 5.6. Successive applications of s ◦ ∂ to monotone elements of P:
411, 411, 42, 33 15−2·6=3−→ 111, 111, 21 4−3=1−→ 11, 11, 11 3−2=1−→ 1, 1, 1 (rigid)
211, 211, 1111 5−4=1−→ 111, 111, 111 3−3=0−→ 111, 111, 111 (realizable, not rigid)
211, 211, 211, 31 9−8=1−→ 111, 111, 111, 21 5−6=−1−→ 211, 211, 211, 31 (realizable, not rigid)
22, 22, 1111 5−4=1−→ 21, 21, 111 5−3=2−→ × (not realizable)
The numbers on the above arrows are d(1,1,... )(m) = m0,1 + · · ·+mk,1− (k− 1) · ordm.

§ 6. Rigid tuples

Let R(n)
k denotes the totality of rigid tuples in P(n)

k (cf. Definition 5.4). Put Rk =⋃∞
n=1R(n)

k , R(n) =
⋃∞

k=1R(n)
k and R =

⋃∞
n=1Rk. We will identify elements of R if they

are in the same S∞-orbit (cf. Definition 2.2) and then R̄ denotes the set of elements
of R under this identification. Similarly we denote R̄k and R̄(n) for Rk and R(n),
respectively, with this identification.

Example 6.1. i) The list of m ∈ R̄(n) with m0 = 1n is given by Simpson [Si]:

1n, 1n, n− 11 (hypergeometric family) 12m, mm, mm− 11 (even family)

12m+1, m + 1m, mm1 (odd family) 111111, 222, 42 (extra case)

ii) We show other examples and the numbers of elements of R̄(n).

Table R̄(n) (2 ≤ n ≤ 7)
2:11,11,11 3:111,111,21 3:21,21,21,21

4:1111,1111,31 4:1111,211,22 4:211,211,211

4:211,22,31,31 4:22,22,22,31 4:31,31,31,31,31

5:11111,11111,41 5:11111,221,32 5:2111,2111,32

5:2111,221,311 5:221,221,221 5:221,221,41,41

5:221,32,32,41 5:311,311,32,41 5:32,32,32,32

5:32,32,41,41,41 5:41,41,41,41,41,41 6:111111,111111,51

6:111111,222,42 6:111111,321,33 6:21111,2211,42

6:21111,222,33 6:21111,222,411 6:21111,3111,33

6:2211,2211,33 6:2211,2211,411 6:2211,222,51,51

6:2211,321,321 6:2211,33,42,51 6:222,222,321

6:222,3111,321 6:222,33,33,51 6:222,33,411,51
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6:3111,3111,321 6:3111,33,411,51 6:321,321,42,51

6:321,33,51,51,51 6:321,42,42,42 6:33,33,33,42

6:33,33,411,42 6:33,411,411,42 6:33,42,42,51,51

6:411,411,411,42 6:411,42,42,51,51 6:51,51,51,51,51,51,51

7:1111111,1111111,61 7:1111111,331,43 7:211111,2221,52

7:211111,322,43 7:22111,22111,52 7:22111,2221,511

7:22111,3211,43 7:22111,331,421 7:2221,2221,43

7:2221,2221,61,61 7:2221,31111,43 7:2221,322,421

7:2221,331,331 7:2221,331,4111 7:2221,43,43,61

7:31111,31111,43 7:31111,322,421 7:31111,331,4111

7:3211,3211,421 7:3211,322,331 7:3211,322,4111

7:3211,331,52,61 7:322,322,322 7:322,322,52,61

7:322,331,511,61 7:322,421,43,61 7:322,43,52,52

7:331,331,43,61 7:331,331,61,61,61 7:331,43,511,52

7:4111,4111,43,61 7:4111,43,511,52 7:421,421,421,61

7:421,421,52,52 7:421,43,43,52 7:421,43,511,511

7:421,43,52,61,61 7:43,43,43,43 7:43,43,43,61,61

7:43,43,61,61,61,61 7:43,52,52,52,61 7:511,511,52,52,61

7:52,52,52,61,61,61 7:61,61,61,61,61,61,61,61

R(n)
k : rigid k-tuples of partitions with order n

ord #R̄3 #R̄ ord #R̄3 #R̄ ord #R̄3 #R̄
2 1 1 15 1481 2841 28 114600 190465
3 1 2 16 2388 4644 29 143075 230110
4 3 6 17 3276 6128 30 190766 310804
5 5 11 18 5186 9790 31 235543 371773
6 13 28 19 6954 12595 32 309156 493620
7 20 44 20 10517 19269 33 378063 588359
8 45 96 21 14040 24748 34 487081 763126
9 74 157 22 20210 36078 35 591733 903597

