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ON THE UNIFORM SIMPLICITY OF DIFFEOMORPHISM
GROUPS
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Abstract. We show the uniform simplicity of the identity component
Diffr(Mn)0 of the group of Cr diffeomorphisms Diffr(Mn) (1 ≤ r ≤ ∞,

r �= n + 1) of the compact connected n-dimensional manifold Mn with handle
decomposition without handles of the middle index n/2. More precisely, for
any elements f and g of such Diffr(Mn)0 \{id}, f can be written as a product
of at most 16n+28 conjugates of g or g−1, which we denote by f ∈ (Cg)16n+28.

We have better estimates for several manifolds. For the n-dimensional sphere
Sn, for any elements f and g of Diffr(Sn)0 \ {id} (1 ≤ r ≤ ∞, r �= n + 1),
f ∈ (Cg)12, and for a compact connected 3-manifold M3, for any elements f
and g of Diffr(M3)0 \ {id} (1 ≤ r ≤ ∞, r �= 4), f ∈ (Cg)44.
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1. Introduction

In 1947, Ulam and von Neumann ([22]) announced the following theorem.

Theorem 1.1 (Ulam-von Neumann [22]). The group of orientation preserving
homeomorphisms of the 2-dimensional sphere S2 is a simple group. Moreover there
is a positive integer N such that for any orientation preserving homeomorphisms
f and g of S2, f can be written as a product of N conjugates of g if g is not the
identity.

In 1958, Anderson ([1]) showed the following theorem.

Theorem 1.2 (Anderson [1]). Let Homeo(Sn)0 denote the identity component of
the group of homeomorphisms of the n-dimensional sphere Sn. For n = 1, 2, 3 and
for elements f and g ∈ Homeo(Sn)0 \{id}, f can be written as a product of at most
6 conjugates of g or g−1.

In 1960, Fisher ([5]) showed that for a compact connected manifold Mn of dim
n ≤ 3, Homeo(Mn)0 is a simple group.

1



2 TAKASHI TSUBOI

Here, a group G is said to be simple if G contains no nontrivial proper normal
subgroups. Equivalently, G is simple if, for f ∈ G and g ∈ G\{e}, f can be written
as a product of conjugates of g or g−1.

In 1970, Epstein ([4], [2]) showed that for certain groups such as the group of
Cr diffeomorphisms (r ≤ ∞) where we can apply the fragmentation technique, the
perfectness implies the simplicity.

Here a group G is said to be perfect if the abelianization of G is a trivial group.
Equivalently, G is perfect if any element of G can be written as a product of
commutators.

For a manifold Mn, let Diffr(Mn) denote the group of Cr diffeomorphisms of
Mn, and Diffr

c(M
n), the group of Cr diffeomorphisms of Mn with compact support

(1 ≤ r ≤ ∞). Here the support supp(f) of a diffeomorphism f of Mn is defined to
be the closure of {x ∈ Mn

∣∣ f(x) �= x}. Let Diffr(Mn)0 and Diffr
c(M

n)0 denote the
identity components of Diffr(Mn) and Diffr

c(M
n) with respect to the Cr topology,

respectively ([2]).
Herman-Mather-Thurston ([7], [10], [11], [15], [2]) showed the perfectness of the

identity component Diffr
c(M

n)0 of the group of Cr diffeomorphisms (1 ≤ r ≤ ∞,
r �= n + 1) of an n-dimensional manifold Mn with compact support, which implies
the simplicity of the group when Mn is connected.

For g ∈ G, let Cg denote the union of the conjugate classes of g and of g−1. Then
G is simple if G =

⋃∞
k=1(Cg)k for any element g ∈ G \ {e}. For a simple group G,

we can define an interesting distance function on the set {Cg

∣∣ g ∈ G \ {e}} by

d(Cf , Cg) = log min{k ∣∣ Cf ⊂ (Cg)k and Cg ⊂ (Cf )k}.

Definition 1.3. We say that G is uniformly simple if there is a positive integer N

such that, for f ∈ G and g ∈ G \ {e}, f can be written as a product of at most N

conjugates of g or g−1: G =
⋃N

k=1(Cg)k.

