
UTMS 2008–16 June 2, 2008

The (g, K)-module structures

of principal series of SU(2,2)

by

G. Bayarmagnai

�
UNIVERSITY OF TOKYO

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES

KOMABA, TOKYO, JAPAN



THE (g, K)-MODULE STRUCTURES OF PRINCIPAL
SERIES OF SU(2,2)

G. BAYARMAGNAI

Abstract. We completely describe the (g, K)-module structures
of the principal series representations of SU(2, 2).

Introduction. The purpose of this paper is to describe completely
the (g, K)-module structure of the principal series representations of
SU(2, 2), parabolically induced with respect to the minimal parabolic
subgroup Pmin.

This is motivated by the problem of the determination of the precise
formulas for various spherical models of the standard representations
of SU(2, 2). Among others we are interested in the Whittaker models
(Bayarmagnai [1], Hayata [3], Ishii [4], Miyazaki-Oda [6]).

Our method of proof is similar to that of a recent paper of Oda [5],
which describes the (g, K)-module structure of standard representa-
tions of Sp(2, R). Namely we utilize the concept of simple K-modules
with marking, to overcome the problem of multiplicities in K-types.

Our main results are Theorem 3.6 and Theorem 3.7 which are shortly
explained below. The template of the formulas is the following:

C[±,±;±]S
(m) = S(m′)Γ[±,±;±].

Here S(m) is the matrix consisting of elementary functions in the rep-
resentation identified with a closed subspace of L2(K), C[±,±;±] is a
matrix with entries either in p+ or in p−, and Γ[±,±;±] is a constant
matrix whose entries consists of linear forms in the parameters of the
representation. The last is called a matrix of intertwining constants.

Let us recall the Casimir equation for the Casimir operator C :

Cv = γ(C)v,

where γ is the infinitesimal character and v is a differential vector. Our
formula is a ”covariant” analogue of this. The details of each symbol
is explained in the text.

In the section 1 we have collected the necessary facts of SU(2, 2), re-
lated subgroups and Lie algebras. The marked basis of each continuous
simple K-submodule of the principal series representation of SU(2, 2)
is introduced in terms of the elementary functions in the section 2.
We begin section 3 by computing the Clebsch-Gordan coefficients of
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finite dimensional representations of K (Proposition 3.2 and Proposi-
tion 3.3). Then we introduce our main result concerning the gC-module
(Theorem 3.6 and Theorem 3.7), and finally give some examples.

According to this way, the case of real symplectic group of rank 3 is
also due to Miyazaki [7].

Acknowledgment: I would like to express my thanks to my teacher
Professor Takayuki Oda for presenting this subject and valuable advice.

1. Preliminaries

In this section, we recall some definitions and results which will be
needed in the sequel. For more details, for instance, we refer to [3].

1.1. Basic notions. Let G be the special unitary group defined by

SU(2, 2) =

{
g ∈ SL4(C) | tḡI2,2g = I2,2, I2,2 =

(
12

−12

)}
and K be a maximal compact subgroup of G given by the fixed part
K = Gθ of the Cartan involution θ(g) = tḡ−1, g ∈ G :

K = S(U(2) × U(2)) =

{(
a 0
0 b

)
: a, b ∈ U(2), det(ab) = 1

}
.

Let g = k ⊕ p (p = g−θ) be the Cartan symmetric decomposition
associated to the involution θ. For x ∈ M2(C) we set

p+(x) =

(
0 x
0 0

)
and p−(x) =

(
0 0
x 0

)
.

Let Hi = p+(eii) + p−(eii) (i = 1, 2), where eij the matrix unit M2(R)
with 1 in the (i, j)-entry and zero elsewhere. Then the space a spanned
by H1, H2 over R is a maximally abelian subalgebra of p. Let {λ1, λ2}
be a basis of the dual space a∗ such that λi(Hj) = δij. Then the
restricted root system for Φ(g, a) is of type C2, namely

Φ(g, a) = {±λ1,±λ2 ± 2λ1,±2λ2}.

Choose λ1 − λ2 and 2λ2 as simple roots of Φ(g, a). Denote by Eij the
matrix units in M4(C) for 0 ≤ i, j ≤ 4. Then the corresponding root
spaces of dimension two and one are given by

gλ1−λ2 = R · E1 ⊕ R · E2 and g2λ2 = R · E0,

with E0 = κ−1E24κ,E1 = κ−1(E12−E43)κ and E2 = κ−1(iE12+iE43)κ.

Here κ =
1√
2

(
12 12

−i12 i12

)
with i =

√
−1.

We put A = exp(a), M = ZA(K), and choose a minimal parabolic
subgroup Pmin with Langlands decomposition Pmin = MAN with the
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unipotent subgroup N :

N =

κ−1


1 n0

1
1

−n̄0 1




1 n1 n2

1 n̄2 n3

1
1

κ

∣∣∣∣∣ n1, n3 ∈ R,
n0, n2 ∈ C

 .

1.2. The K-modules. The group K̃ = SU(2) × SU(2) × U(1) is a
twofold covering of K with a projection given by

pr(g1, g2; u) = diag(ug1, u
−1g2),

where g1, g2 ∈ SU(2) and u ∈ U(1). The kernel of this homomorphism
is

Ker(pr) = {±(12, 12; 1)}.
Let (τm, Vm) be the m-th symmetric tensor representation of the group
SU(2). Then the unitary dual of K can be parameterized by the set

K̂ = {(τ[m1,m2; l], Vm1m2) | m1, m2 ∈ N ∪ 0, l ∈ Z, m1 + m2 + l ∈ 2Z}.
Here Vm1m2 is the outer tensor product of the spaces Vm1 and Vm2 , and
if g1, g2 ∈ SU(2) and u ∈ U(1), then the action is

τ[m1,m2; l](g1, g2; u) = symm1(g1) ⊗ symm2(g2) ⊗ ul.

We fix now a basis for kC = Lie(K)C:

I2,2 =

(
12 0
0 −12

)
h1 =

(
h 0
0 0

)
, h2 =

(
0 0
0 h

)
,

e1
± =

(
e± 0
0 0

)
, e2

± =

(
0 0
0 e±

)
,

where h =

(
1 0
0 −1

)
, e+ =

(
0 1
0 0

)
and e− =

(
0 0
1 0

)
.

