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1 Introduction

Harish-Chandra expansion of the matrix coefficients of standard representations of a real reductive
group has been one of the fundamental themes in the real harmonic analysis on real redutive groups.
The investigation and result of class-one principal series by Harish-Chandra have been considered
to be rather satisfactory. However, say, to have deeper arithmetic results for automorphic forms, it
seems to be necessary to have more effective computable results on this kind of expansion for more
general class of represenations including discrete series represenations. Futher it is much better to
have more explicit results not only on the leading coefficients but also on the coefficients of higher
degree in each term of the asymptotic expansion, which is a kind of hypergeometric series. But
this problem seems to be quite difficult currently to discuss generally.

In this paper, we find the expansion formula of the matrix coefficients of the relatively small
generalized principal series representation (which we sometimes refer as PJ principal series) of
the real symplectic group of the real rank 2, Sp(2,R). The reason of the choice of this type
of representations is because it has the same invariants (the Gelfand-Kirillov dimension and the
Bernstein degree) as the large discrete series of Sp(2,R). Thus we may expect that a similar result
is also valid for the large discrete series.

In contrast to the class-one case where the expansion consists of the terms corresponding to
elements of the Weyl group (of order 8 here), our expansion has 4 terms (cf. Theorem 6.1). Here
4 is the Bernstein degree of our representations. Moreover we have explicit power series expansion
with respect to a (probably) good choice of local parameters at infinity (cf. Theorem 7.1).

In the literature there are a number of papers to compute Harish-Chandra expansions, nor-
mally for relatively small groups. But it seems to be few results to handle the case of parabolic
induction with respect to a non-minimal parabolic subgroup of a group with real rank bigger than
1. Therefore, in view of the relation between the Plancherel measure and c-function (i.e., the
coefficients of the asymtotic expansion), our determination of the corresponding coefficients might
also be interesting.

Our method of proof is done by a very down-to-earth or ’elementary’ manner. We take the
advantage to start from an (Eulerian) integral expression of our matrix coefficient in terms of
Gaussin hypergeometric function, obtained in a previous paper [2]. What we neesd is the classical
connection formula of Kummer and some general frame work of the asymptotic behavior of the
ideally analytic solution of holonomic systems in our setting (§4 and §5).

∗e-mail : iida@math.josai.ac.jp, Department of Mathematics, Josai University, Keyakidai Sakado-shi Saitamama
Japan

†e-mail : takayuki@ms.u-tokyo.ac.jp, Graduate school of Mathematical Sciences, University of Tokyo, Komaba
Meguro Tokyo Japan
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2 PJ-principal series representations

In this section, we recall some facts about representations of Sp(2,R) and their K-type. Notations
are same as those of [2].

Let G = Sp(2,R) be a split real semisimple Lie group of real rank 2 with a maximal compact
subgroup K which is isomorphic to the unitary group U(2). The group G has two standard
maximal parabolic subgroups. One is associated with the short simple root e1 − e2 and called the
Siegel parabolic subgroup. The other is associated with the long simple root 2e2 and called the
Jacobi parabolic subgroup PJ . Some people call this subgroup the Klingen parabolic subgroup.

We set the Langlands decomposition of PJ is PJ = MJAJNJ , then MJ is isomorphic to
SL(2,R)× {±1}. Let D+

l is the holomorphic discrete series representation of SL(2,R) and D−
l is

the anti-holomorphic discrete series representation of SL(2,R). The parameter l is the Blattner
parameter, which satisfies the condition that l ∈ N and l ≥ 2. We denote the character of
{±1} by ε and the complex valued linear form on aJ = Lie(AJ) by ν. The generalized principal
series representation of Sp(2,R) which we call PJ -principal series representation is the induced
representation π(D±l ,ε),ν = IndG

PJ
(D±

l ⊗ ε⊗ eν+ρJ

1 ⊗ idNJ
). Here, idNJ

is the trivial representation
of NJ and ρJ is the half sum of positive roots corresponding to NJ .

A PJ -principal series representation has a special K-type of multiplicity free. We call the
K-type as “the corner K-type”.

If the character ε of {±1} satisfies ε(−1) = (−1)l, then the corner K-type of π(D±
l ,ε),ν is the

one dimensional representation τ(l,l) whose highest weight is (l, l) and if ε = (−1)l+1 holds, then
the corner K-type is the two dimensional representation τ(l,l−1) whose highest weight is (l, l − 1).

Let (η, Vη), (τ, Vτ ) be in K̂. We denote the contragredient representation of τ by τ∗. We define
the space of spherical functions

C∞η,τ (K\G/K) = {f : G → Vη ⊗ Vτ∗ | f is a C∞ function, f(k1gk2) = η(k1)⊗ τ∗(k2)−1f(g),
∀g ∈ G, ∀k1, ∀k2 ∈ K}.