In other words, G is uniformly simple if the distance function d on {Cg

∣∣ g ∈
G \ {e}} is bounded.

There are simple groups which are not uniformly simple. For example, the direct
limit A∞ of the alternate groups An, the identity component of the group of volume
preserving diffeomorphisms with compact support of Rn (n ≥ 3), etc.

If an infinite group is uniformly simple, then it is uniformly perfect. Here a
group G is said to be uniformly perfect if there is a positive integer N such that
any element f ∈ G can be written as a product of at most N commutators. By
using the results of Herman-Mather-Thurston ([7], [10], [11], [15], [2]), we showed
in [21] the uniform perfectness of Diffr(Mn)0 (1 ≤ r ≤ ∞, r �= n + 1) for the
compact n-dimensional manifold Mn with handle decomposition without handles
of the middle index n/2.
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We show in this paper, the uniform simplicity of the identity component
Diffr(Mn)0 (1 ≤ r ≤ ∞, r �= n+1) of the group of diffeomorphisms of the compact
connected n-dimensional manifold Mn with handle decomposition without handles
of the middle index n/2. This uniform simplicity (in particular, the estimates on
the number of conjugates) follows from certain improvement of the proof in [21] of
the uniform perfectness of Diffr(Mn)0 (see also Remark 3.4).

Our results in this paper are as follows.

Theorem 1.4. For the n-dimensional sphere Sn (n ≥ 1), for any elements f and
g of Diffr(Sn)0 \ {id} (1 ≤ r ≤ ∞, r �= n + 1), f can be written as a product of at
most 12 conjugates of g or g−1.

For a handle decomposition, let c be the order of the set of indices which appears
as the indices of handles in the handle decomposition. In the following theorems,
for a manifold Mn, c(Mn) denotes the minimum of such numbers c among the
handle decompositions of Mn without the middle index n/2 (if n is even). Of
course, c(Mn) ≤ n + 1.

Theorem 1.5. Let M2m be a compact connected (2m)-dimensional manifold with
handle decomposition without handles of index m, then for any elements f and g

of Diffr(M2m)0 \ {id} (1 ≤ r ≤ ∞, r �= 2m + 1), f can be written as a product of
at most 16c(M2m) + 8 conjugates of g or g−1.

Theorem 1.6. Let M2m+1 be a compact connected (2m+1)-dimensional manifold,
then for any elements f and g of Diffr(M2m+1)0 \ {id} (1 ≤ r ≤ ∞, r �= 2m + 2),
f can be written as a product of at most 16c(M2m+1) + 12 conjugates of g or g−1.

Since c(Mn) ≤ n + 1, we have the following corollary.

Corollary 1.7. Let Mn be a compact connected n-dimensional manifold with han-
dle decomposition without handles of index n/2. For any elements f and g of
Diffr(Mn)0 \ {id} (1 ≤ r ≤ ∞, r �= n+1), f can be written as a product of at most
16n + 28 conjugates of g or g−1.

In many cases, we have a better estimate on the number of conjugates. In partic-
ular, for a compact connected 3-dimensional manifolds M3, we have the following.

Corollary 1.8. Let M3 be a compact connected 3-dimensional manifold. For any
elements f and g of Diffr(M3)0 \ {id} (1 ≤ r ≤ ∞, r �= 4), f can be written as a
product of at most 44 conjugates of g or g−1.

In Section 2, we review the results of our previous paper [21] and give the nec-
essary improvement. In Section 3, we give the proofs of theorems. There we also
remark that for the n-dimensional sphere Sn, any element f ∈ Diff(Sn)0 can be
written as a product of 3 commutators, and for a compact (2m + 1)-dimensional
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manifold M2m+1, any element f ∈ Diff(M2m+1)0 can be written as a product of 5
commutators.

2. Uniform perfectness of diffeomorphism groups

In [21, Theorem 4.1], we showed the following theorem.

Theorem 2.1 ([21]). Let Mn be the interior of a compact n-dimensional manifold
with handle decomposition with handles of indices not greater than (n − 1)/2, then
any element of Diffr

c(Mn)0 (1 ≤ r ≤ ∞, r �= n + 1) can be written as a product of
two commutators.