Using these basis, we write the action τ[m1,m2;l] on Vm1m2 explicitly .

Lemma 1.1. Let {fi}0≤i≤mj
be a basis of Vmj

as SU(2)-module for
j = 0, 1. For a given K-module (τ[m1,m2;l], Vm1m2) the set

{fpq : fpq = fp ⊗ fq, 0 ≤ p ≤ m1, 0 ≤ q ≤ m2}
forms a basis of Vm1m2 as K-module and the infinitesimal actions of K
on Vm1m2 are expressed by

h1(fpq) = (2p − m1)fpq, h2(fpq) = (2q − m2)fpq,
e1
+(fpq) = (m1 − p)fp+1,q, e2

+(fpq) = (m2 − q)fp,q+1,
e1
−(fpq) = pfp−1,q, e2

−(fpq) = qfp,q−1,
I2,2fpq = lfpq.

Proof. It is a well known standard fact. ¤
For a simple K-module τ , we can normalize the one dimensional

space of K-homomorphisms of τ onto itself, by the following definition.
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Definition 1.1. A simple K-module τ equipped with a canonical ba-
sis is called a marked simple K-module or a simple K-module with
marking.

1.3. Iwasawa decomposition. The set {Ei,j+2, Ei+2,j | i, j = 1, 2}
forms a basis of the 8-dimensional vector space pC and one has

Ei+2,j = p+(eij) and Ei,j+2 = p−(eij),

where i, j = 1, 2.

Lemma 1.2. Put

E2λ1 = κ−1E13κ, E1
λ1+λ2

= κ−1E14κ, E1
λ1−λ2

= κ−1E43κ,

E2λ2 = κ−1E24κ, E2
λ1+λ2

= κ−1E23κ, E2
λ1−λ2

= κ−1E12κ.

Then we have

p±(eii) = 1
2
(±

√
−1E2λi

+ Hi ± 1
2
(I2,2 − ϵ(i)(h1 − h2))),

p±(eij) = 1
2
(−ϵ(i)Ej

λ1−λ2
∓

√
−1Ei

λ1+λ2
) − ϵ(j)

{
ej

ϵ(j), if (+)

ei
−ϵ(i), if (−)

where ϵ(i) := sign(−1)i (i ̸= j, i, j ∈ {1, 2}).

Proof. We can show this by direct computation. ¤

1.4. Principal series representations. Let Pmin be a minimal para-
bolic subgroup of G with Langlands decomposition Pmin = MAN with
M = ZA(K). In particularly, the subgroup M of Pmin is identified with

M = {[e
√
−1θ]γj | θ ∈ R, j = ±1}

where γ = diag(1,−1, 1,−1) ∈ G and

[e
√
−1θ] = diag(e

√
−1θ, e−

√
−1θ, e

√
−1θ, e−

√
−1θ).

For an integer s and a character e of the group µ2, we define a unitary
character of M by

σs,e([e
√
−1θ]γj) = e(−1)je

√
−1θs.

Let ρ be the half sum of the positive roots and define a character eµ+ρ

of A:

eµ+ρ(a) = e(µ+ρ)log(a) (µ = (µ1, µ2) ∈ Lie(A)).

We extend it to a character of AN so that the restriction to N is trivial.
Define an admissible character of Pmin by tensoring these characters.
Then we get the induced representation (π,Hπ) usually denoted by π =
IndG

Pmin
(σs,e⊗eµ+ρ⊗1N) and called the principal series representation

of G. By definition the representation space Hπ of G can be realized
on the Hilbert space

L2
(σs,e)

(K) = {f ∈ L2(K) |
f(mk) = σn,e(m)f(k) for m ∈ M, k ∈ K, a.e.}
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with G-action defined by

(π(g)f)(k) = a(kg)ν+ρf(k(kg)), k ∈ K, g ∈ G,

where kg = n(kg)a(kg)m(kg)k(kg) is the Iwasawa decomposition of
the element kg.

2. The structure of K-types of the principal series
representation

In this section we express the K-isotypic components of Hπ in terms
of the elementary functions obtained from the tautological representa-
tion of SU(2). Combining it with Lemma 1.2, the K-module structures
on HK

π is described explicitly.

2.1. Elementary functions in L2(K). Let us recall the parametriza-
tion of the unitary dual of SU(2). Let S(x) (x ∈ SU(2)) be a square
matrix function associated to SU(2) given by

S(x) =

(
s1(x) s2(x)
−s̄2(x) s̄1(x)

)
, with det(S(x)) = 1.

Then we have S(xy) = S(x)S(y) and si(−x) = −si(x) for i = 1, 2.
Consider S(x) as a linear transformation from (X, Y ) to (X ′, Y ′), i.e.,

(X ′, Y ′) = (X,Y )

(
s1(x) s2(x)
−s̄2(x) s̄1(x)

)
,

where X, Y are independent variables. For each positive integer n ≥ 2,
there is a linear transformation

Sym(n)(S(x)) = {s(n)
ij (x)}0≤i,j≤n

between the homogeneous forms of (X,Y ) and (X ′, Y ′) of degree n via

((X ′)n, (X ′)n−1Y ′, ..., (Y ′)n) = (Xn, Xn−1Y, ..., Y n) · Sym(n)(S(x)).

First recall the following well-known observation without proof.

Lemma 2.1. The n+1 entries of each i-th row vector of Sym(n)(S(x))
make a canonical basis of the irreducible right SU(2)-representation of
dimension n + 1 in L2(SU(2)). In particular, we have

1. Sym(n)(S(xy)) = Sym(n)(S(x))Sym(n)(S(y)), x, y ∈ SU(2),

2. Sym(n)(S(x)) = diag0≤i≤n(e
√
−1t(n−2i)) if x = diag(e

√
−1t, e−

√
−1t)

with t ∈ R.
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2.2. Elementary functions in L2(K̃). Fix positive integers m1,m2

and an integer l. Put m = [m1,m2; l]. For each quadruple (i, j, p, q) ∈
Z4

+ such that i, p ≤ m1 and j, q ≤ m2, we define a C-valued function

on K̃ by

Sij,pq(g1, g2, u) = s
(m1)
ip (g1)s

(m2)
jq (g2)u

l,

where g1, g2 ∈ SU(2) and u ∈ U(1). For a fixed pair (i, j), a space

W
(m)
ij generated by

{Sij,pq | 0 ≤ p ≤ m1, 0 ≤ q ≤ m2}

is a K̃-module with the action τm defined by

τm(g1, g2; u)Sij,pq(x, y; v) = Sij,pq(xg1, yg2; vu)

for g1, g2, x, y ∈ SU(2) and u, v ∈ U(1). Note that for each pair (i, j),

we have that (τm,W
(m)
00 ) ∼= (τm,W

(m)
ij ) and the τm-isotypic component

in the right K̃-module L2(K̃) is just the sum of all spaces W
(m)
ij , where

0 ≤ i ≤ m1, 0 ≤ j ≤ m2.

