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ON THE GROUP OF REAL ANALYTIC DIFFEOMORPHISMS

TAKASHI TSUBOI

Abstract. The group of real analytic diffeomorphisms of a real analytic man-
ifold is a rich group. It is dense in the group of smooth diffeomorphisms.
Herman showed that for the n-dimensional torus, its identity component is
a simple group. For U(1) fibered manifolds, for manifolds admitting special

semi-free U(1) actions and for 2- or 3-dimensional manifolds with nontrivial
U(1) actions, we show that the identity component of the group of real ana-
lytic diffeomorphisms is a perfect group.

Titre en français: Sur le groupe des difféomorphismes analytiques réels.
Resumé. Le groupe des difféomorphismes analytiques réels d’une variété analy-
tique réele est un groupe riche. Il est dense dans le groupe des difféomorphismes

lisses. Herman a montré que pour le tore de dimension n, sa composante de
l’identité est un groupe simple. Pour les variétés U(1) fibrés, pour les variétés
admettant action semi-libre special de U(1), et pour les variétés de dimension
2 ou 3 admettant action non-triviale de U(1), on montre que la composante

de l’identité du groupe des difféomorphismes analytiques réels est un groupe
parfait.

1. Introduction and the statement of the result

Let Diffω(M) denote the group of real analytic diffeomorphisms of a real an-
alytic manifold M . The group Diffω(M) is an open subset of the space of real
analytic maps Mapω(M,M) with the C1 topology. The group Diffω(M) with the
C1 topology has a manifold structure modelled on the space Xω(M) of real ana-
lytic vector fields on M . Hence Diffω(M) is locally contractible (see Proposition
11.9). It is well-known that Diffω(M) is dense in the group Diff∞(M) of smooth
diffeomorphisms in the C1 topology (See Corollary 11.8). Hence Diffω(M) is a huge
complicated group.

Let Diffω(M)0 denote the identity component of Diffω(M). For the n-dimensional
torus Tn, Herman [11] in 1974 showed that Diffω(Tn)0 is a simple group. For 30
years since then, there are no new results on the simplicity of the groups of real an-
alytic diffeomorphisms. However, Herman conjectured and we may still conjecture
that for any compact connected manifold M , the identity component Diffω(M)0 of
the group of real analytic diffeomorphisms is simple.
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Now, in this paper, we change the question. If an infinite group is simple,
then it is perfect. Hence we may ask a weaker question and may try to show the
perfectness of the group of real analytic diffeomorphisms. Note that, in the case
of the group of smooth diffeomorphisms, the perfectness implies the simplicity ([5],
see also [2]), however, we cannot apply this argument to the group of real analytic
diffeomorphisms.

For this question, our present results are as follows.

Theorem 1.1. Let M be a real analytically U(1) fibered real analytic closed man-
ifold. Then the identity component Diffω(M)0 of the group of real analytic diffeo-
morphisms of M is a perfect group.

We consider other manifolds with well-understood U(1) actions. LetN be a com-
pact (n−1)-dimensional manifold with boundary ∂N . Let M be the n-dimensional
manifold obtained from N ×U(1) by identifying {x}×U(1) to a point for x ∈ ∂N .
This M has a real analytic structure with the obvious real analytic U(1) action. We
call this U(1) action a special semi-free U(1) action. Spheres and direct products
with spheres admit special semi-free U(1) actions.

Theorem 1.2. Let M be a real analytic manifold which admits a special semi-free
U(1) action. Then the identity component Diffω(M)0 of the group of real analytic
diffeomorphisms of M is a perfect group.

If the dimension of M is 2 or 3, we can show the perfectness of Diffω(M)0 if M
admits a nontrivial U(1) action.

Theorem 1.3. Let M be a real analytic manifold of dimension 2 or 3 which admits
a nontrivial U(1) action. Then the identity component Diffω(M)0 of the group of
real analytic diffeomorphisms of M is a perfect group.

These theorems are shown in the following way.
First, we show the perfectness of the group of orbit preserving diffeomorphisms

for the U(1) bundles (Theorem 2.2) and a similar result for the orbit preserving
diffeomorphisms for the manifolds admitting special semi-free U(1) actions (Theo-
rem 5.1). These theorems for orbit preserving diffeomorphisms are proved by using
the famous Arnold theorem [1] for the Diophantine rotations and a similar theorem
5.3 for the rotations of concentric circles, which we prove in Section 10. We also
need certain explicit orbitwise actions of elements of SL(2;R), and the existence
of such nice actions gives the restriction to the U(1) actions for which we can show
our results by now.

To show our main theorems, We perturb the given U(1) action by real analytic
diffeomorphisms and obtain finitely many U(1) actions such that the tangent space
TxM

n of any point x of the manifold Mn is spanned by the generating vector fields
of the resultant U(1) actions.

For n = dim(Mn) and U(1) actions generated by the vector fields ξ1, . . . , ξn, we

have the determinant Δ = det(ξij) with respect to an orthonormal frame
∂

∂xj
for

a real analytic Riemannian metric on Mn, where ξi =
n∑

j=1

ξij
∂

∂xj
(i = 1, . . . , n).

On the open set where Δ �= 0, a diffeomorphism sufficiently close to the identity
can be written as a composition of orbit preserving diffeomorphisms. In fact, we
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show that for real analytic diffeomorphisms f such that f − id are divisible by
a certain power of Δ, f can be written as a composition of orbit preserving real
analytic diffeomorphisms. This is done by an inverse mapping theorem for real
analytic maps with singular Jacobians (Theorems 6.7 or 6.12).

Now we need to decompose a real analytic diffeomorphism sufficiently close to
the identity as a composition of real analytic diffeomorphisms which satisfy the as-
sumption of Theorems 6.7 or 6.12. This is done by using the regimentation lemma
7.1, which replaces the fragmentation lemma ([2], [19]) for the smooth diffeomor-
phisms.

Then we use the perfectness of the group of orbit preserving diffeomorphisms
of U(1) bundles (Theorem 2.2) or a similar theorem (Theorem 5.1) for manifolds
admitting special semi-free actions, to show our main theorems (Section 8).

Our method can treat the real analytic manifolds with a little more general U(1)
actions. We say that two elements of a group are homologous if they represent the
same element in the abelianization of the group. In Section 9, we show that, if the
manifold admits a nontrivial U(1) action, any real analytic diffeomorphism isotopic
to the identity is homologous to a diffeomorphism which is an orbitwise rotation
(Proposition 9.1). Then we show Theorem 1.3 by showing Propositions 9.2, 9.3 and
Theorem 9.4.

We think that Diffω(M)0 is perfect if M admits a nontrivial U(1) action. But
for the moment we need a structure theorem for the orbifold M/U(1) in the con-
struction of a nice multi-section outside of a codimension 2 suborbifold to show
that orbitwise rotations are homologous to zero.

2. Orbit preserving diffeomorphisms of U(1) bundles

As we mentioned, for the n-dimensional torus Tn, Herman [11] in 1974 noticed
that the result of Arnold [1] implies Diffω(Tn)0 is a simple group. Hence it is
perfect.

We note that Herman’s proof ([11]) uses the fact that the commutator subgroup
[Diffω(Tn)0,Diffω(Tn)0] of Diffω(Tn)0 is its dense subgroup. In fact, for the group
Diff∞(M) of C∞ diffeomorphisms of a smooth manifold M , its identity compo-
nent Diff∞(M)0 is perfect by the result of Thurston ([26], [2]). Since Diffω(M) is
dense in Diff∞(M), the commutator subgroup [Diffω(M)0,Diffω(M)0] is dense in
Diffω(M)0.

For the real analytic diffeomorphisms of Tn, Arnold [1] already noticed the fol-
lowings.

Theorem 2.1 (Arnold[1]). Let α ∈ Rn satisfy the Diophantine condition. For a
real analytic family Φ(w) (w ∈ W ) of analytic diffeomorphisms of Tn close to the
identity, there is an analytic family (ψ(w), λ(w)) ∈ Diffω(Tn)0 × Tn such that

Φ(w) = Rλ(w)−α ◦ ψ(w) ◦Rα ◦ ψ(w)−1,

where R∗ denotes the rotation by ∗ on Tn = Rn/Zn.

Here a real vector α ∈ Rn is said to satisfy the Diophantine condition if there
exist positive real numbers C and β such that |α • n − m| ≥ C‖n‖−β for any
n ∈ Zn \ {0} and m ∈ Z.

Since Rλ can be written as a commutator in

PSL(2;R)n = PSL(2;R) × · · · × PSL(2;R)
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depending real analytically on λ, Φ(w) can be written as a product of 2 commutators
depending real analytically on w ∈W .

This means that for a compact manifold N and the product N × Tn with the
product foliation F = ({∗} × Tn) (∗ ∈ N), the group Diffω(F)0 is a perfect group,
where Diffω(F) denotes the group of real analytic diffeomorphisms mapping each
fiber of the projection N × Tn −→ N to itself and the subscript 0 denotes the
identity component.

We first generalize the perfectness result for the group of orbit preserving diffeo-
morphisms of a U(1) bundle.

Theorem 2.2. Let p : M −→ B be a real analytic principal U(1) bundle over a
closed manifold B. Let Diffω(F) denotes the group of real analytic diffeomorphisms
mapping each fiber of the projection p : M −→ B to itself. The identity component
Diffω(F)0 of Diffω(F) is a perfect group.

3. Proof of Theorem 2.2

Proof of Theorem 2.2 for trivial U(1) bundles. Theorem 2.2 for the trivial U(1)
bundle is just a reformation of Arnold’s theorem 2.1. In this case, M = B × U(1)
and F = ({∗} × U(1))∗∈B . An element of Diffω(F)0 is written as the real analytic
family Φ(w) (w ∈ B) of real analytic diffeomorphism of U(1). It is enough to show
that Φ(w) near the identity can be written as a product of commutators.

Take a Diophantine rotation Rα in the direction of the fibers of the U(1) bundle.
The element Φ(w) near the identity is written as

Φ(w) = Rλ(w)−α ◦ ψ(w) ◦Rα ◦ ψ(w)−1.

Here, λ(w) is determined uniquely by the condition that the rotation number of
R−λ(w) ◦ (Rα ◦ Φ(w)) coincides with that of Rα, α mod 1. In the proof in [1] of
Arnold’s theorem 2.1, the conjugating diffeomorphism ψ(w) is obtained uniquely
so that the base point 1 ∈ U(1) is fixed (ψ(w)(1) = 1). Thus ψ(w) (w ∈ B) is
a real analytic family of real analytic diffeomorphisms. In the expression Φ(w) =
Rλ(w)−α◦ψ(w)◦Rα◦ψ(w)−1, Rλ(w) can be written as a product of two commutators
in Mapω(B,SL(2,R)) by the following lemma 3.1. Thus Theorem 2.2 for trivial
U(1) bundles is shown. �

Lemma 3.1. A rotation
(
X −Y
Y X

)
(X2 + Y 2 = 1) close to the identity can be

written as a product of 2 commutators using products of rotations and diagonal
matrices.

Proof. We notice the following equality:

(
X −Y
Y X

)(a 0

0
1
a

)⎛⎜⎝ X
2a2Y

a4 − 1
2a2Y

a4 − 1
X

⎞⎟⎠(1
a

0

0 a

)

=

(1
a

0

0 a

)⎛⎜⎝ X
2a2Y

a4 − 1
2a2Y

a4 − 1
X

⎞⎟⎠(a 0

0
1
a

)(
X Y
−Y X

)
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Put

(
W Z
Z W

)
=
(

1
/√

1 − (a4 + 1)2Y 2

(a4 − 1)2

)⎛⎜⎝ X
2a2Y

a4 − 1
2a2Y

a4 − 1
X

⎞⎟⎠ ∈ SL(2;R).

Then(
X −Y
Y X

)2

=

(1
a

0

0 a

)(
W Z
Z W

)(a 0

0
1
a

)(
X Y
−Y X

)
·
(
a 0

0
1
a

)(
W −Z
−Z W

)(1
a

0

0 a

)(
X −Y
Y X

)
=
[(1

a
0

0 a

)
,

(
W Z
Z W

)][(
W Z
Z W

)
,

(
X Y
−Y X

)(a 0

0
1
a

)]
.

Hence
(
X −Y
Y X

)2

can be written as a product of 2 commutators. Here note that

(
W Z
Z W

)
=

⎛⎜⎝
1√
2

− 1√
2

1√
2

1√
2

⎞⎟⎠(W + Z 0
0 W − Z

)⎛⎜⎝
1√
2

1√
2

− 1√
2

1√
2

⎞⎟⎠
and this shows the lemma. �

Proof of Theorem 2.2 for non-trivial U(1) bundles. We choose a family of
trivializing neighborhoods for the U(1) bundle. On each trivializing neighbor-
hood, we can write Φ(w) as a family of real analytic diffeomorphisms. Then we
take a Diophantine rotation Rα and Φ(w) near the identity can be written as
Φ(w) = Rλ(w)−α ◦ ψ(w) ◦Rα ◦ ψ(w)−1 on the trivializing neighborhood.

Now note that, for any U(1) bundle, the rotation in the direction of the fiber is de-
fined. Hence the Diophantine rotation Rα is globally defined. Moreover, since λ(w)
is determined uniquely by the condition that the rotation number of R−λ(w)Φ(w)
coincides with that of Rα, α mod 1, and this condition does not depend on the
choice of local trivialization of the U(1) bundle, λ(w) is well defined as a real ana-
lytic function on B.

On the other hand, ψ(w) on a trivializing neighborhood is unique only up to
composing rotations on the right. However, the Lebesgue measure along the fiber
is well defined, and among these ψ(w), there is a unique element ψ(w) ∈ Diffω(F)0
such that ∫

S1
(ψ(w) − id)(θ)dθ = 0.

In fact, for a given ψ(w), put

β(w) =
∫

S1
(ψ(w) − id)(θ)dθ = −

∫
S1

(ψ(w)−1 − id)(θ)dθ.
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Then ∫
S1

(ψ(w) ◦R−β(w) − id)(θ)dθ

=
∫

S1
(ψ(w) ◦R−β(w) − ψ(w) + ψ(w) − id)(θ)dθ

=−
∫

S1
(Rβ ◦ ψ(w)−1 − ψ(w)−1)(θ)dθ +

∫
S1

(ψ(w) − id)(θ)dθ = 0.

By replacing the given ψ(w) by ψ(w) ◦ R−β(w), the new ψ(w) satisfies the above
condition, and the conjugating diffeomorphism ψ(w) taken for the trivializing neigh-
borhoods for the U(1) bundle match up on the intersections.

Thus we can write Φ(w) = Rλ(w)−α ◦ ψ(w) ◦ Rα ◦ ψ(w)−1 (w ∈ B). This
means that any element of the abelianization H1(Diffω(F)0;Z) is represented by
an element of the group Mapω(B,U(1))0 of diffeomorphisms which are fiberwise
rotation.

Rotations near the identity can be written as commutators in PSL(2;R) or
SL(2;R), however we need a trivialization of the circle bundle to make PSL(2;R)
or SL(2;R) act on the fiber.

We will show the following proposition, which completes the proof of Theorem
2.2 for non-trivial U(1) bundles.

Proposition 3.2. Each element of Mapω(B,U(1))0 can be written as a prod-
uct of commutators of the group of real analytic orbit preserving diffeomorphisms
Diffω(F)0.

For the proof of Proposition 3.2, we carefully choose a finite family of trivializa-
tions of the circle bundle over the complements of submanifoldsDi’s. We decompose
an element of Mapω(B,U(1))0 into elements which are the identity over Di. We
see that there is an analytic action of Mapω(B \Di, SL(2;R)) on p−1(B \Di). The
action of certain elements of Mapω(B \Di, SL(2;R)) extends to that of elements
of Mapω((B,Di), (SL(2;R), {id})).

Proof of Proposition 3.2. Let p : M −→ B be a real analytic principal U(1)
bundle. Let pE : E −→ B be the associated complex line bundle. The space of real
analytic sections of E is a real vector space.

We use a finite set of real analytic sections si : B −→ E (i = 1, . . . , k; 2k ≥

n+ 1 = dim(M) + 1) transverse to the zero section such that
k⋂

i=1

s−1
i (0) = ∅. Then

the bundle M −→ B has k trivializing open dense sets B \ s−1
i (0) which form a

covering of B.
We consider a real analytic Hermitian metric for E. Then the square of the

absolute value |si|2 : B −→ R (i = 1, . . . , k) is a non negative real analytic
function on B.

For r ∈ Mapω(B,U(1))0 near the identity, let r̃ : B −→ ˜U(1) be the lift near the
identity, where ˜U(1) is the universal covering group of U(1).

Put

r̃i(w) =
(
|si|4(w)

/ k∑
j=1

|sj |4(w)
)
r̃(w)

2
,
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where the product in ˜U(1) ∼= R is written additively. Let ri be the element of
Mapω(B,U(1))0 defined by r̃i. Then as an element of Mapω(B,U(1))0,

r = r1
2 · · · rk2,

where the product in U(1) is written multiplicatively. Note that ri is flat along
s−1

i (0) which is divisible by |si|4.
For a real analytic section s : B −→ E transverse to the zero section, s−1(0) is

a codimension 2 submanifold of B. The restriction of the bundle M |(B \ s−1(0))

is trivialized by using the section e : B −→ M given by e(b) =
s(b)
|s(b)| . Then the

coordinate transformation is written as follows. First,

M |(B \ s−1
i (0)) −→ (B \ s−1

i (0)) × U(1)

is given by x �−→ (p(x),
x

ei(p(x))
), where ei =

si(b)
|si(b)| . Hence we have the coordinate

transformation
(B \ s−1

i (0)) × U(1) ⊃ (B \ (s−1
i (0) ∪ s−1

j (0))) × U(1)⏐�
(B \ s−1

j (0)) × U(1) ⊃ (B \ (s−1
j (0) ∪ s−1

i (0))) × U(1)

given by (w, z) �−→ (w, z
ei(w)
ej(w)

).