To discuss the uniform simplicity, we use an improvement of this theorem. In the
proof of this theorem, we used a nice Morse function on Mn to find a k-dimensional
complex Kk differentiably embedded in Mn (k ≤ (n−1)/2) which is a deformation
retract of Mn, and an isotopy {Ht}t∈[0,1] (H0 = id) with a neighborhood V of Kk

such that (H1)j(V ) (j ∈ Z) are disjoint. We will use the Morse function on Mn

and the associated handle decomposition to show the following theorem.

Theorem 2.2. Let Mn be the interior of a compact n-dimensional manifold with
handle decomposition with handles of indices not greater than (n − 1)/2. Let c be
the order of the set of indices appearing in the handle decomposition. Then any
element of Diffr

c(M
n)0 (1 ≤ r ≤ ∞, r �= n + 1) can be written as a product of two

commutators. Moreover, if Mn is connected, any element of Diffr
c(M

n)0 can be
written as a product of 4c + 1 commutators with support in balls.

To prove Theorem 2.2, we review the Morse functions and handle decomposi-
tions. Before the beginning of the proof of Theorem 2.2, let f denote a Morse
function and we fix notations as in [21].

Let f : Mn −→ R be a Morse function on a compact connected n-dimensional
manifold Mn such that f(Mn) = [0, n], the set of critical points of index k is
contained in f−1(k) (k = 0, . . . , n) and f−1(0) and f−1(n) are one point sets.

Put Wk = f−1([0, k + 1/2]), and then this Wk is a compact manifold with
boundary ∂Wk = f−1(k + 1/2). Let ck be the number of critical points of index
k. Then the manifold Wk is diffeomorphic to the manifold obtained from Wk−1 by
attaching ck handles of index k (k = 0, . . . , n). This means the following.

Let Dk × Dn−k be the product of the k-dimensional disk Dk and the (n − k)-
dimensional disk Dn−k. Let ϕi : (∂Dk) × Dn−k −→ ∂Wk−1 (i = 1, . . . , ck) be
diffeomorphisms with disjoint images. Let

W ′
k = Wk−1 ∪Fck

i=1 ϕi

ck⊔

i=1

(Dk × Dn−k)i
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be the space obtained from the disjoint union Wk−1 

⊔ck

i=1(D
k × Dn−k)i by iden-

tifying

x ∈ ((∂Dk) × Dn−k)i ⊂ (Dk × Dn−k)i

with ϕi(x) ∈ ∂Wk−1 ⊂ Wk−1.
In this paper, we consider that W ′

k is a submanifold with corner of Wk and
Wk \ W ′

k is diffeomorphic to ∂Wk × (−∞, k + 1/2] (which is shown by using the
flowlines of the gradient flow Ψt). The handles (Dk × Dn−k)i (i = 1, . . . , ck) of
index k are contained in the interior of Wk. Then we have the sequence

Dn ∼= W0 ⊂ W ′
1 ⊂ W1 ⊂ · · · ⊂ W ′

k ⊂ Wk ⊂ · · · ⊂ W ′
n = Wn = Mn.

By choosing a Riemannian metric on the manifold Mn, the Morse function f

defines the gradient vector field and the gradient flow Ψt. The fixed points of the
gradient flow Ψt are precisely the critical points of f . The core disk and the co-
core disk of a handle of a handle decomposition of Mn correspond to the local
stable manifold and the local unstable manifold of the corresponding fixed point
p of the gradient flow Ψt, respectively ([13], [14]). Let ek

i and e′n−k
i denote the

global stable manifold and the global unstable manifold, respectively, for the fixed
point p of Ψt which is a critical point of index k of f . Then ek

i and e′n−k
i are

diffeomorphic to Rk and Rn−k, respectively. Then we know that the global stable
manifolds and the global unstable manifolds of fixed points of Ψt form the cell
decomposition

⋃n
k=0

⋃ck

i=1 ek
i and the dual cell decomposition

⋃n
k=0

⋃ck

i=1 e′n−k
i of

Mn, respectively ([[13]]). The dual cell decomposition is the cell decomposition for
the Morse function n − f . Consider the k-skeleton X(k) of the cell decomposition
and the (n − k − 1)-skeleton X ′(n−k−1) of the dual cell decomposition:

X(k) =
⋃

j≤k

cj⋃

i=1

ej
i and X ′(n−k−1) =

⋃

j≥k+1

cj⋃

i=1

e′n−j
i .

