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Abstract. We prove for a two dimensional bounded simply connected domain that the
Cauchy data for the Schrödinger equation measured on an arbitrary open subset of the
boundary determines uniquely the potential. This implies, for the conductivity equation,
that if we measure the current fluxes at the boundary on an arbitrary open subset of the
boundary produced by voltage potentials supported in the same subset, we can determine
uniquely the conductivity. We use Carleman estimates with degenerate weight functions to
construct appropriate complex geometrical optics solutions to prove the results.

1. Introduction

We consider the problem of determining a complex-valued potential q in a bounded simply

connected two dimensional domain from the Cauchy data measured on an arbitrary open

subset of the boundary for the associated Schrödinger equation ∆ + q. A motivation comes

from the classical inverse problem of electrical impedance tomography problem. In this

inverse problem one attempts to determine the electrical conductivity of a body by measure-

ments of voltage and current on the boundary of the body. This problem was proposed by

Calderón [7] and is also known as Calderón’s problem. In dimensions n ≥ 3, the first global

uniqueness result for C2-conductivities was proven in [23]. In [21] the global uniqueness

result was extended to less regular conductivities. Also see [12] as for the determination of

more singular conormal conductivities. In dimension n ≥ 3 global uniqueness was shown

for the Schrödinger equation with bounded potentials in [23]. The case of more singular

potentials was considered in [3], [21]. The case of more singular conormal potentials was

studied in [12].

In two dimensions the first global uniqueness result for Calderón’s problem was obtained

in [20] for C2-conductivities. Later the regularity assumptions were relaxed in [4], [3] and

[1]. In particular, the paper [1] proves uniqueness for L∞- conductivities. In two dimensions

a recent result of Bukgheim [5] gives unique identifiability of the potential from the Cauchy

data for the associated Schrödinger equation. As for the uniqueness in determining two

coefficients, see [8], [16].

In all the above mentioned articles, the measurements are made on the whole boundary.

The purpose of this paper is to show the global uniqueness in two dimensions, both for the

Schrödinger and conductivity equation, by measuring all the Neumann data on an arbitrary

open subset Γ̃ of the boundary produced by inputs of Dirichlet data supported on Γ̃. We
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formulate this inverse problem more precisely below. Let Ω ⊂ R2 be a simply connected

bounded domain with smooth boundary, and let ν be the unit outward normal vector to ∂Ω.

We denote ∂u
∂ν

= ∇u · ν. A bounded and non-zero function γ(x) (possibly complex-valued)

models the electrical conductivity of Ω. Then a potential u ∈ H1(Ω) satisfies the Dirichlet

problem

(1.1)
div(γ∇u) = 0 in Ω,

u
∣∣
∂Ω

= f,

where f ∈ H
1
2 (∂Ω) is a given boundary voltage potential. The Dirichlet-to-Neumann (DN)

map is defined by

(1.2) Λγ(f) = γ
∂u

∂ν

∣∣∣
∂Ω

.

This problem can be reduced to studying the set of Cauchy data for the Schrödinger

equation with the potential q given by:

(1.3) q =
∆
√

γ√
γ

.

More generally we define the set of Cauchy data for a bounded potential q by:

(1.4) Ĉq =

{(
u|∂Ω,

∂u

∂ν

∣∣∣
∂Ω

)
| (∆ + q)u = 0 on Ω, u ∈ H1(Ω)

}
.

We have Ĉq ⊂ H
1
2 (∂Ω)×H− 1

2 (∂Ω).

Let Γ̃ ⊂ ∂Ω be a non-empty open subset of the boundary. Denote Γ0 = ∂Ω \ Γ̃.

Our main result gives global uniqueness by measuring the Cauchy data on Γ̃. Let qj ∈
C1+α(Ω), j = 1, 2 for some α > 0 and let qj be complex-valued. Consider the following sets

of Cauchy data on an Γ̃:

(1.5) Cqj
=

{(
u|eΓ,

∂u

∂ν

∣∣∣eΓ
)
| (∆ + qj)u = 0 on Ω, u|Γ0 = 0, u ∈ H1(Ω)

}
, j = 1, 2.

Theorem 1.1. Assume Cq1 = Cq2 . Then q1 ≡ q2.

Using Theorem 1.1 one concludes immediately as a corollary the following global identifi-

ability result for the conductivity equation (1.1).

Corollary 1.1. With some α > 0, let γj ∈ C3+α(Ω), j = 1, 2, be non-vanishing functions.

Assume that γ1 = γ2 on ∂Ω and

Λγ1u = Λγ2u in Γ̃ for all u ∈ H
1
2 (Γ), suppu ⊂ Γ̃.

Then γ1 = γ2.

To the authors’ knowledge, there are no uniqueness results similar to Theorem 1.1 with

Dirichlet data supported and Neumann data measured on the same arbitrary open subset of

the boundary, even for smooth potentials or conductivities. In dimensions n ≥ 3, [6] proves

global uniqueness in determining a bounded potential on with Dirichlet data supported on

the whole boundary and Neumann data measured in roughly half the boundary. The proof

relies on a Carleman estimate with a linear weight function. This implies a similar result for
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the conductivity equation with C2 conductivities. In [18] the regularity assumption on the

conductivity was relaxed to C3/2+α with some ` > 0. The corresponding stability estimates

are proved in [13]. As for the stability estimates for the magnetic Schrödinger equation with

partial data, see [24]. In [17], the result in [6] was generalized to show that by all possible

pairs of Dirichlet data on an arbitrary open subset Γ+ of the boundary and Neumann data

on a slightly larger open domain than ∂Ω \ Γ+, one can uniquely determine the potential.