In this paper, we consider the matrix coefficient φ ∈ C∞τ(k,k),τ(l,l)
(K\G/K) of π(D±l ,ε),ν for k ≥ l

and k ≡ l mod 2 and ε(−1) = (−1)l (It goes almost same way for the case of ε(−1) = (−1)l+1.).
If k < l or k 6≡ l mod 2 holds, then φ = 0 (Proposition 3.4 and Lemma 4.2 in [2]). That is why
we call τ(l,l) the corner K-type.

We denote the standard split Cartan subgroup of G by

A = {diag(a1, a2, a
−1
1 , a−1

2 ) | a1, a2 ∈ R>0}.

The system of partial differential equations satisfied by the A-radial part of φ is the holonomic
system. We choose the coordinates of A as (x1, x2) determined by a1 = exp x1, a2 = expx2.

We recall the system of differential equations satisfied by φ (Theorem 7.5 in [2]).
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Theorem 2.1. φ satisfies the following system of differential equations :
2∑

i=1

∂2

∂x2
i

φ +
2∑

i=1

{2 coth 2xi + coth(x1 + x2)} ∂

∂xi
φ

+coth(x1 − x2)
∂

∂x1
φ− coth(x1 − x2)

∂

∂x2
φ

−(k2 + l2)(sh−2 x1 + sh−2 x2)φ + 2kl(ch 2x1 · sh−2 2x1 + ch 2x2 · sh−2 2x2)φ
= {ν2 + (l − 1)2 − 5}φ, (2.1)

2
∂

∂x1

∂

∂x2
φ + {2l coth 2x2 − 2k sh−1 2x2 + coth(x1 + x2)− coth(x1 − x2)} ∂

∂x1
φ

+{2l coth 2x1 − 2k sh−1 2x1 + coth(x1 + x2) + coth(x1 − x2)} ∂

∂x2
φ

+2(l coth 2x1 − k sh−1 2x1)(l coth 2x2 − k sh−1 2x2)φ
+(l coth 2x2 − k sh−1 2x2)(coth(x1 + x2) + coth(x1 + x2))φ
+(l coth 2x1 − k sh−1 2x1)(coth(x1 + x2)− coth(x1 + x2))φ = 0. (2.2)

In the following section, we will determine characteristic roots of the system around the infinity,
a1/a2 = 0, a2 = 0 (Note that a1/a2 and a2

2 correspond simple roots e1 − e2 and 2e2 respectively).
There are 4 characteristic roots, so the system has 4 independent solutions. A solution φ is a linear
combination of these solutions and its coefficients are analogues of c-functions.

3 The holonomic system

We put δ(x1, x2) = (chx1 chx2)(l+k)/2(shx1 sh x2)(l−k)/2 and

ψ(x1, x2) = δ(x1, x2)φ(x1, x2).

Proposition 3.1. ψ satisfies the following system of partial differential equations.
2∑

i=1

∂

∂x2
i

ψ +
2∑

i=1

{2k sh−1 2xi − 2(l − 1) coth 2xi} ∂

∂xi
ψ

+
sh 2x1

sh2 x1 − sh2 x2

∂

∂x1
ψ − sh 2x2

sh2 x1 − sh2 x2

∂

∂x2
ψ = {ν2 − (l − 2)2}ψ (3.1)

∂2

∂x1∂x2
ψ − 1

2
sh 2x2

sh2 x1 − sh2 x2

∂

∂x1
ψ +

1
2

sh 2x1

sh2 x1 − sh2 x2

∂

∂x2
ψ = 0 (3.2)

Proof. This system is easily obtained from Theorem 2.1.

We will transform this system into the system with variables

y1 = (a1/a2)2 = exp 2(x1 − x2), y2 = a2
2 = exp 2x2.

Since y1y2 = exp 2x1, we have

sh 2x1 =
y1y2 − y−1

1 y−1
2

2
=

y2
1y2

2 − 1
2y1y2

, sh 2x2 =
y2 − y−1

2

2
=

y2
2 − 1
2y2

,

sh2 x1 − sh2 x2 =
1
2
(ch 2x1 − ch 2x2) =

y1y2 + y−1
1 y−1

2

4
− y2 + y−1

2

4

=
(y1 − 1)(y1y

2
2 − 1)

4y1y2
,

coth 2x1 =
y1y2 + y−1

1 y−1
2

y1y2 − y−1
1 y−1

2

=
y2
1y2

2 + 1
y2
1y2

2 − 1
, coth 2x2 =

y2 + y−1
2

y2 − y−1
2

=
y2
2 + 1

y2
2 − 1

,
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and

∂

∂x1
= 2y1

∂

∂y1
,

∂

∂x2
= −2y1

∂

∂y1
+ 2y2

∂

∂y2
.

We regard φ and ψ as functions in variables y1, y2 below. Then, we have the system of differential
equations in y1, y2 as follows.

