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Abstract

We consider a wave equation with damping coefficient

∂2u

∂t2
(x, t) =

∂2u

∂x2
(x, t) + p1(x)

∂u

∂t
(x, t) + p2(x)

∂u

∂x
(x, t), 0 < x < 1,−T < t < T ,

u(x, 0) = 0,
∂u

∂t
(x, 0) = δ(x), 0 ≤ x ≤ 1,

∂u

∂x
(0, t) =

∂u

∂x
(1, t) = 0, −T ≤ t ≤ T

where T ≥ 2, the complex-valued functions p1, p2 ∈ C1[0, 1] and δ(x) is the Dirac delta
function. We discuss an inverse problem of determining simultaneously the coefficients p1(x)
and p2(x), 0 ≤ x ≤ 1 from observation data u(0, t),−T ≤ t ≤ T . We prove a reconstruction
formula for p1(x) and p2(x) from u(0, t) by establishing an intrinsic relation with the inverse
spectral theory.

1 Introduction

In the present paper, we consider the following initial-boundary value problem:




Lpu(x, t) = 0, 0 < x < 1,−T < t < T,

u(x, 0) = 0,
∂u

∂t
(x, 0) = δ(x), 0 ≤ x ≤ 1,

∂u

∂x
(0, t) =

∂u

∂x
(1, t) = 0, −T ≤ t ≤ T

(1.1)
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where the operator Lp is defined by

Lp =
∂2

∂t2
− ∂2

∂x2
− p1(x)

∂

∂t
− p2(x)

∂

∂x
,

T ≥ 2, p1, p2 ∈ C1[0, 1] are complex-valued and δ(x) is the Dirac delta function.
Problem (1.1) can describe, for example, small vibrations of a string with damping term and a

telegraph equation. Our main object here is to determine the operator Lp, i.e., to simultaneously
determine the coefficients p1(x), p2(x) on [0, 1], from boundary data at one end u(0, t), −T ≤ t ≤ T .
This problem was solved by A. S. Blagoveshchenskii (see [1, 2]) when p1 ≡ 0, but for general p1 it
is difficult and has been open for a long time.

Replacing the boundary condition in (1.1) by u(0, t) = u(1, t) = 0, we can similarly discuss
an inverse problem of determining p1 and p2 by ∂u

∂x (0, t), −T ≤ t ≤ T , but we here do not give
details. For an interval I, let H−1(I) be the dual space of the Soblev space H1

0 (I), (H1(I))′ be
the dual space of the Soblev space H1(I), and D′(I) denotes the distribution space on open set I.
Moreover

(
H1(0, 1)

)′ denotes the dual space of H1(0, 1), which is not a space of distributions in
(0, 1). Henceforth Ω denotes the closure of a set. Since δ ∈ (

H1(0, 1)
)′, by means of the Soblev

embedding C[0, 1] ⊂ H1(0, 1), we can apply the general theory for abstract evolution equations of
the second order (e.g., Lions and Magenes [6]). More precisely we can follow the proof of Theorem
9.3 (p.288) in [6] to the equation with damping term p1

∂
∂t with p1 ∈ C1[0, 1], and prove that there

exists a unique solution

u ∈ C
(
[−T, T ];L2(0, 1)

) ∩ C1
(
[−T, T ];

(
H1(0, 1)

)′)
.

Moreover we can prove more detailed regularity.

Proposition 1.
∂u

∂t
∈ C([−T, T ]; (H1(0, 1))′) ∩ C

(
[0, 1];H−1(−T, T )

)
.

We are ready to state our main result, which gives a reconstructive formula and requires us to
solve a Fredholm equation of the second kind.

Theorem 1. Let p1, p2 ∈ C1[0, 1], T ≥ 2 and let us set

v(t) = u(0, t), −T ≤ t ≤ T,

where u is the solution to (1.1). We denote the derivatives of v(x + y), v(x − y), v(−x + y) and
v(−x− y) with respect to x in the sense of D′((0, 1)2) by ∂

∂x , and define

V11(x, y) =
1
4

(
∂v(x + y)

∂x
+

∂v(x− y)
∂x

− ∂v(−x + y)
∂x

− ∂v(−x− y)
∂x

)
− δ(x− y),

(1.2)

V12(x, y) =
1
4

(
∂v(x + y)

∂x
− ∂v(x− y)

∂x
− ∂v(−x + y)

∂x
+

∂v(−x− y)
∂x

)
, (1.3)

V21(x, y) =
1
4

(
−∂v(x + y)

∂x
− ∂v(x− y)

∂x
− ∂v(−x + y)

∂x
− ∂v(−x− y)

∂x

)
, (1.4)
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V22(x, y) =
1
4

(
−∂v(x + y)

∂x
+

∂v(x− y)
∂x

− ∂v(−x + y)
∂x

+
∂v(−x− y)

∂x

)
− δ(x− y).

(1.5)

Then V (x, y) := (Vij(x, y))1≤i,j≤2 are in
(
C1(Ω)

)4
and

(
C1

(
(0, 1)2\Ω

))4

, where Ω = {(x, y) ∈
(0, 1)2 : 0 < y < x < 1}. Moreover, there exists a unique solution M = (Mij)1≤i,j≤2 ∈

(
C1

(
Ω

))4

to

V (x, y) + M(x, y) +
∫ x

0

M(x, τ)V (τ, y)dτ = 0, (x, y) ∈ Ω. (1.6)

The solution M to equation (1.6) satisfies that for 0 ≤ x ≤ 1

2(M12 −M21)(x, x) = −p1(x) cosh
(∫ x

0

p1(s)ds

)
+p2(x) sinh

(∫ x

0

p1(s)ds

)
, (1.7)

2(M11 −M22)(x, x) = −p1(x) sinh
(∫ x

0

p1(s)ds

)
+p2(x) cosh

(∫ x

0

p1(s)ds

)
. (1.8)

It is easy to conclude from Theorem 1 the following

Corollary. If ũ(0, t) ≡ u(0, t),−T ≤ t ≤ T where ũ is the solution to (1.1) with the coeffi-
cients p̃1, p̃2, then p̃1 ≡ p1, p̃2 ≡ p2 on [0, 1].

Theorem 1 gives a reconstruction scheme for p1(x), p2(x) from u(0, t):
(i) Set v(t) = u(0, t), −T ≤ t ≤ T .
(ii) Find Vij , 1 ≤ i, j ≤ 2 by (1.2)–(1.5).
(iii) Solve (1.6) with respect to Mij , 1 ≤ i, j ≤ 2.
(iv) Solve (1.7) and (1.8) with respect to p1 and p2.