The method of the proof uses Carleman estimates with non-linear weights. The case of the

magnetic Schrödinger equation was considered in [9] and an improvement on the regularity

of the coefficients is done in [19]. Stability estimates for the magnetic Schrödinger equation

with partial data were proven in [24].

In two dimensions the first general result was given by the authors in [15]. It is shown

that the same global uniqueness result as [17] holds in this case. The two dimensional case

has special features since one can construct a much larger set of complex geometrical optics

solutions than in higher dimensions. On the other hand, the problem is not formally overde-

termined and therefore more difficult. The proof of our main result here follows the same

broad outline of [15] and is based on the construction of appropriate complex geometrical

optics solutions by Carleman estimates with degenerate weight functions. However, we need

a much more delicate analysis of the solutions.

This paper is composed of four sections. In Section 2, we establish our key Carleman

estimates, and in Section 3, we construct complex geometrical optics solutions. In Section

4, we complete the proof of Theorem 1.1.

2. Carleman estimates with degenerate weights

Throughout the paper we use the following notations:

Notations

i =
√−1, x1, x2, ξ1, ξ2 ∈ R, z = x1 + ix2, ζ = ξ1 + iξ2, z denotes the complex conjugate

of z ∈ C. We identify x = (x1, x2) ∈ R2 with z = x1 + ix2 ∈ C. ∂z = 1
2
(∂x1 − i∂x2), ∂z =

1
2
(∂x1 +i∂x2), H1,τ (Ω) denotes the space H1(Ω) with norm ‖v‖2

H1,τ (Ω) = ‖v‖2
H1(Ω)+τ 2‖v‖2

L2(Ω).

The tangential derivative on the boundary is given by ∂τ = ν2
∂

∂x1
− ν1

∂
∂x2

, with ν = (ν1, ν2)

the unit outer normal to ∂Ω, B(x̂, δ) = {x ∈ R2||x − x̂| < δ}, f(x) : R2 → R1, f ′′ is the

Hessian matrix with entries ∂2f
∂xi∂xj

. L(X, Y ) denotes the Banach space of all bounded linear

operators from a Banach space X to another Banach space Y .

By using a conformal map, thanks to the Kellog-Warchawski theorem (see e.g. p 42, [22]),

without loss of generality we assume that Ω = B(0, 1).

Let Φ(z) = ϕ(x1, x2)+iψ(x1, x2) ∈ C2(Ω) be a holomorphic function in Ω with real-valued

ϕ and ψ:

(2.1) ∂zΦ(z) = 0 in Ω.

Denote by H the set of critical points of a function Φ

H = {z ∈ Ω|∂zΦ(z) = 0}.
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Assume that Φ has no critical points on the boundary, and that all the critical points are

nondegenerate:

(2.2) H ∩ ∂Ω = {∅}, ∂2
zΦ(z) 6= 0, ∀z ∈ H.

Then we know that Φ has only a finite number of critical points and we can set:

(2.3) H = {x̃1, ..., x̃`}.
Consider the following problem

(2.4) ∆u + q0u = f in Ω, u|Γ0 = g,

where ν is the unit outward normal vector to ∂Ω and

Γ0 = {x ∈ ∂Ω|(ν,∇ϕ) = 0}.
We have

Proposition 2.1. Let q0 ∈ L∞(Ω). There exists τ0 > 0 such that for all |τ | > τ0 there exists

a solution to problem (2.4) such that

(2.5) ‖ue−τϕ‖L2(Ω) ≤ C(‖fe−τϕ‖L2(Ω)/τ + ‖ge−τϕ‖L2(Γ0)/τ
1
4 ).

For the proof, see Proposition 2.2 in [15].

Let us introduce the operators:

∂−1
z g =

1

2πi

∫

Ω

g(ξ1, ξ2)

ζ − z
dζ ∧ dζ = − 1

π

∫

Ω

g(ξ1, ξ2)

ζ − z
dξ1dξ2,

∂−1
z g = − 1

2πi

∫

Ω

g(ξ1, ξ2)

ζ − z
dζ ∧ dζ = − 1

π

∫

Ω

g(ξ1, ξ2)

ζ − z
dξ1dξ2 = ∂−1

z g.

See e.g., pp.28-31 in [26] where ∂−1
z and ∂−1

z are denoted by T and T respectively. Then we

know (e.g., p.47 and p.56 in [26]):

Proposition 2.2. A) Let m ≥ 0 be an integer number and α ∈ (0, 1). The operators

∂−1
z , ∂−1

z ∈ L(Cm+α(Ω), Cm+α+1(Ω)).

B) Let 1 ≤ p ≤ 2 and 1 < γ < 2p
2−p

. Then ∂−1
z , ∂−1

z ∈ L(Lp(Ω), Lγ(Ω)).

We define two other operators:

(2.6) RΦ,τg = eτ(Φ(z)−Φ(z))∂−1
z (geτ(Φ(z)−Φ(z))), R̃Φ,τg = eτ(Φ(z)−Φ(z))∂−1

z (geτ(Φ(z)−Φ(z))).