Proposition 3.2. ψ satisfies the system differential equations:

4

{
2

(
y1

∂

∂y1

)2

− 2
(

y1
∂

∂y1

)(
y2

∂

∂y2

)
+

(
y2

∂

∂y2

)2
}

ψ

+
{

4ky1y2

y2
1y2

2 − 1
− 4ky2

y2
2 − 1

− 2(l − 1)
y2
1y2

2 + 1
y2
1y2

2 − 1
+ 2(l − 1)

y2
2 + 1

y2
2 − 1

} (
2y1

∂

∂y1

)
ψ

+
{

4ky2

y2
2 − 1

− 2(l − 1)
y2
2 + 1

y2
2 − 1

}(
2y2

∂

∂y2

)
ψ

+4
y2
1y2

2 − 1 + y1(y2
2 − 1)

(y1 − 1)(y1y2
2 − 1)

(
y1

∂

∂y1

)
ψ − 4

y1(y2
2 − 1)

(y1 − 1)(y1y2
2 − 1)

(
y2

∂

∂y2

)
ψ

= {ν2 − (l − 2)2}ψ, (3.3)(
y1

∂

∂y1

) (
−y1

∂

∂y1
+ y2

∂

∂y2

)
ψ

−1
2

y1(y2
2 − 1) + (y2

1y2
2 − 1)

(y1 − 1)(y1y2
2 − 1)

(
y1

∂

∂y1

)
ψ +

1
2

y2
1y2

2 − 1
(y1 − 1)(y1y2

2 − 1)

(
y2

∂

∂y2

)
ψ = 0. (3.4)

4 Characteristic indices

We set

ψ(y1, y2) = yα
1 yβ

2 + higher powers,

that is, (α, β) is the leading exponent of ψ at (y1, y2) = (0, 0).

Proposition 4.1. (α, β) is one of the followings :

(
1
2
, µ±), (µ±, µ±).

Here, µ± = ±ν

2
− l − 2

2
.

Proof. If we set ψ(y1, y2) = yα
1 yβ

2 + higher powers, then we obtain the indicial equation

α(−α + β)− 1
2

(−1)
(−1)2

α +
1
2

(−1)
(−1)2

β = 0

from the equation (3.4). The solutions of this equation is

α =
1
2

or α = β.

We obtain the other indicial equation from the equation (3.3) :

4(2α2 − 2αβ + β2) +
{
−2(l − 1)

1
(−1)

+ 2(l − 1)
1

(−1)

}
(2α)

+
{
−2(l − 1)

1
(−1)

}
(2β) + 4

(−1)
(−1)2

α = ν2 − (l − 2)2. (4.1)
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In both cases α = 1/2 and α = β, the equation (4.1) is equivalent to

4β2 + 4(l − 2)β = ν2 − (l − 2)2.

Hence β = ±ν/2− (l − 2)/2.

We denote ψ with the leading term yα
1 yβ

2 by ψα,β .
Since the multiplier δ(x1, x2)−1 is expanded as

δ(x1, x2)−1 = (ch x1 ch x2)−
l+k
2 (sh x1 shx2)−

l−k
2

=
(

a1 + a−1
1

2
· a2 + a−1

2

2

)− l+k
2

(
a1 − a−1

1

2
· a2 − a−1

2

2

)− l−k
2

= 22lal
1a

l
2(1 + higher order)

= 22l(y1y2)
l
2 y

l
2
2 (1 + higher order)

= 22ly
l
2
1 yl

2(1 + higher order),

we have

δ(x1, x2)−1ψα,β(y1, y2) = 22ly
l
2
1 yl

2(1 + higher order) · (yα
1 yβ

2 + higher order).

So we set

φα+l/2,β+l(y1, y2) = 2−2lδ(x1, x2)−1ψα,β(y1, y2). (4.2)

The leading term of this function φα+l/2,β+l is

y
l
2
1 yl

2 · yα
1 yβ

2 =

{
y

l+1
2

1 y
µ±+l
2 if α = 1

2 , β = µ±
y

µ±+ l
2

1 y
µ±+l
2 if α = β = µ±.

These exponents are same as the Siegel-Whittaker function and the Whittaker function([1]).

5 The singular boundary value problem

We would like to represent ψ as the linear combination of ψα,β .
To do that, we will obtain analytic continuation of ψ from (y1, y2) = (1, 1) , which corresponds

to the identity of G, to (y1, y2) = (1, 0) at first, then (y1, y2) = (1, 0) to (y1, y2) = (0.0). The first
part was almost done in §9 of [2]. So we discuss the latter part in this section. General references
for the singular boundary value problem are [5] and [6].

5.1 Justification of the singular boundary problem

We obtain the following equation by 1/4× the equation (3.3) + 2× the equation (3.4).
(

y2
∂

∂y2

)2

ψ +
{

2k(1− y1)y2(1 + y1y
2
2)− 2(l − 1)(1− y2

1)y2
2

(y2
2 − 1)(y2

1y2
2 − 1)

}(
y1

∂

∂y1

)
ψ

+
{

2ky2 − (l − 1)(y2
2 + 1)

y2
2 − 1

+
y1y

2
2 + 1

y1y2
2 − 1

}(
y2

∂

∂y2

)
ψ =

1
4
{ν2 − (l − 2)2}ψ.