X(k) and X ′(n−k−1) are compact sets. The boundary ∂Wk of Wk is transverse to
the gradient flow Ψt, and hence M \(X(k)∪X ′(n−k−1)) is diffeomorphic to ∂Wk×R

by the map

∂Wk × R � (x, t) −→ Ψt(x) ∈ M \ (X(k) ∪ X ′(n−k−1)).

Moreover Ψt(∂Wk) converges to X(k) as t −→ −∞ and to X ′(n−k−1) as t −→ ∞.
Hence, M \X ′(n−k−1) is diffeomorphic to the interior int(Wk) of Wk and X(k) is a
deformation retract of both Wk and M \ X ′(n−k−1):

X(k) ⊂ int(Wk) ⊂ Wk ⊂ M \ X ′(n−k−1).

Hence we call X(k) the core complex of Wk.
The core disks (Dk × {0})i is in the stable manifold for the gradient flow Ψt

of the critical point ({0} × {0})i of index k. We may consider the flow Ψt on the
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handle (Dk × Dn−k)i of index k is in the form of a direct product of linear flows.
Then the stable manifold ek

i is written as

ek
i =

⋃

t∈(−∞,0]

Ψt((Dk × {0})i) or ek
i =

⋂

τ∈(−∞,0]

⋃

t∈(−∞,τ ]

Ψt((Dk × Dn−k)i).

Using the gradient flow Ψt, for any neighborhood V of X(k) and for any compact
subset A in int(Wk), we can construct an isotopy {Gt : int(Wk) −→ int(Wk)}t∈[0,1]

with compact support such that G0 = idint(Wk), Gt|X(k) = idX(k) (t ∈ [0, 1]) and
G1(A) ⊂ V . A similar statement is true for X(k) ⊂ M \ X ′(n−k−1).

We prove the following lemma which is the core complex version of [21, Lemma
4.3].

Lemma 2.3. Let Mn be a compact n-dimensional manifold. Let X(k) be the k

skeleton of the cell decomposition associated with a Morse function on Mn. Let
L� be a compact set which is a union of finitely many images of Rs (s < �) under
differentiable maps. If k+�+1 ≤ n then there is an isotopy {Ft : Mn −→ Mn}t∈[0,1]

(F0 = id) such that F1(X(k)) ∩ L� = ∅.

Proof. We construct the isotopy Ft, skeleton by skeleton. Assume that for u ≤ k−1,
there is an isotopy {Fu

t }t∈[0,1] (Fu
0 = id) such that Fu

1 (X(u)) ∩L� = ∅. Then there
is a neighborhood Uu of X(u) such that Fu

1 (Uu) ∩ L� = ∅.
Let u + 1 ≤ k. Since the number of (u + 1)-dimensional cells of X(k) is cu+1,

there is a negative real number τu+1 such that, for the (u + 1)-dimensional cells
eu+1

i (i = 1, . . . , ck) of X(k), Ψτu+1((∂Du+1 × Dn−u−1)i) ⊂ Uu. Since there are
only finitely many handles of index u + 1, we can take τu+1 uniformly on i.

We define Fu+1
t with support in

⋃cu+1
i=1 Ψτu+1((D

u+1 × Dn−u−1)i). Note that
cu+1⋃

i=1

Ψτu+1((D
u+1 × Dn−u−1)i) (⊂ W ′

u+1)

is a union of disjoint closed balls in Mn. Since Ψτu+1((∂Du+1 × Dn−u−1)i) ⊂ Uu,
there is a disk (D′u+1 × {0})i ⊂ (int(Du+1) × {0})i such that

Ψτu+1(((D
u+1 \ int(D′u+1)) × Dn−u−1)i) ⊂ Uu.