Proposition 2.3. Let g ∈ Cα(Ω) for some positive α. The function RΦ,τg is a solution to

(2.7) ∂zRΦ,τg − τ(∂zΦ(z))RΦ,τg = g in Ω.

The function R̃Φ,τg solves

(2.8) ∂zR̃Φ,τg + τ(∂zΦ(z))R̃Φ,τg = g in Ω.

The proof is done by direct computations (see the proof of Proposition 3.3 in [15]).

Denote

Oε = {x ∈ Ω|dist(x, ∂Ω) ≤ ε} = {x ∈ B(0, 1)| 1− ε < |x| < 1}.
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Proposition 2.4. Let g ∈ C1(Ω) and g|Oε = 0, g(x) 6= 0 for all x ∈ H. Then

(2.9) |RΦ,τg(x)|+ |R̃Φ,τg(x)| ≤ C max
x∈H

|g(x)|/τ

for all x ∈ Oε/2. If g ∈ C2(Ω) and g|H = 0, then

(2.10) |RΦ,τg(x)|+ |R̃Φ,τg(x)| ≤ C/τ 2

for all x ∈ Oε/2.

The proof uses the Cauchy-Riemann equations and stationary phase (e.g., Section 4.5.3

in [11], Chapter VII, §7.7 in [14]). See also the proof of Proposition 3.4 in [15].

Denote

r(x) = Π`
k=1(x− x̃k) where H = {x̃1, . . . , x̃`}.

The following proposition can be proved and see Proposition 3.5 in [15]:

Proposition 2.5. Let g ∈ C1(Ω) and g|Oε = 0. Then for each δ ∈ (0, 1), there exists a

constant C(δ) > 0 such that

(2.11)

‖R̃Φ,τ (r(z)g)‖L2(Ω) ≤ C(δ)‖g‖C1(Ω)/|τ |1−δ, ‖RΦ,τ (r(z)g)‖L2(Ω) ≤ C(δ)‖g‖C1(Ω)/|τ |1−δ.

Henceforth we set ψ1 ≡ Re∂zΦ = ∂x1ϕ and ψ2 ≡ Im∂zΦ = ∂x1ψ. We also need the

following proposition, which we can prove by Proposition 2.1 in [15] and noting that

∂x1(e
−iτψṽ)eiτψ = ∂x1 ṽ − iτψ2ṽ

and

∂x2(e
−iτψṽ)eiτψ = ∂x2 ṽ − iτψ1ṽ,

etc. which follow from the Cauchy-Riemann equations.

Proposition 2.6. Let Φ satisfy (2.1) and (2.2). Let f̃ ∈ L2(Ω) and ṽ be solution to the

problem

(2.12) 2∂zṽ − τ(∂zΦ)ṽ = f̃ in Ω

or ṽ be solution to the problem

(2.13) 2∂zv − τ(∂zΦ)ṽ = f̃ in Ω.

In the case (2.12) we have

‖∂x1(e
−iτψṽ)‖2

L2(Ω) − τ

∫

∂Ω

(∇ϕ, ν)|ṽ|2dσ

+Re

∫

∂Ω

i

((
ν2

∂

∂x1

− ν1
∂

∂x2

)
ṽ

)
ṽdσ + ‖∂x2(e

−iτψṽ)‖2
L2(Ω) = ‖f̃‖2

L2(Ω).(2.14)

In the case that ṽ solves (2.13) we have

‖∂x1(e
iτψṽ)‖L2(Ω) − τ

∫

∂Ω

(∇ϕ, ν)|ṽ|2dσ + Re

∫

∂Ω

i

((
−ν2

∂

∂x1

+ ν1
∂

∂x2

)
ṽ

)
ṽdσ

+‖∂x2(e
iτψṽ)‖2

L2(Ω) = ‖f̃‖2
L2(Ω).(2.15)
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We have

Proposition 2.7. Let g ∈ C2(Ω), g|Oε = 0 and g|H = 0. Then

(2.16)

∥∥∥∥RΦ,τg +
g

τ∂zΦ

∥∥∥∥
L2(Ω)

+

∥∥∥∥R̃Φ,τg − g

τ∂zΦ

∥∥∥∥
L2(Ω)

= o

(
1

τ

)
as |τ | → +∞.

Proof. By (2.2) and Proposition 2.4

(2.17) ‖R̃Φ,τg‖C(O ε
2
) + ‖RΦ,τg‖C(O ε

2
) = o

(
1

τ

)
.

Therefore instead of (2.16) it suffices to prove

(2.18)

∥∥∥∥χ1RΦ,τg +
g

τ∂zΦ

∥∥∥∥
L2(Ω)

+

∥∥∥∥χ1R̃Φ,τg − g

τ∂zΦ

∥∥∥∥
L2(Ω)

= o

(
1

τ

)
as |τ | → +∞,

where χ1 ∈ C∞
0 (Ω) and χ1|Ω\Oε/2

≡ 1. Denote w = χ1R̃Φ,τg − g
τ∂zΦ

. Here we note that
g

∂zΦ
∈ C(Ω). This follows from (2.2), g ∈ C1(Ω) and g|H = 0. Then (2.8) and g|Oε = 0 yield

(2.19) ∂zw + τ(∂zΦ)w = −∂z

(
g

τ∂zΦ

)
+ (∂zχ1)R̃Φ,τg in Ω, w|∂Ω = 0.