This differential equation has regular singularities along y2 = 0 and its indicial equation is

β2 +
{−(l − 1)

(−1)
+

1
(−1)

}
β =

1
4
{ν2 − (l − 2)2}.
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Hence, we have β = ±ν/2 − (l − 2)/2 = µ±, which is independent from y1. Therefore, when the
difference µ+ − µ− = ν is not an integer, the above differential equation has a solution

ψ(y1, y2) = a+(y1, y2)y
µ+
2 + a−(y1, y2)y

µ−
2 .

Functions a±(y1, y2) are real analytic function around (y1, y2) = (0, 0). This solution is called the
ideally analytic solution.

So we assume that ν is not an integer hereafter.

5.2 The equation of the singular boundary value

In the beginning, we will find the equation which is satisfied by f±(y1) = limy2→0 a±(y1, y2).

Lemma 5.1. The function f±(y1) satisfies the following ordinary differential equation.
{(

y1
d

dy1

)2

− µ±

(
y1

d

dy1

)
+

1
2

y1 + 1
y1 − 1

(
y1

d

dy1

)
− 1

2
µ±

y1 − 1

}
f±(y1) = 0.

Proof. Inserting ψ(y1, y2) = a±(y1, y2)y
µ±
2 into the equation (3.4), we have

y
µ±
2

(
−

(
y1

∂

∂y1

)2

a±(y1, y2) + µ±

(
y1

∂

∂y1

)
a±(y1, y2) + y2

(
y1

∂

∂y1

)
∂a±(y1, y2)

∂y2

−1
2

y1(y2
2 − 1) + (y2

1y2
2 − 1)

(y1 − 1)(y1y2
2 − 1)

(
y1

∂

∂y1

)
a±(y1, y2)

+
1
2

y2
1y2

2 − 1
(y1 − 1)(y1y2

2 − 1)

(
µ±a±(y1, y2) + y2

∂a±(y1, y2)
∂y2

))
= 0.

Dividing both sides of this equation by y
µ±
2 and taking limit y2 → 0, then we obtain

−
(

y1
d

dy1

)2

f±(y1) + µ±

(
y1

d

dy1

)
f±(y1)

−1
2

y1(−1) + (−1)
(y1 − 1)(−1)

(
y1

d

dy1

)
f±(y1) +

1
2

(−1)µ±
(y1 − 1)(−1)

f±(y1) = 0.

Now changing variables as y1 = 1/ζ, the equation in the previous lemma changes into the
Gaussian hypergeometric equation of f̃±(ζ) = f±(y1) with parameters a = 1/2, b = µ±, c =
µ± + 1/2 = a + b :

[
ζ(1− ζ)

d2

dζ2
+

{
(µ± +

1
2
)− (µ± +

1
2

+ 1)ζ
}

d

dζ
− 1

2
µ±

]
f̃±(ζ) = 0.

The solution of this equation is

f̃±(ζ) = P




0 ∞ 1
0 1

2 0
1
2 − µ± µ± 0

: ζ



 = P





0 ∞ 1
0 1

2 0
0 µ± 1

2 − µ±
: 1− ζ





Therefore, the regular solution around ζ = 1(this means y1 = 1) is

2F1

(
1
2
, µ±; 1; 1− ζ

)
= 2F1

(
1
2
, µ±; 1; 1− 1

y1

)
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up to a constant multiple. We denote this function by f±(y1).
Using the connection formula of 2F1 ([4] equation (9.5.8)):

2F1(a, b; c; z) = (1− z)−a Γ(c)Γ(b− a)
Γ(c− a)Γ(b) 2F1

(
a, c− b; 1 + a− b;

1
1− z

)

+ (1− z)−b Γ(c)Γ(a− b)
Γ(c− b)Γ(a) 2F1

(
c− a, b; 1− a + b;

1
1− z

)
,

and 1/{1− (1− 1/y1)} = y1, we obtain

f±(y1) = 2F1

(
1
2
, µ±; 1; 1− 1

y1

)

=
(

1
y1

)− 1
2 Γ(1)Γ(µ± − 1

2 )
Γ(1− 1

2 )Γ(µ±) 2F1

(
1
2
, 1− µ±;

3
2
− µ±; y1

)

+
(

1
y1

)−µ± Γ(1)Γ(1
2 − µ±)

Γ(1− µ±)Γ( 1
2 ) 2F1

(
1
2
, µ±;

1
2

+ µ±; y1

)

=
Γ(µ± − 1

2 )√
πΓ(µ±)

y
1
2
1 2F1

(
1
2
, 1− µ±;

3
2
− µ±; y1

)

+
Γ( 1

2 − µ±)√
πΓ(1− µ±)

y
µ±
1 2F1

(
1
2
, µ±;

1
2

+ µ±; y1

)