Hence

X(u+1) ∩ L� ⊂
cu+1⋃

i=1

Ψτu+1((int(D′u+1) × {0})i).

We have the projection

p = proj2 ◦ Ψ−τu+1 : Ψτu+1((D
u+1 × Dn−u−1)i) −→ Dn−u−1.

Since p(Ψτu+1((D
u+1 × Dn−u−1)i) ∩ L�) is a finite union of images of Rs (s ≤ � ≤

n − k − 1 ≤ n − u − 2) under differentiable maps, it is a measure zero subset of



ON THE UNIFORM SIMPLICITY OF DIFFEOMORPHISM GROUPS 7

Dn−u−1, and since L� is compact, it is a nowhere dense subset of Dn−u−1. Take a
point q close to 0 in the complement of

p(Ψτu+1((D
u+1 × Dn−u−1)i) ∩ L�).

Let {Fu+1
t }t∈[0,1] (Fu+1

0 = id) be the isotopy with support in
⋃cu+1

i=1 Ψτu+1((D
u+1 ×

Dn−u−1)i) such that

Fu+1
t (Ψτu+1(x, 0)) = Ψτu+1(x, tμ(x))

for Ψτu+1(x, 0) ∈ (D′u+1 × Dn−u−1)i), where μ : int(D′u+1) −→ [0, 1] is a C∞

function with compact support such that μ(x) = 1 for x ∈ D′′u+1 ⊂ int(D′u+1)
such that

Ψτu+1(((D
u+1 \ int(D′′u+1)) × Dn−u−1)i) ⊂ Uu

and

X(u+1) ∩ L� ∩ Ψτu+1((D
u+1 × Dn−u−1)i) ⊂ Ψτu+1((D

′′u+1 × {0})i).

Thus we obtain an isotopy {Fu+1
t }t∈[0,1] such that Fu+1

1 (X(u+1)) ∩ L� = ∅.
Then we define Ft to be the composition of F k

t , . . . , F 0
t . �

Remark 2.4. Note that the support of the isotopy {Fu
t }t∈[0,1] is contained in a

disjoint union of balls, hence it is contained in a larger embedded ball Vu. Note
also that we can choose Fu

1 which is a commutator with support in the ball. It is
because we can take a ball V ′

u ⊂ V ′
u ⊂ Vu which contains the support of the isotopy

{Fu
t }t∈[0,1], and choose an element α ∈ Diffr

c(Vu) such that α(V ′
u) ∩ V ′

u = ∅ and
α(V ′

u) ∩ X(k) = ∅, Then Fu
1 α(Fu

1 )−1α−1 coincides with Fu
1 on X(k).

Proof of Theorem 2.2. By applying Lemma 2.3 to the core complex X(k) of Mn

with respect to X(k) itself, there is an isotopy {Ft}t∈[0,1] (F0 = id) such that
F1(X(k)) ∩ X(k) = ∅. Then there is a neighborhood W of X(k) such that W ∩
F1(W ) = ∅. By using the gradient flow, we can construct an isotopy {Gt}t∈[0,1]

(G0 = id) such that G1(F1(W )) ⊂ W . Then for g = G1 ◦ F1 and U = W \
G1(F1(W )), gj(U) (j ∈ Z) are disjoint (see [21, Lemma 4.5]).

Note here that F1 = F k
1 ◦ · · · ◦ F 0

1 is a product of c commutators with support
in balls by Remark 2.4, where Fu

t = id if there are no handles of index u.
On the other hand, G1 is defined by using the gradient flow. However, G1 can

also be written as a product of isotopies with support in neighborhoods of

(Du × Dn−u)i ∪
⋃

t∈[0,∞)

Ψt((Du × ∂Dn−u)i)

which shrink these sets to the core disks (Du × {0})i, where i = 1, . . . , cu; u = 0,
. . . , k. These neighborhoods are balls and the product Gu

1 of these isotopies for
the handles of the same index u is with support in a disjoint union of balls. Hence
it is also supported in a larger embedded ball. By an argument similar to that in
Remark 2.4, Gu

1 can be replaced by a commutator with support in the ball without
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changing Gu
1 |(F1(W ). Hence G1 = G0

1 ◦ · · · ◦Gk
1 is also a product of c commutators

with support in balls.
Now any element f ∈ Diffr

c(M
n)0 (1 ≤ r ≤ ∞, r �= n + 1) is conjugate to an

element with support in U by an isotopy constructed from the gradient flow Ψt.
We may assume that the support of f is contained in U .