Note that by (2.2) and the fact that g|H = 0, we have:

(2.20)

∣∣∣∣∂z

(
g

∂zΦ

)∣∣∣∣ =

∣∣∣∣
∂zg

∂zΦ
− g

∂zΦ

∂2
zΦ

∂zΦ

∣∣∣∣ ≤
C

Π`
k=1|x− x̃k| .

Consider the cut off function χ ∈ C∞
0 (Ω) such that

χ ≥ 0, χ|B(0, 1
2
) = 1.

By (2.20) and Proposition 2.2 B),

(2.21) R̃Φ,τ

(∑̀

k=1

χ((x− x̃k) ln |τ |)∂z

(
g

∂zΦ

))
→ 0 in L2(Ω) as |τ | → +∞.

In fact, fixing large |τ |, small δ > 0 and p > 1 such that p− 1 is sufficiently small, we apply

Proposition 2.2 B) and (2.20) to have

∥∥∥∥∥R̃Φ,τ

(∑̀

k=1

χ((x− x̃k) ln |τ |)∂z

(
g

∂zΦ

))∥∥∥∥∥

2

L2(Ω)

≤ C
∑̀

k=1

∫

B(exk,δ)

|χ((x− x̃k) ln |τ |)|p
∣∣∣∣∂z

(
g

∂zΦ

)∣∣∣∣
p

dx

≤ C ′ ∑̀

k=1

∫

B(exk,δ)

|χ((x− x̃k) ln |τ |)|p 1

|x− x̃k|p dx ≤ C ′′
∫ δ

0

|χ(ρ ln |τ |)|pρ1−pdρ.

Thus we see (2.21) by the Lebesgue theorem.
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By Proposition 2.5, we obtain

(2.22) R̃Φ,τ

((
1−

∑̀

k=1

χ((x− x̃k) ln |τ |)
)

∂z

(
g

∂zΦ

))
→ 0 in L2(Ω) as |τ | → +∞.

Therefore (2.21) and (2.22) yield

(2.23)

∥∥∥∥R̃Φ,τ∂z

(
g

∂zΦ

)∥∥∥∥
L2(Ω)

= o(1) as τ → +∞.

Denote w̃ = w + 1
τ
χ1R̃Φ,τ∂z(

g
∂zΦ

).

By (4.17), it suffices to prove

(2.24) ‖w̃‖L2(Ω) = o

(
1

τ

)
as |τ | → +∞.

In terms of (2.19) and (2.8), observe that

(2.25) ∂zw̃ + τ(∂zΦ)w̃ = f in Ω, w̃|∂Ω = 0,

where f = 1
τ
(∂zχ1)R̃Φ,τ (∂z(

g
∂zΦ

)) + (∂zχ1)R̃Φ,τg. By (4.17) and (2.17),

(2.26) ‖f‖L2(Ω) = o

(
1

τ

)
as |τ | → +∞.

Noting w̃|∂Ω = 0, applying Proposition 2.6 to equation (2.25) and using (2.26), we obtain

(2.24). As for the first term in (2.18), we can argue similarly. The proof of the proposition

is completed. ¤

3. Complex geometrical optics solutions

In this section, we construct complex geometrical optics solutions of the Schrödinger equa-

tion ∆ + q1 with q1 satisfying the conditions of Theorem 1.1. Consider

(3.1) L1u = ∆u + q1u = 0 in Ω.

We will construct solutions to (3.1) of the form

(3.2) u1(x) = eτΦ(z)a(z) + eτΦ(z)a(z) + eτϕu11 + eτϕu12, u1|Γ0 = 0.

The function Φ satisfies (2.1), (2.2) and

(3.3) Im Φ|Γ0 = 0.

The amplitude function a(z) is not identically zero on Ω and has the following properties:

(3.4) a ∈ C2(Ω), ∂za ≡ 0, Re a|Γ0 = 0.

and the function u11 is given by

(3.5) u11 = −1

4
eiτψR̃Φ,τ (e1(∂

−1
z (aq1)−M1(z)))− 1

4
e−iτψRΦ,−τ (e1(∂

−1
z (a(z)q1)−M3(z)))

−eiτψ

τ

e2(∂
−1
z (aq1)−M1(z))

4∂zΦ
− e−iτψ

τ

e2(∂
−1
z (a(z)q1)−M3(z))

4∂zΦ

= w1e
−τϕ + w2e

−τϕ,
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where the polynomials M1(z) and M3(z) satisfy

(3.6) ∂j
z(∂

−1
z (aq1)−M1(z)) = 0, x ∈ H, j = 0, 1, 2,

(3.7) ∂j
z(∂

−1
z (aq1)(z)−M3(z)) = 0, x ∈ H, j = 0, 1, 2,

e1, e2 ∈ C∞(Ω) are constructed such that e1 +e2 ≡ 1 on Ω, e2 vanishes in some neighborhood

of H and e1 vanishes in a neighborhood of ∂Ω, and we set

w1 = −1

4
eτΦR̃Φ,τ (e1(∂

−1
z (aq1)−M1(z)))− 1

4
eτΦRΦ,−τ (e1(∂

−1
z (a(z)q1)−M3(z))

and

w2 = −eτΦ

τ

e2(∂
−1
z (aq1)−M1(z))

4∂zΦ
− eτΦ

τ

e2(∂
−1
z (a(z)q1)−M3(z))

4∂zΦ
.