Note that our hypothesis ν 6∈ Z guarantees that the Gamma functions in numerators have no poles.
The function a±(y1, y2)y

µ±
2 = f±(y1)y

µ±
2 (1+O(y2)) is a linear combination of ψα,β . Comparing

the leading term, we have

ψ 1
2 ,µ±(y1, y2) = y

1
2
1 y

µ±
2 2F1

(
1
2
, 1− µ±;

3
2
− µ±; y1

)
+ (higher order term),

ψµ±,µ±(y1, y2) = y
µ±
1 y

µ±
2 2F1

(
1
2
, µ±;

1
2

+ µ±; y1

)
+ (higher order term)

and

a±(y1, y2)y
µ±
2 =

Γ(µ± − 1
2 )√

πΓ(µ±)
ψ 1

2 ,µ±(y1, y2) +
Γ( 1

2 − µ±)√
πΓ(1− µ±)

ψµ±,µ±(y1, y2).

6 The Harish-Chandra expansion

The matrix coefficient φ corresponding to the corner K-type of π(D±l ,ε),ν was proved to be repre-
sented as

φ(x1, x2) = δ(x1, x2)−1F10

(
µ+ µ− 1

2
1
2

1 C
;− sh2 x1,− sh2 x2

)
,

where F10 is a hypergeometric function

F10

(
a b c1 c2

d e
; x1, x2

)
=

∑

mi≥0

(a)m1+m2(b)m1+m2(c1)m1(c2)m2

m1!m2!(d)m1+m2(e)m1+m2

xm1
1 xm2

2

and (λ)n =
Γ(λ + n)

Γ(λ)
(Theorem 8.1 in [2]).
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Theorem 6.1. Assume ν 6∈ Z. We set C =
3 + k − l

2
∈ 1

2
Z − Z and µ± as above. The A-radial

part of the matrix coefficient of the PJ -principal series representation with respect to the corner
K-type τ(l,l)

δ(x1, x2)−1F10

(
µ+ µ− 1

2
1
2

1 C
;− sh2 x1,− sh2 x2

)

has the following expansion around y1 = y2 = 0 :

4µ++lΓ(−ν)Γ(C)√
πΓ(µ−)Γ(C − µ+)

{
Γ(µ+ − 1

2 )
Γ(µ+)

φ(l+1)/2,µ++l +
Γ( 1

2 − µ+)
Γ(1− µ+)

φµ++l/2,µ++l

}

+
4µ−+lΓ(ν)Γ(C)√
πΓ(µ+)Γ(C − µ−)

{
Γ(µ− − 1

2 )
Γ(µ−)

φ(l+1)/2,µ−+l +
Γ( 1

2 − µ−)
Γ(1− µ−)

φµ−+l/2,µ−+l

}
.

Proof. By setting B1 = B2 =
1
2
, B = B1 + B2 = 1 and µ± = ±ν

2 − l−2
2 , we have

F10

(
µ+ µ− 1

2
1
2

1 C
; η1, η2

)

=
Γ(−ν)Γ(C)

Γ(µ−)Γ(C − µ+)
(−η2)−µ+F2(µ+;

1
2
, µ+ − C + 1; 1, ν + 1; 1− η1/η2, 1/η2)

+
Γ(ν)Γ(C)

Γ(µ+)Γ(C − µ−)
(−η2)−µ−F2(µ−;

1
2
, µ− − C + 1; 1,−ν + 1; 1− η1/η2, 1/η2) (6.1)

from the equation (9.8) in [2]. Though we required the condition B 6∈ Z in Theorem 9.2 in [2],
that condition should be corrected as B 6∈ {0,−1,−2, ...}(see [3]). So we can apply the theorem in
the current problem.

We would like to know the asymptotic behavior of the matrix coefficient as y1, y2 → 0. Since
we put y1 = (a1/a2)2, y2 = (a2)2 and ai = exp xi (i = 1, 2) in Section 3, the limit y1, y2 → 0
corresponds to x1, x2 → −∞.

As xi → −∞ (that is, ai → 0),

ηi = − sh2 xi = −exp(−2xi)
4

(1 + O(exp(2xi))) = − 1
4a2

i

(1 + O(a2
i )) (i = 1, 2).

Then we have

1− η1

η2
= 1− a2

2

a2
1

(1 + O(a2
1))(1 + O(a2

2)) = 1− 1
y1

(1 + O(y1y2))(1 + O(y2)),

1
η2

= −4a2
2(1 + O(a2

2)) = −4y2(1 + O(y2)).