By the results of Herman-Mather-Thurston ([7], [10], [11], [15], [2]), f can be
written as a product of commutators such that the support of each commutator is
contained in an embedded ball.

Hence we can write f = [a1, b1] · · · [ak, bk], where the supports of ai and bi are
contained in a ball Vi in U . We put

H =
k∏

i=1

gk−i([a1, b1] · · · [ai, bi])gi−k,

where g = G1 ◦ F1. Then H is an element of Diffr
c(M

n)0 and

H−1gHg−1 = ([a1, b1] · · · [ak, bk])−1
k−1∏

i=0

gk−i[ai+1, bi+1]gi−k

= f−1
k−1∏

i=0

gk−i[ai+1, bi+1]gi−k

= f−1
[ k−1∏

i=0

gk−iai+1g
i−k,

k−1∏

i=0

gk−ibi+1g
i−k

]
.

By putting A =
k−1∏

i=0

gk−iai+1g
i−k and B =

k−1∏

i=0

gk−ibi+1g
i−k, f can be written

as a product of two commutators: f = [A,B][g,H−1].
Now, note that the supports of A and B are contained in a disjoint union⋃k

i=1 g(Vi) of balls g(Vi). Thus the supports of A and B are contained in a larger
embedded ball.

Since F1 and G1 can be written as products of c commutators with support in
balls, g = G1 ◦ F1 can be written as a product of 2c commutators with support in
balls and [g,H−1] = g(H−1g−1H) can be written as a product of 4c commutators
with support in balls. Thus f can be written as a product of 4c + 1 commutators
with support in balls. �

Remark 2.5. In many cases, we can construct F1 such that (F1)j(W ) (j ∈ Z) are
disjoint. In this case, we use F1 and W in the place of g and U , and f is written
as a product of 2c + 1 commutators with support in balls. In particular, for a
3-dimensional handle body H3, this is the case, where c = 2. Hence any element of
Diffr

c(H
3)0 (1 ≤ r ≤ ∞, r �= 4) can be written as a product of 5 commutators with

support in balls.
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3. Uniform simplicity of the diffeomorphism groups

First we review how the perfectness of Diffr
c(R

n)0 implies the simplicity of
Diffr

c(Mn)0 for a connected manifold M . That is, we have the following lemma
which is now well known.

Lemma 3.1. Let Mn be a connected n-dimensional manifold. Let g be a nontrivial
element of Diffr

c(Mn)0. Assume that f ∈ Diffr
c(Mn)0 is written as a product of

commutators [ai, bi] (i = 1, . . . , k): f = [a1, b1] · · · [ak, bk], where ai and bi are with
support in an embedded ball Ui ⊂ Ui ⊂ Mn. Then f can be written as a product of
4k conjugates of g and g−1.

Proof. Since g is a nontrivial element of Diffr
c(M

n)0, there is an open ball U ⊂
U ⊂ Mn such that g(U) ∩ U = ∅. Then any commutator [a, b] in Diffr

c(U)0 can be
written as a product of 4 conjugates of g or g−1. For, if a, b ∈ Diffr

c(U)0, then by
putting c = g−1ag, we have cb = bc and

aba−1b−1 = gcg−1bgc−1g−1b−1

= gcg−1c−1cbgc−1b−1bg−1b−1

= g(cg−1c−1)(bcgc−1b−1)(bg−1b−1).