Then, noting ∂zΦ = ∂zΦ, (2.7) and (2.8), we have

∆w1 = 4∂z∂zw1

= −∂z(e
τΦ∂zR̃Φ,τ (e1(∂

−1
z (aq1)−M1(z))) + (τ∂zΦ)eτΦR̃Φ,τ (e1(∂

−1
z (aq1)−M1(z)))

− ∂z(e
τΦ∂zRΦ,−τ (e1(∂

−1
z (aq1)−M3(z))) + (τ∂zΦ)eτΦRΦ,−τ (e1(∂

−1
z (aq1)−M3(z)))

= −∂z(e
τΦe1(∂

−1
z (aq1)−M1(z)))− ∂z(e

τΦe1(∂
−1
z (aq1)−M3(z))).

Moreover

∆w2 = 4∂z∂zw2

= −∂z(e
τΦ(e2(∂

−1
z (aq1)−M1(z)))− ∂z(e

τΦe2(∂
−1
z (aq1)−M3(z)))

− eτΦ∆

(
e2(∂

−1
z (aq1)−M1(z))

4τ∂zΦ

)
− eτΦ∆

(
e2(∂

−1
z (a(z)q1)−M3(z))

4τ∂zΦ

)
.

Therefore

∆(u11e
τϕ) = ∆(w1 + w2) = −aq1e

τΦ − aq1e
τΦ(3.8)

−eτΦ∆

(
e2(∂

−1
z (aq1)−M1(z))

4τ∂zΦ

)
− eτΦ∆

(
e2(∂

−1
z (a(z)q1)−M3(z))

4τ∂zΦ

)
.

By (3.4) and (3.3), observe that

(3.9) (eτΦ(z)a(z) + eτΦ(z)a(z))|Γ0 = 0.

By Proposition 2.1, we can define u12 as a solution to the inhomogeneous problem

(3.10) ∆(u12e
τϕ) + q1u12e

τϕ = −q1u11e
τϕ + h1e

τϕ in Ω,

(3.11) u12 = −u11 on Γ0,

where

(3.12) h1 = eτiψ∆

(
e2(∂

−1
z (a(z)q1)−M1(z))

4τ∂zΦ

)
+ e−τiψ∆

(
e2(∂

−1
z (a(z)q1)−M3(z))

4τ∂zΦ

)
.

Then, by (3.4) and (3.8) - (3.12), we see that (3.1) is satisfied.
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By Proposition 2.1 there exists a positive τ0 such that for all |τ | > τ0 there exists a solution

to (3.10), (3.11) satisfying

(3.13) ‖u12‖L2(Ω) ≤ C/τ
5
4 .

This can be done because

‖q1u11 + h1‖L2(Ω) ≤ C(δ)/τ 1−δ ∀δ ∈ (0, 1); ‖u11‖L2(∂Ω) ≤ C/τ

and (∇ϕ, ν) = 0 on Γ0. The latter is seen as follows: On ∂Ω = {x ∈ R2| |x| = 1}, the

Cauchy-Riemann equations imply

(∇ϕ, ν) = x1∂x1ϕ + x2∂x2ϕ = x1∂x2ψ − x2∂x1ψ,

which is the tangential derivative of ψ = Im Φ on ∂Ω. By (3.3) we see that the tangential

derivative of ψ vanishes on Γ0.

Consider the Schrödinger equation

(3.14) L2v = ∆v + q2v = 0 in Ω.

We will construct solutions to (3.14) of the form

(3.15) v(x) = e−τΦ(z)a(z) + e−τΦ(z)a(z) + e−τϕv11 + e−τϕv12, v|Γ0 = 0.

The construction of v repeats the corresponding steps of the construction of u1. The only

difference is that instead of q1 and τ , we use q2 and −τ respectively. We provide the details

for the sake of completeness. The function v11 is given by

(3.16) v11 = −1

4
e−iτψR̃Φ,−τ (e1(∂

−1
z (q2a(z))−M2(z)))− 1

4
eiτψRΦ,τ (e1(∂

−1
z (q2a(z))−M4(z)))

+
e−iτψ

τ

e2(∂
−1
z (aq2)−M2(z))

4∂zΦ
+

eiτψ

τ

e2(∂
−1
z (a(z)q2)−M4(z))

4∂zΦ
,

where

(3.17) ∂j
z(∂

−1
z (aq2)−M2(z)) = 0, x ∈ H, j = 0, 1, 2,

(3.18) ∂j
z(∂

−1
z (aq2)(z)−M4(z)) = 0, x ∈ H, j = 0, 1, 2.

Denote

h2 = e−τiψ∆

(
e2(∂

−1
z (a(z)q2)−M2(z))

4τ∂zΦ

)
+ eτiψ∆

(
e2(∂

−1
z (a(z)q2)−M4(z))

4τ∂zΦ

)
.

The function v12 is a solution to the problem:

(3.19) ∆(v12e
−τϕ) + q2v12e

−τϕ = −q2v11e
−τϕ − h2e

−τϕ in Ω,

(3.20) v12|Γ0 = −v11|Γ0 .

such that

(3.21) ‖v12‖L2(Ω) ≤ C/τ
5
4 .
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4. Proof of the theorem.