We would like to make a certain element of Mapω(B \ s−1
i (0), SL(2,R)) act on

p−1(B \ s−1
i (0)) in such a way that this action extends to an element of Diffω(F)0.

Let Ai : B \s−1
i (0) −→ SL(2,R) be the map Ai =

⎛⎝1 + |si|2 0

0
1

1 + |si|2

⎞⎠ which

acts on U(1) ∼= SO(2) identified with the oriented lines through the origin on the
plane. For a neighborhood N of b ∈ s−1

i (0), there is a real analytic coordinate

N � w �−→ (u(w), pC(si(w))) ∈ Rn−3 × C,

where u : N −→ Rn−3 and pC : p−1
E (U) −→ C = {x+ y

√−1}. On this coordinate,

Ai(w) =

⎛⎝1 + x2 + y2 0

0
1

1 + x2 + y2

⎞⎠ .
In order to see whether this extends to an element of Diffω(F)0, we need to look
at the action on another trivialization. If N ⊂ B \ s−1

j (0), we have

x �−→ (p(x),
x

ej(p(x))
) : M |N −→ N × U(1)

and
x �−→ (p(x),

x

ei(p(x))
) : M |(N \ s−1

i (0)) −→ (N \ s−1
i (0)) × U(1).

These trivializations are related by (w, z) �−→ (w, z
ei(w)
ej(w)

), which is real analyt-

ically conjugate to (u, x, y, z) �−→ (u, x, y,R(x, y)e2π
√−1tij(u)z). Here tij(u) is real

analytic function on u, for a neighborhood D of 0 ∈ C ∼= R2, R : D \ {(0, 0)} −→
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SL(2;R) is the map given by R(x, y) =
1√

x2 + y2

(
x −y
y x

)
in the real coordi-

nates. Thus we need to check whether R−1AiR is real analytic on N .

Lemma 3.3. Let R : D \ {(0, 0)} −→ SL(2;R) be the map given by R(x, y) =
1√

x2 + y2

(
x −y
y x

)
. Let A =

(
a 0
0 a−1

)
, where a = a(x, y) is real analytic and

a(0, 0) = 1. If a(x, y) − 1 is divisible by x2 + y2, then R−1AR is real analytic at
(0, 0).

Proof. For A =
(
a 0
0 a−1

)
,

R−1AR − I =
1

x2 + y2

(
x y
−y x

)(
a 0
0 a−1

)(
x −y
y x

)
− I

=
1

x2 + y2

(
(a− 1)x2 + (a−1 − 1)y2 (−a+ a−1)xy

(−a+ a−1)xy (a−1 − 1)x2 + (a− 1)y2

)
=

a− 1
a(x2 + y2)

(
ax2 − y2 −(1 + a)xy

−(1 + a)xy −x2 + ay2

)
.

Hence if a(x, y)−1 is divisible by x2 +y2 then R−1AR is real analytic at (0, 0). �

By Lemma 3.3, Ai extends to an element of Diffω(F)0. We will use Ai to
write ri

2 as a product of commutators. For this we look at the way to write
rotations as products of commutators in SL(2;R) and the extension question on
the commutators.

Lemma 3.4. Assume that

(∗)m a(x, y) = 1+k(x, y)(x2+y2)m ( k(0, 0) �= 0 ) and Y = �(x, y)(x2+y2)2m

for real analytic functions k(x, y) and �(x, y) and a positive integer m. Then when

we write the the rotation
(
X −Y
Y X

)2

(X2 + Y 2 = 1) as a product of two com-

mutators as in Lemma 3.1, using the products of rotations and diagonal matrices,
W ± Z − 1 in Lemma 3.1 are divisible by (x2 + y2)m.

Proof.
Y

a4 − 1
=

�(x, y)(x2 + y2)2m

k(x, y)(a + 1)(a2 + 1)(x2 + y2)m

=
�(x, y)

k(x, y)(a + 1)(a2 + 1)
(x2 + y2)m

and
W ± Z − 1

=
1√

1 − (a4 + 1)2Y 2

(a4 − 1)2

(√
1 − Y 2 −

√
1 − (a4 + 1)2Y 2

(a4 − 1)2
± 2a2Y

a4 − 1
)

=
1√

1 − (a4 + 1)2Y 2

(a4 − 1)2

( 4a4Y 2

(a4 − 1)2

√
1 − Y 2 +

√
1 − (a4 + 1)2Y 2

(a4 − 1)2

± 2a2Y

a4 − 1
)
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are divisible by (x2 + y2)m. �

Using Lemmas 3.3 and 3.4 for m = 1, we obtain the following lemma.

Lemma 3.5. Assume (∗)1 in Lemma 3.4. Then
(
X −Y
Y X

)2

(X2 + Y 2 = 1) can

be written as a product of two commutators which are analytic at (x, y) = (0, 0)
after conjugated by R.

Proof of Proposition 3.2 continued. For ri, we use the trivialization

M |(B \ s−1
i (0)) −→ (B \ s−1

i (0)) × U(1).

We use the diffeomorphism of (B\s−1
i (0))×U(1) given byAi =

⎛⎝1 + |si|2 0

0
1

1 + |si|2

⎞⎠.

Then ri2 =
(
Xi −Yi

Yi Xi

)2

can be written as product of 2 commutators in Map(B \
s−1

i (0), SL(2;R)) by Lemma 3.1. Then for N ⊂ B \ s−1
j (0), by Lemma 3.5, the

elements appear in the commutators are real analytic on the fiber of s−1
i (0)

This completes the proof of Proposition 3.2 and the proof of Theorem 2.2 for
non-trivial U(1) bundles. �

By using Theorem 2.2, we have the following corollary.
A closed manifold n-dimensional M is multi U(1) fibered if there exist n oriented

circle bundle (U(1) bundle) structures with the tangent spaces of fibers spanning
the tangent space TxM of M at each point x ∈ M . For example, compact Lie
groups and the 7 dimensional sphere S7 are multi U(1) fibered.

Corollary 3.6. Let M be a real analytically multi U(1) fibered real analytic man-
ifold. Then the identity component Diffω(M)0 of the group of real analytic diffeo-
morphisms of M is a perfect group.

By using the following Proposition 3.7, Corollary 3.6 follows from Theorem 2.2.

Proposition 3.7. Let p1 : M −→ B1, . . . , pn : M −→ Bn be real analytic U(1)
fibrations and let F1, . . . , Fn be the bundle foliations. Assume that

TF1 ⊕ · · · ⊕ TFn = TM.

Let Diffω(Fi)0 denote the identity component of the group of real analytic diffeomor-
phisms of M mapping each fiber of pi to itself. Then for an element f ∈ Diffω(M)0
close to the identity, there are elements fi ∈ Diff(Fi)0 such that f = f1 ◦ · · · ◦ fn.

Proof. For each U(1) bundle pi, we fix the vector field ξi generating the U(1)
action as the flow ϕ

(i)
t (t ∈ R/Z). We look at the real analytic mapping F :

Rn ×M −→M ×M given by

F (t1, . . . , tn;x) = ((ϕ(1)
t1 ◦ · · · ◦ ϕ(n)

tn
)(x), x).

By the assumption that TM is the Whitney sum of TFi, the tangent map T(0,x)F :
T0R

n × TxM −→ TxM × TxM is an isomorphism for x ∈ M . Hence by the (real
analytic) inverse mapping theorem 6.5, a neighborhood of {0} × M in Rn × M



10 TAKASHI TSUBOI

and a neighborhood of the diagonal set of M ×M are Cω diffeomorphic. Thus
an element f ∈ Diffω(M)0 close to the identity can be written as (f(x), x) =
F (t1(x), . . . , tn(x);x). For i = n, n− 1, . . . , 1, define fi by

fi((fi+1 ◦ · · · ◦ fn)(x)) = ϕ
(i)
ti(x) ◦ · · · ◦ ϕ(n)

tn(x)(x)

and we obtain the desired decomposition. �

Remark 3.8. Such decomposition was suggested by Sergeraert to the author in early
1980’s. In the literature, we refer the readers to [10].

4. Orbit preserving diffeomorphisms of manifolds with locally free

U(1) actions

For a locally free U(1) action, we can also show that any orbit preserving real
analytic diffeomorphism close to the identity is homologous in Diffω(F)0 to an
real analytic diffeomorphism which is an orbitwise rotation. Here we say that two
elements are homologous if they represent the same element in the abelianization
of the group Diffω(M)0.

Proposition 4.1. Let R : U(1) ×M −→ M be a real analytic locally free action
on a real analytic manifold M . Let F denote the orbit foliation and Diffω(F)0, the
identity component of the group of orbit preserving real analytic diffeomorphisms.
Then any orbit preserving real analytic diffeomorphism close to the identity is ho-
mologous in Diffω(F)0 to an real analytic diffeomorphism which is an orbitwise
rotation.

Proof. For any point x ∈M , let Gx denote the isotropy subgroup at x:

Gx = {g ∈ U(1)
∣∣ g · x = x}.

Then there exists a positive integer m called the multiplicity of the orbit through x
such that Gx

∼= Z/mZ. When m � 2, we call the orbit through x a multiple orbit
of multiplicity m. There is an injective homomorphism h : Z/mZ −→ O(n − 1)
(O(n−1) is the orthogonal group) such that a neighborhood N of the orbit through
x is described as follows.

N ∼= (Bn−1 × U(1))/ ∼,
where Bn−1 is the (n−1)-dimensional ball of radius 1, (w, z) ∼ (h(k)w, e2π

√−1k/mz)
(k ∈ Z/mZ) and the action of U(1) on N is induced from that on the U(1)
component.

An orbit preserving diffeomorphism Φ of N near the identity induces a unique
orbit preserving diffeomorphism Φ(w) near the identity of Bn−1 × U(1) which is
Z/mZ equivariant.

Let α ∈ R be a Diophantine number and let

Φ(w) = Rλ(w)−α ◦ Ψ(w) ◦Rα ◦ Ψ(w)−1 (w ∈ B)

be the expression given by Arnold’s theorem 2.1. Since Φ(w) is Z/mZ equivariant,
Φ(h(k)w) = Rk/m ◦Φ(w) ◦R−k/m. This implies λ(h(k)w) = λ(w). By substituting
h(k)w in the above expression and using λ(h(k)w) = λ(w),

Φ(h(k)w) = Rλ(w)−α ◦ Ψ(h(k)w) ◦Rα ◦ Ψ(h(k)w)−1.
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By the Z/mZ equivariance,

Φ(h(k)w) =Rk/m ◦ Φ(w) ◦R−k/m

=Rλ(w)−α ◦ (Rk/m ◦ Ψ(w) ◦R−k/m) ◦Rα ◦ (Rk/m ◦ Ψ(w) ◦R−k/m)−1.

If Ψ(w) is chosen such that
∫

(Ψ(w) − id)dθ = 0, then∫
((Rk/m ◦ Ψ(w) ◦R−k/m) − id)dθ = 0.

By the uniqueness of such conjugating diffeomorphisms, we see that

Ψ(h(k)w) = Rk/m ◦ Ψ(w) ◦R−k/m,

that is, Ψ(w) is also Z/mZ equivariant. Thus Ψ(w) induces an orbit preserving
Cω diffeomorphism Ψ of N such that

Φ = Rλ(w)−α ◦ Ψ ◦Rα ◦ Ψ−1,

where Rt corresponds to the action of e2π
√−1t and Rλ(w) is an orbitwise rotation

which is a Cω diffeomorphism of N .
We take the invariant neighborhoods for the multiple orbits and regular orbits

to obtain a covering of M . On each invariant neighborhood, we obtain the conju-
gating diffeomorphism Ψ and the orbitwise rotation Rλ(w). They match up on the
intersection of the neighborhoods and gives the global diffeomorphism Ψ and the
orbitwise rotation Rλ(w) (w ∈M/U(1)). Thus the proposition is proved. �

5. Orbit preserving diffeomorphisms of manifolds with semi-free U(1)
actions

When we treat manifolds with special semi-free U(1) actions, we need to look at
orbit preserving diffeomorphisms and groups of orbitwise rotations.

Let M = (N × U(1))/∼ be the manifold with a special semi-free U(1) action.
There is a map s : N −→M , transverse to the orbits in int(N) × U(1) and s(∂N)
is the fixed point set. The normal bundle of s(∂N) is trivial and the action of U(1)
near s(∂N) is the product of rotation of R2 and trivial action in the direction of
s(∂N).

Let Diffω(O, s(∂N)k) denote the group of the orbit preserving diffeomorphisms
f of M such that f − id is divisible by (x2 + y2)k, where (x, y) is the coordinate
normal to s(∂N) along s(∂N) where the U(1) action is the rotation.

We have the following theorem for the orbit preserving diffeomorphisms of M
with a special semi-free U(1) action.

Theorem 5.1. Let M = (N × U(1))/∼ be the manifold with a special semi-free
U(1) action with the fixed point set s(∂N). Then f ∈ Diffω(O, s(∂N)2) can be
written as product of commutators in Diffω(O, s(∂N)0)

The proof of this theorem uses the following theorem 5.3 of Arnold type for the
Diophantine rotations of concentric circles on the plane. Theorem 5.3 is a spacial
case of Theorem 10.1 which we prove in Section 10.

We consider the following situation. Let

Δζ = {w ∈ Cm
∣∣ |wi| ≤ ζ (i = 1, . . . ,m)}.
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Let U be an open neighborhood of 0 ∈ R2 and Φ : U × (Δζ ∩ Rm) −→ R2 be a
real analytic map such that

(Φ1(x1, x2;w))2 + (Φ2(x1, x2;w))2 = x1
2 + x2

2.

We write z = x1 +
√−1x2, z = x1 −

√−1x2 and

Φ(z, z;w) = Φ(x1 +
√−1x2, x1 −

√−1x2;w)
= Φ1(x1, x2;w) +

√−1Φ2(x1, x2;w).

Since Φ(x1, x2;w) is real analytic, it is written as a convergent series in x1 and x2,
hence Φ(z, z;w) is written as a convergent series in z and z, with analytic parameter
w.

For the differential DΦ in the direction (x1, x2) or (z, z), assume that DΦ(0;w) =
id. For a Diophantine number α, we consider the rotation by 2πα which is the
multiplication by e2π

√−1α. The question is whether e2π
√−1αΦ is conjugate to the

rotation by 2π
√−1α. The obvious necessary condition is that the rotation number

is constant for the concentric invariant circles.

Remark 5.2. For each circle, this is the case by Arnold’s theorem ([1]) provided that
e2π

√−1αΦ is close to the rotation by 2π
√−1α. Since Arnold showed his theorem

with real analytic parameter, it is true on U \ {0}. On the other hand there is the
theorem by Siegel ([25], [21]) for the holomorphic diffeomorphism germ, and there
also is the parametrized version.

Theorem 5.3. There are real analytic maps λ : U × (Δζ ∩Rm) −→ R (λ(z, z;w)
depending on (zz, w)) and h : U×(Δζ ∩Rm) −→ U (h(z, z;w)h(z, z;w) = zz) such
that

e−2π
√−1λw(z)e2π

√−1αΦ(z, z;w) = hw(e2π
√−1αhw

−1(z)),
where λw(z) = λ(z, z;w) and hw(z) = h(z, z;w).

We assume the above Theorem 5.3 for the Diophantine rotations of concentric
circles and prove Theorem 5.1.

Proof of Theorem 5.1. The proof goes as in the proof of Theorem 2.2 for trivial
U(1) bundles. We consider the Diophantine rotation along the orbits of the U(1)
action, that is, the action of e2π

√−1α ∈ U(1). f is thought as an real analytic
family of real analytic diffeomorphisms Φ(w) (w ∈ N) which are near the identity.
Then in a neighborhood of an interior point w ∈ int(N), Φ(w) is written as Φ(w) =
Rλ(w)−α ◦ψ(w)◦Rα ◦ψ(w)−1, where λ(w) is uniquely determined by the condition
that R−λ(w)Φ(w) has the rotation number α mod 1. Since we have the section
s : N −→M , ψ(w) is also determined uniquely by assuming that ψ(w) fixes points
of s(N). For a neighborhood of a point w ∈ ∂N , by Theorem 5.3, Φ(w) is written
as

Φ(w) = Rλ(w)−α ◦ ψ(w) ◦Rα ◦ ψ(w)−1,

where λ is a real analytic function on x2 + y2 and w ∈ N , and ψ(w) is a real ana-
lytic diffeomorphism sending each orbit to itself. The diffeomorphism ψ(w) on the
neighborhood of a point w ∈ ∂N is also unique by assuming that ψ(w) fixes points
of s(N). Thus ψ(w) determines an orbit preserving real analytic diffeomorphism
Ψ of M and Rλ(w) determines a real analytic diffeomorphism Λ of M which is an
orbitwise rotation. Since f− id is divisible by (x2+y2)2. λ is divisible by (x2+y2)2.
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We would like to use Lemma 3.1 to write Λ as a product of commutators.