10 142 306 23 26432 45391 36 756752 1170966
11 212 441 24 37815 65814 37 907150 1365027
12 421 857 25 48103 80690 38 1143180 1734857
13 588 1177 26 66409 112636 39 1365511 2031018
14 1004 2032 27 84644 139350 40 1704287 2554015

§ 7. A Kac-Moody root system

We will review the relation between a Kac-Moody root system and the middle
convolution which is clarified by [CB].

Let h be an infinite dimensional real vector space with the set of basis Π, where

(7.1) Π = {α0, αj,ν ; j = 0, 1, 2, . . . , ν = 1, 2, . . .}.
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Put

(7.2) Q :=
∑
α∈Π

Zα ⊃ Q+ :=
∑
α∈Π

Z≥0α.

We define an indefinite inner product on h by

(α|α) = 2 (α ∈ Π),

(α0|αj,ν) = −δν,1,

(αi,μ|αj,ν) =

⎧⎨⎩0 (i �= j or |μ− ν| > 1)

−1 (i = j and |μ− ν| = 1)
.

(7.3)

Let g∞ denote the Kac-Moody Lie algebra associated to the Cartan matrix

A :=
(

2(αi|αj)
(αi|αi)

)
i,j∈I

,(7.4)

I := {0, (j, ν) ; j = 0, 1, . . . , ν = 1, 2, . . .}.(7.5)

We introduce linearly independent vectors e0 and ej,ν (j = 0, 1, . . . , ν = 1, 2, . . .) with

(7.6) (e0|e0) = 2, (e0|ej,ν) = −δν,1 and (ej,ν |ej′,ν′) = δj,j′δν,ν′ .

For a sufficiently large positive integer k let hk be a subspace of h spanned by
{α0, αj,ν ; j = 0, 1, . . . , k, ν = 0, 1, . . .}. Putting ek

0 = e0 + e0,1 + · · · + ek,1, we have
(ek

0 |ek
0) = 2+(k +1)−2(k +1) = 1−k. For a sufficiently large k we have an orthogonal

basis {ek
0 , ej,ν ; j = 0, . . . , k, ν = 1, 2, . . .} with

(ek
0 |ek

0) = 1− k, (ej,ν |ej′,ν′) = δj,j′δν,ν′ ,

(ek
0 |ej,ν) = 0 (j = 0, . . . , k, ν = 1, 2, . . .)

(7.7)

and therefore we may put

α0 = e0 = ek
0 − e0,1 − e1,1 − · · · − ek,1,

αj,ν = ej,ν − ej,ν+1 (j = 0, . . . , k, ν = 1, 2, . . .).
(7.8)

The element

(7.9) α0(�0, . . . , �k) := ek
0 −

k∑
j=0

�j+1∑
ν=1

ej,ν

�j + 1

is in the space spanned by α0 and αj,ν (j = 0, . . . , k, ν = 1, . . . , �j) and it is orthogonal
to any αj,ν for ν = 1, . . . , �j and j = 0, . . . , k.
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Remark. We may assume �0 ≥ �1 ≥ · · · ≥ �k ≥ 1. It is easy to have

(
α0(�0, . . . , �k)|α0(�0, . . . , �k)

)
= 1− k +

k∑
j=0

1
�j + 1⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

> 0 (k = 1)

> 0 (k = 2 : �1 = �2 = 1 or (�0, �1, �2) = (2, 2, 1), (3, 2, 1) or (4, 2, 1))

= 0 (k = 2 : (�0, �1, �2) = (2, 2, 2), (3, 3, 1) or (5, 2, 1))

< 0 (k = 2 : �1 ≥ 2 and �0 + 2�1 + 3�2 > 12)

= 0 (k = 3 : �0 = �1 = �2 = �3 = 1)

< 0 (k = 3 : �0 > 1)

< 0 (k ≥ 4)

The Weyl group W∞ of g∞ is the subgroup of O(h) ⊂ GL(h) generated by the
simple reflections

(7.10) ri(x) := x− 2
(x|αi)
(αi|αi)

αi = x− (x|αi)αi (x ∈ h, i ∈ I).

