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of i.i.d. random variables with fat tail I

Hirotaka FUSHIYA and Shigeo KUSUOKA ∗

1 Introduction

Let (Ω,F , P ) be a probability space. Let Xn, n = 1, 2, . . . , be independent identically
distributed random variables, and F : R→ [0, 1] and F̄ : R→ [0, 1] be given by

F (x) = P (X1 5 x), and F̄ (x) = P (X1 > x), x ∈ R.

We assume the following.
(A-1) F̄ (x) is a regular varying function of index −α, for some α > 2, as x → ∞, i.e., if
we let

L(x) = xαF̄ (x), x ∈ R,
then L(x) > 0 for any x > 0, and for any a > 0

L(ax)

L(x)
→ 1, x→∞.

Also we assume the following.

(A2) xα−δF (−x)→ 0, as x→∞ for any δ > 0.

Since α > 2, we see that E[|X1|2] <∞. We assume furthermore for simplicity that
(A3) E[X1] = 0.

Our first main theorem is the following.

Theorem 1 Assume the assumptions (A-1), (A-2) and (A-3), and let β : N→ (0,∞) be
such that

β(n)

(log n)1/2
→∞, n→∞.

Then we have

sup
s=n1/2β(n)

|P (
Pn

k=1Xk > s)

nF̄ (s)
− 1|→ 0, n→∞.
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We remark that the following has been shown essentially by Feller [1].

Theorem 2 (Feller) Under the assumptions (A-1),(A-2) and (A-3), we have for any
N = 1

|P (
PN

k=1Xk > x)

NF̄ (x)
− 1|→ 0, x→∞.

Note that the number of random variables is fixed in Feller’s result, but is increasing
in our result.
Let us assume the following furthermore.

(A-4) There is an x0 > 0 such that F̄ is twice continuously differentiable on (x0,∞) and
that

x2
d2

dx2
log F̄ (x)→ α, x→∞.

Then we have the following.

Theorem 3 Assume the assumptions (A-1), (A-2), (A-3) and (A-4) and let β : N →
(0,∞) be such that

β(n)

(log n)1/2
→∞, n→∞.

Let v = E[X2
1 ]. Then we have

sup
s=n1/2β(n)

s2

n
|P (

Pn
k=1Xk > s)

nF̄ (s)
− (1 + α(α + 1)vn

2s2
)|→ 0, n→∞.

2 Preparations

Proposition 4 Let Y be a random variable and γ ∈ (1, 2], and assume that

E[|Y |γ] <∞ and E[Y ] = 0.

Then for any s ∈ R \ {0} and b > 0

E[exp(sY 1{|Y |5b})] 5 1 + |s|γ(1 + (
1

|s|b)
γ−1) exp(|s|b)E[|Y |γ ].

Proof. First, note that
| exp(x)− 1| 5 1 ∨ exp(x),

and

| exp(x)− 1| = |
Z x

0

eydy| 5 |x|(1 ∨ exp(x)), x ∈ R.

So we have

| exp(x)− (1 + x)| = |
Z x

0

(ey − 1)dy| 5 (|x| ∧ |x|2)(1 ∨ exp(x))

for any x ∈ R. Therefore we see that

| exp(x)− (1 + x)| 5 |x|γ exp(|x|), x ∈ R
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for γ ∈ (1, 2].
Therefore we have

|E[exp(sY 1{|Y |5b})]− (1 + E[sY 1{|Y |5b}])|
5 |s|γ exp(|s|b)E[|Y |γ ].

Since
|E[sY 1{|Y |5b}]| = |sE[Y, |Y | > b]| 5 |s|b−(γ−1)E[|Y |γ],

we have our assertion.

Proposition 5 Let X be a random variable and γ ∈ (1, 2]. We assume that
E[|X|γ ] <∞ and E[X ] = 0.

Then for any t > 0 and n = 1

n logE[exp(± 1

tn1/γ
X1{|X|5tn1/γ})] 5

6

tγ
E[|X|γ ].

Proof. Let Y = (1/t)X, s = ±n−1/γ, b = n1/γ , and apply Proposition 4. Since log(1+x) 5
x, x = 0, we have our assertion.