2.3. K-isotypic components of the principal series representa-
tions. For x ∈ SU(2), Lemma 2.1 implies that

Sym(n)(S(−x)) = (−1)nSym(n)(S(x)),

hence Sij,pq(k) = Sij,pq(−(12, 12; 1)k) for k ∈ K̃ when m1 +m2 + l ∈ 2Z.
Therefore in this case the functions Sij,pq(k) are well defined on K i.e.,
we may say that

K̂ = {(τm,W
(m)
00 ) | m = [m1,m2; l],m1 + m2 + l ∈ 2Z}.

Note also that Lemma 2.1 shows Sij,pq(k) = δij,pq at the point k = 14.
This property will be used several times later.

Set σ = σs,e. Since L2
σ(K) ⊂ L2(K), as a right unitary representation

of K, it has an irreducible decomposition of K × K-bimodules

L2
σ(K) ∼= ⊕̂τ∈K̂{(τ ∗ |M)[σ−1] ⊗ τ}

by the Peter-Weyl theorem. Here (τ ∗ | M)[σ−1] is the σ−1-isotypic
component in τ ∗ |M . Hence one can explicitly describe the K-isotypic
components of the principal series representation π.

Lemma 2.2. (cf. [3,3.4]) Assume m1 + m2 ≥| s | and l ≡ 2m2 +
s+1− e(−1) (mod 4). Then the τm-isotypic component Hπ(τm) in the
principal series representation π is isomorphic to

⊕γW
(m)
γ with γ = (t, (m1 + m2 + s)/2 − t)),

where t runs over integers satisfying,{
0 ≤ t ≤ min(m1,m2), if s < min(m1 − m2, m2 − m1)

(m1 − m2 + s)/2 ≤ t ≤ m1, if s ≥ max(m2 − m1,m2 − m1)
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and when min(m1 − m2,m2 − m1) ≤ s < max(m1 − m2,m2 − m1){
0 ≤ t ≤ min(m1,m2), if m1 > m2

(m1 − m2 + s)/2 ≤ t ≤ (m1 + m2 + s)/2, if m1 < m2.

Extending the notion given in Definition 1.1 slightly, we can define a
set of markings for each isotypic companent of L2(K).

Definition 2.1. For each possible pair (i, j), the marking on the simple

K-module (τm,W
(m)
ij ) specified by the basis {Sij,pq | 0 ≤ p ≤ m1, 0 ≤

q ≤ m2} is called the marking by elementary functions.

Conventions. Fix π and a marked simple K-module τm in π |K
with m = [m1,m2; l]. Denote by I(π, τm) the set of all γ such that

γ = (t, (m1 +m2 +s)/2− t)) as in Lemma 2.2 and W
(m)
γ occurs in π |K .

Then the multiplicity m(π, τm) of τm in π |K is the cardinality of the
finite set I(π, τm).

When γ ∈ I(π, τm), there is a K-isomorphism from Vm onto W
(m)
γ

by sending the set of marked basis onto the set of marked elementary
functions and hence denote this K-isomorphism by [γ].

3. (g, K)-module structures

In this section we investigate the action g = Lie(G) (or gC = g⊗ C)
on the subspace Hπ,K of the K-finite vectors in the representation space
Hπ. Because of the Cartan decomposition g = k ⊕ p, it is suffices to
investigate the action of p or pC.

3.1. Clebsch-Gordan coefficients. The adjoint representation of K
on pC splits into two irreducible components, i.e., the holomorphic part
p+ generated by the set of matrix units {Eij | i = 1, 2, j = 3, 4} over
C and the antiholomorphic part p− generated by the set {Eij | i =
3, 4, j = 1, 2} over C.

Lemma 3.1. (cf. [3,3.10]) We have the K-isomorphisms

(Ad, p+) ∼= τ[1,1;2] and (Ad, p−) ∼= τ[1,1;−2]

given by

(E23, E13, E24, E14) → (f00, f10,−f01,−f11),

(E41, E31, E42, E32) → (f00, f01,−f10,−f11).

Let (τm, Vm) (m = [m1,m2; l]) be an irreducible representation of K.
p+-side. By the well known Clebsch-Gordan theorem and Lemma

3.1, the irreducible components in the K-module p+⊗C τm are precisely
the K-representations

{ τ[m1+e1,m2+e2; l+2] | e1, e2 ∈ {±1}},
and we will denote these by τ[±,±;+] or τ[e1,e2;+] respectively.
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When τ[±,±;+] is non zero, we now express the canonical basis vectors
of τ[±,±;+] in terms of the basis vectors of p+⊗Cτm induced from those of
p+ and τ . In this case, denote by I[±,±;+] a generator of the vector space
HomK(τ[e1,e2;+], p+ ⊗C τm), which is unique up to constant multiple.