Now for f = [a1, b1] · · · [ak, bk], there are balls Ui such that supp(ai), supp(bi) ⊂
Ui. By the ball theorem, there is a diffeomorphism hi ∈ Diffr(Mn)0 such that
hi(Ui) = U . Since hi[ai, bi]hi

−1 is with support in U , it can be written as a
product of 4 conjugates of g or g−1: hi[ai, bi]hi

−1 ∈ (Cg)4. Hence [ai, bi] ∈ (Cg)4

and f = [a1, b1] · · · [ak, bk] ∈ (Cg)4k. �

Before proving Theorem 1.4, we give a remark which makes a better estimate
on the number of commutators than our previous one ([21, Theorem 5.2]).

Remark 3.2. In [21, Theorem 5.2], we showed that any element f ∈ Diff(Sn)0 can be
written as a product of 4 commutators. However, we can in fact write f ∈ Diff(Sn)0
as a product of 3 commutators with support in embedded balls. The reason is as
follows: By [21, Theorem 5.1], for f ∈ Diffr(Sn)0, we have the decomposition
f = g ◦ h, where g ∈ Diffr

c(S
n \ Q0)0 and h ∈ Diffr

c(S
n \ P 0)0 for some points P 0

and Q0 ∈ Sn. We have a closed ball V containing the support of the isotopy of
g and take a diffeomorphism α ∈ Diffr

c(S
n \ Q0)0, such that α(V ) ∩ V = ∅ and

P 0 �∈ α(V ). Then

f = (gαg−1α−1) ◦ (αg−1α−1h)

and

supp(αg−1α−1h) ⊂ α(V ) ∪ supp(h) �� P 0.

Thus gαg−1α−1 ∈ Diffr
c(S

n \ Q0)0 and αg−1α−1h ∈ Diffr
c(S

n \ P 0)0. Here
αg−1α−1h can be written as a product of 2 commutators by Theorem 2.1 ([21,
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Theorem 4.1]). Since Sn \ Q0 and Sn \ P 0 are diffeomorphic to Rn and any com-
mutator of Diffr

c(R
n)0 is with support in a ball, f can be written as a product of

3 commutators with support in embedded balls.

Proof of Theorem 1.4. By Remark 3.2, any element f ∈ Diffr(Sn)0 can be written
as a product of 3 commutators with support in embedded balls. By Lemma 3.1,
f is written as a product of 4 · 3 = 12 conjugates of γ or γ−1 for any nontrivial
element γ ∈ Diffr(Sn)0. �

By using Theorem 2.2 and [21, Theorem 5.2], the proof of Theorem 1.5 is straight-
forward.

Proof of Theorem 1.5. Let M2m be a compact connected (2m)-dimensional mani-
fold with handle decomposition without handles of index m. For M2m, from the
handle decomposition, we obtain Pm−1 and Qm−1 ⊂ M2m such that Pm−1 ⊂
M2m \ Qm−1 and Qm−1 ⊂ M2m \ Pm−1 are deformation retracts. By [21, Theo-
rem 5.2], any element f of Diffr(M2m)0 can be decomposed as f = g ◦ h, where
g ∈ Diffr

c(M
2m \k(Qm−1))0 and h ∈ Diffr

c(M
2m \Pm−1)0. Then by Theorem 2.2, g

and h can be written as products of 4c(M2m\k(Qm−1))+1 and 4c(M2m\Pm−1)+1
commutators with support in balls if 1 ≤ r ≤ ∞, r �= 2m + 1, respectively. Since

c(M2m \ k(Qm−1) + c(M2m \ Pm−1) = c(M2m),

f can be written as 4c(M2m) + 2 commutators with support in balls. By Lemma
3.1, for any nontrivial element γ ∈ Diffr(M2m)0, f can be written as a product of
16c(M2m) + 8 conjugates of γ or γ−1. �

Before proving Theorem 1.6, we give a better estimate on the number of com-
mutators than our previous one ([21, Theorem 6.1]).