Now let Xn, n = 1, 2, . . . , be independent identically distributed random variables and
γ ∈ (1, 2]. Throughout this section we assume that

E[|X1|γ ] <∞ and E[X1] = 0.

Proposition 6 For any s, t > 0 and ε > 0

P (|
nX
k=1

Xk1{|Xk|5tn1/γ}| = sn1/γ) 5 2 exp(
6

tγ
E[|X1|γ ]) exp(−

s

t
).

Proof. We see that

P (±
nX
k=1

Xk1{|Xk|5tn1/γ} = sn
1/γ)

5 exp(−s
t
)E[exp(

±1
tn1/γ

nX
k=1

Xk1{|Xk|5tn1/γ})]

5 exp(−s
t
)E[exp(

±1
tn1/γ

X11{|X1|5tn1/γ})]
n.

Then by Proposition 5 we have our assertion.

Let F : R→ [0, 1] and F̄ : R→ [0, 1] be given by

F (x) = P (X1 5 x), x ∈ R
and

F̄ (x) = P (X1 > x), x ∈ R.
Then we have the following.
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Proposition 7 (1) For any t, s > 0, and n = 2,

P (|
nX
k=2

Xk1{|Xk|5tn1/γ}| > sn1/γ) 5 2 exp(
6

tγ
E[|X1|γ]) exp(−

s

t
).

(2) For any s, t > 0, ε ∈ (0, 1) with t < (1− ε)s,

|P (
nX
k=1

Xk > sn
1/γ)−nP (X1+

nX
k=2

Xk1{|Xk|5tn1/γ} > sn
1/γ , |

nX
k=2

Xk1{|Xk|5tn1/γ}| 5 εsn1/γ)|

5 2n(n− 1)(F (−tn1/γ) + F̄ (tn1/γ))2 + 2 exp( 6
tγ
E[|X1|γ ]) exp(−

s

t
)

+2n(F (−tn1/γ) + F̄ (tn1/γ)) exp( 6
tγ
E[|X1|γ ]) exp(−

εs

2t
)

Proof. Note that

P (|
nX
k=2

Xk1{|Xk|5tn1/γ}| > sn1/γ)

= P (|
n−1X
k=1

Xk1{|Xk|5t̃(n−1)1/γ}| > s̃(n− 1)1/γ),

where
t̃ = t(

n

n− 1)
1/γ , s̃ = s(

n

n− 1)
1/γ .

So we have the assertion (1) from Proposition 6 .
Let us denote

F̃ (x) = P (|X1| > x) 5 F (−x) + F̄ (x), x > 0.

Note that

P (

nX
k=1

Xk > sn
1/γ) =

nX
m=0

Im,

where

Im = P (
nX
k=1

Xk > sn
1/γ ,

nX
k=1

1{|Xk|>tn1/γ} = m), m = 0, 1, . . . , n.

Then we have

Im =

µ
n

m

¶
P (

nX
k=1

Xk > sn
1/γ, |Xi| > tn1/γ, i = 1, . . . ,m, |Xj| 5 tn1/γ , j = m+1, . . . , n),

for m = 0, 1, . . . , n. So we see that

nX
m=2

Im 5
nX

m=2

n(n− 1)
m(m− 1)

µ
n− 2
m− 2

¶
F̃ (tn1/γ)m(1− F̃ (tn1/γ))n−m 5 n(n− 1)

2
F̃ (tn1/γ)2. (1)

Also, by Proposition 6, we have

I0 5 2 exp(−
s

t
) exp(

6

tγ
E[|X1|γ ]). (2)
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Let
A1 = {|X1| > tn1/γ}, A2 = {|Xk| 5 tn1/γ , k = 2, 3, . . . , n},

B1 = {X1 +

nX
k=2

Xk1{|Xk|5tn1/γ} > sn
1/γ},

and

B2 = {|
nX
k=2

Xk1{|Xk|5tn1/γ}| 5 εsn1/γ}.

Note that B1 ∩ B2 ⊂ A1, since t < (1− ε)s. So we see that

|P (B1 ∩ A1 ∩ A2)− P (B1 ∩ B2)|

5 P (B1 ∩ Bc2 ∩ A1 ∩ A2) + P (B1 ∩ B2 ∩ A1 ∩ Ac2)
5 P (A1)P (Bc2) + P (A1)P (Ac2). (3)

Note that

P (Ac2) 5
nX
k=2

P (|Xk| > tn1/γ) = (n− 1)F̃ (tn1/γ).