A subgroup of W∞ generated by ri for i ∈ I \{0} is denoted by W ′
∞. Putting σ(α0) = α0

and σ(αj,ν) = ασ(j),ν for σ ∈ S∞, we define a subgroup of O(h):

(7.11) W̃∞ := S∞ � W∞.

For a tuple of partitions m =
(
mj,ν

)
j≥0, ν≥1

∈ P(n)
k+1 of n, we define

nj,ν := mj,ν+1 + mj,ν+2 + · · · ,

αm := nα0 +
∞∑

j=0

∞∑
ν=1

nj,ναj,ν = nek
0 −

∞∑
j=0

∞∑
ν=1

mj,νej,ν ∈ Q+.
(7.12)

Proposition 7.1. i) idx(m,m′) = (αm|αm′).

ii) Given i ∈ I, we have αm′ = ri(αm) with

m′ =

⎧⎪⎨⎪⎩
∂m (i = 0),

(m0,1 . . . , mj,1 . . .
ν
�

mj,ν+1

ν+1
�

mj,ν . . . , . . . )
(
i = (j, ν)

)
.

Moreover for � = (�0, �1, . . .) ∈ Z∞
>0 satisfying �ν = 1 for ν � 1 we have

α� := α1�
= α0 +

∞∑
j=0

�j−1∑
ν=1

αj,ν =
(∏

j≥0

rj,�j−1 · · · rj,2rj,1

)
(α0),(7.13)

α∂�(m) = αm − 2
(αm|α�)
(α�|α�)

α� = αm − (αm|α�)α�.(7.14)
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Proof. i) For a sufficiently large positive integer k we have

idx(m,m′) =
∞∑

j=0

∞∑
ν=1

mj,νm′
j,ν − (k − 1) ordm · ordm′

=
k∑

j=1

(n− nj,1)(n′ − n′
j,1) +

k∑
j=0

∞∑
ν=1

(nj,ν − nj,ν+1)(n′
j,ν − n′

j,ν+1)− (k − 1)nn′

= 2nn′ + 2
k∑

j=0

nj,νn′
j,ν −

k∑
j=0

(nn′
j,1 + n′nj,1)−

k∑
j=0

∞∑
ν=1

(nj,νn′
j,ν+1 + n′

j,νnj,ν+1)

= (αm|αm′).

The claim ii) easily follows from i).

Remark ([Kc]). The set Δre of real roots of the Kac-Moody Lie algebra is the
W∞-orbit of Π. Denoting K := {β ∈ Q+ ; supp β is connected and (β, α) ≤ 0 (∀α ∈
Π)}, the set of positive imaginary roots Δim

+ equals W∞K. The set Δ of roots equals
Δre ∪ Δim by denoting Δim

− = −Δim
+ and Δim = Δim

+ ∪ Δim
− . Put Δ+ = Δ ∩ Q+,

Δ− = −Δ+. Then Δ = Δ+ ∪ Δ−. The root in Δ is called positive if and only if
α ∈ Q+. Here supp β = {α ; nα �= 0} if β =

∑
α∈Π nαα. A subset L ⊂ Π is called

connected if the decomposition L1 ∪L2 = L with L1 �= ∅ and L2 �= ∅ always implies the
existence of vj ∈ Lj satisfying (v1|v2) �= 0.

Lemma 7.2. i) Let α = nα0+
∞∑

j=0

∞∑
ν=1

nj,ναj,ν ∈ Δ+ with supp α � {α0}. Then

n ≥ nj,1 ≥ nj,2 ≥ nj,3 ≥ · · · (j = 0, 1, . . .),(7.15)

n ≤
∑

nj,1 −max{nj,1, nj,2, . . .}.(7.16)

ii) Let α = nα0 +
∞∑

j=0

∞∑
ν=1

nj,ναj,ν ∈ Q+. Suppose α is indivisible, that is, 1
kα /∈ Q

for k = 2, 3, . . .. Then α corresponds to a basic tuple if and only if

(7.17)

{
2nj,ν ≤ nj,ν−1 + nj,ν+1 (nj,0 = n, j = 0, 1, . . . , ν = 1, 2, . . .),

2n ≤ n0,1 + n1,1 + n2,1 + · · · .