Proposition 4.1. Suppose that Φ satisfies (2.1),(2.2) and (3.3). Let {x̃1, . . . , x̃`} be the set

of critical points of the function ImΦ. Then for any potentials q1, q2 ∈ C1+α(Ω), α > 0 with

the same Dirichlet-to-Neumann maps and for any holomorphic function a satisfying (3.4),

we have

(4.1) 2
∑̀

k=1

π(q|a|2)(x̃k)Re e2iτImΦ(fxk)

|(det ImΦ′′)(x̃k)| 12

+
1

4

∫

Ω

(
qa

∂−1
z (aq2)−M2(z)

∂zΦ
+ qa

∂−1
z (q2a)−M4(z)

∂zΦ

)
dx

− 1

4

∫

Ω

(
qa

(∂−1
z (aq1)−M1(z))

∂zΦ
+ qa

(∂−1
z (aq1)−M3(z))

∂zΦ

)
dx = 0, τ > 0,

where we set

q = q1 − q2.

Proof. We note by the Cauchy-Riemann equations that {x̃1,1 + ix̃1,2, ..., x̃`,1 + ix̃`,2} = {z ∈
Ω| ∂zIm Φ(z) = 0}. Let u1 be a solution to (3.1) and satisfy (3.2), and u2 be a solution to

the following equation

∆u2 + q2u2 = 0 in Ω, u2|∂Ω = u1|∂Ω.

Since the Dirichlet-to-Neumann maps are equal, we have

∇u2 = ∇u1 on Γ̃.

Denoting u = u1 − u2, we obtain

(4.2) ∆u + q2u = −qu1 in Ω, u|∂Ω =
∂u

∂ν
|eΓ = 0.

Let v satisfy (3.14) and (3.15). We multiply (4.2) by v, integrate over Ω and we use

v|Γ0 = 0 and ∂u
∂ν

= 0 on Γ̃ to obtain
∫
Ω

qu1vdx = 0. By (3.2), (3.13), (3.15) and (3.21), we

have

0 =

∫

Ω

qu1vdx =

∫

Ω

q(a2 + a2 + |a|2eτ(Φ−Φ) + |a|2eτ(Φ−Φ)

+u11e
τϕ(ae−τΦ + ae−τΦ)

+(aeτΦ + aeτΦ)v11e
−τϕ)dx + o

(
1

τ

)
, τ > 0.(4.3)

The first and second terms in the asymptotic expansion of (4.3) are independent of τ , so

that

(4.4)

∫

Ω

q(a2 + a2)dx = 0.
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Using stationary phase (see p.215 in [11]. cf. [14]), we obtain

(4.5)

∫

Ω

q(|a|2eτ(Φ−Φ) + |a|2eτ(Φ−Φ))dx = 2
∑̀

k=1

πq|a|2(x̃k)Re e2τiImΦ(exk)

τ |(det ImΦ′′)(x̃k)| 12
+ o

(
1

τ

)
.

Here by the Cauchy-Riemann equations, we see that sgn(Im Φ′′(x̃k)) = 0, where sgn A

denotes signature of the matrix A, that is the number of positive eigenvalues of A minus the

number of negative eigenvalues (e.g., [11], p.210). Moreover we use (2.2) and the Cauchy-

Riemann equations to see that

det Im Φ′′(z) = −(∂x1∂x2ϕ)2 − (∂2
x1

ϕ)2 6= 0

by ∂2
zΦ = −1

2
∂2

x1
ϕ− 1

2
i∂x1∂x2ϕ 6= 0 in H. We compute the two remaining terms in (4.3). We

get:
∫

Ω

qu11e
τϕ(ae−τΦ + ae−τΦ)dx(4.6)

= −1

4

∫

Ω

q
{

eτΦR̃Φ,τ (e1(∂
−1
z (aq1)−M1(z))) + eτΦRΦ,−τ (e1(∂

−1
z (aq1)−M3(z)))

}
(ae−τΦ + ae−τΦ)dx

−
∫

Ω

(
eτΦ

τ

e2(∂
−1
z (aq1)−M1(z))

4∂zΦ
+

eτΦ

τ

e2(∂
−1
z (a(z)q1)−M3(z))

4∂zΦ

)
q(ae−τΦ + ae−τΦ)dx

= −1

4

∫

Ω

(qaR̃Φ,τ (e1(∂
−1
z (aq1)−M1(z))) + qaRΦ,−τ (e1(∂

−1
z (aq1)−M3(z))))dx

− 1

4

∫

Ω

(qaR̃Φ,τ (e1(∂
−1
z (aq1)−M1(z)))eτ(Φ−Φ) + qaRΦ,−τ (e1(∂

−1
z (aq1)−M3(z)))e−τ(Φ−Φ))dx

−
∫

Ω

q

(
eτ(Φ−Φ)

τ

ae2(∂
−1
z (aq1)−M1(z))

4∂zΦ
+

eτ(Φ−Φ)

τ

ae2(∂
−1
z (a(z)q1)−M3(z))

4∂zΦ

)
dx

−
∫

Ω

q

(
a

τ

e2(∂
−1
z (aq1)−M1(z))

4∂zΦ
+

a

τ

e2(∂
−1
z (a(z)q1)−M3(z))

4∂zΦ

)
dx

≡ I1 + I2 + I3 + I4.