Also, by the assertion (1) we have

P (Bc2) 5 2 exp(
6

tγ
E[|X1|γ ]) exp(−

εs

2t
).

Since I1 = nP (B1 ∩ A1 ∩ A2), we have the assertion from Equations (1), (2) and (3).
This completes the proof.

3 Proof of Theorem 1

Now let us prove Theorem 1. Let β : N→ (0,∞) be such that

β(n)

(log n)1/2
→∞, n→∞.

Assume that Theorem 1 is not valid. Then there is a sequence of positive numbers {s0n}∞n=1
such that s0n = n1/2β(n), n = 1, 2, . . . , and

lim
n→∞

|P (
Pn

k=1Xk > s
0
n)

nF̄ (s0n)
− 1| > 0.

Let sn = n−1/2s0n = β(n). Let us take an r ∈ ((α + 2)/(2α), 1) and fix it. Let tn,
n = 1, 2, . . . , be a sequence of positive mumbers given by

tn = (log n)
−1/2 + (log n)−1s(1+r)/2n , n = 2.

Then we have the following.

tnsn =
β(n)

(log n)1/2
→∞, n→∞, (4)
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2sn
tn

= ((log n)1/2sn) ∧ ((log n)s(1−r)/2n ), n = 2, (5)

2sn
(log n)tn

= ( β(n)

(log n)1/2
) ∧ (s(1−r)/2n )→∞, n→∞, (6)

and
(tnn

1/2)2

(s0n)
1+r

= (log n)−2s1+rn n

s1+rn n(1+r)/2
→∞, n→∞. (7)

Therefore by Equation (7), we have

(F (−tnn1/2) + F̄ (tnn1/2))2
F̄ (s0n)

2r
→ 0, n→∞.

Since 2r − 1 > 2/α, we have

(s0n)
2 (F (−tnn1/2) + F̄ (tnn1/2))2

F̄ (s0n)
→ 0, n→∞. (8)

Also, by Equations (4), (5) and (6) we see that for any m = 1

(ns0n)
m exp(

m

t2n
− 1

m

sn
tn
)

= exp(
m

t2n
(1− 1

3m2
tnsn))n

3m/2 exp(−(log n) 1
3m

sn
(log n)tn

)

×(sn)m exp(−
1

3m

sn
tn
)→ 0, n→∞.

Let us take an ε ∈ (0, 1) and fix it. For n = 1, let

cn(ε) = P (X1 +
nX
k=2

Xk1{|Xk|5tnn1/2} > snn
1/2, |

nX
k=2

Xk1{|Xk|5tnn1/2}| 5 εsnn
1/2).

Note that tn < (1− ε)sn for sufficiently large n. Taking γ = 2 in Proposition 7 (2) we see
that by Equation (8)

(s0n)
2

n

1

nF̄ (s0n)
|P (

nX
k=1

Xk > s
0
n)− ncn(ε)|→ 0, n→∞. (9)

Note that

F̄ (s0n(1 + ε))− P (|
nX
k=2

Xk1{|Xk|5tnn1/2}| > εsnn
1/2) 5 cn(ε) 5 F̄ (s0n(1− ε)).

By Proposition 7 (1), we have

1

F̄ (s0n)
P (|

nX
k=2

Xk1{Xk5tnn1/2}| > εsnn
1/2)→ 0, n→∞.
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Thus we have

(1 + ε)−α = lim
n→∞

F̄ (s0n(1 + ε))

F̄ (s0n)
5 lim

n→∞

cn(ε)

F̄ (s0n)
5 lim

n→∞

P (
Pn

k=1Xk > s
0
n)

nF̄ (s0n)

and

lim
n→∞

P (
Pn

k=1Xk > s
0
n)

nF̄ (s0n)
5 lim

n→∞
cn(ε)

F̄ (s0n)
5 lim

n→∞
F̄ (s0n(1− ε))

F̄ (s0n)
= (1− ε)−α

Since ε ∈ (0, 1) is arbitrary, we see that

lim
n→∞

P (
Pn

k=1Xk > s
0
n)

nF̄ (s0n)
= 1.