We use an orbit preserving action of the diagonal matrix A =
(
a 0
0 a−1

)
, where

a is a real analytic function of r2 = x2 + y2.

Lemma 5.4. Let A =
(
a 0
0 a−1

)
, where a = a(x, y) is a real analytic function on

x2 + y2 and a(0) = 1. Then the map Â preserving concentric circles given by

Â

(
x
y

)
=
∥∥(x

y

)∥∥ A(x
y

)/∥∥A(x
y

)∥∥
is real analytic at (0, 0).

Proof. Note that

Â

(
x
y

)
=

√
x2 + y2√

a2x2 + a−2y2

(
ax
a−1y

)
and √

x2 + y2√
a2x2 + a−2y2

= 1
/√

1 +
a2 − 1
x2 + y2

(x2 − y2

a2
).

Since a(x, y) − 1 is divisible by x2 + y2, Â is real analytic at (0, 0). �

Now we can finish the proof of Theorem 5.1.
We take a real analytic function a on the double DN of N such that a = 1

along ∂N , a > 1 on DN \ ∂N , a is invariant under the involution on DN , and the
second derivative normal to ∂N is nontrivial. Then we have a real analytic map

N −→ SL(2;R) given by w �−→
(
a(w) 0

0 a(w)−1

)
. Using this diagonal matrix, by

Lemma 3.1, λ can be written as commutators in SL(2;R) outside of s(∂N) and by
Lemma 5.4 these elements used in commutators extends to s(∂N) as real analytic
diffeomorphisms.

Thus we proved Theorem 5.1. �

6. Inverse mapping theorem and its singular case

We already used in showing Corollary 3.6, the real analytic inverse mapping
theorem. To show our theorem we need an inverse mapping theorem for the real
analytic maps with the Jacobian matrices being not regular.

Real analytic maps between real analytic manifolds are defined by taking the
local coordinates. In fact, the definition of the real analytic manifolds relied on the
real analytic inverse mapping theorem.

Before reviewing the real analytic inverse mapping theorem, we review the fun-
damental lemma.

Lemma 6.1. Let U ⊂ RN be an open set and (T,m), an interval with the prob-
ability measure m. If f : T × U −→ R is real analytic in x ∈ U , then F (x) =∫

T

f(t, x)dm(t) is real analytic in x.
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Proof. For each (t, x) ∈ T ×U , there is a neighborhood I×V of (t, x) and f |(I×V )
has a complexification (f |(I × V ))C : I × V C −→ C. We can cover T × {x} by
finitely many such neighborhoods and f |(T × {x}) has a complexification fC :
T × WC −→ C. Since fC satisfies the Cauchy-Riemann equation with respect

to z ∈ WC , FC(z) =
∫

T

fC(t, z)dm(t) satisfies the Cauchy-Riemann equation as

well. Hence the restriction F (x) of FC is real analytic. �
Lemma 6.2 (Hadamard Lemma). For a real analytic function f defined in a neigh-
borhood of the origin of RN , there are real analytic functions g1, . . . , gN defined
in a neighborhood of (x, x) ∈ R2N such that

f(y) − f(x) =
N∑

i=1

(yi − xi)gi(x, y).

Proof.

f(y) − f(x) =
[
f(t(y − x) + x)

]t=1

t=0

=
∫ 1

0

N∑
i=1

∂f

∂xi
(t(y−x)+x)(yi − xi)dt

=
N∑

i=1

(yi − xi)
∫ 1

0

∂f

∂xi
(t(y−x)+x)dt

and
∫ 1

0

∂f

∂xi
(t(y−x)+x)dt is real analytic in x and y. �

Corollary 6.3. For a real analytic function f defined in a neighborhood of the
origin of RN , there are real analytic functions hij (i, j = 1, . . . , N) such that

f(y) − f(x) =
N∑

i=1

(yi − xi)
∂f

∂xi
(x) +

N∑
i,j=1

(yi − xi)(yj − xj)hij(x, y).

We also need the following lemma given by Cartan ([3]). This is usually referred
as the closure of modules theorem (see also [8], [9]).

Lemma 6.4. Let fi be a sequence of real analytic functions on U ⊂ Rn. Assume
that fi is divisible by a real analytic function μ(x) and the complexification fi

C

converges uniformly to the complexification of a real analytic function f∞ on a
complexified neighborhood of U . Then f∞ is divisible by μ(x).

Now we review the real analytic inverse mapping theorem.

Theorem 6.5 (Inverse mapping theorem). Let f : U −→ V be a real analytic
map between open sets in Rn. If the Jacobian matrix Df(x) at x is invertible, then
there is a neighborhood W of f(x) and a real analytic map g : V −→ U such that
g(f(x)) = x, g ◦ f is the identity on g(W ) and f ◦ g is the identity on W .

Proof. There are several ways to prove the real analytic inverse mapping theorem.
By the usual (differentiable) inverse mapping theorem, f has a differentiable

inverse map g : W −→ U . We need to show that f is real analytic.
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f : U −→ V has a complexification fC : UC −→ V C , where UC and V C are
neighborhoods of U and V in Cn = Rn ⊕√−1Rn. The Jacobian matrix (DfC)(x)

of fC is the same matrix as Df(x) = (
∂fi

∂xj
)i,j=1,...,n considered as a complex matrix.

Now we look at the pull-back of dzi. Then we have

(fC)∗dzi =
n∑

j=1

∂fi

∂xj
dzj .

This is equivalent to the Cauchy-Riemann equation for fC
i = ui +

√−1vi.
By the usual (differentiable) inverse mapping theorem, there is a mapping gC :

WC −→ UC . Since the Jacobian matrix D(gC)(f(x)) is the inverse of (DfC)(x), it

is the same matrix as Dg(f(x)) = (
∂gi

∂xj
)i,j=1,...,n considered as a complex matrix.

Then we have

(gC)∗dzi =
n∑

j=1

∂gi

∂xj
dzj .

Thus gC
i also satisfies the Cauchy-Riemann equation. Since g is the restriction of

gC to Rn, g is real analytic. �

Remark 6.6. There is a little more direct way to prove and it is more important for
its generalization to the case where Df(x) = 0.

The usual proof of the differentiable inverse mapping theorem considers the
fixed point of G(y) : x �−→ x + Df(x0)

−1(y − f(x)). This fixed point can be
obtained as the limit of the points {xk}k≥0, where x0 = x0, x1 = G(y)(x0) =
x0 +Df(x0)

−1(y − f(x0)), xk = G(y)(xk−1) (k ≥ 2). Then

G(y)(xk+1) −G(y)(xk) = xk − xk−1 +Df(x0)
−1(f(xk−1) − f(xk)).

Since

fi(x) − fi(x0) =
n∑

j=1

∂fi

∂xj
(x0)(xj − x0

j ) +
n∑

j,�=1

hij�(x, x0)(xj − x0
j )(x� − x0

�)

for some real analytic functions hij�(x, x0),

fi(xk−1) − fi(xk) =
n∑

j=1

∂fi

∂xj
(x0)(xk−1

j − xk
j )

+
n∑

j,�=1

hij�(xk−1, x0)(xk−1
j − x0

j)(x
k−1
� − x0

� )

−
n∑

j,�=1

hij�(xk, x0)(xk
j − x0

j)(x
k
� − x0

� ),

and

G(y)(xk+1) −G(y)(xk) =Df(x0)
−1

( n∑
j,�=1

hij�(xk−1, x0)(xk−1
j − x0

j )(x
k−1
� − x0

�)

−
n∑

j,�=1

hij�(xk, x0)(xk
j − x0

j)(x
k
� − x0

�)
)

i=1,...,n

.
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Each component of vector given as the parenthesis
(

•
)

i=1,...,n

is estimated by

εmax
j

|xk
j − xk−1

j | with arbitrary small ε as xk tends to x0. In fact,

n∑
j,�=1

hij�(xk−1, x0)(xk−1
j − x0

j)(x
k−1
� − x0

�)

−
n∑

j,�=1

hij�(xk, x0)(xk
j − x0

j )(x
k
� − x0

�)

=
n∑

j,�=1

{hij�(xk−1, x0) − hij�(xk, x0)}(xk−1
j − x0

j)(x
k−1
� − x0

�)

+
n∑

j,�=1

hij�(xk, x0){(xk−1
j − x0

j)(x
k−1
� − x0

�) − (xk
j − x0

j)(x
k
� − x0

� )},

and formulas

hij�(xk−1, x0) − hij�(xk, x0) =
n∑

m=1

(xk−1
m − xk

m)h′ij�m(xk−1, xk, x0)

for some real analytic functions h′ij�m(xk−1, xk, x0) and

(xk−1
j − x0

j)(x
k−1
� − x0

�) − (xk
j − x0

j)(x
k
� − x0

�)
= {(xk−1

j − x0
j)(x

k−1
� − x0

� ) − (xk
j − x0

j)(x
k−1
� − x0

�)}
+{(xk

j − x0
j )(x

k−1
� − x0

�) − (xk
j − x0

j)(x
k
� − x0

�)}
= (xk−1

j − xk
j )(xk−1

� − x0
� ) + (xk

j − x0
j)(x

k−1
� − xk

� )

imply that G(y) is Lipschitz with small Lipschitz constant in a neighborhood of x0.
Now we look at the same proof in a complexified neighborhood of x0. Then G(y)

is holomorphic on y and xk are also holomorphic on a neighborhood of x0. Since this
converges uniformly on this neighborhood the limit G(y)C is holomorphic. Hence
its real part G(y) is real analytic.

Now we look at the case we are interested in. The following theorem treats the
case where the Jacobian matrices of real analytic mappings are singular.

Theorem 6.7. Let M be a closed n-dimensional real analytic manifold. Let y1,
. . . , yn be real analytic functions on M . Let (x1, . . . , xn) be a coordinate around a

point x ∈ M . Let Δ(x) = det
(
∂yi

∂xj

)
be the Jacobian. Let f : M −→ M be a real

analytic diffeomorphism of M close to the identity such that f − id is divisible by
Δ(x)r (r ∈ Z, r ≥ 3). Then there are real analytic diffeomorphisms f1, . . . , fn

such that

f = f1 ◦ · · · ◦ fn,

where

y1((fk ◦ · · · ◦ fn)(x) = y1(x), . . . , yk((fk ◦ · · · ◦ fn)(x)) = yk(x),
yk+1((fk ◦ · · · ◦ fn)(x)) = yk+1(f(x)), . . . , yn((fk ◦ · · · ◦ fn)(x)) = yn(f(x)).

Moreover, fi − id (i = 1, . . . , n) is divisible by Δ(x)r−1.
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Remark 6.8. For another choice of coordinate (x′1, . . . , x
′
n), we have

det
(
∂yi

∂x′k

)
= det

(
∂yi

∂xj

)
det
(
∂xj

∂x′k

)
,

and hence the condition that f(x) − x is divisible by the r-th power of Δ =

det
(
∂yi

∂xj

)
is independent of the choice of the coordinates.

Proof. This follows from the following proposition 6.9. We put

u(x) = (y1(x), . . . , yk(x), yk+1(f(x)), . . . , yn(f(x))) − (y1(x), . . . , yn(x))

and we obtain fk ◦ · · · ◦ fn as z(x) in the proposition. �

Proposition 6.9. Let U be an open set of Rn and V a compact subset of U . Let

y = (y1, . . . , yn) : U −→ Rn be a real analytic map. Put Δ(x) = det
(
∂yi

∂xj
(x)

)
and assume that Δ(x) is not the constant 0. Let u = (u1, . . . , un) : V −→ Rn be a
sufficiently small real analytic map such that ui(x) is divisible by Δ(x)r (r ∈ Z, r ≥
3). Then there is a real analytic map z : V −→ Rn such that y(z(x)) = y(x)+u(x).
Here z(x) − x is divisible by Δ(x)r−1.

Proof. By Corollary 6.3, we have

yi(z) − yi(x) =
n∑

j=1

∂yi

∂xj
(x)(zj − xj) +

n∑
j,k=1

hijk(x, z)(zj − xj)(zk − xk),

where hijk is real analytic on a neighborhood of (x, x).

If Δ(x) = det
(
∂yi

∂xj
(x)

)
�= 0 and u(x) is sufficiently small, then by the inverse

mapping theorem 6.5, there uniquely exists z(x) in a neighborhood of x.
For the point x0 where Δ(x0) = 0, the solution should satisfy that z(x0) = x0.

We would like to know the analyticity of the map z(x).

If Δ(x0) = 0, u(x) is divisible by Δ(x)r near x0. Put J(x) =
(
∂yi

∂xj
(x)

)
. We

look at the following functional for real analytic map z from a neighborhood of x0

to Rn.

F (z) = z + J(x)
−1

(
u(x) − {J(x)(z − x) +

( n∑
j,k=1

hijk(x, z)(zj − xj)(zk − xk)
)
i

})
,

where
( • )

i
denotes the column vector. This functional is defined so that the

fixed point z(x) of F is the desired map z(x). Namely, if F (z) = z, then u(x) =
y(z) − y(x).

For u(x) = Δ(x)rv(x), this functional is rewritten as follows. Note thatΔ(x)J(x)
−1 =

(Aij(x)), where Aij(x) is the cofactor of
∂yj

∂xi
(x).

F (z)� = x� +Δ(x)−1
n∑

i=1

A�i(x)
(
Δ(x)rvi(x) −

n∑
j,k=1

hijk(x, z)(zj − xj)(zk − xk)
)
.
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We are going to find the fixed point by sequential approximation. So we put
z(0) = x, and define z(m) (m ≥ 1) by z(m) = F (z(m−1)). Then

z
(1)
� − x� = Δ(x)r−1

n∑
i=1

A�i(x)vi(x).

If z(m)
i (x) − xi is divisible by Δ(x)r−1, then z

(m+1)
i (x) − xi is again divisible by

Δ(x)r−1. For, by putting z(m)
i − xi = Δ(x)r−1ζ

(m)
i (x),

z
(m+1)
� − x� = F (z(m))� − x�

=Δ(x)r−1
n∑

i=1

A�i(x)vi(x)

−Δ(x)−1
n∑

i=1

A�i(x)
n∑

j,k=1

hijk(x, z(m))Δ(x)r−1ζ
(m)
j Δ(x)r−1ζ

(m)
k

=Δ(x)r−1
n∑

i=1

A�i(x)vi(x)

−Δ(x)2r−3
n∑

i=1

A�i(x)
n∑

j,k=1

hijk(x, z(m))ζ(m)
j ζ

(m)
k .

Note that if |ζ(1)
i | ≤ K

2
and |ζ(m)

i | ≤ K,

|ζ(m+1)
� | ≤ K

2
+K1|Δ(x)|r−2K2

for some constant K1. If we take x close to x0, then |Δ(x)| ≤ 1√
2K1K

and on this

neighborhood |ζ(m+1)
� | ≤ K.

Now we would like to show that z(m) converges uniformly on a complexified
neighborhood of x0.

z
(m+1)
� − z

(m)
� = F (z(m))� − F (z(m−1))�

=−Δ(x)−1
n∑

i=1

A�i(x)
n∑

j,k=1

hijk(x, z(m))(z(m)
j − xj)(z

(m)
k − xk)

+Δ(x)−1
n∑

i=1

A�i(x)
n∑

j,k=1

hijk(x, z(m−1))(z(m−1)
j − xj)(z

(m−1)
k − xk)

=−Δ(x)−1
n∑

i=1

A�i(x)
n∑

j,k=1

{(hijk(x, z(m)) − hijk(x, z(m−1))
)
(z(m)

j − xj)(z
(m)
k − xk)

+hijk(x, z(m−1))
(
(z(m)

j − xj)(z
(m)
k − xk) − (z(m−1)

j − xj)(z
(m−1)
k − xk)

)}.
Since

hijk(x, z(m)) − hijk(x, z(m−1)) =
n∑

p=1

(z(m)
p − z(m−1)

p )h′ijkp(x, z
(m), z(m−1))
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for some real analytic functions h′ijkp,

−Δ(x)−1
n∑

i=1

A�i(x)
n∑

j,k=1

(
hijk(x, z(m)) − hijk(x, z(m−1))

)
(z(m)

j − xj)(z
(m)
k − xk)

=−Δ(x)2r−3
n∑

i=1

A�i(x)
n∑

j,k=1

n∑
p=1

(z(m)
p − z(m−1)

p )h′ijk�(x, z
(m), z(m−1))ζ(m)

j ζ
(m)
k .