Remark. The nonlinear equations (1.7) and (1.8) can be converted to an initial value prob-
lem of a system of ordinary differential equations, and so p1, p2 are uniquely solvable.

In Romanov [11] and Ramm [10], the inverse problem of determining the potential q(x) from
boundary observation for the one-dimensional wave equation utt = uxx− q(x)u with impulse input
has been considered. In [11], Chapter 2, Section 4, a reconstruction formula is established, which
is an analogue to the Gel’fand-Levitan theory for a Sturm-Liouville problem (e.g., Gel’fand and
Levitan [3], Levitan [4] and Marchenko [7]). In [11], this problem is reduced to an integral equation
of Volterra type by the characteristic method. On the other hand, in our case this kind of treatment
seems impossible, so that the analogue of the Gel’fand-Levitan theory to a nonstationary case has
been unsolved for the telegraph equation. However, we can represent the solution of the direct
problem in terms of the root vectors of the nonsymmetric differential operator corresponding to
problem (1.1). For similar nonselfadjoint operators related with damped hyperbolic equations, we
refer readers to Shubov [13, 14] and Shubov, Martin, Dauer and Belinskiy [15].

In order to solve the inverse problem we establish an intrinsic relation with the inverse spectral
theory (see Ning and Yamamoto [9]). The relevant inverse spectral theory has been studied further
in Ning [8]. Recently, an identification problem which is close to the inverse problem considered
in the present paper has been studied in Trooshin and Yamamoto [17]. Here we treat the inverse
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problem only in one dimensional case. One can formulate similar inverse problems for general
dimensions. For example, for the multidimensional case, we refer to Romanov and Yamamoto
[12]. For the case when the boundary conditions are nonhomogeneous, we refer to Ye and Si [18].
However, the inverse problems with inner observation data in (0, 1) (e.g. u( 1

2 , t)) or with general
initial boundary conditions are still open.

The rest of the paper is devoted to the proof of Theorem 1. The proof relies on the Gel’fand-
Levitan theory for the corresponding nonsymmetric first-order system in x ∈ (0, 1), which is
a reconstruction scheme of coefficients by the spectral characteristics. The relevant Gel’fand-
Levitan theory is established in Ning and Yamamoto [9], and thanks to the Dirac delta input,
we can extract the spectral characteristics from the data u(0, t), −T ≤ t ≤ T in terms of the
eigenfunction expansion of u(x, t). In Section 2 we present known results on spectral properties
and the inverse problem related with the hyperbolic equation in (1.1), and in Section 3 we establish
the representation of the solution to (1.1) by means of the eigenfunctions and prove Proposition 1.
In Section 4 we complete the proof of Theorem 1.

2 Inverse spectral problem

Setting

Φ =
(

Φ(1)(x, t)
Φ(2)(x, t)

)
:=




∂u

∂t
(x, t)

∂u

∂x
(x, t)


 , (2.1)

we can formally rewrite (1.1) as follows:




∂Φ
∂t

(x, t) = B
∂Φ
∂x

(x, t) + P (x)Φ(x, t), 0 < x < 1,−T < t < T ,

Φ(x, 0) =
(

δ(x)
0

)
, 0 ≤ x ≤ 1,

Φ(2)(0, t) = Φ(2)(1, t) = 0, −T ≤ t ≤ T

(2.2)

where

B =
(

0 1
1 0

)
, P (x) =

(
p1(x) p2(x)

0 0

)
.

We mainly consider (2.2). Throughout this paper, let (L2(0, 1))2, (H1(0, 1))2 denote the prod-
uct spaces of the complex-valued Lebesgue space L2(0, 1) and the complex-valued Sobolev space
H1(0, 1) respectively. By (·, ·) we denote the scalar product in (L2(0, 1))2:

(f, g) =
∫ 1

0

fT (x)g(x)dx =
∫ 1

0

(
f (1)(x)g(1)(x) + f (2)(x)g(2)(x)

)
dx

for f =
(

f (1)

f (2)

)
∈ (L2(0, 1))2, g =

(
g(1)

g(2)

)
∈ (L2(0, 1))2. Here and henceforth c denotes the

complex conjugate of c ∈ C and ·T denotes the transpose of a vector or matrix under consideration.
Now we set

AP ϕ(x) =
(

B
∂

∂x
+ P (x)

)
ϕ(x),
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and define a differential operator AP in (L2(0, 1))2 by AP ϕ = AP ϕ for

ϕ ∈ D(AP ) ≡
{

ϕ =
(

ϕ(1)

ϕ(2)

)
∈ (

H1(0, 1)
)2

: ϕ(2)(0) = ϕ(2)(1) = 0
}

.

We can directly verify that the adjoint operator A∗P of AP in (L2(0, 1))2 is given by




(A∗P ϕ∗)(x) = −B
dϕ∗

dx
(x) + PT (x)ϕ∗(x), ϕ∗ ∈ D(A∗P ), 0 < x < 1,

D(A∗P ) =
{

ϕ∗ =
(

ϕ∗(1)

ϕ∗(2)

)
∈ (

H1(0, 1)
)2 : ϕ∗(2)(0) = ϕ∗(2)(1) = 0

}

and that A∗P = −A−P T .
For the spectrum σ(AP ) of the operator AP , we have

Proposition 2.1.
(i) There exist N1 ∈ N and Σ1,Σ2 ⊂ σ(AP ) such that σ(AP ) = Σ1

⋃
Σ2, Σ1

⋂
Σ2 = ∅ and the

following properties hold:
(1) Σ1 consists of 2N1 − 1 eigenvalues including algebraic multiplicities and

Σ1 ⊂
{

λ ∈ C :
∣∣∣∣Im

(
λ− 1

2

∫ 1

0

p1(s)ds

)∣∣∣∣ ≤ (N1 − 1
2
)π

}
.

(2) Σ2 consists of eigenvalues with algebraic multiplicity 1 and, with a suitable numbering
{λn}n∈Z of σ(AP ), the eigenvalues have an asymptotic behaviour

λn =
1
2

∫ 1

0

p1(s)ds + nπ
√−1 + O

(
1
|n|

)
(2.3)

as |n| → ∞.
(ii) The set of all the root vectors of AP is a Riesz basis in (L2(0, 1))2.