8



Using results of §5, the equation (6.1) is asymptotically written as

F10

(
µ+ µ− 1

2
1
2

1 C
;− sinh2 x1,− sinh2 x2

)

∼ Γ(−ν)Γ(C)
Γ(µ−)Γ(C − µ+)

(4y2)µ+F2(µ+;
1
2
, µ+ − C + 1; 1, ν + 1; 1− y−1

1 ,−4y2)

+
Γ(ν)Γ(C)

Γ(µ+)Γ(C − µ−)
(4y2)µ−F2(µ−;

1
2
, µ− − C + 1; 1,−ν + 1; 1− y−1

1 ,−4y2)

∼ 4µ+Γ(−ν)Γ(C)
Γ(µ−)Γ(C − µ+)

y
µ+
2 2F1(µ+,

1
2
; 1; 1− y−1

1 )

+
4µ−Γ(ν)Γ(C)

Γ(µ+)Γ(C − µ−)
y

µ−
2 2F1(µ−,

1
2
; 1; 1− y−1

1 ).

=
4µ+Γ(−ν)Γ(C)

Γ(µ−)Γ(C − µ+)
y

µ+
2 f+(y1) +

4µ−Γ(ν)Γ(C)
Γ(µ+)Γ(C − µ−)

y
µ−
2 f−(y1)

∼ 4µ+Γ(−ν)Γ(C)
Γ(µ−)Γ(C − µ+)

a+(y1, y2)y
µ+
2 +

4µ−Γ(ν)Γ(C)
Γ(µ+)Γ(C − µ−)

a−(y1, y2)y
µ−
2

=
4µ+Γ(−ν)Γ(C)

Γ(µ−)Γ(C − µ+)

(
Γ(µ+ − 1

2 )√
πΓ(µ+)

ψ 1
2 ,µ+

(y1, y2) +
Γ( 1

2 − µ+)√
πΓ(1− µ+)

ψµ+,µ+(y1, y2)
)

+
4µ−Γ(ν)Γ(C)

Γ(µ+)Γ(C − µ−)

(
Γ(µ− − 1

2 )√
πΓ(µ−)

ψ 1
2 ,µ−(y1, y2) +

Γ( 1
2 − µ−)√

πΓ(1− µ−)
ψµ−,µ−(y1, y2)

)
.

Since y2 = a2
2 > 0, the blanch of the complex power y

µ±
2 is determined.

Multiplying δ(x1, x2)−1 on both sides of the above equation, we have the result by the equation
(4.2).

From the above theorem, we find that analogues of c-functions are

c1(ν) =
4µ++lΓ(−ν)Γ(C)Γ(µ+ − 1

2 )√
πΓ(µ−)Γ(C − µ+)Γ(µ+)

=
2ν+l+2Γ(−ν)Γ(k−l+3

2 )Γ( ν−l+1
2 )√

πΓ(−ν−l+2
2 )Γ(−ν+k+1

2 )Γ( ν−l+2
2 )

,

c2(ν) =
4µ−+lΓ(ν)Γ(C)Γ(µ− − 1

2 )√
πΓ(µ+)Γ(C − µ−)Γ(µ−)

=
2−ν+l+2Γ(ν)Γ(k−l+3

2 )Γ(−ν−l+1
2 )√

πΓ(ν−l+2
2 )Γ( ν+k+1

2 )Γ(−ν−l+2
2 )

= c1(−ν),

c3(ν) =
4µ++lΓ(−ν)Γ(C)Γ( 1

2 − µ+)√
πΓ(µ−)Γ(C − µ+)Γ(1− µ+)

=
2ν+l+2Γ(−ν)Γ(k−l+3

2 )Γ(−ν+l−1
2 )√

πΓ(−ν−l+2
2 )Γ(−ν+k+1

2 )Γ(−ν+l
2 )

,

c4(ν) =
4µ−+lΓ(ν)Γ(C)Γ(1

2 − µ−)√
πΓ(µ+)Γ(C − µ−)Γ(1− µ−)

=
2−ν+l+2Γ(ν)Γ(k−l+3

2 )Γ(ν+l−1
2 )√

πΓ(ν−l+2
2 )Γ(ν+k+1

2 )Γ(ν+l
2 )

= c3(−ν).
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7 Power series expansion of the fundamental system of so-
lutions

To obtain the Harish-Chandra expansion of the matrix coefficient, only the asymptotic behavior
of the solutions of the system (3.3), (3.4) was required.

In this section, we have explicit power series expression of ψα,β .

Theorem 7.1. Let u1, u2 be

u1 =
sh2 x2

sh2 x1

, u2 = − 1
sh2 x2

. (7.1)

Then, ψα,β(y1, y2) = 4−βΨα,β(u1, u2), where

Ψ 1
2 ,µ±(u1, u2)

= u
1
2
1 u

µ±
2

∑

m,n≥0

(−µ± − n + 1)m

(
1
2

)
m(−µ± − n + 3

2

)
m

m!
· (µ± − 1

2 )n(µ± − 1
2 + l−k

2 )n

(2µ± + l − 1)nn!
um

1 un
2

= u
1
2
1 u

µ±
2

∞∑
n=0

(µ± − 1
2 )n(µ± − 1

2 + l−k
2 )n

(2µ± + l − 1)nn! 2F1

(
1
2
,−µ± − n + 1;−µ± − n +

3
2
;u1

)
un

2 (7.2)

and

Ψµ±,µ±(u1, u2)