We compute I1 and I2 separately. By Proposition 2.7, (3.6) and stationary phase (e.g.,

p.215 in [11]), we obtain

I2 = −1

4

∫

Ω

(qaR̃Φ,τ (e1(∂
−1
z (aq1)−M1(z)))eτ(Φ−Φ)(4.7)

+ qaRΦ,−τ (e1(∂
−1
z (aq1)−M3(z)))e−τ(Φ−Φ))dx

= −1

4

∫

Ω

(
e1qa

1

τ∂zΦ
(∂−1

z (aq1)−M1(z))e2iτImΦ + e1qa
1

τ∂zΦ
(∂−1

z (aq1)−M3(z))e−2iτImΦ

)
dx

+ o

(
1

τ

)
= o

(
1

τ

)
.

By Proposition 2.7, we obtain
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(4.8) I1 = − 1

4τ

∫

Ω

e1

(
qa

(∂−1
z (aq1)−M1(z))

∂zΦ
+ qa

(∂−1
z (aq1)−M3(z))

∂zΦ

)
dx + o

(
1

τ

)
.

Using stationary phase again and (3.6) we conclude that

(4.9) I3 = o

(
1

τ

)
.

Similarly

∫

Ω

qv11e
−τϕ(aeτΦ + aeτΦ)dx(4.10)

= −1

4

∫

Ω

q
{

e−τΦR̃Φ,−τ (e1(∂
−1
z (aq2)−M2(z))) + e−τΦRΦ,τ (e1(∂

−1
z (aq2)−M4(z)))

}
(aeτΦ + aeτΦ)dx

+

∫

Ω

q

(
e−τΦ

τ

e2(∂
−1
z (aq2)−M2(z)))

4∂zΦ
+

e−τΦ

τ

e2(∂
−1
z (a(z)q2)−M4(z))

4∂zΦ

)
(aeτΦ + aeτΦ)dx

= −1

4

∫

Ω

(qaR̃Φ,−τ (e1(∂
−1
z (aq2)−M2(z))) + qaRΦ,τ (e1(∂

−1
z (aq2)−M4(z))))dx

− 1

4

∫

Ω

[qaeτ(Φ−Φ)(R̃Φ,−τ (e1(∂
−1
z (aq2)−M2(z))) + qaeτ(Φ−Φ)RΦ,τ (e1(∂

−1
z (aq2)−M4(z)))]dx

+

∫

Ω

q

(
e−τ(Φ−Φ)

τ

ae2(∂
−1
z (aq2)−M2(z)))

4∂zΦ
+

eτ(Φ−Φ)

τ

ae2(∂
−1
z (a(z)q2)−M4(z))

4∂zΦ

)
dx

+

∫

Ω

q

(
a

τ

e2(∂
−1
z (aq2)−M2(z)))

4∂zΦ
+

a

τ

e2(∂
−1
z (a(z)q2)−M4(z))

4∂zΦ

)
dx

≡ J1 + J2 + J3 + J4.

By (3.17) and Proposition 2.7, we have

(4.11) J1 =
1

4τ

∫

Ω

e1

(
qa

∂−1
z (aq2)−M2(z)

∂zΦ
+ qa

∂−1
z (aq2)−M4(z)

∂zΦ

)
dx + o

(
1

τ

)
.

The stationary phase argument, (3.17) and Proposition 2.7 yield

(4.12)

J2 = −1

4

∫

Ω

[qaeτ(Φ−Φ)R̃Φ,−τ (e1(∂
−1
z (aq2)−M2(z)))+qaeτ(Φ−Φ)RΦ,τ (e1(∂

−1
z (aq2)−M4(z)))]dx = o

(
1

τ

)
.

By the stationary phase argument and (3.17), we see that

(4.13) J3 = o

(
1

τ

)
.
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Therefore, applying (4.5), (4.7), (4.11), (4.12), (4.9) and (4.13) in (4.3), we obtain

2
∑̀

k=1

π(q|a|2)(x̃k)Re e2iτImΦ(exk)

|(det ImΦ′′)(x̃k)| 12

+
1

4

∫

Ω

(
qa

∂−1
z (a(z)q2)−M2(z)

∂zΦ
+ qa

∂−1
z (q2a(z))−M4(z)

∂zΦ

)
dx

−1

4

∫

Ω

(
qa

∂−1
z (q1a)−M1(z)

∂zΦ
+ qa

∂−1
z (q1a)−M3(z)

∂zΦ

)
dx = o(1).(4.14)

as τ → +∞. Passing to the limit in this equality and applying Bohr’s theorem (e.g., [2],

p.393), we finish the proof of the proposition. ¤

Now we start the construction of the weight function Φ. Let ỹ1, . . . , ỹm ∈ Ω. Denote by

R = (R(ỹ1), . . . ,R(ỹm)) the following operator:

R(ỹk)g = (u(ỹk), ∂x1u(ỹk), ∂x2u(ỹk), ∂x1x2u(ỹk)),

where

(4.15) ∆u = 0 in Ω, u|Γ0 = 0, u|eΓ = g.

We have

Proposition 4.2. RC∞
0 (Γ̃) = R4m.

Proof. We note that RC∞
0 (Γ̃) = R4m if and only if the closure of RC∞

0 (Γ̃) is equal to R4m.

Our proof is by contradiction. Contrarily suppose that

RC∞
0 (Γ̃) 6= R4m.