Here by the root vector φ 6= 0 for an eigenvalue λ of AP , we mean that (AP −λ)mφ = 0 with some
m ∈ N. We call dim{φ : (AP − λ)mφ = 0 with some m ∈ N} and dim{φ : (AP − λ)φ = 0} the
algebraic multiplicity and the geometric multiplicity of λ respectively. For the proof of Proposition
2.1, see Theorem 1.1 in Trooshin and Yamamoto [16].

We say that an eigenvalue λ is simple if the algebraic multiplicity of λ is 1. Henceforth, for
the convenience of notations, we put the spectrum σ(AP ) =Σ1

⋃
Σ2 by a suitable renumbering as

follows:

Σ1 =
{
λi ∈ σ(AP ) : mi ≥ 2, 1 ≤ i ≤ N

}
,

Σ2 = {λn ∈ σ(AP ) : λn is simple, n ∈ Z} ,

where mi denotes the algebraic multiplicity of λi.

Remark. The spectrum may only consists of simple eigenvalues and then Σ1 does not appear.

Let

e1 =
(

1
0

)
.
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Here and henceforth let ϕn = ϕn(x) be the eigenvector of AP for λn such that ϕn(0) = e1 and
ϕ∗n = ϕ∗n(x) be the eigenvector of A∗P for λn such that ϕ∗n(0) = e1, n ∈ Z.

Proposition 2.2 ([9]). We can uniquely construct constants αi
j , 1 ≤ j ≤ mi − 1, 1 ≤ i ≤ N and

root vectors
{
ϕi

j

}
1≤j≤mi

of AP for λi and
{
ϕi∗

j

}
1≤j≤mi

of A∗P for λi (1 ≤ i ≤ N) satisfying
(i) {

(AP − λi)ϕi
1 = 0, (AP − λi)ϕi

j = ϕi
j−1, 2 ≤ j ≤ mi,

ϕi
j(0) = e1, ϕi

j ∈ D(AP ), 1 ≤ j ≤ mi

and 



(A∗P − λi)ϕi∗
mi

= 0, (A∗P − λi)ϕi∗
j = ϕi∗

j+1, 1 ≤ j ≤ mi − 1,

ϕi∗
mi

(0) = e1, ϕi∗
j (0) = αi

je1, 1 ≤ j ≤ mi − 1,

ϕi∗
j ∈ D(A∗P ), 1 ≤ j ≤ mi.

(ii) (
ϕi

j , ϕ
∗
n

)
= 0,

(
ϕn, ϕi∗

j

)
= 0, for 1 ≤ j ≤ mi, 1 ≤ i ≤ N, n ∈ Z.

(iii) (
ϕi

j , ϕ
k∗
l

)
= 0 if i 6= k or j 6= l, 1 ≤ j ≤ mi, 1 ≤ l ≤ mk, 1 ≤ i, k ≤ N,

and
(
ϕi

j , ϕ
i∗
j

)
=

(
ϕi

mi
, ϕi∗

mi

)
, for 1 ≤ j ≤ mi, 1 ≤ i ≤ N. (2.4)

As for the construct of αi
j , see Appendix in [9].

We set ρi =
(
ϕi

mi
, ϕi∗

mi

)
, 1 ≤ i ≤ N , ρn = (ϕn, ϕ∗n), n ∈ Z and αi = (αi

1, · · · , αi
mi−1), 1 ≤ i ≤

N . By (2.4), we have (
ϕi

j , ϕ
i∗
j

)
= ρi, for 1 ≤ j ≤ mi.

It can be proved that (see [9])

ρi 6= 0, 1 ≤ i ≤ N ; ρn 6= 0, n ∈ Z. (2.5)

Then we define the spectral characteristics of AP by

S(P ) :=
{
λi,mi, ρ

i,αi
}

1≤i≤N

⋃
{λn, ρn}n∈Z .

In terms of the spectral characteristics, we can prove the Parseval equality.

Proposition 2.3 ([9]). Let f, g ∈ (L2(0, 1))2.
(i) (the Parseval equality with respect to AP )

(f, g) =
N∑

i=1

mi∑

j=1

(
f, ϕi∗

j

) (
ϕi

j , g
)

ρi
+

∑

n∈Z

(f, ϕ∗n) (ϕn, g)
ρn

.

(ii) (expansion)

f =
N∑

i=1

mi∑

j=1

(
f, ϕi∗

j

)

ρi
ϕi

j +
∑

n∈Z

(f, ϕ∗n)
ρn

ϕn,
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g =
N∑

i=1

mi∑

j=1

(
g, ϕi

j

)

ρi
ϕi∗

j +
∑

n∈Z

(g, ϕn)
ρn

ϕ∗n,

where both series are convergent in (L2(0, 1))2.

For λ ∈ C, set

S(x, λ) =
(

cosh(λx)
sinh(λx)

)
, (2.6)

S∗(x, λ) =
(

cosh(λx)
− sinh(λx)

)
. (2.7)

Then
{

(A0 − λ) S = 0,
S(0, λ) = e1,

(2.8)

{ (A∗0 − λ
)
S∗ = 0,

S∗(0, λ) = e1
(2.9)

and
(
S(·, λ), S∗(·, λ)

)
= 1. For n ∈ Z, let µn ∈ σ(A0) and let us denote Sn(x) = S(x, µn),

S∗n(x) = S(x, µn). Here a short calculation shows that µn is simple and equal to nπ
√−1.

Let S(j)(x, λ) and S∗(j)(x, λ), 1 ≤ j ≤ mi satisfy the following initial value problems respectively:

{
(A0 − λ) S(1) = 0, (A0 − λ) S(j) = S(j−1), 2 ≤ j ≤ mi,
S(j)(0, λ) = e1, 1 ≤ j ≤ mi,

(2.10)

{ (A∗0 − λ
)
S∗(mi)

= 0,
(A∗0 − λ

)
S∗(j) = S∗(j+1), 1 ≤ j ≤ mi − 1,

S∗(mi)
(0, λ) = e1, S∗(j)(0, λ) = αi

je1, 1 ≤ j ≤ mi − 1.
(2.11)

Then, we can directly find the solutions of (2.10) and (2.11) possess the following forms:

S(j)(x, λ) =




j−1∑

k=0

xk

k!
θk(x, λ)

j−1∑

k=0

xk

k!
θk+1(x, λ)




, (2.12)

S∗(j)(x, λ) =




mi∑

k=j

αi
k

xk−j

(k − j)!
θk−j(x, λ)

−
mi∑

k=j

αi
k

xk−j

(k − j)!
θk+1−j(x, λ)




, (2.13)
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where αi
mi

= 1,

θk(x, λ) =
{

cosh(λx), k even
sinh(λx), k odd . (2.14)

Put

C∗(x, λ) =
∫ x

0

S∗(t, λ)dt, C∗(j)(x, λ) =
∫ x

0

S∗(j)(t, λ)dt, (2.15)

C(y, λ) =
∫ y

0

S(t, λ)dt, C(j)(y, λ) =
∫ y

0

S(j)(t, λ)dt, (2.16)

and

f(x, y) =
N∑

i=1

mi∑

j=1

C∗(j)(x, λi)CT
(j)(y, λi)

ρi

+
∑

n∈Z

{
C∗(x, λn)CT (y, λn)

ρn
− C∗(x, µn)CT (y, µn)

}
.