= u
µ±
1 u

µ±
2

∞∑
n=0

∞∑

j=0

( 1
2 )j(µ± + n)j

j!(µ± + n + 1
2 )j

· (µ±)n(µ± − 1 + l−k
2 )n

(2µ± + l − 1)nn!
un+j

1 un
2

= u
µ±
1 u

µ±
2

∞∑
n=0

(µ±)n(µ± − 1 + l−k
2 )n

(2µ± + l − 1)nn! 2F1

(
1
2
, µ± + n;µ± + n +

1
2
; u1

)
un

1un
2 . (7.3)

Here

(a)n = a(a + 1) · · · (a + n− 1) (n 6= 0), (a)0 = 1.

As is seen in the proof of Theorem 6.1, we have u1 ∼ y1 and u2 ∼ 4y2 as y1, y2 → 0.
At first, we will express P and Q with new variables u1, u2.

Proposition 7.2. We denote the differential operator in the equation (3.3) by P and that in (3.4)
by Q. P and Q are written with variables u1, u2 as :

P = 4(2− u2 − u1u2)ϑ2
1 + 4(1− u2)ϑ2

2 − 8(1− u2)ϑ1ϑ2

+
4

u1 − 1

{
1 + u1 − l − k

2
u2 + (l − k − 2)u1u2 − l − k

2
u2

1u2

}
ϑ1

− 4
u1 − 1

{
l − 1− (l − 2)u1 − l − k

2
u2 +

l − k − 2
2

u1u2

}
ϑ2 + (l − 2)2 − ν2, (7.4)

Q = −u1u
2
2

{
ϑ2

1 − ϑ1ϑ2 +
1
2

u1 + 1
u1 − 1

ϑ1 − 1
2

1
u1 − 1

ϑ2

}
. (7.5)

Here, we set ϑi = ui
∂

∂ui
(i = 1, 2).

Indicial equations of P and Q are

8α2 + 4β2 − 8αβ − 4α + 4(l − 1)β + (l − 2)2 − ν2
1 = 0, α2 − αβ − 1

2
α +

1
2
β = 0
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respectively and the solutions of these equations are

(α, β) = (
1
2
, µ±), (µ±, µ±),

where µ± = ±ν/2− (l − 2)/2.
This is a kind of the modified Appell’s F2 system.
Now we put the analytic kernel of P, Q as

Ψα,β(u1, u2) = uα
1 uβ

2

∑

m,n≥0

am,num
1 un

2 .

We normalize this solution as a0,0 = 1.
Comparing the leading term of Ψα,β with that of ψα,β as y1, y2 → 0, we can see that

Ψα,β(u1, u2) = 4βψα,β(y1, y2).

Note that µ± 6∈ 1
2
Z, since we assume that ν 6∈ Z in Section 5.

It is easy to prove the following lemma.

Lemma 7.3. If QΨα,β(u1, u2) = 0 holds, then am,n satisfy the following recurrence equations.

(α + m− 1)(α− β + m− n− 1
2
)am−1,n

+(−α + β −m + n)(α + m− 1
2
)am,n = 0 (m 6= 0) (7.6)

(−α + β + n)(α− 1
2
)a0,n = 0 (7.7)

7.1 Case 1 : α = 1
2

In this subsection we determine am,n for the case (α, β) = (1/2, µ±).
In this case, any a0,n satisfies (7.7). On the other hand, we have

am,n =
(β −m + n)(β −m + n + 1) · · · (β + n− 1) · (m− 1

2 )(m− 3
2 ) · · · 1

2

(β −m + n− 1
2 )(β −m + n + 1

2 ) · · · (β + n− 3
2 ) ·m(m− 1) · · · 1 a0,n

=
(−β − n + 1)m

(
1
2

)
m(−β − n + 3

2

)
m

m!
a0,n

=
(−µ± − n + 1)m

(
1
2

)
m(−µ± − n + 3

2

)
m

m!
a0,n (7.8)

from (7.6), where
Therefore we have only to determine a0,n (n ≥ 0) from PΨα,β(u1, u2) = 0.
Setting φm(u2) =

∑∞
n=0 am,nun

2 , we have

Ψα,β(u1, u2) = uα
1 uβ

2

∑

m,n≥0

am,num
1 un

2 = uα
1 uβ

2

∞∑
m=0

φm(u2)um
1 .

So we have only to determine φ0(u2).

Lemma 7.4. φ0(u2) is a solution of the Gaussian hypergeometric equation :

u2(1− u2)φ′′0(u2) + {r − (p + q + 1)u2}φ′0(u2)− pqφ0(u2) = 0.
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In particular, we have φ0(u2) = 2F1(p, q; r; u2) and

a0,n =
(p)n(q)n

(r)nn!
, (7.9)

with parameters

p = µ± − 1
2
, q = µ± − 1

2
+

l − k

2
, r = 2µ± + l − 1.