The absolute value of the right-hand-side is estimated by |Δ(x)|2r−3K2K
2 max

p
|z(m)

p −

z(m−1)
p | for some constantK2. On the neighborhood where |Δ(x)| ≤ 1

(4K2K2)1/(2r−3)
,

this is estimated by
1
4

max
p

|z(m)
p − z(m−1)

p |. Since

(z(m)
j − xj)(z

(m)
k − xk) − (z(m−1)

j − xj)(z
(m−1)
k − xk)

=
(
(z(m)

j − xj)(z
(m)
k − xk) − (z(m−1)

j − xj)(z
(m)
k − xk)

)
+
(
(z(m−1)

j − xj)(z
(m)
k − xk) − (z(m−1)

j − xj)(z
(m−1)
k − xk)

)
= (z(m)

j − z
(m−1)
j )(z(m)

k − xk) + (z(m−1)
j − xj)(z

(m)
k − z

(m−1)
k ),

−Δ(x)−1
n∑

i=1

A�i(x)
n∑

j,k=1

hijk(x, z(m−1))

·((z(m)
j − xj)(z

(m)
k − xk) − (z(m−1)

j − xj)(z
(m−1)
k − xk)

)
=−Δ(x)−1

n∑
i=1

A�i(x)
n∑

j,k=1

hijk(x, z(m−1))

·((z(m)
j − z

(m−1)
j )(z(m)

k − xk) + (z(m−1)
j − xj)(z

(m)
k − z

(m−1)
k )

)
=−Δ(x)r−2

n∑
i=1

A�i(x)
n∑

j,k=1

hijk(x, z(m−1))

·((z(m)
j − z

(m−1)
j )ζ(m)

k + (z(m)
k − z

(m−1)
k )ζ(m−1)

j

)
.

The absolute value of the last expression is estimated by |Δ(x)|r−2K3Kmax
p

|z(m)
p −

z(m−1)
p |. On the neighborhood where |Δ(x)| ≤ 1

(4K3K)1/(r−2)
, this is estimated by

1
4

max
p

|z(m)
p − z(m−1)

p |. Thus z(m) satisfies |z(m)
� | ≤ max

p
|z(1)

p |, and z(m) converges

uniformly on a complexified neighborhood of x0. Hence the limit is holomorphic
on the complexified neighborhood and z(m) converges to a real analytic map.

The divisibility of the limit z(x) by Δ(x)r−1 follows from Lemma 6.4. �

Example 6.10. For the unit sphere

Sn = {(x1, . . . , xn+1) ∈ Rn+1
∣∣ x1

2 + · · · + xn+1
2 = 1},

we look at the map (x1, . . . , xn) : Sn −→ Rn. Then on the coordinate
(x1, . . . , xk−1, xk+1, . . . , xn, xn+1),

Δ(x1, . . . , xk−1, xk+1, . . . , xn, xn+1) = ±xn+1

/√
1 −
∑
i�=k

xi
2.
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Hence by Theorem 6.7, if a diffeomorphism f of Sn close to the identity is divisible
by (xn+1)4, then f = f1 ◦ · · · ◦ fn, where fi maps an orbit of the rotation in the
xixn+1 plane to itself and fi − id is divisible by (xn+1)3.

The previous theorem is for one real analytic mapping. Now, we consider fam-
ilies of real analytic mappings. What we did in Theorem 6.7 is similar to showing
that the exponential map of a Riemannian manifold is a diffeomorphism in a neigh-
borhood of the zero of a tangent space. What we consider now in Theorem 6.12
is similar to show that the exponential map induces the diffeomorphism from a
neighborhood of the zero section of the tangent bundle to a neighborhood of the
diagonal set of M ×M .

Proposition 6.11. Let ξ(1), . . . , ξ(n) be real analytic vector fields on an open set
U of Rn. Let ϕ(i)

t denote the flow generated by ξ(i) (i = 1, . . . , n). For a compact
subset V of U , consider the map Φ : Rn × V −→ V defined by Φ((t1, . . . , tn), x) =
(ϕ(1)

t1 ◦ · · ·◦ϕ(n)
tn

)(x). Let f be a real analytic diffeomorphism from V into U close to

the identity and f−id is divisible by Δ(x)r, where Δ(x) = det
(
ξ(1) · · · ξ(n)

)
. Then

there are real analytic functions t1(x), . . . , tn(x) such that f(x) = Φ((t1, . . . , tn), x).
These t1(x), . . . , tn(x) are divisible by Δr−1.

Proof. We would like to solve

f(x) − x = Φ((t1, . . . , tn), x) − x.

First note that

Φ((t1, . . . , tn), x)� − x� =
n∑

i=1

ξ
(i)
� (x)ti +

n∑
i,j=1

η�ij(t, x)titj

for real analytic functions η�ij(t, x), where t = (t1, . . . , tn).

For the points x, where Δ(x) = det
(
ξ(1) · · · ξ(n)

)
�= 0, by the inverse mapping

theorem we obtain real analytic functions t1(x), . . . , tn(x) such that f(x) − x =
Φ((t1, . . . , tn), x) − x. For the points x where Δ(x) = 0, the solution should be
(t1(x), . . . , tn(x)) = (0, . . . , 0) and we would like to show the analyticity of this
solution near x.

Put Ξ = (ξ(j)i ) and ΔΞ−1 =
(
Aij

)
, where Aij is the cofactor of ξ(i)j . Now we

look at the functional

F (t) = t+Ξ−1(f(x) − x− {Ξt+
( n∑

j,k=1

ηijk(t, x)tjtk
)
i=1,...,n

})

=Ξ−1(f(x) − x− ( n∑
j,k=1

ηijk(t, x)tjtk
)
i=1,...,n

)
.

Put t(0) = (0, . . . , 0), and define t(m)(x) = F (t(m−1)(x)) (m ≥ 1). Since f(x)− x is

divisible byΔ(x)r, put f(x)i−xi = Δ(x)rvi(x). Then t(1)i = Δ(x)r−1

n∑
j=1

Aij(x)vj(x).

If t(k−1) is divisible by Δ(x)r−1, then t(k) = F (t(k−1)) is also divisible by Δ(x)r−1.
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For, if t(m)
i = Δ(x)r−1τ

(m)
i (x), then

t
(m+1)
� = F (t(m))�

=Δ(x)r−1
n∑

i=1

A�i(x)vi(x) −
(
Ξ−1
( n∑

j,k=1

ηijk(t(m), x)Δ(x)r−1τ
(m)
j Δ(x)r−1τ

(m)
k

)
i

)
�

=Δ(x)r−1
n∑

i=1

A�i(x)vi(x) −Δ(x)2r−3
n∑

i=1

A�i(x)
n∑

j,k=1

ηijk(t(m), x)τ (m)
j τ

(m)
k .

Note that if |τ (1)
i | ≤ K

2
and |τ (m)

i | ≤ K, then

|τ (m+1)
� | ≤ K

2
+K1K

2|Δ(x)|r−2

for some constant K1. If we take x close to the zeros of Δ, then |Δ(x)| ≤
1

(2K1K)1/(r−2)
and we have |τ (m+1)

� | ≤ K.

We show that t(m) converges uniformly on a complexified neighborhood of the
zeros of Δ(x).

t
(m+1)
� − t

(m)
� = F (t(m))� − F (t(m−1))�

=−Δ(x)−1
n∑

i=1

A�i(x)
n∑

j,k=1

ηijk(t(m), x)t(m)
j t

(m)
k

+Δ(x)−1
n∑

i=1

A�i(x)
n∑

j,k=1

ηijk(t(m−1), x)t(m−1)
j t

(m−1)
k

=−Δ(x)−1
n∑

i=1

A�i(x)
n∑

j,k=1

{(ηijk(t(m), x) − ηijk(t(m−1), x)
)
t
(m)
j t

(m)
k

+ηijk(t(m−1), x)(t(m)
j t

(m)
k − t

(m−1)
j t

(m−1)
k )}.

Since

ηijk(t(m), x) − ηijk(t(m−1), x) =
n∑

p=1

(t(m)
p − t(m−1)

p )η′ijkp(t
(m), t(m−1), x)

for some real analytic functions η′ijkp,

−Δ(x)−1
n∑

i=1

A�i(x)
n∑

j,k=1

(ηijk(t(m), x) − ηijk(t(m−1), x))t(m)
j t

(m)
k

=−Δ(x)2r−3
n∑

i=1

A�i(x)
n∑

j,k=1

n∑
p=1

(t(m)
p − t(m−1)

p )η′ijkp(t
(m), t(m−1), x)τ (m)

j τ
(m)
k .

The absolute value of the right-hand-side is estimated by |Δ(x)|2r−3K2K
2 max

p
|t(m)

p −

t(m−1)
p | for some constantK2. On the neighborhood where |Δ(x)| ≤ 1

(4K2K2)1/(2r−3)
,

this is estimated by
1
4

max
p

|t(m)
p − t(m−1)

p |. Since

t
(m)
j t

(m)
k − t

(m−1)
j t

(m−1)
k

= (t(m)
j t

(m)
k − t

(m−1)
j t

(m)
k ) + (t(m−1)

j t
(m)
k − t

(m−1)
j t

(m−1)
k ),
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−Δ(x)−1
n∑

i=1

A�i(x)
n∑

j,k=1

ηijk(t(m−1), x)(t(m)
j t

(m)
k − t

(m−1)
j t

(m−1)
k )

=−Δ(x)−1
n∑

i=1

A�i(x)
n∑

j,k=1

ηijk(t(m−1), x)

·((t(m)
j − t

(m−1)
j )t(m)

k + t
(m−1)
j (t(m)

k − t
(m−1)
k )

)
=−Δ(x)r−2

n∑
i=1

A�i(x)
n∑

j,k=1

ηijk(x, z(m−1))

·((t(m)
j − t

(m−1)
j )τ (m)

k + (t(m−1)
j − t

(m−1)
j )τ (m−1)

k

)
.

The absolute value of the last expression is estimated by |Δ(x)|r−2K3Kmax
p

|t(m)
p −

t(m−1)
p |. On the neighborhood where |Δ(x)| ≤ 1

(4K3K)r−2
, this is estimated by

1
4

max
p

|t(m)
p − t(m−1)

p |. Thus t(m) satisfies |t(m)
� | ≤ max

p
|t(1)p |, and t(m) converges

uniformly on a complexified neighborhood of x0. Hence the limit is holomorphic
on the complexified neighborhood and t(m) converges to a real analytic map. �

Theorem 6.12. Let M be a closed n-dimensional real analytic manifold in RN .
Let ξ(1), . . . , ξ(n) be real analytic vector fields on M . Let ϕ(i)

t denote the flow
generated by ξ(i) (i = 1, . . . , n). Consider the map Φ : Rn ×M −→ M defined by
Φ((t1, . . . , tn), x) = (ϕ(1)

t1 ◦ · · · ◦ϕ(n)
tn

)(x). Let f be a real analytic diffeomorphism of
M close to the identity and f−id is divisible by Δ(x)r (r ∈ Z, r ≥ 3), where Δ(x) =

det
(
ξ
(j)
i

)
, ξ(j) =

∑
ξ
(j)
i

∂

∂xi
in a coordinate neighborhood (U, (x1, . . . , xn)) and we

assume that Δ(x) is not the constant 0. Then there are real analytic functions
t1(x), . . . , tn(x) such that f(x) = Φ((t1(x), . . . , tn(x)), x)

Remark 6.13. For another coordinate neighborhood (V, (y1, . . . , yn)),

n∑
i=1

ξ
(j)
i

∂

∂xi
=

n∑
i,k=1

ξ
(j)
i

∂yk

∂xi

∂

∂yk

and Δ(y) = Δ(x) det
(
∂yk

∂xi

)
. Thus, the condition that f − id is divisible by Δ(x)r

is independent of the choice of coordinate neighborhood.

Proof. The expression f(x) = (ϕ(1)
t1 ◦ · · · ◦ ϕ(n)

tn
)(x) is unique where Δ(x) is not

zero, and (t1, . . . , tn) = (0, . . . , 0) on the zero set of Δ(x). By taking a coordinate
neighborhood, it is real analytic on a neighborhood of a zero point of Δ(x), Hence
(t1(x), . . . , tn(x)) is a globally defined real analytic map. �

Here is the same example as before for the application of Theorem 6.12. The
estimates are worse than before but it still works.

Example 6.14. Consider the unit n sphere

Sn = {(x1, . . . , xn+1) ∈ Rn+1
∣∣ x1

2 + · · · + xn+1
2 = 1}.
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Let ξ(i,j) (1 ≤ i < j ≤ n+ 1) be the vector field generating the rotation in the
direction of xixj plane, i.e.,

ξ(i,j)(x1, . . . , xn+1) = −xj
∂

∂xi
+ xi

∂

∂xj
.

We look at ξ(i,n+1) (i = 1, . . . , n) and their time t maps ϕ(i,n+1)
t . Then Δ(x) with

respect to the (x1, . . . , xn) coordinate is (−xn+1)n, and Δ(x) with respect to the
(x1, . . . , xk−1, xk+1, . . . , xn, xn+1) coordinate is

±xk(xn+1)n−1 = ±(xn+1)n−1

√
1 −
∑
i�=k

xi
2.

Hence if a diffeomorphism f of Sn close to the identity is divisible by (xn+1)4(n−1),
then f = f1 ◦ · · · ◦ fn, where fi ◦ · · · ◦ fn(x) = ϕ

(i,n+1)
ti(x) ◦ · · · ◦ ϕ(n,n+1)

tn(x) and fi maps

an orbit of ϕ(i,n+1)
t to itself. Moreover fi − id is divisible by (xn+1)3(n−1)

7. Regimentation Lemma

The key tool in the proof of the perfectness of the identity component of the
group of smooth diffeomorphisms is the fragmentation lemma [2] which uses the
partition of unity by the bump functions. Note that we cannot use the bump
functions in the real analytic case. However, we can use the following lemma to
show our Theorems 1.1 and 1.2.

Let μ1, . . . , μm be nonnegative real analytic functions onM such that
m∑

i=1

μi = 1.

Put Sk = μk
−1(0) and assume that

m⋂
k=1

Sk = ∅. Put νj =
j∑

i=1

μi (j = 1, . . . , m).

Let
Φ : [0,m] ×M −→ [0, 1] ×M

be the map given by

Φ(t, x) = (ν[t](x) + (t− [t])μ[t]+1(x), x).

This map is real analytic on [j − 1, j] ×M (j = 1, . . . , m).
Let F be a foliation of [0, 1]×M given by a real analytic isotopy F : [0, 1]×M −→

M , that is, the leaf passing through (t, x) is

{(s, (F (s) ◦ F (t)−1)(x))
∣∣ s ∈ [0, 1]}.

Theorem 7.1 (regimentation lemma). If F is close to the constant isotopy, then
Φ|{t} ×M is transverse to F for t ∈ [0,m], and Φ∗F is real analytic isotopy on
each [j − 1, j] ×M (j = 1, . . . , m). Thus

F (0) ◦ F (1)−1 = G1 ◦ · · · ◦Gm,

where Gj (j = 1, . . . , m) are real analytic diffeomorphisms of M such that Gj |Sj =
idSj

. Moreover, Gj − id is divisible by μj.

Remark 7.2. The fact that a diffeomorphism G near the identity is divisible by a
real analytic function μ does not depend on the choice of the coordinate neigh-
borhood. For, let G be written as (g1(x), . . . , gn(x)) in a coordinate (x1, . . . , xn)
and gi(x1, . . . , xn) − xi is divisible by μ(x1, . . . , xn) (i = 1, . . . , n). In another
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coordinate (y1, . . . , yn), first we have yj(z)−yj(x) =
n∑

k=1

(zk −xk)ajk(z, x) with real

analytic functions ajk(z, x) by the Hadamard Lemma 6.2. Then

yj(g1(x(y)), . . . , gn(x(y))) − yj =
n∑

k=1

(gk(x(y)) − xk(y))ajk(g(x(y)), x(y))

and if gi(x1, . . . , xn) − xi is divisible by μ(x1, . . . , xn) (i = 1, . . . , n), then
yj(g1(x(y)), . . . , gn(x(y))) − yj is divisible by μ(x1(y), . . . , xn(y)).

Proof of Theorem 7.1. This is a consequence of the real analytic inverse mapping
theorem 6.5. A real analytic foliation is defined by a family of local real analytic
submersions, and the induced foliation on [j−1, j]×M is given by the composition
of real analytic map Φ|[j−1, j]×M and the submersion given by the isotopy, hence
it is real analytic. The transversality insures that it is given by an isotopy.

To show the divisibility, we look at the induced vector field on [j − 1, j] ×M .

Let
∂

∂t
+ ξ(t, x) be the vector field on [0, 1] ×M defining the isotopy F . The map

Φj(t, x) = (νj−1(x) + tμj(x), x) induces the tangent map

(Φj)∗ : T(t,x)([0, 1] ×M) −→ TΦj(t,x)([0, 1] ×M)

given by

(Φj)∗
∂

∂t
= μj(x)

∂

∂t
,

(Φj)∗|({t} × TxM) = ((νj−1)∗ + t(μj)∗, id).

If Φj
∗F is defined by

∂

∂t
+ ηj(t, x), then we have

(Φj)∗(
∂

∂t
+ ηj(t, x)) =

(
μj(x) + {(νj−1)∗ + t(μj)∗}ηj(t, x)

) ∂
∂t

+ ηj(t, x)

and this is proportional to
∂

∂t
+ ξ(Φj(t, x)). Hence

ηj(t, x) =
(
μj(x) + {(νj−1)∗ + t(μj)∗}ηj(t, x)

)
ξ(Φj(t, x)).

That is, (
1 − ξ(Φj(t, x)){(νj−1)∗ + t(μj)∗}

)
ηj(t, x) = μj(x)ξ(Φj(t, x)).

Since ξ(t, x) is small, 1 − ξ(Φj(t, x)){(νj−1)∗ + t(μj)∗} is invertible, and we obtain
ηj(t, x) as a Cω time dependent vector field. Since this vector field is divisible by
μj(x), by the following Proposition 7.3, for the time 1 map Gj , Gj − id is divisible
by μj(x). �

Proposition 7.3. Let ξ(t, x) (t ∈ (−ε, ε), ε > 0) be a real analytic time dependent
vector field on an open set U of Rn. Assume that ξ(t, x) is divisible by μ(x). Then
for the isotopy ϕt generated by ξ(t, x), ϕt − id is divisible by μ(x).