Proposition 3.2. The image of the (p, q)-th canonical basis vector f ′
pq

of τ[e1,e2;+] under the K-homomorphism I[e1,e2;+] is given by

i. If (e1, e2) = (−1,−1) then

E23 ⊗ fp+1q+1 − E13 ⊗ fpq+1 + E24 ⊗ fp+1q − E14 ⊗ fpq ,

ii. If (e1, e2) = (+1,−1) then

(1 − c1
p)(E23 ⊗ fpq+1 + E24 ⊗ fpq) + c1

p(E13 ⊗ fp−1q+1 + E14 ⊗ fp−1q),

iii. If (e1, e2) = (−1, +1) then

(1 − c2
q)(E13 ⊗ fpq − E23 ⊗ fp+1q) + c2

q(E24 ⊗ fp+1q−1 − E14 ⊗ fpq−1),

iv. If (e1, e2) = (+1, +1) then

−(1 − c2
q)((1 − c1

p)E23 ⊗ fpq + c1
pE13 ⊗ fp−1q)

+c2
q((1 − c1

p)E24 ⊗ fpq−1 + c1
pE14 ⊗ fp−1q−1)

with the coefficients expressed as follows

c1
p =

p

m1 + 1
, c2

q =
q

m2 + 1

where 0 ≤ p ≤ m1 + e1 and 0 ≤ q ≤ m2 + e2, respectively.

Proof. Denote by upq the element in p+ ⊗C τm defined in our Propo-
sition. To prove I[e1,e2;+](f

′
pq) = upq , it is enough to show that the

correspondence fpq → upq is a K-module homomorphism by utilizing
the infinitesimal representation of K. Note that the algebra generated
by h1, h2 and I2,2 form a Cartan subalgebra. We first claim that the
weight of the vector um1−1m2−1 is identified with

E23 ⊗ fm1m2 + E13 ⊗ fm1−1m2 + E24 ⊗ fm1m2−1 + E14 ⊗ fm1−1m2−1

is the same as the weight of fm1−1,m2−1 in τ[−,−;+]. It is obvious that
I2,2 · um1−1m2−1 = (l + 2)um1−1m2−1. By Lemma 1.2 and Lemma 3.1, it
follows that

h1 · E14 ⊗ fm1−1m2−1 = (1 + 2(m1 − 1) − m1)E14 ⊗ fm1−1m2−1,

h1 · E13 ⊗ fm1−1m2 = (1 + 2(m1 − 1) − m1)E13 ⊗ fm1−1m2 ,

h1 · E24 ⊗ fm1m2−1 = (−1 + 2m1 − m1)E24 ⊗ fm1m2−1,

h1 · E23 ⊗ fm1m2 = (m1 + 1 − 2)E23 ⊗ fm1m2 .

Hence the eigenvalue of um1−1,m2−1 under h1 is just m1 − 1. Similarly,
one can check that the eigenvalue via h2 is equal to m2 − 1. The next
claim is

up−1,q =
e1
− · up,q

p
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for all possible values of (p, q). By using Lemma 1.2 and Lemma 3.1
again, we obtain that

e1
− · E23 ⊗ fp+1q+1 = (p + 1)E23 ⊗ fpq+1,

e1
− · E13 ⊗ fpq+1 = E23 ⊗ fpq+1 + pE13 ⊗ fpq+1,

e1
− · E24 ⊗ fp+1q = (p + 1)E24 ⊗ fpq,

e1
− · E14 ⊗ fpq = E24 ⊗ fpq + p · E14 ⊗ fpq.

Hence the claim follows from the above. Similarly, for all possible
indices (p, q), we can show that upq−1 = e2

− ·upq/q. Therefore the natural
correspondence fpq → upq gives a non zero K-isomorphism. ¤

p−-side. Since (Ad, p−) ∼= τ[1,1;−2], the tensor product p− ⊗C τm has
four irreducible K-components:

{ τ[m1+e1,m2+e2;l−2] | e1, e2 ∈ {±1}}
and we will denote these by τ[e1,e2;−] respectively. Let I[e1,e2;−] be a
generator of the vector space HomK(τ[e1,e2;−], p− ⊗C τm) when τ[e1,e2;−]

is non zero. Now similarly as Proposition 3.2 we have the following:

Proposition 3.3. The image of the (p, q)-th canonical basis vector f ′
pq

of τ[e1,e2;−] under the K-homomorphism I[e1,e2;−] is given by

i. If (e1, e2) = (−1,−1) then

E41 ⊗ fp+1q+1 + E42 ⊗ fpq+1 − E31 ⊗ fp+1q − E32 ⊗ fpq ,

ii. If (e1, e2) = (+1,−1) then

(1 − c1
p)(E31 ⊗ fpq − E41 ⊗ fpq+1) + c1

p(E42 ⊗ fp−1q+1 − E32 ⊗ fp−1q),

iii. If (e1, e2) = (−1, +1) then

(1 − c2
q)(E42 ⊗ fpq + E41 ⊗ fp+1q) + c2

q(E31 ⊗ fp+1q−1 + E32 ⊗ fpq−1),

iv. If (e1, e2) = (+1, +1) then

−(1 − c2
q)((1 − c1

p)E41 ⊗ fpq − c1
pE42 ⊗ fp−1q)

−c2
q((1 − c1

p)E31 ⊗ fpq−1 − c1
pE32 ⊗ fp−1q−1),

with the coefficients c1
p and c2

q described in Proposition 3.2.

Proof. The proof is quite similar to the proof of Proposition 3.2. ¤

3.2. Matrix form of the Clebsch-Gordan decompositions. For
the further convenience, it is useful to describe the K-isomorphisms
I[e1,e2;±] described in Proposition 3.2 and 3.3 in terms of the canonical
basis of Vm.

To the set of all canonical basis {fpq | 0 ≤ p ≤ m1, 0 ≤ q ≤ m2} of the
simple K-module Vm, we associate a row vector of size (m1+1)(m2+1)
with entries fpq given by

Fτ = (f00, f01..., f0m2 , f10, f11, ..., fm1,m2−1, fm1m2).
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p+-side. Define a matrix C[−,−;+] = {Cij} of size (m1m2) × (m1 +
1)(m2 + 1) with entries consisting of elements in p+ by