Proof. The lemma is clear from the following for α = nα0 +
∑

nj,ναj,ν ∈ Δ+:

ri,μ(α) = nα0 −
∑(

nj,ν − δi,jδμ,ν(2nj,μ − nj,μ−1 − nj,μ+1)
)
αj,ν ∈ Δ,(7.18)

r0(α) =
(∑

nj,1 − n
)
α0 +

∑
nj,ναj,ν ∈ Δ.(7.19)
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For example, putting nj,0 = n > 0 and ri,N · · · ri,μ+1ri,μα = nα0 +
∑

n′
j,ναj,ν ∈ Δ+

for a sufficiently large N , we have n′
j,N = nj,N + nj,μ−1 − nj,μ = nj,μ−1 − nj,μ ≥ 0 for

μ = 1, 2, . . . and moreover (7.16) by r0α ∈ Δ+.

Remark. i) It follows from (7.14) that Katz’ middle convolution corresponds to
the reflection with respect to the root α� under the identification P ⊂ Q+ with (7.12).

Moreover there is a natural correspondence between the set of irreducibly realizable
tuples of partitions and the set of positive indivisible roots of g∞ with support containing
α0. Then the rigid (resp. irreducibly realizable non-rigid) tuple of partitions corresponds
to the positive real root whose support contains α0 (resp. indivisible positive imaginary
root). The corresponding objects with this identification are as follows.

P Kac-Moody root system

m αm (cf. (7.12))
m : rigid α ∈ Δre

+ : suppα � α0

m : basic α ∈ Q+ : (α|β) ≤ 0 (∀β ∈ Π)
(cf. (5.23)) indivisible and supp α is connected

m : irreducibly realizable α ∈ Δ+ : indivisible and supp α � α0

ordm n0 : α = n0α0 +
∑

j,ν nj,ναj,ν

idx(m,m′) (αm|αm′)
Pidx(m) + Pidx(m′) = Pidx(m + m′) (αm|αm′) = −1

(ν, ν + 1) ∈ Gj ⊂ S′
∞ (cf. (2.9)) sj,ν ∈W ′

∞ (cf. (7.10))
∂ in (5.17) r0 in (7.19)

H � S∞ (cf. (2.9)) S∞ in (7.11)

〈∂, S∞〉 (cf. Definition 2.2) W̃∞ in (7.11)

Here we define Pidx(m) := 1
2 − idx(m) as in Definition 4.2.

ii) For an irreducibly realizable m ∈ P, ∂(m) is defined if and only if ordm > 1
or
∑∞

j=0 mj,2 > 1, which corresponds to (5.4).

iii) Suppose m ∈ P is basic. The subgroup of W∞ generated by reflections with
respect to α� (cf. (7.13)) satisfying (αm|α�) = 0, is infinite if and only if idxm = 0.

Note that the condition (αm|α�) = 0 means the corresponding middle convolution
of A with sptA = m doesn’t change the partition type.

Proposition 7.3. For irreducibly realizable m ∈ P and m′ ∈ R satisfying

(7.20) ordm > idx(m,m′) · ordm′,

we have

m′′ := m− idx(m,m′)m′ is irreducibly realizable,(7.21)
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idxm′′ = idxm.(7.22)

Here (7.20) is always valid if m is not rigid.

Proof. The claim corresponds to the fact that an indivisible root transforms into
an indivisible root by the reflection with respect to a real root.

§ 8. A classification of tuples of partitions

In this section we assume that a (k + 1)-tuple m =
(
mj,ν

)
0≤j≤k
1≤ν≤nj

of partitions of a

positive integer satisfies

(8.1) mj,1 ≥ mj,2 ≥ · · · ≥ mj,nj
≥ 1 and nj ≥ 2 (j = 0, 1, . . . , k).

Note that
mj,1 + mj,2 + · · ·+ mj,nj

= ordm ≥ 2 (j = 0, 1, . . . , k).

Proposition 8.1. Let K denote the totality of basic elements of P defined in
(5.23) and for an even integer p put

K(p) := {m ∈ K ; idxm = p}.

Then #K(p) <∞. In particular K(p) = ∅ if p > 0 and

(8.2) K̄(0) = {11, 11, 11, 11 111, 111, 111 22, 1111, 1111 33, 222, 111111} .

Here K̄(p) denotes the quotient of K(p) under the action of the group S∞.