Proof. The differential equation

dx
dt

= ξ(t, x) = μ(x)η(t, x)
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is solved by looking at the integral equation

ϕ(t, x) = x+
∫ t

0

ξ(ϕ(s, x))ds.

We use the method of sequential approximation. That is, first put ϕ(0) = x and

ϕ(k)(t, x) = x+
∫ t

0

ξ(ϕ(k−1)(s, x)))ds

(k ≥ 1).
Then the sequence converges uniformly on t and x on a (small) complexified

neighborhood (in x) and the limit is real analytic with respect to x.

In fact, define the functional F by F (ϕ)(t, x) = x +
∫ t

0

ξ(s, ϕ(s, x))ds. Assume

that in a δ-neighborhood Uδ(x(0)) = {x ∣∣ |xi − x(0)
i| ≤ δ} of x(0), max

i

∣∣ ∂ξ
∂xi

∣∣ ≤ K1.

Then

|F (ϕ1)j(t, x) − F (ϕ2)j(t, x)| ≤ n|t|K1 max
i

sup
|s|≤|t|,x∈Uδ

|ϕ1i − ϕ2i|.

Hence for |t| ≤ 1
2nK1

, F is a Lipschitz map with Lipschitz constant
1
2
. On the other

hand, if max
i

|ξi(s, x)| ≤ K0 in Uδ, max
i

|ϕ(1)
i − ϕ

(0)
i | ≤ |t|K0. Thus if |t| ≤ δ

4K0
,

max
i

|ϕ(1)
i −ϕ

(0)
i | ≤ δ

4
. Then for x with max

i
|xi − x(0)

i| ≤ δ

2
, max

i
|ϕ(k−1)

i − x(0)
i| ≤

δ − δ

2 · 2k−1
implies

max
i

|ϕ(k)
i − ϕ

(k−1)
i | = max

i
|F (ϕ(k−1))i − F (ϕ(k−2))i|

≤ 1
2

max
i

|ϕ(k−1)
i − ϕ

(k−2)
i | ≤ δ

4 · 2k−1
,

and hence max
i

|ϕ(k)
i −x(0)

i| ≤ δ− δ

2 · 2k
. Then the estimates for ϕ(k) hold. Thus for

|t| ≤ min{ 1
2nK1

,
δ

4K0
}, ϕ(k) converges uniformly on Uδ/2. The uniform estimate

holds on a complexified neighborhood and the limit ϕ(t, x) is real analytic with
respect to x for small |t|. By the continuation with respect to t, we see that the
limit ϕ(t, x) is real analytic with respect to x for t ∈ [0, 1].

Now since ξ(x) = μ(x)η(x), the sequential approximation ϕ(k) is given by

ϕ(k)(t, x) = x+
∫ t

0

μ(ϕ(k−1)(s, x))η(s, ϕ(k−1)(s, x))ds

(k ≥ 1). Note that

ϕ(1)(t, x) − x =
∫ t

0

μ(x)η(s, x)ds = μ(x)
∫ t

0

η(s, x)ds

is divisible by μ(x). If ϕ(k−1)(t, x)−x is divisible by μ(x) and say ϕ(k−1)(t, x)−x =
μ(x)η(k−1)(t, x), then

ϕ(k)(t, x) − x =
∫ t

0

μ(ϕ(k−1)(s, x))η(k−1)(s, ϕ(k−1)(s, x))ds,
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and by the Hadamard Lemma 6.2, there are real analytic functions αj(x, y) such

that μ(y) − μ(x) =
n∑

j=1

(yj − xj)αj(x, y) and

μ(ϕ(k−1)(s, x)) = μ(x+ μ(x)η(k−1)(s, x))

= μ(x) +
n∑

j=1

μ(x)η(k−1)
j (s, x)αj(x, x+ μ(x)η(k−1)

j (s, x))

is divisible by μ(x). Hence ϕ(k)(t, x) − x is divisible by μ(x). Since the limit of a
sequence of real analytic functions divisible by μ(x) is divisible by μ(x) by Lemma
6.4, ϕt − id is divisible by μ(x). �

Here is an example of application of the regimentation lemma.

Example 7.4. Let Sn = {x ∈ Rn+1
∣∣ ‖x‖ = 1}. We have the functions

μi = xi
4

/∑
j

xj
4 : Sn −→ R

such that
n+1∑
i=1

μi = 1. We think about the decomposition of real analytic dif-

feomorphisms of Sn into regimented diffeomorphisms by Lemma 7.1. Then for a
diffeomorphism f : Sn −→ Sn close to the identity, f = f (1) ◦ · · · ◦ f (n+1), where
f (i) − id is divisible by μi, i.e., 4-flat along {x ∈ Sn

∣∣ xi = 0} (i = 1, . . . , n+ 1).

For a diffeomorphism f : Sn −→ Sn close to the identity, as in Example 7.4, f is
decomposed into a composition of diffeomorphisms which are flat along coordinate
hyperplanes. Then as in Example 6.10, such flat diffeomorphisms are decomposed
into a composition of orbit preserving diffeomorphisms. Then by Theorem 5.1,
these orbit preserving diffeomorphisms can be written as product of commutators
of orbit preserving diffeomorphisms. Hence we obtain the following corollary.

Corollary 7.5. The identity component Diffω(Sn)0 is a perfect group.

8. Proof of main theorems

Proposition 8.1. Let M be a compact real analytic manifold with nontrivial U(1)
action. Let ξ be the generating vector field for the U(1) action. Then there are
finitely many real analytic diffeomorphisms fi, i = 1, . . . , N (f1 = id) of M such
that, for any point x ∈M , there is a subset {i1, . . . , in} ⊂ {1, . . . , N} with (fi1)∗ξ,
. . . , (fin

)∗ξ spanning TxM .

Proof. For each point x ∈ M , there is a point y close to x where ξ(y) �= 0. Then
there are C1 diffeomorphisms g1, . . . , gn of M such that (g1)∗ξ, . . . , (gn)∗ξ span
TxM . Now we take real analytic approximations fx

1 , . . . , fx
n of them. Then (fx

1 )∗ξ,
. . . , (fx

n)∗ξ span TxM and these span Tx′M for x′ in a neighborhood Ux of x. We
cover M by these Ux and take a finite subcover and obtain f1, . . . , fN . �

Proof of main Theorems 1.1 and 1.2. Let M be a U(1) fibered manifold or a
manifold admitting a special semi-free U(1) action.
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We put a real analytic Riemannian metric on M . We use Proposition 8.1 and
obtain U(1) actions generated by ξ1, . . . , ξN with the following property. For each
choice κ of n vector fields among {ξ1, . . . , ξN}, we have the determinant Δκ =

det
(
ξkij

)
with respect to an orthonormal frame

∂

∂xj
at each point, where κ =

{ξk1 , . . . , ξkn
}, n = dim(M), and ξki

=
n∑

j=1

ξkij
∂

∂xj
. By Remark 6.13, Δκ does not

depend on the choice of the orthonormal frame and Δκ is a real analytic function
on M .

Then M is covered by the open sets of the form M \ {Δκ = 0}. By the regi-
mentation lemma 7.1, any real analytic diffeomorphism f close to the identity is
decomposed into real analytic diffeomorphisms fκ such that fκ − id is divisible by
(Δκ)4. Then by the inverse function theorem 6.12 for multi-vector fields, fκ can be
written as a composition of orbit preserving diffeomorphisms. For a special semi-
free U(1) action, Δκ = 0 along the fixed point set s(∂N) and these orbit preserving
diffeomorphisms satisfy the assumption of Theorem 5.1.

Then by Theorems 2.2 and 5.1, orbit preserving diffeomorphisms can be written
as product of commutators in the group of orbit preserving diffeomorphisms. Thus
Theorems 1.1 and 1.2 are proved. �

9. Real analytic diffeomorphisms of 2 and 3 dimensional manifolds

with U(1) actions

In this section, we show that Diffω(M)0 for 2 and 3 dimensional manifolds M
with nontrivial U(1) actions are perfect.

First we note that, by the proof of main theorems, if M admits a nontrivial U(1)
action, any element of Diffω(M)0 is homologous to a diffeomorphism which is an
orbitwise rotation. Here we say that two elements are homologous if they represent
the same element in the abelianization of the group Diffω(M)0.

Proposition 9.1. If M admits a nontrivial U(1) action, any real analytic diffeo-
morphism isotopic to the identity is homologous to a diffeomorphism which is an
orbitwise rotation.

Proof. We note first that by the proof of main theorems, if M admits a nontrivial
U(1) action, using Proposition 8.1 of perturbation, the regimentation lemma 7.1
and the inverse function theorem 6.12 for multi-vector fields, any real analytic
diffeomorphism f close to the identity can be written as a composition of orbit
preserving diffeomorphisms. Note that these orbit preserving diffeomorphisms are
conjugate to orbit preserving diffeomorphisms of the original U(1) action.

If M admits a locally U(1) action, Proposition 4.1 implies that orbit preserv-
ing diffeomorphisms close to the identity are homologous to diffeomorphisms which
are orbitwise rotations. In general, the argument of the proof of Proposition 4.1
together with Theorem 5.3 (and its generalization Theorem 10.1) implies that or-
bit preserving diffeomorphisms, obtained by the regimentation lemma 7.1 and the
inverse function theorem 6.12 for multi-vector fields, are homologous to diffeomor-
phisms which are orbitwise rotations. Here, note that Theorem 10.1 in Section 10
gives

Hw(z) = (z1e2π
√−1m1kw(z), . . . , zne

2π
√−1mnkw(z))
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such that Φw(z) = (Rλw(z) ◦R−α ◦Hw ◦Rα ◦H−1
w )(z). This Hw can be replaced by

Hw ◦ R−βw(z), where βw(z) is real analytic function constant along the orbit. Put

βw(z) =
1
2π

∫
kw(z)dθ, then

(Hw ◦R−βw(z))(z)
= (z1e2π

√−1m1kw(ze−2π
√−1βw(z))), . . . , zne

2π
√−1mnkw(ze−2π

√−1βw(z)))

and kw(ze−2π
√−1βw(z)) satisfies∫

S1
kw(ze−2π

√−1βw(z))dθ

=
∫

S1
(kw(ze−2π

√−1βw(z)) − kw(z) + kw(z))(θ)dθ

=−
∫

S1
(kw

−1(z) + βw(z) − kw
−1(z))(θ)dθ +

∫
S1
kw(z)(θ)dθ = 0.

Thus the conjugating real analytic diffeomorphisms match up on M as in the proof
of Proposition 4.1.

Since the product of orbitwise rotations is an orbitwise rotation, we showed that
any real analytic diffeomorphisms close to the identity is homologous to an orbitwise
rotation. Since any element of Diffω(M)0 is a composition of diffeomorphism close
to the identity, it is homologous to an orbitwise rotation. �

Now we prove Theorem 1.3. This is done by showing following Propositions 9.2,
9.3 and Theorem 9.4.

If the dimension of M is 2, then M with nontrivial U(1) action is diffeomorphic
to the torus T 2, the sphere S2, the Klein bottle K2 or the real projective plane
RP 2. For the torus T 2, Diffω(T 2)0 is simple by the result of Herman ([13]). For
the sphere S2, our Theorem 1.2 says that Diffω(S2)0 is perfect.

Proposition 9.2. Diffω(K2)0 is perfect.

Proof. For the Klein bottle K2, we have locally free U(1) action with 2 multiple or-
bits of multiplicity 2. By Proposition 9.1, any element of Diffω(K2)0 is homologous
to a diffeomorphism which is an orbitwise rotation. K2/U(1) is an interval. We
can take a circle transverse to the U(1) orbits which is Z/2Z equivariant, where
Z/2Z ⊂ U(1). Using this circle, we can make SL(2;R) act on the regular orbits
so that the induced action on the 2 multiple orbits is the action of PSL(2;R).
Using this we can write orbitwise rotations close to the identity as a product of
commutators of orbit preserving diffeomorphisms. Thus Diffω(K2)0 is perfect. �

Proposition 9.3. Diffω(RP 2)0 is perfect.

Proof. For the real projective plane RP 2, there is a U(1) action with 1 fixed
point and 1 multiple orbit of multiplicity 2. By Proposition 9.1, any element of
Diffω(RP 2)0 is homologous to a diffeomorphism which is an orbitwise rotation.
We can arrage so that this orbitwise rotation satisfy that f − id is divisible by
(x2 + y2)2 at the fixed point. We have the the action of Lemma 5.4 which extends
to the multiple orbit of multiplicity 2, and using it we can write orbitwise rotations
close to the identity as a product of commutators of orbit preserving diffeomor-
phisms. Thus Diffω(RP 2)0 is perfect. �
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All other closed 2-dimensional manifolds are hyperbolic and does not admit
nontrivial U(1) action. We do not know the abelianization of Diffω(M)0 for a
hyperbolic closed 2-dimensional manifold M .

Now we consider a closed 3-dimensional manifold M3 admitting a nontrivial
U(1) action. Those manifolds with U(1) actions are classified by Raymond ([23])
and Orlik-Raymond ([22]).

In the rest of this section, we show the following theorem.

Theorem 9.4. Let M3 be a closed oriented 3-dimensional real analytic manifold
admitting a nontrivial U(1) action. Then the identity component Diffω(M3)0 of
the group of real analytic diffeomorphisms of M is a perfect group.

First we assume that the action is locally free. If there are no multiple orbits,
then the theorem follows from our Theorem 1.1. Hence we assume that there
are multiple orbits. Then the quotient space M3/U(1) is a 2-dimensional orbifold
with boundary which corresponds to the multiple orbit of multiplicity 2 with the
homomorphism Z/2Z −→ O(2) sending the generator to an orientation reversing
map. Let S1

1 , . . . , S1
n denote the boundary components.

Other than orbits corresponding to the boundary, there are finitely many mul-
tiple orbits O1, . . . , O�, where the isotropy subgroups are nontrivial. Let m1, . . . ,
m� be the multiplicity of O1, . . . , O�. Let k be the least common multiple of m1,
. . . , m� if the boundary is empty, and k be the least common multiple of m1, . . . ,
m� and 2 if the boundary is not empty.

For the multiple orbit Oi, we have a neighborhood Ni
∼= (B2 ×U(1))/ ∼, where

(w, z) ∼ (we2π
√−1rqi/mi , ze2π

√−1r/mi) ((mi, qi) = 1 and r ∈ Z/miZ).
For the boundary component S1

i of M/U(1), we have a neighborhood N ′
i
∼=

([−1, 1] × S1
i × U(1))/ ∼ of the component of multiple orbits, where (u, v, z) ∼

(−u, v,−z).
For each Ni, we take k sections B2×{e2π

√−1j/k} (j = 0, . . . , k−1) in B2×U(1),
and then this gives k/mi disks in Ni transverse to the multiple orbit Oi.

For each N ′
i , we can take a family of curves γi on S1

i ×U(1) such that γi intersects
{x}×U(1) (x ∈ S1

i ) in k points and is invariant under the translation by e2π
√−1/k

in the U(1) direction. We take a family of annuli [−1, 1]×γi in [−1, 1]×S1
i ×U(1).

Then, for each N ′
i , this gives a family of annuli transverse to each multiple orbit in

({0} × S1
i × U(1))/ ∼ at k/2 points.

The quotient spaceΣ = M/U(1) is an orbifold which is topologically a connected
surface of genus g with � marked points and possibly with the boundary. Then the
projection M −→ Σ = M/U(1) has a multi-section on each Ni/U(1) and N ′

i/U(1).
We try to extend the multi-section overΣ. Put g′ = 2g if the surfaceΣ is orientable,
and put g′ = g if the surface Σ is nonorientable.

If the boundary is empty, we choose arcs A1, . . . , A�−1, B1, . . . , Bg′ on Σ =

M/U(1) connecting Ni/U(1) so that the complement of
�⋃

i=1

(Ni/U(1)) ∪
�−1⋃
i=1

Ai ∪
g′⋃

i=1

Bi is simply connected. We extend the multi-section over these arcs, and then

we have a multi-section along the boundary of the simply connected region. We
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have the obstruction to extend this multi-section to the simply connected region,
which is the Euler class.

If there are multiple orbit Oi and the boundary is not empty, we also choose
arcs A1, . . . , A�−1, B1, . . . , Bg′ on Σ = M/U(1) connecting Ni/U(1) and arcs Ci

connecting A1 to N ′
i/U(1) (i = 2, . . . , n) so that the complement of

�⋃
i=1

(Ni/U(1))∪
n⋃

i=2

(N ′
i/U(1))∪

�−1⋃
i=1

Ai∪
g′⋃

i=1

Bi∪
n⋃

i=2

Ci is annulus with a boundary component being

S1
1 . We choose a multi-section on each Ni/U(1) (i = 2, . . . , �) and on each N ′

i/U(1)
(i = 2, . . . , n). We extend the multi-section over these arcs, and then we can extend
it to the whole Σ = M/U(1).