(2.17)

We further put

F (x, y) =
∂2f

∂x∂y
(x, y). (2.18)

Proposition 2.4 ([9]).
(i) The series in (2.17) is convergent absolutely and uniformly in [0, 1]2.

(ii) f ∈ (
C[0, 1]2

)4 and
∂f

∂x
,
∂f

∂y
,

∂2f

∂x∂y
∈ (

C1(Ω)
)4

, ∈
(
C1

(
(0, 1)2\Ω

))4

.

In [9] the following two theorems have been proved.

Theorem 2.1 (Uniqueness). The spectral characteristics S(P ) uniquely determines P .

Theorem 2.2 (Reconstruction).

Let P =
(

p1 p2

0 0

)
∈ (

C1[0, 1]
)4, S(P ) =

{
λi,mi, ρ

i,αi
}

1≤i≤N

⋃ {λn, ρn}n∈Z be the spec-

tral characteristics of AP and let F (x, y) be given by (2.17) and (2.18). Then there exists M ∈(
C1

(
Ω

))4
such that

F (x, y) + M(x, y) +
∫ x

0

M(x, τ)F (τ, y)dτ = 0, (x, y) ∈ Ω. (2.19)

Moreover, for 0 ≤ x ≤ 1 we have

2(M12 −M21)(x, x) = −p1(x) cosh
(∫ x

0

p1(s)ds

)
+p2(x) sinh

(∫ x

0

p1(s)ds

)
,
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2(M11 −M22)(x, x) = −p1(x) sinh
(∫ x

0

p1(s)ds

)
+p2(x) cosh

(∫ x

0

p1(s)ds

)
.

Equation (2.19) corresponds to the Gel’fand-Levitan equation for the Sturm-Liouville problem (e.
g., [3], [4], [7]).

3 Direct Problem

In this section, we give the representation of u(x, t) by means of the eigenfunctions constructed in
Proposition 2.2. First we show

Lemma 3.1. ∥∥∥∥∥
∑

n∈Z
γn exp(λnt)ϕ(1)

n

∥∥∥∥∥
C([−T,T ];(H1(0,1))′)

≤ C1 sup
n∈Z

|γn|.

Here and henceforth ϕ
(1)
n means the first component of ϕn and Cj denotes generic constants

which are independent of n ∈ Z and special choices of γn, ζ ∈ H1(0, 1), ω ∈ H1
0 (−T, T ).

Proof. Set C2 = supn∈Z |γn|. For some fixed suitably large N2 ∈ N, if |n| ≥ N2, then by
(2.3) there exists a constant C1 > 0, such that |λn| ≥ C1|n| and |λn − pk(x)| ≥ C1|n|, k = 1, 2 for
any x ∈ [0, 1] since pk ∈ C1[0, 1].

Then when |n| ≥ N2, since ϕ
(2)
n (0) = ϕ

(2)
n (1) = 0 and

dϕ
(2)
n (x)
dx

+ p1(x)ϕ(1)
n (x) + p2(x)ϕ(2)

n (x) = λnϕ(1)
n (x),

by integration by parts we have for any ζ ∈ H1(0, 1)
∣∣∣∣
∫ 1

0

ϕ(1)
n (x)ζ(x)dx

∣∣∣∣

≤
∣∣∣∣∣
∫ 1

0

p2(x)ϕ(2)
n (x)ζ(x)

λn − p1(x)
dx

∣∣∣∣∣ +

∣∣∣∣∣
∫ 1

0

ϕ
(2)
n (x)

(λn − p1(x))2

(
(λn − p1(x))

dζ(x)
dx

+ ζ(x)
dp1(x)

dx

)
dx

∣∣∣∣∣.

Moreover, noting that
1

λn − p1(x)
=

1
λn

+
p1(x)

λn(λn − p1(x))

and by means of the transformation formula ([9]) we can prove that supn∈Z ‖ϕ(2)
n ‖C[0,1] < ∞, we

see by (2.3) that
∣∣∣∣
∫ 1

0

ϕ(1)
n (x)ζ(x)dx

∣∣∣∣

≤ C3

|n|

{∣∣∣∣
∫ 1

0

ϕ(2)
n (x)p2(x)ζ(x)dx

∣∣∣∣ +

∣∣∣∣∣
∫ 1

0

ϕ(2)
n (x)

dζ(x)
dx

dx

∣∣∣∣∣

}
+

C3

n2
‖ζ‖H1(0,1).
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Therefore by (2.3) and the Schwarz inequality, we have
∣∣∣∣∣∣

∫ 1

0


 ∑

|n|≥N2

γn exp(λnt)ϕ(1)
n (x)


 ζ(x)dx

∣∣∣∣∣∣

≤
∑

|n|≥N2

|γn|| exp(λnt)|
∣∣∣∣
∫ 1

0

ϕ(1)
n (x)ζ(x)dx

∣∣∣∣

≤ C2C3

∑

|n|≥N2

{
1
|n|

{∣∣∣∣
∫ 1

0

ϕ(2)
n (x)p2(x)ζ(x)dx

∣∣∣∣ +

∣∣∣∣∣
∫ 1

0

ϕ(2)
n (x)

dζ(x)
dx

dx

∣∣∣∣∣

}
+

1
n2
‖ζ‖H1(0,1)

}

≤ C2C3


 ∑

|n|≥N2

1
n2




1
2





∑

|n|≥N2




∣∣∣∣
∫ 1

0

ϕ(2)
n (x)p2(x)ζ(x)dx

∣∣∣∣
2

+

∣∣∣∣∣
∫ 1

0

ϕ(2)
n (x)

dζ(x)
dx

dx

∣∣∣∣∣

2







1
2

+C2C3‖ζ‖H1(0,1), −T ≤ t ≤ T.