Proof. It follows from the previous section that K corresponds to the set of indi-
visible roots in K under the notation in the remark preceding to Lemma 7.2 and the
middle convolution corresponds to an element of W∞. Since K is the set of complete
representatives of Δim

+ , we have the last claim of the proposition.
Let m ∈ K ∩ Pk+1. We may assume that m is monotone and indivisible. Since

(8.3) idxm +
k∑

j=0

nj∑
ν=2

(mj,1 −mj,ν) ·mj,ν =
( k∑

j=0

mj,1 − (k − 1) ordm
)
· ordm,

the assumption m ∈ K is equivalent to

(8.4)
k∑

j=0

nj∑
ν=2

(mj,1 −mj,ν) ·mj,ν ≤ − idxm.
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Hence idxm ≤ 0.
First suppose idxm = 0. Then mj,1 = mj,2 = · · · = mj,nj

and the identity

(8.5)
k∑

j=0

nj∑
ν=1

(mj,1 −mj,ν)mj,ν

(ordm)2
+

k∑
j=0

mj,1

ordm
= k − 1 +

idxm
(ordm)2

implies
∑k

j=0
1

nj
= k − 1. Since

∑k
j=0

1
nj
≤ k+1

2
, we have k ≤ 3. When k = 3, we have

n0 = n1 = n2 = n3 = 2. When k = 2, 1
n0

+ 1
n1

+ 1
n2

= 1 and we easily conclude that
{n0, n1, n2} equals {3, 3, 3} or {2, 4, 4} or {2, 3, 6}.

Since idxm = 2(ordm)2 −∑k
j=0 Nj with Nj = (ordm)2 −∑nj

ν=0 m2
j,ν > 0, there

exist finite number of m ∈ P with a fixed ordm and idxA because k is bounded.
Therefore to prove the remaining part of the lemma we may assume

(8.6) idxm ≤ −2 and ordm ≥ −7 idxm + 7.

Then

(8.7) ordm ≥ 21 and (ordm)2 > −147 idxm.

If mj,1 > mj,nj
> 0, (8.4) implies mj,1 − 1 ≤ − idxm ≤ 1

7 ordm− 1 and therefore

mj,1 ≤ 1
7

ordm,(8.8)
nj∑

ν=1

m2
j,ν ≤ mj,1 · ordm ≤ 1

7
(ordm)2.(8.9)

Hence 2mj,1 ≤ ordm for j = 0, . . . , k,

idxm + (k − 1) · (ordm)2 =
k∑

j=0

nj∑
ν=1

m2
j,ν ≤

k∑
j=0

1
2
(ordm)2 =

k + 1
2

(ordm)2

and k−3
2

(ordm)2 ≤ − idxm < 1
7

ordm, which proves k ≤ 3.
Suppose k = 3. Since m �= 11, 11, 11, 11, we have mj,1 ≤ 1

3
ordm with a suitable j,

idxm =
3∑

j=0

nj∑
ν=1

m2
j,ν − 2 · (ordm)2 ≤

3∑
j=0

mj,1 ordm− 2(ordm)2

≤ ( 1
2 + 1

2 + 1
2 + 1

3 − 2)(ordm)2 = −1
6 (ordm)2

and ordm ≤ −6 idxm
ordm

≤ −2
7

idxm, which contradicts to (8.6).
Suppose k = 2 and put J = {j ; mj,1 �= mj,nj

(j = 0, 1, 2)}. Then

1 +
idxm

(ordm)2
=

∑n0
ν=1 m2

0,ν

(ordm)2
+

∑n1
ν=1 m2

1,ν

(ordm)2
+

∑n2
ν=1 m2

2,ν

(ordm)2
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and therefore
1− 1

147
− #J

7
<

∑
j∈{0,1,2}\J

1
nj

< 1

because of (8.9) for j ∈ J . Lemma 8.2 assures that this never holds. Here we note that
1 − 1

147 − 3
7 > 0, 1 − 1

147 − 2
7 > 1

2 , 1 − 1
147 − 1

7 > 5
6 and 1 − 1

147 > 41
42 according to

#J = 3, 2, 1, 0, respectively.

Lemma 8.2. Put Ik+1 =
{∑k

j=0
1
nj

; nj ∈ {2, 3, 4, . . .}
}
∩ [0, 1). Then

I1 ⊂ (0, 1
2 ], I2 ⊂ (0, 5

6 ] and I3 ⊂ (0, 41
42 ].