If there are no multiple orbits other than the boundary, we take arcs Ci (i =
2, . . . , n − 1) connecting N ′

i/U(1) (i = 2, . . . , n) so that the complement of
n⋃

i=2

(N ′
i/U(1))∪

n−1⋃
i=2

Ci is annulus with a boundary component being S1
1 . We choose

a multi-section on each Ni/U(1) (i = 2, . . . , �), we extend the multi-section over
these arcs, and then we can extend it to the whole Σ = M/U(1). If the boundary
is the circle S1

1 , then Σ is the disk or the Möbius band, and we have multi-section
(k = 2).

Now we need to know that we can choose the multi-section real-analytically and
invariant under the action of Z/kZ, possibly outside of several regular orbits if the
boundary is empty.

Consider M = M/(Z/kZ). For each multiple orbit Oi,

Ni/(Z/kZ) ∼= (B2/(Z/miZ)) × (U(1)/(Z/kZ)),

where B2/(Z/miZ) is a cone of angle 2π/mi. For each boundary component S1
i ,

N ′
i/(Z/kZ) ∼= [0, 1] × S1 × (U(1)/(Z/kZ)).

Then the action of U(1)/(Z/kZ) is free on M . The multi-section we took corre-
sponds to a section of this U(1)/(Z/kZ) bundle M −→ Σ.

For the cases where there is a multi-section for M −→ Σ, we approximate this
section for M −→ Σ, by a real analytic section and the inverse image of it under
M −→M is the desired real analytic multi-section for M −→ Σ. Note that, for the
real analyticity around the cone points and the boundary, we understand as follows.
A function f on B2/(Z/miZ) is real analytic if f is induced from a real analytic
function on B2 invariant under the action of Z/miZ. A function f on [0, 1]×S1

i is
real analytic if it is induced from a real analytic function on [−1, 1] × S1

i invariant
under the map (u, v) �−→ (−u, v).

If there are obstructions to construct multi-sections, we proceed as follows. Let
E be the C bundle over Σ = M/U(1) associated to M −→ Σ. We consider real
analytic sections of E −→ Σ.

We divide into two cases according to the uniformizability of Σ = M/U(1). We
treat the case where Σ = M/U(1) is not uniformizable in a different way later.

If Σ = M/U(1) is uniformizable, there is a finite branched cover

Σ −→ Σ/F ∼= Σ = M/U(1),
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where F is a finite group acting on the real analytic surface Σ. This map Σ −→ Σ
is covered by the C bundle map EΣ −→ E. First, take a smooth section which is
not zero on B2/(Z/miZ) (i = 1, . . . , �) and is transverse to the zero section of
E −→ Σ. This gives an F equivariant smooth section of EΣ −→ Σ. Let s be a real
analytic section of EΣ −→ Σ which approximates the smooth equivariant section.

Then we take the average by the action of F . That is, let σ =
1
|F |
∑
γ∈F

γ · s ◦ γ−1.

Then σ is equivariant and still not zero on the preimages of B2/(Z/miZ). The
section σ is transverse to the zero section because the maps γ · s ◦ γ−1 (γ ∈ F ) are
close to each other, each zero of σ is near a zero of γ · s ◦ γ−1 (γ ∈ F ) and the
tangent maps of γ · s ◦ γ−1 near the zero of σ are close to each other. Thus this σ
induces a real analytic section σ of E −→ Σ.

Outside the zeros of σ, σ gives a real analytic section of M −→ Σ. Now we take
the inverse image σ̂ of σ(Σ \ Zero(σ)) under M −→ M . This σ̂ gives the desired
multi-section outside the zeros of σ.

Now we have necessary real analytic multi-sections σ̂ when the boundary of Σ
is not empty or Σ is uniformizable.

Let S̃Lk(2;R) denote the k fold covering group of SL(2;R). Using this section,
we make the diagonal matrices of S̃Lk(2;R) act along the orbits.

If there is a real analytic multi-section σ over Σ, then we make S̃Lk(2;R) act
along the orbits. By Lemma 3.1, orbitwise rotations close to the identity can be
written as a product of commutators of orbit preserving diffeomorphisms, and the
theorem of this case is shown.

If Zero(σ) is not empty and there is a multi-section only over Σ \ Zero(σ), we
need a multi-section version of Lemma 3.3, which is proved by looking at the k fold
covering along the fiber and lift the maps appearing in the proof of Lemma 3.3 to
the k fold covering.

Lemma 9.5. Let R : D\{(0, 0)} −→ SL(2;R) be the map given in Lemma 3.3. Let

A =
(
a 0
0 a−1

)
, where a = a(x, y) is real analytic and a(0, 0) = 1. If a(x, y) − 1 is

divisible by x2 + y2, then R−1AR lifts to a real analytic map Âk : D −→ S̃Lk(2;R)
such that Âk(0, 0) = id.

We note that Lemma 3.4 can be applied to the lifts of the actions of the rotations
and diagonal matrices and this together with Lemma 9.5 implies the following
Lemma.

Lemma 9.6. The orbitwise action Map(D \{0}, S̃Lk(2;R)) which is the lift of the
action given in Lemma 3.5 extends real analytically to the fiber on 0.

By using real analytic sections σ whose zero sets are disjoint, we can write an
orbitwise rotation as a product of orbitwise rotations such that the condition (∗)1
of Lemma 3.5 is satisfied as in the proof of Proposition 3.2. Then by Lemma 3.1,
using the action of elements of S̃Lk(2;R), we can write an orbitwise rotation close
to the identity, as a product of two commutators in Mapω(Σ\Zero(σ), S̃Lk(2;R))0.
Then by Lemma 9.6, the diffeomorphisms appearing in the commutators are real
analytic on the fibers of Zero(σ).
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IfM/U(1) is not uniformizable, Σ = M/U(1) is the 2-dimensional sphere S2 with
1 or 2 cone points. In this case, M is a lens space L(p, q) for coprime integers (p, q).
The lens space L(p, q) admits a U(1) action such that L(p, q)/U(1) is uniformizable.
　 The lens space L(p, q) is given as the quotient space of S3 by the Z/pZ action
defined by � · (z1, z2) = (e2π�/p

√−1z1, e
2π�q/p

√−1z2) for � ∈ Z/pZ. There is a U(1)
action (actually a U(1)/(Z/pZ) action) induced from the diagonal U(1) action
of {e2π

√−1t} on the unit sphere S3. For this action Σ = L(p, q)/U(1) is the 2-
dimensional sphere without cone points (p = 1) or with two cone points of angle
2π/p (p �= 1). Thus Σ is uniformizable and we can apply the previous argument.

If the fixed point set is not empty, we need the following lemma which is
S̃Lk(2;R) version of Lemma 5.4.

Lemma 9.7. . Let Â : C −→ C be the map given in Lemma 5.4 preserving
concentric circles, where we identify R2 with C and a = a(w,w) is a real analytic
function on ww and a(0) = 1. If a − 1 is divisible by (ww)k, then the map Âk :
C −→ C satisfying (Âk(w))k = Â(wk) is real analytic at (0, 0).

Proof. Put z = wk and in the coordinate (z, z), the map Â given by

Â

(
x
y

)
=

√
x2 + y2√

a2x2 + a−2y2

(
ax
a−1y

)
is written as follows:

Â(z) =
√
zz√

a2
(z + z)2

4
− 1
a2

(z − z)2

4

(
a
z + z

2
+

1
a

z − z

2
)

=
√
zz√

1
2
(
a2 +

1
a2

)
zz +

1
4
(
a2 − 1

a2

)
(z2 + z2)

(1
2
(
a+

1
a

)
z +

1
2
(
a− 1

a

)
z
)

=

1
2
(
a+

1
a

)
z +

1
2
(
a− 1

a

)
z√

1
2
(
a2 +

1
a2

)
+

1
4
(
a2 − 1

a2

)z2 + z2

zz

=
z +

1
2

(a− 1)2

a
z +

1
2

(a− 1)(a+ 1)
a

z√
1 +

1
2

(a− 1)2(a+ 1)2

a2
+

1
4

(a− 1)(a+ 1)(a2 + 1)
a2

z2 + z2

zz

.

If a − 1 is divisible by (x2 + y2)k = (ww)k = zz, Then Â(z) is divisible by z and
written as the convergent series

Â(z) = z
(
1 +
∑

aijz
izj
)
.

The map Âk is written as

Âk(w) = k

√
wk
(
1 +
∑

aijw
kiwkj

)
= w k

√
1 +
∑

aijw
kiwkj

and it is real analytic. �
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If the fixed point set is not empty, Σ = M/U(1) is a surface of genus g with
boundary and with � marked points. It is always uniformizable. Since Σ = M/U(1)
is uniformizable, we proceed as before and we obtain multi-section of M −→
M/U(1) outside the boundary. For the boundary components corresponding to
fixed point set, we have k fold multi-section. By using this multi-section we make
act Âk along the orbits. Since we can arrange the orbitwise rotation f obtained
by Proposition 9.1 to satisfy that f − id is divisible by (x2 + y2)2k. We take a
real analytic function a on Σ such that a = 1 on the boundary ∂Σ, and a > 1 on
Σ \ ∂Σ, a − 1 is divisible by (x2 + y2)k along the boundary ∂Σ but the (2k)-th
derivative is not trivial. By using the real analytic map Σ −→ S̃Lk(2;R) which

lifts w �−→
(
a(w) 0

0 a(w)−1

)
, by Lemma 3.1 the orbitwise rotation f close to the

identity can be written as a product of two commutators. Then by Lemmas 3.4
and 9.7, the diffeomorphisms appearing in the commutators are real analytic on
the fixed point set.

Thus we proved Theorem 9.4. �

10. Appendix 1: Proof of Theorem 5.3

Theorem 5.3 is a special case (n = 1) of the following Theorem 10.1. Before
stating Theorem 10.1, we clarify the situation.

We consider the complex vector space Cn with the coordinate (z1, . . . , zn). Let
U be a neighborhood of the origin 0. Let Φ : U −→ ϕ(U) ⊂ Cn be a real analytic
diffeomorphism fixing 0 such that T0ϕ = idT0Cn .

Then the component ϕi(z, z) (i = 1, . . . , n) of Φ(z, z) = (ϕ1(z, z), . . . , ϕn(z, z))
is written as a convergent series in the variables (z, z) = ((z1, . . . , zn), (z1, . . . , zn)),

and satisfies
∂ϕi

∂zj
(0) = δij and

∂ϕi

∂zj
(0) = 0. Hence the linear term of ϕj is zj .

Let U(1) × Cn −→ Cn be the U(1) action given by

(e2π
√−1t, (z1, . . . , zn)) �−→ e2π

√−1t ·(z1, . . . , zn) = (e2π
√−1m1tz1, . . . , e

2π
√−1mntzn),

where (m1, . . . ,mn) is a primitive integer vector called the type of the U(1) action.
Any effective real analytic U(1) action on Cn with the unique fixed point set {0}
is real analytically conjugate to this action for some (m1, . . . ,mn).

Assume further that Φ(z, z) is on the orbit of z. Put

ϕj(z, z) =
∑

k≥0,�≥0
k+�≥1

gj
k�zj

kzj
�,

where gj
k� are convergent series on

((z1, . . . , zj−1, zj+1, . . . , zn), (z1, . . . , zj−1, zj+1, . . . , zn)).

Since ϕ(z, z) is on the same orbit of z, ϕj(z, z)ϕj(z, z) = zjzj . Since ϕj(z, z)ϕj(z, z)
begins with

(gj
1,0zj + gj

0,1zj + · · · )(gj
1,0zj + gj

0,1zj + · · · )
= gj

1,0g
j
0,1z

2
j + (gj

1,0g
j
1,0 + gj

0,1g
j
0,1)zjzj + gj

0,1g
j
1,0zj

2 + · · ·
and this coincides with zjzj , g

j
1,0g

j
0,1 = 0, gj

1,0g
j
1,0 + gj

0,1g
j
0,1 = 1 and gj

0,1g
j
1,0 = 0.

Here gj
1,0(0) = 1 and hence it is nonzero on a neighborhood of 0, gj

0,1 = 0 and
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|gj
1,0| = 1. If gj

0,2, . . . , gj
0,�−1 is 0 and gj

0,� �= 0, then the coefficient of z�+1
j of

ϕj(z, z)ϕj(z, z) is gj
0,�. Since ϕj(z, z)ϕj(z, z) = zjzj , g

j
0,� = 0. Thus all the terms

of ϕj(z, z) contain zj and ϕj(z, z)is written as ϕj(z, z) = zjuj(z, z), where uj(z, z)
is real analytic, uj(0, 0) = 1 and uj(z, z)uj(z, z) = 1. Then by putting uj(z, z) =
1 − vj(z, z) and

2π
√−1μi(z, z) = log(1 − vj(z, z)) = −

∞∑
i=1

vj(z, z)i

i
,

ϕj(z, z) is written as ϕj(z, z) = zje
2π

√−1μi(z,z), where μi(z, z) is real-valued if the
value of the variable z is the complex conjugate of z.

Now since Φ(z, z) = (z1e2π
√−1μ1(z,z), . . . , zne

2π
√−1μn(z,z)) is on the same orbit

as z = (z1, . . . , zn), and μ1, . . . , μn are small near the origin,

2π
√−1μj(z, z)/mj = 2π

√−1μk(z, z)/mk

holds where |zj | · |zk| �= 0. This means that the real analytic functions μ1(z, z)/m1,
. . . , μn(z, z)/mn defined on a neighborhood of 0 coincide on the open set where
|z1| · · · |zn| �= 0. Hence there is a real analytic function μ(z, z) defined in a neigh-
borhood of 0 such that μ1(z, z) = m1μ(z, z), . . . , μn(z, z) = mnμ(z, z). Thus the
orbit preserving map Φ is written as follows:

Φ(z, z) = (z1e2π
√−1m1μ(z,z), . . . , zne

2π
√−1mnμ(z,z)).

We show the following theorem.

Theorem 10.1. Let Δζ be the polydisk of radius ζ. Let α ∈ R be a Diophantine
number. Let Φ(z, z;w) = (ϕ1(z, z;w), . . . , ϕn(z, z;w)) be a real analytic family of
real analytic diffeomorphisms of a neighborhood U of 0 in Cn which sends each
orbit the U(1) action of type (m1, . . . ,mn) to itself, and T(0)Φw = idT0Cn , where
Φw(z) = Φ(z, z;w) and w ∈ Δζ ∩ Rm. Then there are real analytic maps λ :
U × (Δζ ∩ Rm) −→ R (λ(z, z;w) is constant along each orbit) and H : U × (Δζ ∩
Rm) −→ U (H(z, z;w) is on the same orbit as z) such that

e−2π
√−1λw(z) · e2π

√−1α · Φw(z) = Hw(e2π
√−1α ·Hw

−1(z)),

where λw(z) = λw(z, z;w) and Hw(z) = H(z, z;w).

For the proof, we rewrite the equation. By replacing Hw
−1(z) by z, the equation

is written as follows:

e−2π
√−1λw(Hw(z)) · e2π

√−1α · Φw(Hw(z)) = Hw(e2π
√−1α · z).

Since Φw(z) sends each orbit to itself, we have the real analytic function μw(z) =
μ(z, z;w) such that

Φw(z) = (z1e2π
√−1m1μw(z), . . . , zne

2π
√−1mnμw(z)).

We are going to find Hw(z) such that T0Hw = idT0Cn . If Hw(z) is on the same
orbit as z, then there is a real analytic function kw(z) = k(z, z;w) such that

Hw(z) = (z1e2π
√−1m1kw(z), . . . , zne

2π
√−1mnkw(z)).

If λw is constant along each orbit, λw(Hw(z)) = λw(z). Then the i-th coordinate
of the above equation is written as follows:

e−2π
√−1miλw(z)e2π

√−1miα(zie
2π

√−1mikw(z))e2π
√−1miμw(Hw(z))

= zie
2π

√−1miαe2π
√−1miμw(e2π

√−1α·z).
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Since Hw(0) = 0 and kw(0) = λw(0) = μw(0) = 0, we have the following equation.

μw(Hw(z)) − λw(z) = kw(e2π
√−1α · z) − kw(z)

Hw(z) = (z1e2π
√−1m1kw(z), . . . , zne

2π
√−1mnkw(z)).

We use the Kolmogorov-Arnold-Moser process to obtain the sequence converging
to the solution.

Put

G(λ, k)(z, z;w) = μw(Hw(z)) − λw(z) − (kw(e2π
√−1α · z) − kw(z)).

We are looking for λw and kw such that G(λw, kw)(z, z;w) = 0. The question is:

“If we have an approximation (λ, k) of the solution, how can we make a
better approximation (λ+ λ̂, k + k̂)?”

In principle, for an appropriate norm ‖ · ‖, we have

‖G(λ+ λ̂, k + k̂) −G(λ, k) −DG(λ,k)(λ̂, k̂)‖ ≤ const (‖λ̂‖ + ‖k̂‖)2.
Thus for the given (λ, k), take (λ̂, k̂) so that G(λ, k) +DG(λ,k)(λ̂, k̂) is small, then
(λ+ λ̂, k + k̂) should be a better approximation.

First we investigate the terms which we need to estimate.
Put

μw(z1, . . . , zn, θ) = μw(z1e2π
√−1m1θ, . . . , zne

2π
√−1mnθ).

Then
∂μw

∂θ
=

n∑
i=1

(
2π

√−1mizi
∂μw

∂zi
− 2π

√−1mizi
∂μw

∂zi

)
.