On the other hand, by Proposition 2.1 (ii) we see that for any % ∈ L2(0, 1)

∑

|n|≥N2

∣∣∣(ϕ(2)
n , %)

∣∣∣
2

≤ C4‖%‖2L2(0,1), (3.1)

where the constant C4 > 0 is independent of %.
Therefore

sup
‖ζ‖H1(0,1)=1

∣∣∣∣∣∣

∫ 1

0


 ∑

|n|≥N2

γn exp(λnt)ϕ(1)
n (x)


 ζ(x)dx

∣∣∣∣∣∣

≤ C2C3C4

(
‖p2ζ‖L2(0,1) +

∥∥∥∥
dζ

dx

∥∥∥∥
L2(0,1)

)
+ C2C3‖ζ‖H1(0,1) ≤ C5C2.

Thus the proof of the lemma is complete. ¤
Proposition 1 follows directly from

Lemma 3.2. Let ϕj∗
i , ρi, λi, ϕi

k, αi
j, ϕ∗n, ρn, λn, ϕn be defined in Proposition 2.2. Then

for the solution u to (1.1), we have

∂u

∂t
(x, t) =

N∑

i=1

mi∑

j=1

αi
j

ρi

(
exp(λit)

j∑

k=1

tj−k

(j − k)!
ϕ

i(1)
k (x)

)

+
∑

n∈Z

1
ρn

exp(λnt)ϕ(1)
n (x)

(3.2)

in C([−T, T ]; (H1(0, 1))′) ∩ C([0, 1];H−1(−T, T )).
Proof. Let us consider (2.2) for Φ(·, 0) = a ∈ D(A`

P ) with sufficiently large ` ∈ N. Then, by the

10



Fourier method or the separation of variables, we have

Φ(x, t) =
N∑

i=1

mi∑

j=1

(a, ϕi∗
j )

ρi

(
exp(λit)

j∑

k=1

tj−k

(j − k)!
ϕi

k(x)

)

+
∑

n∈Z

(a, ϕ∗n)
ρn

exp(λnt)ϕn(x)

in (C([−T, T ];L2(0, 1)))2 in terms of Proposition 2.2 and (2.3). In particular,

∂u

∂t
(x, t) =

N∑

i=1

mi∑

j=1

(a, ϕi∗
j )

ρi

(
exp(λit)

j∑

k=1

tj−k

(j − k)!
ϕ

i(1)
k (x)

)

+
∑

n∈Z

(a, ϕ∗n)
ρn

exp(λnt)ϕ(1)
n (x)

in C([−T, T ];L2(0, 1)), where





(Lpu)(x, t) = 0, 0 < x < 1, −T < t < T,

(
u(x, 0),

∂u

∂t
(x, 0)

)T

= a(x), 0 < x < 1,

∂u

∂x
(0, t) =

∂u

∂x
(1, t) = 0, −T < t < T,

provided that a ∈ D(A`
p). We apply a usual density argument. That is, choosing an approximating

sequence am ∈ D(A`
p), m ∈ N such that

lim
m→∞

‖am − (δ(x), 0)‖L2(0,1)×(H1(0,1))′ = 0. (3.3)

Then

lim
m→∞

(am, ϕ∗n)
ρn

=
1
ρn

, n ∈ Z

by Proposition 2.2 (ii). Hence Lemma 3.1 yields

lim
m→∞

∑

n∈Z

(am, ϕ∗n)
ρn

exp(λnt)ϕ(1)
n =

∑

n∈Z

1
ρn

exp(λnt)ϕ(1)
n

in C([−T, T ]; (H1(0, 1))′). On the other hand, by (3.3) and Theorem 9.3 (p.288) in Lions and
Magenes [6], it follows that the first components of Φ(am), m ∈ N tend to Φ(δ(x), 0) in the space
C([−T, T ]; (H1(0, 1))′). Therefore, applying Proposition 2.2 again, we obtain that (3.2) converges
in C([−T, T ]; (H1(0, 1))′) for the solution to (1.1).

Next we prove that (3.2) holds also in C([0, 1];H−1(−T, T )) for the solution u to (1.1). Let ω ∈
H1

0 (−T, T ) be arbitrary. Noting that supn∈Z ‖ϕ(1)
n ‖C[0,1] < ∞ (see [9]), we obtain by integration
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by parts and the Schwarz inequality that
∣∣∣∣∣∣

∫ T

−T

∑

|n|≥N2

1
ρn

exp(λnt)ϕ(1)
n (x)ω(t)dt

∣∣∣∣∣∣

≤
∑

|n|≥N2

∣∣∣∣∣
1

ρnλn

∫ T

−T

exp(λnt)ϕ(1)
n (x)

dω

dt
(t)dt

∣∣∣∣∣

≤ C6

∑

|n|≥N2

1
|λn|

∣∣∣∣∣
∫ T

−T

exp(λnt)
dω

dt
(t)dt

∣∣∣∣∣

≤ C6


 ∑

|n|≥N2

1
|λn|2




1
2


 ∑

|n|≥N2

∣∣∣∣∣
∫ T

−T

exp(λnt)
dω

dt
(t)dt

∣∣∣∣∣

2



1
2

.

(3.4)

Next we claim that

∑

|n|≥N2

∣∣∣∣∣
∫ T

−T

exp(λnt)β(t)dt

∣∣∣∣∣

2

≤ C7‖β‖2L2(−T,T ) for any β ∈ L2(−T, T ). (3.5)

We set c0 = 1
2

∫ 1

0
p1(s)ds. Then, by (2.3), we have λn = nπ

√−1 + c0 + O
(

1
|n|

)
as |n| → ∞. By

the trigonometric series, we have for any η ∈ L2(−1, 1)

∑

n∈Z

∣∣∣∣
∫ 1

−1

exp((nπ
√−1 + c0)t)η(t)dt

∣∣∣∣
2

=
2
π
‖ exp(c0·)η(·)‖2L2(−1,1) ≤ C8‖η‖2L2(−1,1).