Then there exists a nonzero vector ~A = (A1
0, A

1
1, A

1
2, A

1
12, . . . , A

m
0 , Am

1 , Am
2 , Am

12) ∈ R4m from

the orthogonal complement of RC∞
0 (Γ̃). Let function p be a solution to the boundary value

problem

(4.16) ∆p =
m∑

k=1

(Ak
0δ(x− ỹk)− Ak

1∂x1δ(x− ỹk)− Ak
2∂x2δ(x− ỹk) + Ak

12∂x1∂x2δ(x− ỹk)),

p|∂Ω = 0.

Let the function u be a solution to problem (4.15). Since
∫

∂Ω

∂p

∂ν
gdσ = (Rg, ~A) = 0,

we have ∂p
∂ν
|eΓ = 0. By the Holmgren theorem, we have supp p ⊂ {ỹ1, . . . , ỹm}. Since p is the

distribution, this means that p =
∑m

k=1

∑
|α|≤j(k) Ck,αDαδ(x− ỹk).

Since D(Ω)′ < ∆p, φ >D(Ω)=D(Ω)′< p, ∆φ >D(Ω) for any φ ∈ D(Ω), we see that equality (4.16)

is possible only if ~A = 0 which is a contradiction. ¤

Now we finish the proof of Theorem 1.1.
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Proof. Let x̂ be an arbitrary point from Ω. We will construct a complex geometric optic

solutions of form (3.2) where Φ and a satisfy (2.1), (2.2), (3.3) and (3.4), a(x̂) 6= 0, x̂ ∈ G ≡
{x ∈ Ω| ∂zIm Φ(x) = 0}, Im Φ(x̂) 6= Im Φ(x) if x ∈ G and x 6= x̂. The construction of a is

as follows: We choose Rea as a harmonic function in Ω with zero boundary condition on Γ0

and some boundary condition on Γ̃ such that Re a is smooth on ∂Ω and Re a(x̂) 6= 0. Then,

since Ω is simply connected, we construct the complex conjugate function to find a.

For the function Φ, we first construct its imaginary part. By Proposition 4.2 there exists

a harmonic function u such that u|Γ0 = 0 and u(x̂) = ∂zu(x̂) = 0, and det u′′(x̂) 6= 0. In

general the function u may have a critical points on the boundary. By Proposition 4.2 from

[15] we can construct a harmonic function p such that u + εp does not have a critical points

on ∂Ω for all sufficiently small ε and p|Γ0 = 0. Denote by Hε the set of critical points of the

function u + εp on Ω. By the implicit function theorem, there exists a neighborhood of x̂

such that for all small ε in this neighborhood the function u + εp has only one critical point

x̂(ε), this critical point is nondegenerate and

(4.17) x̂(ε) → x̂.

Let us fix sufficiently small ε1. Let Hε = {xk,ε}1≤k≤N(ε). By Proposition 4.2, there exists a

harmonic function w such that

w|Γ0 = 0, w(xk,ε1) 6= w(xj,ε1) for k 6= j, ∂zw|Hε1
= 0, ∂x1x2w|Hε1

6= 0.

Denote ψδ = u + ε1p + δw. For all sufficiently small positive δ

Hε1 ⊂ Gδ = {x ∈ Ω|∇ψδ(x) = 0}
and

ψδ(x) 6= ψδ(y) ∀x, y ∈ Hε1 , x 6= y.

Since Ω is a simply connected domain, we construct a function ϕδ(x) such that Φδ = ϕδ +iψδ

is holomorphic in Ω. Let us show that for all small positive δ, critical points of the function

Φδ are nondegenerate. Let x̃ be a critical point of the function u + εp. If x̃ is nondegenerate

critical point, by the implicit function theorem, there exists a ball B(x̃, δ1) such that the

function Φδ in this ball has only one nondegenerate critical point for all small δ. Let x̃ be a

degenerate critical point of u + εp. Without loss of generality we may assume that x̃ = 0.

In some neighborhood of 0, we have ∂zΦδ =
∑∞

k=1 ckz
k+p − δ

∑∞
k=1 bkz

k for some integer

positive p and some b1 6= 0 and c1 6= 0. Let zδ ∈ Gδ and zδ → 0. Then either zδ = 0 or

zp
δ = δb1/c1 + o(δ). Therefore ∂2

zΦ(zδ) 6= 0 for all small δ. Hence we can apply Proposition

4.1. According to this proposition
∑
x∈Gδ

q(x)c(x)e2iτImΦδ(x) = 0.

By (4.1) c(x̂(ε)) is not equal to zero. Also ImΦδ(x̂(ε)) 6= ImΦδ(x) for all x ∈ Gδ such

that x̂(ε) 6= x. Since the exponents are the linearly independent functions of τ , we have

q(x̂(ε)) = 0. Thus (4.17) implies q(x̂) = 0. ¤
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[9] D. Dos Santos Ferreira, C. Kenig, J. Sjöstrand, G. Uhlmann, Determining a magnetic Schrödinger

operator from partial Cauchy data, Comm. Math. Phys., 271 (2007), 467–488.
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[14] L. Hörmander, The Analysis of Linear Partial Differential Operators I, Springer-Verlag, Berlin, 1985.
[15] O. Imanuvilov, G. Uhlmann, M Yamamoto, Partial data for the Calderón problem in two dimensions,

preprint.
[16] H. Kang, G. Uhlmann, Inverse problems for the Pauli Hamiltonian in two dimensions, Journal of Fourier

Analysis and Applications, 10 (2004), 201-215.
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