This contradicts our assumption.
This completes the proof of Theorem 1.

4 Some estimates

In this section, we assume that (A-1) and (A-4).
Let g : (x0,∞)→ R and H : [−1/2, 1/2]× (2x0,∞)→ (0,∞) be given by

g(x) = x2
d2

dx2
(log F̄ )(x)− α, x > x0,

and

H(y;x) =
F̄ (x(1 + y))

F̄ (x)
, y ∈ [−1/2, 1/2], x > 2x0.

We prove the following in this section.

Proposition 8 There are functions a : (2x0,∞) → R, c : (2x0,∞) → [0,∞) and a
constant C > 0 such that a(x)→ 0 and c(x)→ 0, as x→∞, and that

|H(y;x)−{1+a(x)y−αy+α(α + 1)y
2

2
}| 5 C(c(x)y2+|y|3), y ∈ [−1/2, 1/2], x > 2x0.

First we prove the following.

Proposition 9 (1) For any x > x0,

d

dx
log(xαF̄ (x)) = −

Z ∞
x

g(z)

z2
.

(2) For any y ∈ [−1/2, 1/2] and x > 2x0,

H(y;x) = (1 + y)−α exp(−
Z y

0

dy0
Z ∞
1+y0

g(xz)

z2
dz).
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Proof. Note that

g(x) = x2
d2

dx2
(log(xαF̄ (x)))

and g(x)→ 0 as x→∞. Then we see that

d

dy
(log(yαF̄ (y)))− d

dx
(log(xαF̄ (x))) =

Z y

x

g(z)

z2
dz, (10)

and so we see that

c0 = lim
y→∞

d

dy
(log(yαF̄ (y)))

exists. Note that

exp(

Z 2x

x

d

dy
(log(yαF̄ (y)))dy) =

L(2x)

L(x)
→ 1, x→∞.

So we see that c0 = 0. Therefore letting y → ∞ in Equation (10) we have the assertion
(1).
By the assertion (1), we have

d

dy
log((1 + y)αH(y;x)) = −x

Z ∞
x(1+y)

g(z)

z2
dz = −

Z ∞
1+y

g(xz)

z2
dz.

Since H(0;x) = 1, we have the assertion (2).

Proposition 10 Let ã : (2x0,∞)→ R and c̃ : (2x0,∞)→ R be given by

ã(x) =
d

dy
((1 + y)αH(y, x))|y=0,

and

c̃(x) = sup
y∈[−1/2,1/2]

| d
2

dy2
((1 + y)αH(y, x))|.

Then ã(x)→ 0 and c̃(x)→ 0, as x→∞, and that

|H(y; x)− (1 + y)−α − ã(x)y(1 + y)−α| 5 2αc̃(x)y2, y ∈ [−1/2, 1/2], x > 2x0.

Proof. By Proposition 9 We have

d

dy
((1 + y)αH(y;x)) = −(1 + y)αH(y;x)

Z ∞
1+y

g(xz)

z2
dz

and so

ã(x) = −
Z ∞
1

g(xz)

z2
dz

Similarly, we have

d2

dy2
((1 + y)αH(y;x)) = (1 + y)αH(y;x){(

Z ∞
1+y

g(xz)

z2
dz)2 − (1 + y)−2g(x(1 + y))}
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Thereforewe have

c̃(x) 5 2α{(
Z ∞
1/2

|g(xz)|
z2

dz)2 + 4 sup{|g(x(1 + y))|; y ∈ [−1/2, 1/2]}} exp(
Z ∞
1/2

|g(xz)|
z2

dz)

These imply that ã(x)→ 0, c̃(x)→ 0, as x→∞. Also we have

|(1 + y)αH(y; x)− (1 + ã(x))| 5 c̃(x)y2, x = 2x0, y ∈ [−1/2.1/2].

This implies our assetion.

Now Proposition 8 is an easy corollary to Proposition 10.

5 Proof of Thoerem 3.

In this section, we assume that Xn, n = 1, 2, . . . , are i.i.d. random variables, α > 2 and
(A-1) - (A-4) are satisfied. Let p = (α + 2)/2 and β = (α + p)/2. Then we see that
E[|X1|p] <∞ and there is a C0 > 1 such that

F (−x) + F̄ (x) 5 C0x−β, x = 1.