(3.6)

Let [T ] denote the maximum integer not greater than T , and let β̃ ∈ L2(−[T ]− 1, [T ] + 1) be the
0-extension of β ∈ L2(−T, T ). Then by (3.6) we have for any β ∈ L2(−T, T )

∑

n∈Z

∣∣∣∣∣
∫ T

−T

exp((nπ
√−1 + c0)t)β(t)dt

∣∣∣∣∣

2

=
∑

n∈Z

∣∣∣∣∣
∫ [T ]+1

−[T ]−1

exp((nπ
√−1 + c0)t)β̃(t)dt

∣∣∣∣∣

2

=
∑

n∈Z

∣∣∣∣([T ] + 1)
∫ 1

−1

exp
(
(nπ

√−1 + c0)([T ] + 1)s
)
β̃(([T ] + 1)s)ds

∣∣∣∣
2

≤ ([T ] + 1)2C8‖β̃ ([T ] + 1) · ‖2L2(−1,1)

= ([T ] + 1)C8‖β‖2L2(−T,T ) ≡ C9‖β‖2L2(−T,T ).

(3.7)
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On the other hand, by (2.3) we have
∣∣∣∣∣
∫ T

−T

exp(λnt)β(t)dt

∣∣∣∣∣

≤
∣∣∣∣∣
∫ T

−T

exp((nπ
√−1 + c0)t)β(t)dt

∣∣∣∣∣ +

∣∣∣∣∣
∫ T

−T

{exp(λnt)− exp((nπ
√−1 + c0)t)}β(t)dt

∣∣∣∣∣

≤
∣∣∣∣∣
∫ T

−T

exp((nπ
√−1 + c0)t)β(t)dt

∣∣∣∣∣ +
C10

|n|
∫ T

−T

|β(t)|dt, |n| ≥ N2

and so ∣∣∣∣∣
∫ T

−T

exp(λnt)β(t)dt

∣∣∣∣∣

2

≤ 2

∣∣∣∣∣
∫ T

−T

exp((nπ
√−1 + c0)t)β(t)dt

∣∣∣∣∣

2

+
C11

n2
‖β‖2L2(−T,T ).

Therefore

∑

|n|≥N2

∣∣∣∣∣
∫ T

−T

exp(λnt)β(t)dt

∣∣∣∣∣

2

≤ 2
∑

|n|≥N2

∣∣∣∣∣
∫ T

−T

exp((nπ
√−1 + c0)t)β(t)dt

∣∣∣∣∣

2

+ C11

∑

|n|≥N2

1
n2
‖β‖2L2(−T,T ).

Thus by (3.7) the proof of (3.5) is complete. Then by (3.4) and (3.5) we have
∥∥∥∥∥∥

∑

|n|≥N2

1
ρn

exp(λnt)ϕ(1)
n (x)

∥∥∥∥∥∥
C([0,1];H−1(−T,T ))

= sup
‖ω‖

H1
0
(−T,T )=1

∣∣∣∣∣∣

∫ T

−T

∑

|n|≥N2

1
ρn

exp(λnt)ϕ(1)
n (x)ω(t)dt

∣∣∣∣∣∣

≤ C12


 ∑

|n|≥N2

1
|n|2




1
2

< ∞.

Thus the proof of Lemma 3.2 is complete.

4 Proof of Theorem 1

We divide the proof of Theorem 1 into three steps. In the first and the second steps we prove
V = F , where V is defined in Section 1 and F is defined in Section 2. Thus the proof of Theorem
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1 except for the unique solvability of integral equation (1.6) follows from Proposition 2.4 and
Theorem 2.2. Finally, the proof of the unique solvability of integral equation (1.6) will given in
the third step.
First step: By Proposition 2.4, the series (2.17) is convergent in D′((0, 1)2): the distribution
of (x, y) ∈ (0, 1)2. Therefore, we can differentiate termwise (2.17) in the sense of distributions to
obtain (note that the derivative of a continuously differentiable function in the sense of distributions
coincides with its derivative in the usual sense)

F (x, y) =
N∑

i=1

mi∑

j=1

S∗(j)(x, λi)ST
(j)(y, λi)

ρi

+
∑

n∈Z

{
S∗(x, λn)ST (y, λn)

ρn
− S∗(x, µn)ST (y, µn)

}
.

(4.1)

Particularly, by (2.6), (2.7), (2.12) and (2.13), we have

F11(x, y)

=
N∑

i=1

mi∑

j=1

1
ρi





mi∑

k=j

αi
k

xk−j

(k − j)!
θk−j(x, λi)

j−1∑

l=0

yl

l!
θl(y, λi)





+
∑

n∈Z

1
ρn

cosh(λnx) cosh(λny)−
∑

n∈Z
cosh(µnx) cosh(µny).

(4.2)

To calculate F11(x, y) we first prove a lemma.

Lemma 4.1. It holds that in D′((0, 1)2)

∂2 min{x, y}
∂x∂y

= δ(x− y).

Proof. Let φ ∈ C∞0 ((0, 1)2). We have to verify

LHS :=
∫ 1

0

∫ 1

0

∂2φ(x, y)
∂x∂y

min{x, y}dxdy =
∫ 1

0

φ(x, x)dx.

Integrating by parts, we have

LHS

=
∫ 1

0

(∫ x

0

∂2φ(x, y)
∂x∂y

min{x, y}dy

)
dx +

∫ 1

0

(∫ y

0

∂2φ(x, y)
∂x∂y

min{x, y}dx

)
dy

=
∫ 1

0

x
∂φ(x, x)

∂x
dx−

∫ 1

0

(∫ x

0

∂φ(x, y)
∂x

dy

)
dx

+
∫ 1

0

y
∂φ(y, y)

∂y
dy −

∫ 1

0

(∫ y

0

∂φ(x, y)
∂y

dx

)
dy.
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Since
d
dx

φ(x, x) =
∂φ

∂x
(x, x) +

∂φ

∂y
(x, x) and

∫ 1

0

y
∂φ(y, y)

∂y
dy =

∫ 1

0

x
∂φ(x, x)

∂y
dx, by integration by

parts we obtain
∫ 1

0

x
∂φ(x, x)

∂x
dx +

∫ 1

0

y
∂φ(y, y)

∂y
dy =

∫ 1

0

x
d
dx

φ(x, x)dx = −
∫ 1

0

φ(x, x)dx.

Now we change orders of integrations, so that

−
∫ 1

0

(∫ x

0

∂φ(x, y)
∂x

dy

)
dx = −

∫ 1

0

(∫ 1

y

∂φ(x, y)
∂x

dx

)
dy =

∫ 1

0

φ(y, y)dy

and

−
∫ 1

0

(∫ y

0

∂φ(x, y)
∂y

dx

)
dx =

∫ 1

0

φ(x, x)dx.