The differential DG(λ,k) is computed as follows:

DG(λ,k)(λ̂, k̂) =
∂μw

∂θ
(Hw(z))k̂(z) − λ̂(z) − (k̂(e2π

√−1α · z) − k̂(z)).

Then
G(λ+ λ̂, k + k̂) −G(λ, k) −DG(λ,k)(λ̂, k̂)

= μw(z1e2π
√−1m1(kw(z)+bkw(z)), . . . , zne

2π
√−1mn(kw(z)+bkw(z)))

−μw(z1e2π
√−1m1kw(z), . . . , zne

2π
√−1mnkw(z))

−∂μ
∂θ

(z1e2π
√−1m1kw(z), . . . , zne

2π
√−1mnkw(z))k̂(z).

Hence

(10.1) |G(λ+ λ̂, k + k̂) −G(λ, k) −DG(λ,k)(λ̂, k̂)| ≤ sup
∣∣∂2μ

∂θ2

∣∣(sup |k̂|)2.

Here
∂2μ

∂θ2
=
( n∑

i=1

(
2π

√−1mizi
∂

∂zi
− 2π

√−1mizi
∂

∂zi

))2

μ.

Put
kw(z1, . . . , zn, θ) = kw(z1e2π

√−1m1θ, . . . , zne
2π

√−1mnθ).

Then
∂kw

∂θ
=

n∑
i=1

(
2π

√−1mizi
∂kw

∂zi
− 2π

√−1mizi
∂kw

∂zi

)
.
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Now put k̂(z) = (1 +
∂kw

∂θ
(z))E(z), where E(z) = E(z, z;w). By substituting this

to the differential of G(λ, k),

DG(λ,k)(λ̂, (1 +
∂kw

∂θ
)E)

=
∂μw

∂θ
(Hw(z))

(
1 +

∂kw

∂θ
(z)
)
E(z) − λ̂(z)

−
((

1 +
∂kw

∂θ
(e2π

√−1α · z))E(e2π
√−1α · z) − (1 +

∂kw

∂θ
(z)
)
E(z)

)
.

Since

G(λ, k) = μw(z1, . . . , zn, θ + kw(z1, . . . , zn, θ)) − λ(z1, . . . , zn)
−(kw(z1, . . . , zn, θ + α) − kw(z1, . . . , zn, θ)),

∂G(λ, k)
∂θ

(z) =
∂μw

∂θ
(Hw(z))

(
1 +

∂kw

∂θ
(z)
)− (∂kw

∂θ
(e2π

√−1α · z) − ∂kw

∂θ
(z)
)
.

Hence we have

∂G(λ, k)
∂θ

(z)E(z) =
∂μw

∂θ
(Hw(z))

(
1 +

∂kw

∂θ
(z)
)
E(z)

−
(
∂kw

∂θ
(e2π

√−1α · z)E(z) − ∂kw

∂θ
(z)E(z)

)
=
∂μw

∂θ
(Hw(z))

(
1 +

∂kw

∂θ
(z)
)
E(z)

−
((

1 +
∂kw

∂θ
(e2π

√−1α · z))E(z) − (1 +
∂kw

∂θ
(z)
)
E(z)

)
.

Thus

DG(λ,k)(λ̂, (1 +
∂kw

∂θ
)E) − ∂G(λ, k)

∂θ
(z)E(z)

=−(1 +
∂kw

∂θ
(e2π

√−1α · z))(E(e2π
√−1α · z) −E(z)

)− λ̂(z)

For (λ, k), we would like to solve

G(λ, k) − λ̂ =
(
1 +

∂kw

∂θ
(e2π

√−1α · z))(E(e2π
√−1α · z) −E(z)

)
.

That is

E(e2π
√−1α · z) −E(z) =

(
1 +

∂kw

∂θ
(e2π

√−1α · z))−1(
G(λ, k) − λ̂

)
.

To find E, it is necessary that∫ (
1 +

∂kw

∂θ
(e2π

√−1α · z))−1(
G(λ, k) − λ̂

)
dθ = 0.

Since λ̂ is constant on each orbit, this is rewritten as∫ (
1 +

∂kw

∂θ
(e2π

√−1α · z))−1
G(λ, k)dθ = λ̂

∫ (
1 +

∂kw

∂θ
(e2π

√−1α · z))−1dθ.
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With these (λ̂, k̂ =
(
1 +

∂kw

∂θ
)E),

(10.2)

G(λ, k) +DG(λ,k)(λ̂,
(
1 +

∂kw

∂θ
)E)

=G(λ, k) +DG(λ,k)(λ̂,
(
1 +

∂kw

∂θ
)E) − ∂G(λ, k)

∂θ
(z)E(z)

+
∂G(λ, k)

∂θ
(z)E(z)

=G(λ, k) − (1 +
∂kw

∂θ
(e2π

√−1α · z))(E(e2π
√−1α · z) − E(z)

)− λ̂

+
∂G(λ, k)

∂θ
(z)E(z)

=
∂G(λ, k)

∂θ
(z)E(z).

It is important that since G(λ, k) is small,
∂G(λ, k)

∂θ
(z) is small.

Thus by (10.1) and (10.2),

|G(λ+ λ̂, k + k̂)| ≤ sup
∣∣∂G(λ, k)

∂θ
(z)
∣∣ sup |E(z)| + sup

∣∣∂2μw

∂θ2

∣∣(sup |k̂|)2

We treat the equation

E(e2π
√−1α · z) −E(z) =

(
1 +

∂k

∂θ
(e2π

√−1α · z))−1(
G(λ, k) − λ̂

)
for the given (λ, k), where λ̂ is already determined.

Assume that

sup
Δη×Δη×Δζ

|G(λ, k)| ≤ ε, and

sup
Δη×Δη×Δζ

|∂k
∂θ

(z, z;w)| ≤ 1
22
.

Then by the equation determining λ̂, sup
Δη×Δη×Δζ

|λ̂| ≤ 24

32
ε, hence

sup
Δη×Δη×Δζ

|(1 +
∂kw

∂θ
(e2π

√−1α · z))−1(G(λ, k) − λ̂)| ≤ 4
3

52

32
ε < 22ε.

Here

ν(z, z;w) =
(
1 +

∂kw

∂θ
(e2π

√−1α · z))−1(
G(λ, k) − λ̂

)
=

∑
j1,...,jn,k1,...,kn

aj1···jnk1···kn
(w)z1j1 · · · zn

jnz1
k1 · · · zn

kn

satisfies aj1···jnk1···kn
(w) = ak1···knj1···jn

(w) and aj1···jnk1···kn
(w) = 0 if

n∑
i=1

miji =

n∑
i=1

miki. The reason for the latter is as follows: Since the integral of ν along the
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orbit is 0,∫
ν(e2π

√−1θ · z, e−2π
√−1θ · z;w)dθ

=
∑

j1,...,jn,k1,...,kn

∫
e2π

√−1(
Pn

i=1 miji−
Pn

i=1 miki)θz1
j1 · · · zn

jnz1
k1 · · · zn

kndθ

=
∑

Pn
i=1 miji=

Pn
i=1 miki

aj1···jnk1···kn
(w)z1j1 · · · zn

jnz1
k1 · · · zn

kn = 0.

Since it vanishes as a function on (z, z;w), the coefficient satisfies aj1···jnk1···kn
(w) =

0 if
n∑

i=1

miji =
n∑

i=1

miki.

Since sup
Δη×Δη×Δζ

|ν(z, z;w)| ≤ 22ε, |aj1···jnk1···kn
(w)| ≤ 22ε

η
Pn

i=1 ji+
Pn

i=1 ki
by the

Cauchy inequality.
For the series ν(z, z;w) =

∑
j1,...,jn,k1,...,kn

aj1···jnk1···kn
(w)z1j1 · · · zn

jnz1
k1 · · · zn

kn

with aj1···jnk1···kn
(w) = ak1···knj1···jn

(w) and aj1···jnk1···kn
(w) = 0 for

n∑
i=1

miji =

n∑
i=1

miki, put

E(z) =
∑

j1,...,jn,k1,...,kn

bj1···jnk1···kn
(w)z1j1 · · · zn

jnz1
k1 · · · zn

kn ,

and we can solve
E(e2π

√−1α · z) −E(z) = ν(z, z;w).
Since

E(e2π
√−1α · z) −E(z) =

∑
j1,...,jn,k1,...,kn

(e2π
√−1α(

Pn
i=1 miji−

Pn
i=1 miki) − 1)

·bj1···jnk1···kn
(w)z1j1 · · · zn

jnz1
k1 · · · zn

kn ,

bj1···jnk1···kn
(w) =

aj1···jnk1···kn
(w)

e2π
√−1α(

Pn
i=1 miji−

Pn
i=1 miki) − 1

.

Thus

E(z) =
∑

j1,...,jn,k1,...,kn

bj1···jnk1···kn
(w)z1j1 · · · zn

jnz1
k1 · · · zn

kn

=
∑

j1,...,jn,k1,...,kn

aj1···jnk1···kn
(w)

e2π
√−1α(

Pn
i=1 miji−

Pn
i=1 miki) − 1

z1
j1 · · · zn

jnz1
k1 · · · zn

kn .

This E(z) is real if the value of the variable z is the complex conjugate of the value
of z and satisfies

ν(z, z;w) = E(e2π
√−1α · z) − E(z).

Note that by the Diophantine condition,

|e2π
√−1α(

Pn
i=1 miji−

Pn
i=1 miki) − 1| ≥ Cβ∣∣ n∑

i=1

miji −
n∑

i=1

miki

∣∣1+β

(β ≥ 1).
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Since |aj1···jnk1···kn
(w)| ≤ 22ε

η
Pn

i=1 ji+
Pn

i=1 ki
,

|bj1···jnk1···kn
(w)| ≤ 22ε

Cβ

∣∣ n∑
i=1

miji −
n∑

i=1

miki

∣∣1+β

η
Pn

i=1 ji+
Pn

i=1 ki

holds. Then, for |z| ≤ (1 − a)η (0 < a < 1),∑
ji≥0, ki≥0

|bj1···jnk1···kn
(w)||z1j1 · · · zn

jnz1
k1 · · · zn

kn |

≤
∑

ji≥0, ki≥0

22ε

Cβ
|

n∑
i=1

miji −
n∑

i=1

miki|1+β(1 − a)
Pn

i=1 ji+
Pn

i=1 ki

≤
∑

ji≥0, ki≥0

22ε

Cβ

( n∑
i=1

|mi|
)1+β( n∑

i=1

|ji − ki|
)1+β(1 − a)

Pn
i=1 ji+

Pn
i=1 ki .

Here ∑
ji≥0, ki≥0

( n∑
i=1

|ji − ki|
)1+β(1 − a)

Pn
i=1 ji+

Pn
i=1 ki

≤
∑

ji≥0, ki≥0,
Pn

i=1 ji+
Pn

i=1 ki>0

( n∑
i=1

(ji + ki)
)1+β(1 − a)

Pn
i=1 ji+

Pn
i=1 ki

≤
∑
�≥1

(
2n− 1 + �

2n− 1

)
�1+β(1 − a)�

≤ 22n−1
∑
�≥1

�2n+β(1 − a)�.

In the second inequality above we used the following inequality:

(2n− 1 + �)(2n− 2 + �) · · · (1 + �)
(2n− 1)(2n− 2) · · · 1 · �2n−1

= (
1
�
+

1
2n− 1

)(
1
�
+

1
2n− 2

) · · · (1
�
+

1
1
) ≤ 22n−1.

Then by using the equalities∫ ∞

0

x2n+βe−γxdx =
∫ ∞

0

(
x

γ
)2n+βe−xd(

x

γ
) =

Γ(2n+ 1 + β)
γ2n+1+β

with γ = | log(1 − a)| and the inequality | log(1 − a)| ≥ a,∑
ji≥0,ki≥0

( n∑
i=1

|ji − ki|
)1+β(1 − a)

Pn
i=1 ji+

Pn
i=1 ki ≤ 22n−1 Γ(2n+ 1 + β)

a2n+1+β
.

Thus ∑
ji≥0,ki≥0

|bj1···jnk1···kn
(w)||z1j1 · · · zn

jnz1
k1 · · · zn

kn |

≤ 22ε

Cβ

( n∑
i=1

|mi|
)1+β22n−1 Γ(2n+ 1 + β)

a2n+1+β

=
22n+1Γ(2n+ 1 + β)

Cβ

( n∑
i=1

|mi|
)1+β ε

a2n+1+β
.
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This implies that E is real analytic on Δ(1−a)η ×Δ(1−a)η ×Δζ and

sup
Δ(1−a)η×Δ(1−a)η×Δζ

|E| ≤ 22n+1Γ(2n+ 1 + β)
Cβ

( n∑
i=1

|mi|
)1+β ε

a2n+1+β
.

Since

∂E

∂θ
= 2π

√−1
∑

j1,...,jn,k1,...,kn

(
n∑

i=1

miji −
n∑

i=1

miki)

·bj1···jnk1···kn
(w)z1j1 · · · zn

jnz1
k1 · · · zn

kn ,

for |zi| ≤ (1 − a)η (i = 1, . . . , n),∣∣∂E
∂θ

∣∣ ≤ 2π
∑

ji≥0, ki≥0

22ε

Cβ
|

n∑
i=1

miji −
n∑

i=1

miki|2+β(1 − a)
Pn

i=1 ji+
Pn

i=1 ki

≤ 23πε

Cβ

∑
ji≥0, ki≥0

( n∑
i=1

|mi|
)2+β( n∑

i=1

|ji − ki|
)2+β(1 − a)

Pn
i=1 ji+

Pn
i=1 ki

≤ 23πε

Cβ

( n∑
i=1

|mi|
)2+β ∑

ji≥0, ki≥0,Pn
i=1 ji+

Pn
i=1 ki>0

( n∑
i=1

(ji + ki)
)2+β(1 − a)

Pn
i=1 ji+

Pn
i=1 ki

≤ 23πε

Cβ

( n∑
i=1

|mi|
)2+β22n−1

∑
�>0

�2n+1+β(1 − a)�

≤ 23πε

Cβ

( n∑
i=1

|mi|
)2+β22n−1 Γ(2n+ 2 + β)

a2n+2+β
.

Thus

sup
Δ(1−a)η×Δ(1−a)η×Δζ

∣∣∂E
∂θ

∣∣ ≤ 22n+2πΓ(2n+ 2 + β)
Cβ

( n∑
i=1

|mi|
)2+β ε

a2n+2+β
.

Thus by putting C′
β =

22n+1Γ(2n+ 2 + β)
Cβ

and M =
n∑

i=1

|mi|, we have

sup
Δ(1−a)η×Δ(1−a)η×Δζ

|E| ≤ C′
βM

1+βε

a2n+1+β

and

sup
Δ(1−a)η×Δ(1−a)η×Δζ

∣∣∂E
∂θ

∣∣ ≤ 2πC′
βM

2+βε

a2n+2+β
.

Then for k̂ = (1 +
∂kw

∂θ
)E,

sup
Δ(1−a)η×Δ(1−a)η×Δζ

|k̂| ≤ 5C′
βM

1+βε

4a2n+1+β
.

If a holomorphic function f on Δη×Δη×Δζ satisfies sup
Δη×Δη×Δζ

|f(z, z, w)| ≤ K,

then for
∂f

∂θ
(z, z, w) =

n∑
i=1

(2π
√−1mizi

∂f

∂zi
− 2π

√−1mizi
∂f

∂zi
),
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sup
Δ(1−a)η×Δ(1−a)η×Δζ

∣∣ ∂f
∂zi

(z, z, w)
∣∣ and sup

Δ(1−a)η×Δ(1−a)η×Δζ

∣∣ ∂f
∂zi

(z, z, w)
∣∣ are estimated

by
K

aη
by the Cauchy formula, and

sup
Δ(1−a)η×Δ(1−a)η×Δζ

∣∣∂f
∂θ

(z, z, w)
∣∣ ≤ 22(1 − a)πK

a

n∑
i=1

|mi| ≤ 22πK

a

n∑
i=1

|mi|.

For

∂2f

∂θ2
(z, z, w) =

( n∑
i=1

(2π
√−1mizi

∂

∂zi
− 2π

√−1mizi
∂

∂zi
)
)2

f

=−22π2

( n∑
i=1

mi
2(zi

∂

∂zi
+ zi

2 ∂2

∂zi
2
) +mi

2(zi
∂

∂zi
+ zi

2 ∂2

∂zi
2
)

+
∑
i�=j

(mimjzizj
∂2

∂zi∂zj
+mimjzi zj

∂2

∂zi∂zj
)

−
∑
i,j

(mimjzizj
∂2

∂zi∂zj
+mimjzizj

∂2

∂zi∂zj
)
)
f,

by the Cauchy formula,

sup
Δη×Δη×Δζ

∣∣∂2f

∂θ2
(z, z, w)

∣∣
≤ 22π2

(
2

n∑
i=1

|mi|2(1 − a

a
+

2(1 − a)2

a2
)K

+2
∑
i�=j

|mimj | (1 − a)2

a2
K + 2

∑
i,j

|mimj | (1 − a)2

a2
K

)
≤ 22π2

(
2

n∑
i=1

|mi|2(1 − a

a
+

(1 − a)2

a2
)K + 4

∑
i,j

|mimj | (1 − a)2

a2
K

)
≤ 22π2 · 6(

n∑
i=1

|mi|)2K
a2

Thus if sup
Δη×Δη×Δζ

|∂k
∂θ

(z, z, w)| ≤ 1
22

, then for

∂2k

∂θ2
(z, z, w) =

n∑
i=1

(2π
√−1mizi

∂

∂zi
− 2π

√−1mizi
∂

∂zi
)
∂k

∂θ
,

sup
Δ(1−a)η×Δ(1−a)η×Δζ

∣∣∂2k

∂θ2
(z, z, w)

∣∣ ≤ π

a

n∑
i=1

|mi| =
πM

a
.