Proof. Let r ∈ Ik+1. It is clear that r ≤ 1
2 for r ∈ I1.

Let r = 1
n0

+ 1
n1
∈ I2. If n0 = 2, then n1 ≥ 3 and r ≤ 5

6 . If n0 ≥ 3, then r ≤ 2
3 .

Let r = 1
n0

+ 1
n1

+ 1
n2
∈ I3. We may assume n0 ≤ n1 ≤ n2.

If n0 ≤ 4, then r ≤ 3
4 .

Suppose n0 = 3. If n1 ≥ 4, r ≤ 5
6 . If n1 = 3, then n2 ≥ 4 and r ≤ 11

12 .
Suppose n0 = 2. Then n1 ≥ 3. If n1 = 3, then n2 > 6 and r ≤ 41

42
. If n1 ≥ 4, then

n2 > 4 and r ≤ 19
20

.

Remark. i) K̄(0) is given in [Ko2] and its elements correspond to the indivisible
positive null-roots α of the affine root systems D̃4, Ẽ6, Ẽ7 and Ẽ8 (cf. Remark after
(7.9), Proposition 7.1 and Table K̄(0)).

ii) In the proof we showed ordm + 7 idxm ≤ 6 for m ∈ K but we can prove

ordm + 3 idxm ≤ 6 for m ∈ K,(8.10)

ordm + idxm ≤ 2 for m ∈ K \ P3.(8.11)

Example 8.3. For a positive integer m we have special 4 elements

(8.12)
mm− 11, m2, m2, m2 m2m− 11, m3, m3

m3m− 11, m4, (2m)2 m5m− 11, (2m)3, (3m)2

in K̄(2− 2m) with orders 2m, 3m, 4m and 6m, respectively.

Proposition 8.4. We have

K̄(−2) =
{
11, 11, 11, 11, 11 21, 21, 111, 111 31, 22, 22, 1111 22, 22, 22, 211

211, 1111, 1111 221, 221, 11111 32, 11111, 11111 222, 222, 2211

33, 2211, 111111 44, 2222, 22211 44, 332, 11111111 55, 3331, 22222

66, 444, 2222211
}
.
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Proof. Let m ∈ K(−2)∩Pk+1 be monotone. Then (8.4) and (8.3) with idxm = −2
implies

∑
(mj,1 −mj,ν)mj,ν = 0 or 2 and we have the following 5 possibilities.

(A) m0,1 . . .m0,n0 = 2 . . .211 and mj,1 = mj,nj
for 1 ≤ j ≤ k.

(B) m0,1 . . .m0,n0 = 3 . . . 31 and mj,1 = mj,nj
for 1 ≤ j ≤ k.

(C) m0,1 . . .m0,n0 = 3 . . .32 and mj,1 = mj,nj
for 1 ≤ j ≤ k.

(D) mi,1 . . .mi,n0 = 2 . . .21 and mj,1 = mj,nj
for 0 ≤ i ≤ 1 < j ≤ k.

(E) mj,1 = mj,nj
for 0 ≤ j ≤ k and ordm = 2.

Case (A). If 2 · · ·211 is replaced by 2 · · ·22, m is transformed into m′ with idxm′ =
0. If m′ is indivisible, m′ ∈ K(0) and m is 211, 14, 14 or 33, 2211, 16. If m′ is not
indivisible, 1

2m
′ ∈ K(0) and m is one of the tuples given in (8.12) with m = 2.

Put m = n0 − 1 and examine the identity (8.5).
Case (B). 9m+1

(3m+1)2
+ 1

n1
+ · · · + 1

nk
= k − 1 − 2

(3m+1)2
. Since nj ≥ 2, 1

2
k − 1 ≤

9m+1+2
(3m+1)2

= 3
3m+1

< 1 and k ≤ 3.
If k = 3, we have m = 1, ordm = 4, 1

n1
+ 1

n2
+ 1

n3
= 5

4 , {n1, n2, n3} = {2, 2, 4} and
m = 31, 22, 22, 1111.