Therefore we see that LHS =
∫ 1

0

φ(x, x)dx. The proof is complete. ¤

It follows from the Parseval equality with respect to A0 that (see also Lemma 4.4 in [9])
∑

n∈Z
C∗(x, µn)CT (y, µn) = min{x, y}E, (4.3)

where E denotes the 2 × 2 unit matrix. In the sense of D′((0, 1)2), we differentiate termwise the
left hand side of (4.3) and apply Lemma 4.1, so that we obtain

∑

n∈Z
S∗(x, µn)ST (y, µn) = δ(x− y)E.

In particular, we have in D′((0, 1)2)
∑

n∈Z
cosh(µnx) cosh(µny) = δ(x− y)

and

F11(x, y) = G11(x, y)− δ(x− y), (4.4)

where

G11(x, y) =
N∑

i=1

mi∑

j=1

1
ρi





mi∑

k=j

αi
k

xk−j

(k − j)!
θk−j(x, λi)

j−1∑

l=0

yl

l!
θl(y, λi)





+
∑

n∈Z

1
ρn

cosh(λnx) cosh(λny).

(4.5)

Second step:
We first prove V11 = F11. By (3.2) and Lemma 3.2 we have

dv(t)
dt

=
∂u

∂t
(0, t) =

N∑

i=1

mi∑

j=1

αi
j

ρi

(
exp(λit)

j∑

k=1

tj−k

(j − k)!

)
+

∑

n∈Z

1
ρn

exp(λnt)
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in H−1(−T, T ) ⊂ D′(−T, T ). Here and henceforth ∂
∂t ,

∂
∂x denote differentiations in the sense of

distributions under consideration. Since v(0) = u(0, 0) = 0, we have in D′(−T, T )

v(t) =
N∑

i=1

mi∑

j=1

αi
j

ρi

(
j∑

k=1

∫ t

0

exp(λiτ)
τ j−k

(j − k)!
dτ

)
+

∑

n∈Z

exp(λnt)− 1
ρnλn

.

Then we obtain for 0 ≤ x, y ≤ 1

v(x + y) =
N∑

i=1

mi∑

j=1

αi
j

ρi

(
j∑

k=1

∫ x+y

0

exp(λiτ)
τ j−k

(j − k)!
dτ

)
+

∑

n∈Z

exp(λn(x + y))− 1
ρnλn (4.6)

in D′((0, 1)2) as a function of x and y, and we can differentiate termwise the right hand side of
(4.6) in D′((0, 1)2) to obtain

∂v(x + y)
∂x

=
N∑

i=1

mi∑

j=1

αi
j

ρi

(
exp

(
λi(x + y)

) j∑

k=1

(x + y)j−k

(j − k)!

)
+

∑

n∈Z

1
ρn

exp (λn(x + y))
(4.7)

Similarly we can obtain that in D′((0, 1)2)

∂v(x− y)
∂x

=
N∑

i=1

mi∑

j=1

αi
j

ρi

(
exp

(
λi(x− y)

) j∑

k=1

(x− y)j−k

(j − k)!

)
+

∑

n∈Z

1
ρn

exp (λn(x− y)),
(4.8)

−∂v(−x + y)
∂x

=
N∑

i=1

mi∑

j=1

αi
j

ρi

(
exp

(
λi(−x + y)

) j∑

k=1

(−x + y)j−k

(j − k)!

)
+

∑

n∈Z

1
ρn

exp (λn(−x + y))
(4.9)

and

−∂v(−x− y)
∂x

=
N∑

i=1

mi∑

j=1

αi
j

ρi

(
exp

(
λi(−x− y)

) j∑

k=1

(−x− y)j−k

(j − k)!

)
+

∑

n∈Z

1
ρn

exp (λn(−x− y)).
(4.10)

From (4.7)–(4.10), we have

∂v(x + y)
∂x

+
∂v(x− y)

∂x
− ∂v(−x + y)

∂x
− ∂v(−x− y)

∂x

=
N∑

i=1

mi∑

j=1

αi
j

ρi

(
exp

(
λi(x + y)

) j∑

k=1

(x + y)j−k

(j − k)!
+ exp

(
λi(x− y)

) j∑

k=1

(x− y)j−k

(j − k)!

)

+
∑

n∈Z

1
ρn

(
exp

(
λn(x + y)

)
+ exp

(
λn(x− y)

))

+
N∑

i=1

mi∑

j=1

αi
j

ρi

(
exp

(
λi(−x + y)

) j∑

k=1

(−x + y)j−k

(j − k)!
+ exp

(
λi(−x− y)

) j∑

k=1

(−x− y)j−k

(j − k)!

)

+
∑

n∈Z

1
ρn

(
exp

(
λn(−x + y)

)
+ exp

(
λn(−x− y)

))
.

(4.11)
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On the other hand, since by (2.14) θk(x, λ) =
1
2

(
exp(λx) + (−1)k exp(−λx)

)
, we see by (4.5) that

G11(x, y)

=
1
4

N∑

i=1

mi∑

j=1

1
ρi





mi∑

k=j

αi
k

(
exp(λix)

xk−j

(k − j)!
+ exp(−λix)

(−x)k−j

(k − j)!

)



×
{

j−1∑

l=0

(
exp(λiy)

yl

l!
+ exp(−λiy)

(−y)l

l!

)}

+
1
4

∑

n∈Z

1
ρn

{
exp

(
λn(x + y)

)
+ exp

(
λn(x− y)

)

+exp
(
λn(−x + y)

)
+ exp

(
λn(−x− y)

)}
.

(4.12)

Therefore, by (4.4), (4.11) and (4.12), we see that V11 = F11 holds if and only if

N∑

i=1

mi∑

j=1

1
ρi





mi∑

k=j

αi
k

(
exp(λix)

xk−j

(k − j)!
+ exp(−λix)

(−x)k−j

(k − j)!

)



×
{

j−1∑

l=0

(
exp(λiy)

yl

l!
+ exp(−λiy)

(−y)l

l!

)}

=
N∑

i=1

mi∑

j=1

αi
j

ρi

(
exp

(
λi(x + y)

) j∑

k=1

(x + y)j−k

(j − k)!
+ exp

(
λi(x− y)

) j∑

k=1

(x− y)j−k

(j − k)!