Proposition 11 Let b(x) = E[X1, |X1| 5 x] = −E[X1, |X1| > x], x > 0. Then we have
the following.
(1) |b(x)| 5 E[|X1|p]1/p(F (−x) + F̄ (x))1−1/p 5 C0x−β(p−1)/pE[|X1|p]1/p, x = 1.

(2) There is a constant C1 > 1 only dependent on p such that

E[|
nX
k=1

Xk1{|Xk|5x}|p]1/p 5 C1n1/2(E[|X1|p]1/p + |b(x)|) + n|b(x)|

5 C1E[|X1|p]1/p(1 + C0)(n1/2 + nx−β(p−1)/p)
for any n = 1, 2, . . . , and x = 1.

Proof. The assertion (1) is an easy consequence of Hölder’s inequality. So we prove the
assertion (2). Since E[Xk1{|Xk|5x} − b(x)] = 0, k = 1, 2, . . . , we see by Burkholder-Davis-
Gundy’s theorem that there is a constant C1 > 0 depending on p only such that

E[|
nX
k=1

(Xk1{|Xk|5x} − b(x))|p]1/p 5 C1E[|
nX
k=1

(Xk1{|Xk|5x} − b(x))2|p/2]1/p

Then by Hölder’s inequality, we have

E[|
nX
k=1

(Xk1{|Xk|5x} − b(x))|p]1/p 5 C1E[np/2−1
nX
k=1

|Xk1{|Xk|5x} − b(x)|p]1/p

= C1n
1/2E[|X11{|X1|5x} − b(x)|p]1/p 5 C1n1/2(E[|X11{|X1|5x}|p]1/p + |b(x)|)

This implies our assertion.
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Remind Proposition 8 and let

R(y;x) = H(y;x)− {1 + a(x)y − αy +
α(α+ 1)y2

2
}, y ∈ [−1/2, 1/2], x > 2x0.

Then there is a C2 > 0 such that

|R(y;x)| 5 C2(c(x)y2 + y3), y ∈ [−1/2, 1/2], x > 2x0.

Let

Yn(t) =

nX
k=2

Xk1{|Xk|5tn1/2}, n = 2, t > 0.

Proposition 12 Let r ∈ ((α+ 2)/(2α), 1). Then for any ε ∈ (0, 1/2)

lim
n→∞

sup{s2E[|H(− 1

sn1/2
Yn(t), sn

1/2), |Yn(t)| 5 εsn1/2]− (1 + α(α+ 1)

2s2n
v)|;

s = (log n)1/2, t = (log n)−1s(1+r)/2} = 0.

Proof. Let s = (log n)1/2, t = (log n)−1s(1+r)/2, and n = 3. Then tn1/2 = 1. We see that

E[H(− 1

sn1/2
Yn(t), sn

1/2), |Yn(t)| 5 εsn1/2]− (1 + α(α + 1)

2s2
v)

=
a(sn1/2)− α

sn1/2
E[Yn(t)] +

α(α+ 1)

2s2n
(E[Yn(t)

2]− nv)

−E[1 + a(sn
1/2)− α

sn1/2
Yn(t) +

α(α + 1)

2s2n
Yn(t)

2, |(sn1/2)−1Yn(t)| > ε]

+E[R(− 1

sn1/2
Yn(t), sn

1/2), |(sn1/2)−1Yn(t)| 5 ε].

Note that
s|E[Yn(t)]| = ns|b(tn1/2)| 5 C0E[|X1|p]1/ps(tn1/2)−β(p−1)/p

5 C0E[|X1|p]1/p(n1/2(log n)−1)−β(p−1)/ps1−(1+r)β(p−1)/2p,
E[Yk(t)

2]− nv = n(E[(X11|X1|5tn1/2)2]− b(tn1/2)2) + E[Yn(t)]2 − nv

= −nE[X2
1 , |X1| > tn1/2] + n(n− 1)b(tn1/2)2,

and
n−p/2E[|Yn(t)|p]

5 Cp1 (1 + C0)pE[|X1|p](1 + t−β(p−1)/p)n1/2(1−β(p−1)/p))p.
Also, note that

rβ(p− 1)/p > 1 + 3(α− 2)
8

> 1.