Assume k = 2. Then 1
n1

+ 1
n2

= 1− 3
3m+1 and Lemma 8.2 implies m ≤ 5. We have

1− 3
3m+1 = 13

16 , 10
13 , 7

10 , 4
7 and 1

4 according to m = 5, 4, 3, 2 and 1, respectively. Hence
we have m = 3, {n1, n2} = {2, 5} and m = 3331, 55, 22222.

Case (C). 9m+4
(3m+2)2

+ 1
n1

+ · · · + 1
nk

= k − 1 − 2
(3m+2)2

. Since nj ≥ 2, 1
2
k − 1 ≤

9m+4+2
(3m+2)2

= 3
3m+2

< 1 and k ≤ 3. If k = 3, then m = 1, ordm = 5 and 1
n1

+ 1
n2

+ 1
n3

= 7
5
,

which never occurs.
Thus we have k = 2, 1

n1
+ 1

n2
= 1− 3

3m+2 and Lemma 8.2 implies m ≤ 5. We have
14
17 , 11

14 , 8
11 , 5

8 and 2
5 according to m = 5, 4, 3, 2 and 1, respectively. Hence we have

m = 1 and n1 = n2 = 5 and m = 32, 11111, 11111 or m = 2 and n1 = 2 and n2 = 8 and
m = 332, 44, 11111111.

Case (D). 2(4m+1)
(2m+1)2 + 1

n2
+· · ·+ 1

nk
= k−1− 2

(2m+1)2 . Since nj ≥ 3 for j ≥ 2, we have

k−1 ≤ 3
2

2(4m+2)
(2m+1)2 = 6

2m+1 and m ≤ 2. If m = 1, then k ≤ 3 and 1
n2

+ 1
n3

= 2− 4
3 = 2

3 and
we have m = 21, 21, 111, 111. If m = 2, then k = 2, 1

n2
= 1− 4

5 and m = 221, 221, 11111.

Case (E). Since
∑k

j=0 2mj,1 − 4(k − 1) = −2, we have mj,1 = 1, k = 4 and
m = 11, 11, 11, 11, 11.

By the aid of a computer we have the following tables.

Table of #K̄(p) for the rigidity indices p.

index 0 −2 −4 −6 −8 −10 −12 −14 −16 −18 −20
#K̄(p) 4 13 36 67 90 162 243 305 420 565 720

# triplets 3 9 24 44 56 97 144 163 223 291 342
# 4-tuples 1 3 9 17 24 45 68 95 128 169 239
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Table of (ordm : m) of K̄(−4) (∗ corresponds to (8.12) and + means ∂max(m) �= m))
+2:11,11,11,11,11,11 3:111,21,21,21,21 4:22,22,22,31,31

+3:111,111,111,21 +4:1111,22,22,22 4:1111,1111,31,31

4:211,211,22,22 4:1111,211,22,31 *6:321,33,33,33

6:222,222,33,51 +4:1111,1111,1111 5:11111,11111,311

5:11111,2111,221 6:111111,222,321 6:111111,21111,33

6:21111,222,222 6:111111,111111,42 6:222,33,33,42

6:111111,33,33,51 6:2211,2211,222 7:1111111,2221,43

7:1111111,331,331 7:2221,2221,331 8:11111111,3311,44

8:221111,2222,44 8:22211,22211,44 *9:3321,333,333

9:111111111,333,54 9:22221,333,441 10:1111111111,442,55

10:22222,3322,55 10:222211,3331,55 12:22221111,444,66

*12:33321,3333,66 14:2222222,554,77 *18:3333321,666,99

We write the root αm for m ∈ K̄(0) and K̄(−2) using Dynkin diagram.

Table K̄(0)

1 2 1

1

1

2 4 6 5 4 3 2 1

3

1 2 3 4 3 2 1

2

1 2 3 2 1

2

1

Table K̄(−2)
Dotted circles mean simple roots which are not orthogonal to the root.

12·

11

1

1

2 4 2
·

1

2

2

1 2 3 2 1

1·

1·

1
·

4 3 2 1

2

2

2 4 6 4 2
·

1

4

2

1 2 3 4 3 2 1

2·

1
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1
·

3 5 4 3 2 1

3

1·

2 4 6 8 6 4 2
·

1

4

1
·

4 7 10 8 6 4 2

5

1 2 3 4 5 4 3 2 1

2·

1 2
·

4 6 5 4 3 2 1

3

4 8 12 10 8 6 4 2
·

1

6

2
·

5 8 7 6 5 4 3 2 1

4

§ 9. Connection problems

Fix m =
(
mj,ν

)
j=0,...,k

ν=1,...,nj

∈ P(n)
k+1 in this section. For λj,ν ∈ C and μ ∈ C we put

{λm} :=

⎧⎪⎪⎨⎪⎪⎩
[λ0,1](m0,1) · · · [λk,1](mk,1)

...
...