Cm2p+q+1,(m2+1)p+q+1 = −E14,
Cm2p+q+1,(m2+1)p+q+2 = −E13,
Cm2p+q+1,(m2+1)(p+1)+q+1 = E24,
Cm2p+q+1,(m2+1)(p+1)+q+2 = E23,

for each 0 ≤ p ≤ m1 − 1 and 0 ≤ q ≤ m− 1, but all other entries are 0.
Define a matrix C[+,−;+] = {Cij} of size (m1+2)m2×(m1+1)(m2+1)

with entries consisting of elements in p+ by

Cm2p+q+1,(m2+1)p+q+1 = (1 − c1
p)E24,

Cm2p+q+1,(m2+1)p+q+2 = (1 − c1
p)E23,

Cm2p+q+1,(m2+1)(p−1)+q+1 = c1
pE14,

Cm2p+q+1,(m2+1)(p−1)+q+2 = c1
pE13,

for 0 ≤ p ≤ m1 + 1 and 0 ≤ q ≤ m2 − 1, but all other entries are 0.
Define a matrix C[−,+;+] = {Cij} of size m1(m2+2)×(m1+1)(m2+1)

with entries consisting of elements in p+ by

C(m2+2)p+q+1,(m2+1)p+q+1 = (1 − c2
q)E13,

C(m2+2)p+q+1,(m2+1)p+q = −c2
qE14,

C(m2+2)p+q+1,(m2+1)(p+1)+q+1 = −(1 − c2
q)E23,

C(m2+2)p+q+1,(m2+1)(p+1)+q = c2
qE24,

for 0 ≤ p ≤ m1 + 1 and 0 ≤ q ≤ m2 − 1, but all other entries are 0.
Define a matrix C[+,+;+] = {Cij} of size (m1 + 2)(m2 + 2) × (m1 +

1)(m2 + 1) with entries consisting of elements in p+ by

C(m2+2)p+q+1,(m2+1)p+q+1 = −(1 − c1
p)(1 − c2

q)E23,
C(m2+2)p+q+1,(m2+1)p+q = (1 − c1

p)c
2
qE24,

C(m2+2)p+q+1,(m2+1)(p−1)+q+1 = −c1
p(1 − c2

q)E13,
C(m2+2)p+q+1,(m2+1)(p−1)+q = c1

pc
2
qE14,

for each 0 ≤ p ≤ m1 + 1 and 0 ≤ q ≤ m2 + 1, but all other entries are
0. Then Proposition 3.2 reads as the following proposition .

Proposition 3.4. Let C[e1,e2;+], Fτ be as above. Then for each pair
e1, e2 the simple K-module V[e1,e2;+] is generated by the entries of the
matrix C[e1,e2;+]

tFτ . Moreover, these entries make a set of canonical
basis.

Proof. Note that for the (i, j)-th entry of C[e1,e2;+], the index i indicates
the i-th coordinate in F[e1,e2;+] and the index j indicates the j-th co-
ordinate in Fτ . The i-th coordinate in F[e1,e2;+] is uniquely expressed
as

i = (m2 + 1 + e2)p + q + 1

for some pair (p, q) so that 0 ≤ p ≤ m1+e1 and 0 ≤ q ≤ m2+e2. Hence
it is just the (p, q)-th canonical basis vector in τ[e1,e2;+] by definition of
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C[e1,e2;+]. Similarly, the j-th coordinate in Fτ corresponds to the (p, q)-
th basis vector in τ . Thus the proposition follows from Proposition
3.2. ¤

p−-side. Define a matrix C[−,−;−] = {Cij} of size m1m2 × (m1 +
1)(m2 + 1) with entries consisting of elements in p− by

Cm2p+q+1,(m2+1)p+q+1 = −E32,
Cm2p+q+1,(m2+1)p+q+2 = E42,
Cm2p+q+1,(m2+1)(p+1)+q+1 = −E31,
Cm2p+q+1,(m2+1)(p+1)+q+2 = E41,

for 0 ≤ i ≤ m1 − 1 and 0 ≤ q ≤ m2 − 1, but all other entries are 0.
Define a matrix C[+,−;−] = {Cij} of size (m1+2)m2×(m1+1)(m2+1)

with entries consisting of elements in p− by

Cm2p+q+1,(m2+1)p+q+1 = (1 − c1
p)E31,

Cm2p+q+1,(m2+1)p+q+2 = −(1 − c1
p)E41,

Cm2p+q+1,(m2+1)(p−1)+q+1 = −c1
pE32,

Cm2p+q+1,(m2+1)(p−1)+q+2 = c1
pE42,

for 0 ≤ p ≤ m1 + 1 and 0 ≤ q ≤ m2 − 1, but all other entries are 0.
Define a matrix C[−,+;−] = {Cij} of size m1(m2+2)×(m1+1)(m2+1)

with entries consisting of elements in p− by

C(m2+2)p+q+1,(m2+1)p+q+1 = (1 − c2
q)E42,

C(m2+2)p+q+1,(m2+1)p+q = c2
qE32,

C(m2+2)p+q+1,(m2+1)(p+1)+q+1 = (1 − c2
q)E41,

C(m2+2)p+q+1,(m2+1)(p+1)+q = c2
qE31,

for 0 ≤ p ≤ m1 − 1 and 0 ≤ q ≤ m2 + 1, but all other entries are 0.
Define a matrix C[+,+;−] = {Cij} of size (m1 + 2)(m2 + 2) × (m1 +

1)(m2 + 1) with entries consisting of elements in p− by

C(m2+2)p+q+1,(m2+1)p+q+1 = −(1 − c1
p)(1 − c2

q)E41,
C(m2+2)p+q+1,(m2+1)p+q = −(1 − c1

p)c
2
qE31,

C(m2+2)p+q+1,(m2+1)(p−1)+q+1 = c1
p(1 − c2

q)E42,
C(m2+2)p+q+1,(m2+1)(p−1)+q = c1

pc
2
qE32,

for each 0 ≤ p ≤ m1 + 1 and 0 ≤ q ≤ m2 + 1, but all other entries are
0. Then Proposition 3.3 reads as the following proposition .

Proposition 3.5. Let C[e1,e2;−], Fτ be as above. Then for each pair
e1, e2 the simple K-module V[e1,e2;−] is generated by the entries of the
matrix C[e1,e2;−]

tFτ . Moreover, these entries make a set of canonical
basis.

Proof. The proof is similar to the proof of Proposition 3.4. ¤
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3.3. The Dirac-Schmid operators. In this subsection we discuss
the main result of this paper, that is, to compute the matrix forms of
intertwining constants explicitly.

p+-side. Note that the homomorphisms [γ] with γ ∈ I(π, τm) de-
fined in the section 2 form a basis of the vector space HomK(τm, Hπ(τm))
and hence we fix this basis for each τm in π. Take an element i ∈
HomK(τm, Hπ(τm)), then the (g, K)-module property of HK

π gives us
the canonical surjective K-homomorphism

p+ ⊗C τm → p+Im(τm).