Since
∂k̂

∂θ
=
∂2k

∂θ2
E + (1 +

∂k

∂θ
)
∂E

∂θ
,

sup
Δ(1−a)η×Δ(1−a)η×Δζ

∣∣∂k̂
∂θ

∣∣ ≤ πM

a

C′
βM

1+βε

a2n+1+β
+

5
4

2πC′
βM

2+βε

a2n+2+β
≤ 22πC′

βM
2+βε

a2n+2+β
.
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Assume that sup
Δη×Δη×Δζ

|μ| ≤ ε′. Then for

∂2μ

∂θ2
=
( n∑

i=1

(2π
√−1mizi

∂

∂zi
− 2π

√−1mizi
∂

∂zi
)
)2

μ,

sup
Δ(1−a)η×Δ(1−a)η×Δζ

∣∣∂2μ

∂θ2

∣∣ ≤ 22π2 · 6(
n∑

i=1

|mi|)2 ε
′

a2
=

233π2M2ε′

a2
.

Thus (
sup

Δ(1−a)η×Δ(1−a)η×Δζ

∣∣∂2μ

∂θ2

∣∣)( sup
Δ(1−a)η×Δ(1−a)η×Δζ

|k̂|)2
≤ 233π2M2ε′

a2
(
5C′

βM
1+βε

4a2n+1+β
)2 =

3 · 52π2C′
β

2M4+2βε′ε2

2a4n+4+2β
.

Since sup
Δη×Δη×Δζ

|G(λ, k)| ≤ ε,

sup
Δ(1−a)η×Δ(1−a)η×Δζ

∣∣∂G(λ, k)
∂θ

∣∣ ≤ 22π

a
(

n∑
i=1

|mi|)ε =
22πMε

a

and(
sup

Δ(1−a)η×Δ(1−a)η×Δζ

∣∣∂G(λ, k)
∂θ

∣∣)( sup
Δ(1−a)η×Δ(1−a)η×Δζ

|E|) ≤ 22πC′
βM

2+βε2

a2n+2+β
.

We assume further that
3 · 52πC′

βM
2+βε′ ≤ 23

and we have

sup
Δ(1−a)η×Δ(1−a)η×Δζ

|G(λ+ λ̂, k + k̂)| ≤ 23πC′
βM

2+β

a4n+4+2β
ε2.

Now we put λ0 = 0 and k0 = 0. Then G(λ0, k0) = G(0, 0) = μ(z) and assume
that

sup
Δη×Δη×Δζ

|μ(z)| ≤ ε = ε′ ≤ 23

3 · 52πC′
βM

2+β
.

Put η�−1 =
(1
2

+
1
2�

)
η and ε0 = ε, we have

sup
Δη0×Δη0×Δζ

|G(λ0, k0)| ≤ ε0.

Note that

η� = η�−1

1
2

+
1

2�+1

1
2

+
1
2�

= η�−1(1 − a�−1)

where a�−1 =

1
2�+1

1
2

+
1
2�

≥ 1
2�+1

for � ≥ 1.

Then we have (λ̂0, k̂0 = (1 +
∂k0

∂θ
)E0 = E0) such that

G(λ0, k0) − λ̂0 =
(
1 +

∂k0

∂θ
(e2π

√−1αz)
)(
E0(e2π

√−1αz) − E0(z)
)
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and

k̂0(z) =
(
1 +

∂k0

∂θ
(z))E0(z),

where

sup
Δη0×Δη0×Δζ

|λ̂0| ≤ 24

32
ε0

sup
Δη1×Δη1×Δζ

|k̂0| ≤
5C′

βM
1+β

4a0
2n+1+β

ε0

sup
Δη1×Δη1×Δζ

∣∣∂k̂0

∂θ

∣∣ ≤ 22πC′
βM

2+β

a0
2n+2+β

ε0.

Then for λ1 = λ0 + λ̂0 and k1 = k0 + k̂0,

sup
Δη1×Δη1×Δζ

|G(λ1, k1)| ≤
23πC′

βM
2+β

a0
4n+4+2β

ε0
2

≤ 23πC′
βM

2+β22(4n+4+2β)ε0
2.

For (λ�, k�), assume that

sup
Δη�

×Δη�
×Δζ

|G(λ�, k�)| ≤ ε�.

Then we get (λ̂�, k̂� = (1 +
∂k

∂θ
)E�) such that

G(λ�, k�) − λ̂� =
(
1 +

∂k�

∂θ
(e2π

√−1αz)
)(
E�(e2π

√−1αz) −E�(z)
)

and

k̂�(z) =
(
1 +

∂k�

∂θ
(z))E�(z).

where

sup
Δη�

×Δη�
×Δζ

|λ̂�| ≤ 24

32
ε�

sup
Δηn+1×Δηn+1×Δζ

|k̂�| ≤
5C′

βM
1+β

4a�
2n+1+β

ε�

sup
Δη�+1×Δη�+1×Δζ

∣∣∂k̂�

∂θ

∣∣ ≤ 22πC′
βM

2+β

a�
2n+2+β

ε�.

Put λ�+1 = λ� + λ̂� and k�+1 = k� + k̂�. Then

sup
Δη�+1×Δη�+1×Δζ

|G(λ�+1, k�+1)| ≤
23πC′

βM
2+β

a�
4n+4+2β

ε�
2

≤ 23πC′
βM

2+β2(n+2)(4n+4+2β)ε�
2.

Moreover,

sup
Δηn+1×Δηn+1×Δζ

∣∣∂kn+1

∂θ

∣∣ ≤ 22πC′
βM

2+β
( ε0
a0

2n+2+β
+ · · · + ε�

a�
2n+2+β

)
.

We will show that λ� and k� are defined successively and (λ�, k�) converges
to (λ, k) which are holomorphic on Δη/2 × Δη/2 × Δζ , and then we will have
Gμ(λ, k) = 0.
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Put N = 23πC′
βM

2+β22(4n+4+2β), and we have

ε1 ≤ Nε0
2, ε2 ≤ N24n+4+2βε1

2, . . . , ε�+1 ≤ N2n(4n+4+2β)ε�
2, . . . .

If we take ε0 ≤ 1
N24n+4+2β

, then ε1 ≤ 1
N22(4n+4+2β)

. If ε� ≤ 1
N2(�+1)(4n+4+2β)

,

then ε�+1 ≤ 1
N2(�+2)(4n+4+2β)

. Then

22πC′
βM

2+β
( ε0
a0

2n+2+β
+ · · · + ε�

a�
2n+2+β

)
≤ 22πC′

βM
2+β
( 22(2n+2+β)

N2(4n+4+2β)
+ · · · + 2(�+2)(2n+2+β)

N2(�+1)(4n+4+2β)

)
=

22πC′
βM

2+β

N

(
1 + · · · + 1

2�(2n+2+β)

)
≤ 23πC′

βM
2+β

N
=

23πC′
βM

2+β

23πC′
βM

2+β22(4n+4+2β)
=

1
22(4n+4+2β)

≤ 1
22
,

and

sup
Δηn+1×Δηn+1×Δζ

∣∣∂kn+1

∂θ

∣∣ ≤ 1
22

is satisfied.
Thus the construction of the sequence (λ�, k�) is performed. Since

∑
ε� con-

verges, λ =
∞∑

�=0

λ̂� is holomorphic on Δη/2 × Δη/2 × Δζ . Since

∑ ε�

a�
2n+1+β

=
∑ 2(�+2)(2n+1+β)

N2(�+1)(4n+4+2β)
=
∑ 1

N22+�(2n+3+β)

converges, k =
∞∑

�=0

k̂� is holomorphic on Δη/2 × Δη/2 × Δζ .

Thus (λ, k) satisfies G(λ, k) = 0 on Δη/2 ×Δη/2×Δζ and this is the desired real
analytic solution.

11. Appendix 2: Preliminary on the real analytic diffeomorphisms

In this section, we review several fundamental facts on real analytic manifolds,
real analytic maps and diffeomorphisms. Basic references are Cartan [4], Grauert-
Remmert [8].

Let A be the sheaf of germs of real analytic functions on a real analytic manifold
M . Analytically coherent sheaves are defined as follows. A sheaf S on M is analyt-
ically coherent if there is a neighborhood U of x, such that SU is finitely generated
over AU and for y ∈ U , Sy is represented as follows:

Sy = (Aye1 + · · · + Ayek)/{f =
k∑

i=1

aiyei

∣∣ k∑
i=1

b
(j)
iy aiy = 0 (j = 1, . . . , �)}

for some basis {e1, . . . , ek} and b(k)
ij ∈ AU . In other words, there is an exact sequence

of sheaves:
(AU )� −→ (AU )k −→ SU −→ 0.

It is fundamental that if Sx is finitely generated over Ax, then there is a neighbor-
hood U of x where AU is finitely generated over AU .
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Let Hn(M ;S) be the n-dimensional cohomology group with coefficients in S.
Then, Theorems A and B of Cartan are stated as follows ([4]).

Theorem 11.1 (Theorem A). For any analytically coherent sheaf S, H0(M ;S) −→
Sx is surjective.

Theorem 11.2 (Theorem B). For any analytically coherent sheaf S, for n > 0,
Hn(M ;S) = 0.

Let M be a real analytic submanifold in RN . Let IM denote the sheaf of the
real analytic functions on RN which vanishes on M . Then, we have the well known
proposition.

Proposition 11.3. IM is coherent.

For a real analytic submanifoldM of RN , the sheaf AM of real analytic functions
on M is identified with the quotient A/IM . Proposition 11.3 and Theorem B of
Cartan (Theorem 11.2) imply the following proposition.

Proposition 11.4. For any real analytic function f on M ⊂ RN , there is an
extension f̃ on RN .

Proposition 11.5. Any compact real analytic manifold M is defined by f = 0 with
f ∈ H0(RN ;A).

Proof. Let SN ⊂ RN+1 be the unit sphere in RN+1. Since SN − {∗} ∼= RN

real analytically, M is real analytically embedded in SN ⊂ RN+1. It is sufficient
to show that there is a real analytic function f on SN defining M .

By Theorem A of Cartan (Theorem 11.1), for x ∈ M , the defining ideal (IM )x

is generated by F
(x)
1 , . . . , F (x)

kx
∈ H0(RN+1; IM ). Then G(x) =

kx∑
i=1

(F (x)
i )2 is

a real analytic function on RN+1 such that G(x) = 0 on M and G(x) defines
M on a neighborhood Ux of x. For y ∈ SN \ M , (IM )y is generated by any
F (y) ∈ H0(RN+1; IM ) such that F (y) �= 0 on a neighborhood Uy of y.

Now take the covering {Ux}x∈M ∪{Uy}y∈SN\M of SN . Since SN is compact, we

have a finite subcovering {Uxj
}j=1,...,p∪{Uy�

}�=1,...,q of it. Then the sum
p∑

j=1

G(xj)+

q∑
�=1

(F (y�))2 is the desired defining function of M on SN . �

The defining function fM obtained by Proposition 11.5 is positive and bounded.

By taking a function like (1 − fM

K
)m, we obtain the following corollary.

Corollary 11.6. For any ε > 0 and δ > 0, there is a real analytic function f on
RN which is 1 on M and f < ε out of the δ neighborhood of M .

Now we look at the topology of the set of real analytic maps (see Royden [24],
Hirsch [18]).
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It is shown by Grauert [7] and Morrey [20] that an n-dimensional real analytic
manifold Mn is real analytically embedded in the (2n + 1)-dimensional Euclidean
space R2n+1.

Let M1 and M2 be compact real analytic manifolds. Let Mapr(M1,M2) and
Mapω(M1,M2) be the set of Cr maps (1 ≤ r < ∞) and real analytic maps from
M1 to M2, respectively.

Proposition 11.7. For compact real analytic manifoldsM1 and M2, Mapω(M1,M2)
is dense in Mapr(M1,M2) in the Cr topology.

Proof. Using the real analytic embedding theorem, this is shown as follows.
Let M1 and M2 be real analytic submanifolds of RN1 and RN2 , respectively. Let
f : M1 −→ M2 be a Cr map. Then the Cr map f extends to a Cr map f̃ :
UM1 −→ M2 for a neighborhood UM1 of M1 in RN1 . Then by the Weierstrass
approximation theorem, this f̃ is Cr approximated by a Cω map f̂ : UM1 −→ RN2 .
Here, the trouble is that f̂(M1) may not be in M2. Let pM2 denote the normal
bundle projection for M2 ⊂ RN2 which is defined in a neighborhood of M2 and Cω.
Then pM2 ◦ f̂ is a Cω map to M2 which is Cr close to f .

For the group of real analytic diffeomorphisms of a compact real analytic mani-
fold M , we have the following corollary.

Corollary 11.8. For a compact real analytic manifold M , Diffω(M) is dense in
Diffr(M) (1 ≤ r ≤ ∞) in the Cr topology.

Proof. Since Diffω(M) is open in Mapω(M,M) in the Cr topology, if f is a
diffeomorphism then pM2 ◦ f̂ in the proof of Proposition 11.7 is a Cω diffeomor-
phism. Thus Diffω(M) is dense in Diffr(M) in the Cr topology. For r = ∞, the
C∞ topology is given as the projective limit topology.Hence Diffω(M) is dense in
Diff∞(M) in the C∞ topology. �

Proposition 11.9. For a compact real analytic manifold M , Diffω(M) is locally
contractible.

Proof. Let M ⊂ RN , and let p : νM −→ M be the projection of the normal
bundle of M to M . For a real analytic diffeomorphism f in a C1 neighborhood
of the identity idM , take ft(x) = p((1 − t)x + tf(x)). Then ft(x) is a Cω path in
Diffω(M) from the identity idM to f . �

Proposition 11.10. For a compact real analytic manifold M , Diffω(M) is homo-
topy equivalent to Diffr(M) (1 ≤ r ≤ ∞).

Proof. Given a continuous map Sk −→ Diff1(M), it is approximated by a C1

map Sk × M −→ M such that {∗} × M −→ M are diffeomorphisms. Then it
is approximated by a Cω map Sk × M −→ M such that {∗} × M −→ M are
diffeomorphisms. Since Diff1(M) is open in Map1(M,M), πk is surjective.

Given a continuous map f : Sk −→ Diffω(M). Assume that f : Sk −→ Diffω(M)
extends to a continuous map F : Dk+1 −→ Diff1(M). F is approximated by C1

map Dk+1 × M −→ M such that {∗} × M −→ M are diffeomorphisms. Then
this is approximated by a Cω map F̂ : Dk+1 × M −→ M . Thus we have F̂ :
Dk+1 −→ Diffω(M). Now consider the map Sk × [0, 1] −→ Diffω(M) given by
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pM ◦ (tF̂ + (1 − t)f) and we attach these 2 maps along Sk = ∂Dk+1 to obtain a
map Dk+1 −→ Diffω(M) bounded by f . �

Proposition 11.11. Let L ⊂M be a closed submanifold. If f ∈ Diffω(L) extends
to F ∈ Diff1(M) then f ∈ Diffω(L) extends to F̂ ∈ Diffω(M).

Proof. We may assume that M is a real analytic submanifold of RN . First we
approximate F by a real analytic map F1 : M −→M . The C1 norm of F1|L− f :
L −→ RN can be made arbitrarily small. Let pM be the normal bundle projection
on a neighborhood in RN of M to M . In the product M × [0, 1] ⊂ RN × [0, 1], we
consider the submanifold

{(pM ((1 − t)F1(x) − tf(x)), t)
∣∣ x ∈ L, t ∈ [0, 1]} ⊂M × [0, 1],

which is Cω diffeomorphic to L× [0, 1]. We have a vector field

(
∂pM ((1 − t)F1(x) − tf(x))

∂t
, 1)

along this submanifold. Then by Proposition 11.4, we can extend this vector field
to a Cω vector field on RN × [0, 1]. The second component of the vector field is
always taken to be 1. Now we take the restriction of this vector field on M × [0, 1]
and take the image by ((pM )∗, id∗) of the restriction. Then we have a Cω vector
field ξ on M × [0, 1], and for x ∈ L, {(pM ((1 − t)F1(x) − tf(x)), t)

∣∣ t ∈ [0, 1]} is
the integral curve of ξ. Let ϕ : M −→ M be the time one map of ξ, then this is a
diffeomorphism extending f ◦ (F1|L)−1. Then ϕ ◦ F1 is a Cω extension of f . �

Corollary 11.12. Let L1 ⊂ M1 a closed submanifold. If f ∈ Diffω(L1 × M2)
extends to F ∈ Diff1(M1×M2) then f ∈ Diffω(L1×M2) extends to F̂ ∈ Diffω(M1×
M2).

This corollary means the following. Given a Cω map f : Sk −→ Diffω(M).
Assume that f : Sk −→ Diffω(M) extends to a continuous map F : Dk+1 −→
Diff1(M). Then f extends to a Cω map F̂ : Dk+1 −→ Diffω(M).
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