Proof. We obtain the Gaussian hypergeometric equation from

u−α
1 PΨα,β(u1, u2)|u1=0 = 0

using

ϑ1Ψα,β = uα
1 uβ

2

∞∑
m=0

(α + m)φm(u2)um
1 ,

ϑ2
1Ψα,β = uα

1 uβ
2

∞∑
m=0

(α + m)2φm(u2)um
1 ,

ϑ2Ψα,β = βΨα,β + uα
1 uβ+1

2

∞∑
m=0

φ′m(u2)um
1 = uα

1 uβ
2

∞∑
m=0

{βφm(u2) + u2φ
′
m(u2)}um

1 ,

ϑ2
2Ψα,β = uα

1 uβ
2

∞∑
m=0

{
β2φm(u2) + (2β + 1)u2φ

′
m(u2) + u2

2φ
′′
m(u2)

}
um

1 ,

ϑ1ϑ2Ψα,β = uα
1 uβ

2

∞∑
m=0

(α + m) {βφm(u2) + u2φ
′
m(u2)}um

1

and indicial equations above.
The latter part is obvious from the assumption that a0,0 = 1.

Now, we have

am,n =
(−µ± − n + 1)m

(
1
2

)
m(−µ± − n + 3

2

)
m

m!
· (µ± − 1

2 )n(µ± − 1
2 + l−k

2 )n

(2µ± + l − 1)nn!

from equations (7.8), (7.9) and we have shown the former half of Theorem 7.1.

7.2 Case 2 : α 6= 1
2

In this subsection we assume that α 6= 1/2, that is, α = β = µ±. From this condition and the
equation (7.7), we have a0,n = 0 (n ≥ 1). At the same time we have

(α + m− 1)(m− n− 1
2
)am−1,n + (−m + n)(α + m− 1

2
)am,n = 0

from (7.6).
Note that above coefficients of am−1,n, am,n except (−m + n) are not zero by the assumption

α = µ± 6∈ 1
2
Z.

If m = n, then we have am−1,m = 0.
If m < n, then we have am,n = Ca0,n = 0 (C is a constant which depends on m and n).
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If m > n, then we have

am,n =
(m− n− 1

2 )(m− n− 3
2 ) · · · 1

2 · (α + m− 1)(α + m− 2) · · · (α + n)
(m− n)(m− n− 1) · · · 1 · (α + m− 1

2 )(α + m− 3
2 ) · · · (α + n + 1

2 )
an,n

=
( 1
2 )m−n(α + n)m−n

(m− n)!(α + n + 1
2 )m−n

an,n

=
( 1
2 )m−n(µ± + n)m−n

(m− n)!(µ± + n + 1
2 )m−n

an,n (7.10)

from (7.6).
Therefore it remains to determine an,n (n ≥ 0) from PΨα,β(u1, u2) = 0.
Since

Ψµ±,µ±(u1, u2) = u
µ±
1 u

µ±
2

∞∑
n=0

∞∑

j=0

an+j,nun+j
1 un

2 = (u1u2)µ±
∞∑

j=0

uj
1

∞∑
n=0

an+j,n(u1u2)n

holds, we have

Ψµ±,µ±(u1, u2) = tµ±
∞∑

j=0

ϕj(t)sj

where s = u1, t = u1u2, ϕj(t) =
∑∞

n=0 an+j,ntn. We have only to determine ϕ0(t).

Lemma 7.5. ϕ0(t) is a solution of the Gaussian hypergeometric equation :

t(1− t)ϕ′′0(t) + {c− (a + b + 1)t}ϕ′0(t)− abϕ0(t) = 0.

Hence we have ϕ0(t) = 2F1(a, b; c; t) and

an,n =
(a)n(b)n

(c)nn!
, (7.11)

with parameters

a = µ±, b = µ± − 1 +
l − k

2
, c = 2µ± + l − 1.

Proof. We denote ϑs = s ∂
∂s , ϑt = t ∂

∂t . Then we have

ϑ1 = u1

(
∂s

∂u1

∂

∂s
+

∂t

∂u1

∂

∂t

)
= u1

(
∂

∂s
+ u2

∂

∂t

)
= ϑs + ϑt,

ϑ2 = u2

(
∂s

∂u2

∂

∂s
+

∂t

∂u2

∂

∂t

)
= ϑt.

Using above equations, we obtain the Gaussian hypergeometric equation from

PΨµ±,µ±(s, t)|s=0 = 0

in the similar way as Proposition 7.4.

Now, we have

am,n =

{
0 (m < n)

( 1
2 )m−n(µ±+n)m−n

(m−n)!(µ±+n+ 1
2 )m−n

· (µ±)n(µ±−1+ l−k
2 )n

(2µ±+l−1)nn! (m ≥ n)

from equations (7.10), (7.11) and we have shown the latter half of Theorem 7.1.
Remark 7.6. It is an interesting problem to compare our power series solutions with the confluenced
ones which were discussed in [1]
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