...
[λ0,n0 ](m0,n0) · · · [λk,nk

](mk,nk
)

⎫⎪⎪⎬⎪⎪⎭ , [μ](p) :=

⎛⎜⎜⎜⎜⎝
μ

μ + 1
...

μ + p− 1

⎞⎟⎟⎟⎟⎠ .

We may identify {λm} with an element of M(n, k + 1, C).
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Definition 9.1. A tuple m ∈ Rk+1 is a rigid sum of m′ and m′′ if

(9.1) m = m′ + m′′ and m′, m′′ ∈ Rk+1

and we express this by m = m′ ⊕m′′, which we call a rigid decomposition of m.

Theorem 9.2. i) Fix k + 1 points {z0, . . . , zk} ⊂ C ∪ {∞} and m ∈ Rk+1.
Assume λj,ν ∈ C are generic under the Fuchs relation |{λm}| = 0 with

|{λm}| :=
k∑

j=0

nj∑
ν=0

mj,νλj,ν − ordm + 1.(9.2)

Then there uniquely exists a single Fuchsian differential equation Pu = 0 of order n

with regular singularities at {z0, . . . , zk} such that the set of exponents at zj is equal
to that of components of the (j + 1)-th column of {λm} and moreover that the local
monodromies are semisimple at zj for j = 0, . . . , k.

ii) Assume k = 2, m0,n0 = m1,n1 = 1 and mj,ν > 0 for ν = 1, . . . , nj and
j = 0, 1, 2. Let c(λ0,n0� λ1,n1) denote the connection coefficient from the normalized
local solution of Pu = 0 in i) corresponding to the exponent λ0,n0 at z0 to the normalized
local solution corresponding to the exponent λ1,n1 at z1. Then

c(λ0,n0�λ1,n1) =

n0−1∏
ν=1

Γ
(
λ0,n0 − λ0,ν + 1

) · n1−1∏
ν=1

Γ
(
λ1,ν − λ1,n1

)
∏

m′⊕m′′=m
m′

0,n0
=m′′

1,n1
=1

Γ
(|{λm′}|) ,(9.3)

∑
m′⊕m′′=m

m′
0,n0

=m′′
1,n1

=1

m′
j,ν = (n1 − 1)mj,ν − δj,0(1− n0δν,n0

) + δj,1(1− n1δν,n1
)(9.4)

(0 ≤ j ≤ 2, 1 ≤ ν ≤ nj).

Remark. i) Putting (j, ν) = (0, n0) in (9.4) or considering the sum
∑

ν for (9.4)
with j = 1, we have

#{m′ ; m′ ⊕m′′ = m with m′
0,n0

= m′′
0,n1

= 1} = n0 + n1 − 2,(9.5) ∑
m′⊕m′′=m

m′
0,n0

=m′′
1,n1

=1

ordm′ = (n1 − 1) ordm.(9.6)

ii) We may consider {λm} as a Riemann scheme of the Fuchsian equation with
the condition that the local monodromy at the singular point is semisimple for generic
λj,ν under the Fuchs condition. The equation for a non-generic λj,ν is defined by the
analytic continuation. The corresponding Riemann scheme will be denoted by P{λm}.
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iii) A proof of this theorem and related results will be given in another paper. The
proof is a generalization of that of Gauss summation formula for Gauss hypergeometric
series due to Gauss, which doesn’t use integral representations of the solutions.

iv) In the theorem the condition k = 2 means that there exists no geometric
moduli in the Fuchsian equation and we may assume (z0, z1, z2) = (0, 1,∞). By the
transformation of the solutions u �→ z−λ0,n0 (1 − z)−λ1,n1 u we may moreover assume
λ0,n0 = λ1,n1 = 0. Then the meaning of “normalized local solution” is clear under the
condition m0,n0 = m1,n1 = 1.

v) By the aid of a computer the author obtained the table of the concrete con-
nection coefficients (9.3) for ordm ≤ 40 together with checking (9.4), which contains
4,111,704 cases.
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