For the K-module τ[e1,e2;+], by composing this K-homomorphism with
the injection τ[e1,e2;+] ⊂ p+ ⊗C τm , we obtain a C-linear map ϕ

ϕ : HomK(τm, Hπ(τm)) 7→ HomK(τ[e1,e2;+], Hπ(τ[e1,e2;+])),

which is determining the action of p+ on HK
π .

Our goal is to determine the matrix representation Γ[e1,e2;+] of ϕ i.e.,
to find a matrix Γ[e1,e2;+] such that

ϕ
( ∑

γ∈I(π,τm)

[γ]
)
=

( ∑
γ′∈I(π,τm′ )

[γ′]
)
×Γ[e1,e2;+],

where m′ = [e1, e2; +]. Therefore we have to compute the image (under

ϕ) of the K-isomorphism [γ] : τm → W
(m)
γ for each γ ∈ I(π, τm), that

is, to express the K-homomorphism ϕγ in the commutative diagram

τ[e1,e2;+]

ϕγ &&L
L

L
L

L
// p+ ⊗C τm

[γ]
��

p+W
(m)
γ

// Hπ(τ[e1,e2;+])

Diagram 1.

in terms of the fixed basis [γ′] with γ′ ∈ I(π, τ[e1,e2;+]).
Set ν = (m1 + m2 + s)/2. For each τm, we regard the vector

space HomK(τm, Hπ(τm)) as a subspace of the ν +1-dimensional vector

space HomK(τm,⊕γW
(m)
γ ) with γ running over all positive integer pairs

(t1, t2) such that t1 + t2 = ν and hence define Γ[e1,e2;+] as a matrix of
size (ν + 1 + (e1 + e2)/2) × (ν + 1).

Remark 3.1. The size of the matrix Γ[e1,e2;±] is defined by the mul-
tiplicities of τm and τ[e1,e2;±]. The explicit formula of m(π, τ[e1,e2;±])
seems to be involved. Therefore here we define that multiplicity as the
cardinality of the set I(π, τm).

Fix a K-module τm with m = [m1,m2; l]. Set r = (s + l)/2 and
m′ = [m1+e1,m2+e2; l+2]. In the following list, we use the coefficients
c1

p and c2
q defined in Proposition 3.2.
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1. Define a matrix Γ[−,−;+] = {aij}0≤i≤ν−1,0≤j≤ν of size ν × (ν + 1) so
that its all non zero entries are given by

at−1,t = at if (t, ν − t) ∈ I(π, τm), (t − 1, ν − t) ∈ I(π, τm′),

at,t = bt if (t, ν − t) ∈ I(π, τm), (t, ν − t − 1) ∈ I(π, τm′).

where

at =
1

2
(µ2 + 1 + m1 + r − 2t),

bt = −1

2
(µ1 − 1 − m2 + r − 2t),

for γ = (t, ν − t) ∈ I(π, τ).
2. Define a matrix Γ[+,+;+] = {aij}0≤i≤ν+1,0≤j≤ν of size (ν +2)× (ν +1)

so that its all non zero entries are given by

at,t = at if (t, ν − t) ∈ I(π, τm), (t, ν − t + 1) ∈ I(π, τm′),

at+1,t = bt if (t, ν − t) ∈ I(π, τm), (t + 1, ν − t) ∈ I(π, τm′).

where

at =
1

2
(µ2 + 1 + m1 + r − 2t)(1 − c1

t )c
2
ν−t+1,

bt = −1

2
(µ1 + 3 + 2m1 + m2 + r − 2t)c1

t+1(1 − c2
ν−t),

for γ = (t, ν − t) ∈ I(π, τ).
3. Define a square matrix Γ[−,+;+] = {aij}0≤i≤ν,0≤j≤ν of size (ν + 1) ×

(ν + 1) so that its all non zero entries are given by

at−1,t = at if (t, ν − t) ∈ I(π, τm), (t − 1, ν − t + 1) ∈ I(π, τm′)

at,t = bt if (t, ν − t) ∈ I(π, τm), (t, ν − t) ∈ I(π, τm′).

where

at =
1

2
(µ2 + 1 + m1 + r − 2t)c2

ν−t+1,

bt =
1

2
(µ1 + 1 + m2 + r − 2t)(1 − c2

ν−t),

for γ = (t, ν − t) ∈ I(π, τ).
4. Define a square matrix Γ[+,−;+] = {aij}0≤i≤ν,0≤j≤ν of size (ν + 1) ×

(ν + 1) so that its all non zero entries are given by

at,t = at if (t, ν − t) ∈ I(π, τm), (t, ν − t) ∈ I(π, τm′),

at+1,t = bt if (t, ν − t) ∈ I(π, τm), (t + 1, ν − t − 1) ∈ I(π, τm′).

where

at =
1

2
(µ2 + 1 + m1 + r − 2t)(1 − c1

t ),

bt =
1

2
(µ1 + 1 + 2m1 − m2 + r − 2t)c1

t+1,

for γ = (t, ν − t) ∈ I(π, τ).
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Our main result is these constructions of Γ[e1,e2;+]. In the following, we
show that these matrices are the desired ones.

Theorem 3.6. Let (e1, e2) be a pair so that e1, e2 ∈ {±1}. Then the
matrix Γ[e1,e2;+] defined above is the C-linear homomorphism between
the vector spaces HomK(τm, Hπ(τm)) and HomK(τ[e1,e2;+], Hπ(τ[e1,e2;+])).

Proof. We only consider the case (e1, e2) = (−1,−1), because the re-
maining cases are proved similarly. Set m′ = [m1 − 1,m2 − 1; l +2] and
fix a basis vector [γ]. From the K-equivariant property of ϕγ induced

from [γ] in the Diagram 1, the image of a fixed basis element f
(m′)
pq in

Vm′ can be expressed as

ϕγ(f
(m′)
pq ) =

∑
γ′∈I(π,m′)

cγ′S
(m′)
γ′,pq(x).

Note that we omit the index (m) of basis vectors for only τm i.e., write

fpq instead of f
(m)
pq . Consider the above expression at x = 14, by using

Sγ,pq(14) = δγ,pq, we then get

ϕγ(f
(m′)
pq )(14) = cγ′ , if γ′ = (p, q).