Remark 3.3. In [21, Theorem 6.1], we showed that for a compact (2m + 1)-
dimensional manifold M2m+1, any element f ∈ Diffr(M2m+1)0 (1 ≤ r ≤ ∞,
r �= 2m + 2) can be written as a product of 6 commutators. We can in fact write
f ∈ Diffr(M2m+1)0 as a product of 5 commutators. The reason is just as follows:
For a compact connected (2m+1)-dimensional manifold M2m+1, we obtain Pm and
Qm ⊂ M2m+1 from the handle decomposition such that Pm ⊂ M2m+1 \ Qm and
Qm ⊂ M2m+1 \Pm are deformation retracts. By [21, Theorem 6.2], any element f

of Diffr(M2m+1)0 can be decomposed as f = a ◦ g ◦h, where a is with support in a
disjoint union of balls, g ∈ Diffr

c(M
2m+1\k(Qm))0 and h ∈ Diffr

c(M
2m+1\k′(Pm))0.

By an argument similar to that in Remark 2.4 or 3.2, the diffeomorphism a can
be replaced by a commutator with support in the ball by changing g. Since g and
h can be written as products of two commutators by Theorem 2.1 ([21, Theorem
4.1]), f can be written as products of 5 commutators.
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Proof of Theorem 1.6. By Remark 3.3, any element f of Diffr(M2m+1)0 is de-
composed as f = a ◦ g ◦ h, where a is a commutator with support in the ball,
g ∈ Diffr

c(M
2m+1 \ k(Qm))0 and h ∈ Diffr

c(M
2m+1 \ k′(Pm))0. Then by The-

orem 2.2, g and h can be written as products of 4c(M2m+1 \ k(Qm)) + 1 and
4c(M2m+1\k′(Pm))+1 commutators with support in balls if 1 ≤ r ≤ ∞, r �= 2m+2,
respectively. Since

c(M2m \ k(Qm) + c(M2m+1 \ k′(Pm)) = c(M2m),

f can be written as 4c(M2m+1)+3 commutators with support in balls. By Lemma
3.1, for any nontrivial element γ ∈ Diffr(M2m+1)0, f can be written as a product
of 16c(M2m+1) + 12 conjugates of γ or γ−1. �

Proof of Corollary 1.8. By Remark 2.5, for a 3-dimensional open handle body H3,
any element of Diffr

c(H
3) (1 ≤ r ≤ ∞, r �= 4) can be written as a product of

5 commutators with support in balls. Now any element f ∈ Diffr(M3)0, can be
decomposed as f = a ◦ g ◦ h as in the proof of Theorem 1.6. Since g and h can be
written as products of 5 commutators with support in balls, f can be written as
11 commutators with support in balls. By Lemma 3.1, for any nontrivial element
γ ∈ Diffr(M3)0, f can be written as a product of 44 conjugates of γ or γ−1. �

Remark 3.4. The uniform simplicity of the groups we treated also follows from a
proposition of Burago-Ivanov-Polterovich ([3, Proposition 1.15]), our previous re-
mark ([21, Remark 6.6]) and Lemma 3.1. We note here that the fragmentation norm
([3]) of an element of Diffr(Sn)0 is at most 2, that of an element of Diffr(M2m)0 for
M2m with handle decomposition without handles of index m is at most 2c(M2m)+2,
that of an element of Diffr(M2m+1)0 is at most 2c(M2m+1)+3. The reason is that
for g = G1 ◦ F1 which we used in the proof of Theorem 2.2,

G1 ◦ F1 = G0
1 ◦ · · · ◦ Gk

1 ◦ F k
1 ◦ · · · ◦ F 0

1

= (G0
1 ◦ F 0

1 ) ◦ (F 0
1 )−1 ◦ (G1

1 ◦ F 1
1 ) ◦ (F 0

1 )
◦(F 1

1 ◦ F 0
1 )−1 ◦ (G2

1 ◦ F 2
1 ) ◦ (F 1

1 ◦ F 0
1 )

◦ · · · ◦ (F k−1
1 ◦ · · · ◦ F 0

1 )−1 ◦ (Gk
1 ◦ F k

1 ) ◦ (F k−1
1 ◦ · · · ◦ F 0

1 )

and Gu
1 ◦ Fu

1 (0 ≤ u ≤ k) is with support in a union of disjoint balls, hence is
with support in a larger ball. Hence g = G1 ◦ F1 can be written as a product of c

diffeomorphisms with support in embedded balls.
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