So we see that

1

n
|E[Yk(t)2]− nv| 5 E[X2

1 , |X1| > tn1/2] + C0(n− 1)n−β(p−1)/p(log n)2β(p−1)/pE[|X1|p]2/p,
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s2(sn1/2)−kE[|Yn(t)|k, |(sn1/2)−1Yn(t)| > ε]

5 s2−pε−p+kn−p/2E[|Yn(t)|p], k = 0, 1, 2,

and

s2E[|R(− 1

sn1/2
Yn(t), sn

1/2)|, |(sn1/2)−1Yn(t)| 5 ε],

5 C2(|c(sn1/2)|n−1E[Yn(t)2] + ε−ps2−pn−p/2E[|Yn(t)|p].
Combining them, we have our assertion.

Now we prove Theorem 3. We use the same idea in Section 3. Let β : N→ (0,∞) be
such that

β(n)

(log n)1/2
→∞, n→∞.

Assume that Theorem 3 is not valid. Then there is a sequence of positive numbers {s0n}∞n=1
such that s0n = n1/2β(n), n = 1, 2, . . . , and

lim
n→∞

(s0n)
2

n
|P (

Pn
k=1Xk > s

0
n)

nF̄ (s0n)
− (1 + α(α + 1)vn

(s0n)
2

)| > 0.

Let sn = n−1/2s0n = β(n). Let us take an r ∈ ((α + 2)/(2α), 1) and fix it. Let tn,
n = 1, 2, . . . , be a sequence of positive numbers given by

tn = (log n)
−1/2 + (log n)−1s(1+r)/2n , n = 2.

Then from Proposition 12, we see that

s2n|
nP (X1 + Yn(t) > sn

1/2, |Yn(t)| 5 εsn1/2)

nF̄ (snn1/2)
− (1 + α(α + 1)vn

s2nn
)|

= s2n|E[H(−
1

sn1/2
Yn(t), sn

1/2), |Yn(t)| 5 εsn1/2]− (1 + α(α+ 1)vn

s2nn
)|→ 0

as n → ∞. Then Theorem 3 follows from this, Proposition 7(2), Equations (4), (5), (6),
(7) and (8).
This completes the proof of Theorem 3.

6 Remarks

Let Xn, n = 1, 2, . . . , be independent identically distributed random variables. and F :
R→ [0, 1] and F̄ : R→ [0, 1] be given by

F (x) = P (X1 ≤ x), x ∈ R

and
F̄ (x) = P (X1 > x), x ∈ R.

Let us assume the following.
(B-1) F̄ (x) is a regualar varying function of index −α, α ∈ (0, 2], as x→∞, i.e., if we let

L(x) = xαF̄ (x), x ∈ R,

11



L(x) > 0 for any x > 0, and for any a > 0

L(ax)

L(x)
→ 1, x→∞.

(B-2) xα−δF (−x)→ 0, x→∞ for any δ > 0.
In the case α > 1, we see that E[|X1|] <∞. Let us assume furthermore that

(B-3) E[X1] = 0 if α > 1.
Then we have the following.

Theorem 13 Assume the assumptions (B-1), (B-2) and (B-3). Then for any γ ∈ (0,α)

sup
s=n1/γ

|P (
Pn

k=1Xk > s)

nF̄ (s)
− 1|→ 0, n→∞.

The proof is quite similar to that of Theorem 1.
The case that α ∈ (0, 1], we need the following propositions instead of Propositions 4

and 5.

Proposition 14 Let Y be a random variable and γ ∈ (0, 1]. Assume that

E[|Y |γ ] <∞

Then for any s ∈ R \ {0} and b > 0

E[exp(sY 1{|Y |5b}) 5 1 + |s|γ exp(|s|b)E[|Y |γ ].

Proposition 15 Let X be a random variable and γ ∈ (0, 1]. We assume that

E[|X|γ ] <∞.

Then for any t > 0

n logE[exp(± 1

tn1/γ
X1{|X|5tn1/γ})] 5

6

tγ
E[|X|γ ].
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