On the other hand, the commutativity of the Diagram 1 and Proposition

3.2 imply that ϕγ(f
(m′)
pq ) is equal to

E23Sγ,(p+1q+1)(k) − E13Sγ,(pq+1)(k) + E24Sγ,(p+1q)(k) − E14Sγ,(pq)(k).

Note that XSγ,pq(k) = 0 for any X ∈ n. By considering the Iwasawa
decomposition of Eij (i = 1, 2, j = 3, 4) given Lemma 1.1, one can
calculate that

(E13Sγ,(pq))(14) =
1

2

(
H1 +

1

2
(I2,2 + h1 − h2)

)
Sγ,(pq)(k) |k=14

=
1

4
(2µ1 + 6 + l + (2p − m1) − (2q − m2))Sγ,(pq)(14),

(E24Sγ,(pq))(14) =
1

2

(
(H2 +

1

2
(I2,2 − h1 + h2)

)
Sγ,pq(k) |k=14

=
1

4

(
2µ2 + 2 + l − (2p − m1) + (2q − m2)

)
Sγ,(pq)(14),

(E14Sγ,(pq))(14) = −e2
+Sγ,(pq)(k) |k=14= (q − m2)Sγ,(p,q+1)(14),

(E23Sγ,(p,q))(14) = e1
−Sγ,(p,q)(k) |k=14= pSγ,(p−1,q)(14).

Combining these observations, we obtain that ϕγ(f
(m′)
pq )(14) is equal to

1

2

(
µ2 + q − p +

m1 − m2 + l

2

)
Sγ,(p+1,q)(14) + Sγ,(p,q+1)(14)×(

−1

2

(
µ1 + 2 + p − q +

m2 − m1 + l

2

)
+p + 1 − (q − m2)

)
Using Sγ,pq(14) = δγ,pq again, one has

γ′ is equal to γ − (1, 0) or γ − (0, 1)
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and hence the corresponding coefficients cγ′ are just

cγ′ =
1

2

[
µ2 + 1 + m1 +

s + l

2
− 2t

]
and

cγ′ = −1

2

[
µ1 − 1 − m2 +

l + s

2
− 2t

]
,

respectively when γ = (t, ν − t) ∈ I(π, τ). It shows the coincidence of
Γ[−,−;+] with ϕ. ¤

p−-side. By the same computation as the case p+-side we obtain
similar results for the matrix form of the C-linear map

Γ[e1,e2;−] : HomK(τm, Hπ(τm)) → HomK(τ[e1,e2;−], Hπ(τ[e1,e2;−])).

1. Define a matrix Γ[−,−;−] = {aij}0≤i≤ν−1,0≤j≤ν of size ν × (ν + 1) so
that its all non zero entries are given by

at,t = at if (t, ν − t) ∈ I(π, τm), (t, ν − t − 1) ∈ I(π, τm′),

at−1,t = bt if (t, ν − t) ∈ I(π, τm), (t − 1, ν − t) ∈ I(π, τm′).

where

at =
1

2
(µ2 + 1 − m1 − r + 2t),

bt = −1

2
(µ1 − 1 − 2m1 − m2 − r + 2t),

for γ = (t, ν − t) ∈ I(π, τ).
2. Define a matrix Γ[+,+;−] = {aij}0≤i≤ν+1,0≤j≤ν of size (ν +2)× (ν +1)

so that its all non zero entries are given by

at+1,t = at if (t, ν − t) ∈ I(π, τm), (t + 1, ν − t) ∈ I(π, τm′),

at,t = bt if (t, ν − t) ∈ I(π, τm), (t, ν − t + 1) ∈ I(π, τm′).

where

at =
1

2
(µ2 + 1 − m1 − r + 2t)c1

t+1(1 − c2
ν−t),

bt = −1

2
(µ1 + 3 + m2 − r + 2t)(1 − c1

t )c
2
ν−t+1,

for γ = (t, ν − t) ∈ I(π, τ).
3. Define a square matrix Γ[−,+;−] = {aij}0≤i≤ν,0≤j≤ν of size (ν + 1) ×

(ν + 1) so that its all non zero entries are given by

at,t = at if (t, ν − t) ∈ I(π, τm), (t, ν − t) ∈ I(π, τm′),

at−1,t = bt if (t, ν − t) ∈ I(π, τm), (t − 1, ν − t + 1) ∈ I(π, τm′).
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where

at =
1

2
(µ2 + 1 − m1 − r + 2t)(1 − c2

ν−t),

bt =
1

2
(µ1 + 1 − 2m1 + m2 − r + 2t)c2

ν−t+1,

for γ = (t, ν − t) ∈ I(π, τ).
4. Define a square matrix Γ[+,−;−] = {aij}0≤i≤ν,0≤j≤ν of size (ν + 1) ×

(ν + 1) so that its all non zero entries are given by

at+1,t = at if (t, ν − t) ∈ I(π, τm), (t + 1, ν − t − 1) ∈ I(π, τm′),

at,t = bt if (t, ν − t) ∈ I(π, τm), (t, ν − t) ∈ I(π, τm′).

where

at =
1

2
(µ2 + 1 − m1 − r + 2t)c1

t+1,

bt =
1

2
(µ1 + 1 − m2 − r + 2t)(1 − c1

t ),

for γ = (t, ν − t) ∈ I(π, τ).

Thus we have the following results similar to that of p+-side.

Theorem 3.7. Let (e1, e2) be a pair so that e1, e2 ∈ {±1}. Then the
matrix Γ[e1,e2;−] defined above is the C-linear homomorphism between
the vector spaces HomK(τm, Hπ(τm)) and HomK(τ[e1,e2;−], Hπ(τ[e1,e2;−])).

Proof. Set m′ = [m1 +e1,m2 +e2; l−2] and fix a basis vector [γ]. From
the K-equivariant property of ϕγ induced from [γ] in the Diagram 1 ,

the image of a fixed basis element f
(m′)
pq in Vm′ can be expressed as

ϕγ(f
(m′)
pq ) =

∑
γ′∈I(π,m′)

cγ′S
(m′)
γ′,pq(x).

The commutativity of the Diagram 1 and Proposition 3.3 imply that

ϕγ(f
(m′)
pq ) is equal to

E41Sγ,(p+1q+1)(k) + E42Sγ,(pq+1)(k) − E31Sγ,(p+1q)(k) − E32Sγ,(pq)(k).

Combining the fact XSγ,pq(k) = 0 for any X ∈ n and the Iwasawa
decomposition of Eji (i = 1, 2, j = 3, 4) given Lemma 1.1, one can also
calculate that

(E31Sγ,pq)(14) =
1

2

(
H1 −

1

2
(I2,2 + h1 − h2)

)
Sγ,pq(k) |k=14

=
1

4
(2µ1 + 6 − l − (2p − m1) + (2q − m2))Sγ,pq(14),

(E42Sγ,pq)(14) =
1

2

(
H2 −

1

2
(I2,2 − h1 + h2)

)
Sγ,pq(k) |k=14

=
1

4

(
2µ2 + 2 − l + (2p − m1) − (2q − m2)

)
Sγ,pq(14),
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(E32Sγ,pq)(14) = −e1
+Sγ,pq(k) |k=14= (p − m1)Sγ,p+1q(14),

(E41Sγ,pq)(14) = e2
−Sγ,pq(k) |k=14= (q + a2)Sγ,pq−1(14).

It follows that ϕγ(f
(m′)
pq )(14) is equal to(

−1

2

(
µ1 + q − p − m2 − m1 + l

2

)
+q + m1 − p

)
Sγ,p+1q(14)

−1

2

(
µ2 + p − q − m1 − m2 + l

2

)
Sγ,pq+1(14).

As seen in the previous lemma

γ′ is equal to γ − (0, 1) or γ − (1, 0)

and hence the corresponding coefficients cγ′ are just

cγ′ =
1

2

[
µ2 + 1 − m1 − r + 2t

]
and

cγ′ = −1

2

[
µ1 − 1 − 2m1 − m2 − r + 2t

]
,

respectively when γ = (t, ν − t) ∈ I(π, τ). It shows the coincidence of
Γ[e1,e2;−] with ϕ. ¤

3.4. Matrix representations. We now describe the relations between
the matrices C[e1,e2;±] and Γ[e1,e2;±] in terms of the marked elemen-
tary basis functions in the K-isotypic component of π. Fix τm with
m = [m1, m2; l]. For a pair (i, j) such that i + j = ν and i, j ∈ Z+,

we define a row matrix F
(m)
(i,j) of size 1 × (m1 + 1)(m2 + 1) with entries

in the set of all marked elementary functions of W
(m)
ij introduced in

Definition 2.1 as follows

F(m)
γ = (Sγ,00, Sγ,01..., Sγ,0m2 , Sγ,10, Sγ,11, ..., Sγ,m1(m2−1), Sγ,m1m2)

with γ = (i, j). To the K-isotypic component of τm in π we associate
a matrix S(m) of size (m1 + 1)(m2 + 1) × (ν + 1) such that the non

zero columns are those tF
(m)
γ with entries in the K-isotypic component

Hπ(τm), that is,

S(m) = [tF
(m)
(0,ν), ...,

tF
(m)
(ν,0)],

where the symbol t is the transpose and F
(m)
γ = 0 when γ ̸∈ I(π, τm).

Now we are in a position to state the main result which includes all
results in this paper.

Theorem 3.8. Let τ[e1,e2;±] be a simple K-submodule of the K-module
p± ⊗C τm for a given simple K-module τm and the K-module (Ad, p±).
Then we have that

C[e1,e2;±]S
(m) = S([e1,e2;±])Γ[e1,e2;±],
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where the product of the entries of matrices of the left hand side is the
differential operation.

3.5. Examples of contiguous relations and their composites.
Here are some examples of contiguous relations along the multiplicity
one K-types in a given principal series representation π. We refer the
reader to [5] for further reference and contiguous relations.

Let τ = τ[m1,m2;l] be a K-submodule of π =IndG
P (σs,e ⊗ eµ+ρ ⊗ 1N).

Then Lemma 2.2 implies that [π |K : τ ] = 1 if and only if

| s |= m1 + m2 and l = 2m2 + s + 1 − e(−1) (mod 4).

Hence, in this case, we may assume that the size of the matrices
Γ[+,−;±], Γ[+,−;±] are just 1 × 1 i, e., they are constants and Γ[+,+;±] is
of size 2 × 1, because the other entries are zero. Although there is no
Γ[−,−;±], since τ[−,−;±] does not occur in π.

Note that Hπ(τ) ∼= W
(m)
(m1,m2) if s ≥ 0 and Hπ(τ) ∼= W

(m)
(0,0) if s ≤ 0.

Put

ν1 =
l + m1 − m2

2
and ν2 =

l + m2 − m1

2
.

Formula 3.9. Assume s ≥ 0. Then we have

C[+,−;+]
tF

τ

(m1,m2)
=

1

2
(µ1 + 1 + ν1)

tF
τ[+,−;+]

(+,−) ,

C[−,+;+]
tF

τ

(m1,m2)
=

1

2
(µ2 + 1 + ν2)

tF
τ[−,+;+]

(−,+) ,

C[+,−;−]
tF

τ

(m1,m2)
=

1

2
(µ2 + 1 − ν2)

tF
τ[+,−;−]

(+,−) ,

C[−,+;−]
tF

τ

(m1,m2)
=

1

2
(µ1 + 1 − ν1)

tF
τ[−,+;−]

(−,+) .

Here the symbol (±,±) means (m1 ± 1,m2 ± 1), respectively.

Formula 3.10. Assume s ≤ 0 and set n = (0, 0). Then we have

C[+,−;+]
tF

τ

n
=

1

2
(µ2 + 1 + ν1)

tF
τ[+,−;+]

n ,

C[−,+;+]
tF

τ

n
=

1

2
(µ1 + 1 + ν2)

tF
τ[−,+;+]

n ,

C[+,−;−]
tF

τ

n
=

1

2
(µ1 + 1 − ν2)

tF
τ[+,−;−]

n ,

C[−,+;−]
tF

τ

n
=

1

2
(µ2 + 1 − ν1)

tF
τ[−,+;−]

n .
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