)

+
N∑

i=1

mi∑

j=1

αi
j

ρi

(
exp

(
λi(−x + y)

) j∑

k=1

(−x + y)j−k

(j − k)!
+ exp

(
λi(−x− y)

) j∑

k=1

(−x− y)j−k

(j − k)!

)
.
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It is equivalent to show that for any 1 ≤ i ≤ N

I1 :=
mi∑

j=1

αi
j

{
j∑

k=1

(
exp(λix)

xj−k

(j − k)!
+ exp(−λix)

(−x)j−k

(j − k)!

)}

×
{

k−1∑

l=0

(
exp(λiy)

yl

l!
+ exp(−λiy)

(−y)l

l!

)}

=
mi∑

j=1

αi
j

(
exp

(
λi(x + y)

) j∑

k=1

(x + y)j−k

(j − k)!
+ exp

(
λi(x− y)

) j∑

k=1

(x− y)j−k

(j − k)!

)

+
mi∑

j=1

αi
j

(
exp

(
λi(−x + y)

) j∑

k=1

(−x + y)j−k

(j − k)!
+ exp

(
λi(−x− y)

) j∑

k=1

(−x− y)j−k

(j − k)!

)

=: I2.

Since first changing the order of summation on j, k and then exchanging k with j, we have

mi∑

j=1





mi∑

k=j

αi
k

(
exp(λix)

xk−j

(k − j)!
+ exp(−λix)

(−x)k−j

(k − j)!

)



×
{

j−1∑

l=0

(
exp(λiy)

yl

l!
+ exp(−λiy)

(−y)l

l!

)}

=
mi∑

j=1

αi
j

{
j∑

k=1

(
exp(λix)

xj−k

(j − k)!
+ exp(−λix)

(−x)j−k

(j − k)!

)}

×
{

k−1∑

l=0

(
exp(λiy)

yl

l!
+ exp(−λiy)

(−y)l

l!

)}
.
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On one hand, we have
j∑

k=1

(
exp(λix)

xj−k

(j − k)!
+ exp(−λix)

(−x)j−k

(j − k)!

)

×
k−1∑

l=0

(
exp(λiy)

yl

l!
+ exp(−λiy)

(−y)l

l!

)

=
j∑

k=1

k−1∑

l=0

(
exp

(
λi(x + y)

) xj−k

(j − k)!
yl

l!
+ exp

(
λi(x− y)

) xj−k

(j − k)!
(−y)l

l!

)

+
j∑

k=1

k−1∑

l=0

(
exp

(
λi(−x + y)

) (−x)j−k

(j − k)!
yl

l!
+ exp

(
λi(−x− y)

) (−x)j−k

(j − k)!
(−y)l

l!

)
.

On the other hand, for any a, b ∈ R we have
j∑

k=1

(a + b)j−k

(j − k)!
=

j∑

k=1

j−k∑

l=0

aj−k−l

(j − k − l)!
bl

l!

=
j∑

s=1

∑
k+l=s
k,l≥0

aj−k−l

(j − k − l)!
bl

l!
=

j∑
s=1

aj−s

(j − s)!

s−1∑

l=0

bl

l!
.

Then, comparing the coefficients of exp
(
λi(·)) in I1 and I2, we see that V11 = F11. Similarly we

can prove V12 = F12, V21 = F21 and V22 = F22.

Third step: Now we prove that (1.6) is uniquely solvable. Note that it follows from Propo-

sition 2.4 that V = F ∈ (
C1(Ω)

)4
, ∈

(
C1

(
(0, 1)2\Ω

))4

. For fixed x ∈ (0, 1] the integral equation
(1.6) is a Fredholm equation of the second kind with respect to M(x, y). By Fredholm’s alternative
theorem, for the solvability of (1.6), it is sufficient to show that for fixed x ∈ (0, 1] (x = 0 is trivial)
the corresponding homogeneous equation has only the trivial solution, which is equivalent to show
the following:





the 1× 2 vector-valued continuous function m(y) satisfying

m(y) +
∫ x

0

m(τ)F (τ, y)dτ = 0, 0 ≤ y ≤ x ≤ 1

is nothing but the zero vector.

(4.13)

First we point out that in fact m(y) ∈ (C1[0, x])2 by the continuous differentiability of F (τ, y). Let
n ∈ (C1[0, x])2 be arbitrary 2× 1 vector-valued function. Next we set

J [m, n] =
∫ x

0

m(y)n(y)dy +
∫ x

0

∫ x

0

m(τ)F (τ, y)n(y)dτdy.

For J [m, n], we show

Lemma 4.2. It holds that J [m, n] =
N∑

i=1

mi∑

j=1

Gi∗
j (m)Gi

j(n)
ρi

+
∑

n∈Z

G∗n(m)Gn(n)
ρn

,
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where
Gi∗

j (m) =
∫ x

0

m(τ)S∗(j)(τ, λ
i)dτ , Gi

j(n) =
∫ x

0

ST
(j)(y, λi)n(y)dy,

G∗n(m) =
∫ x

0

m(τ)S∗(τ, λn)dτ , Gn(n) =
∫ x

0

ST (y, λn)n(y)dy.

Proof. First we should note that, from the definition of F (·, ·) and Proposition 2.4, it follows
that

J [m, n] =
∫ x

0

m(y)n(y)dy +
N∑

i=1

mi∑

j=1

∫ x

0

∫ x

0

m(τ)
S∗(j)(τ, λ

i)ST
(j)(y, λi)

ρi
n(y)dτdy

+
∑

n∈Z

∫ x

0

∫ x

0

m(τ)

{
S∗(τ, λn)ST (y, λn)

ρn
− S∗(τ, µn)ST (y, µn)

}
n(y)dτdy

Then the Parseval equality with respect to A0 completes the proof of Lemma 4.2. ¤

Lemma 4.3. If there exists a 1 × 2 vector-valued function m ∈ (C1[0, x])2 such that for any
2× 1 vector-valued function n ∈ (C1[0, x])2

N∑

i=1

mi∑

j=1

Gi∗
j (m)Gi

j(n)
ρi

+
∑

n∈Z

G∗n(m)Gn(n)
ρn

= 0,

then m ≡ 0.
Proof. First by the transformation formulae (see Lemma 4.1 in [9] with µ = ν = 0)

S∗(j)(·, λi) = X(−PT , 0, 0)ϕi∗
j (·), S(j)(·, λi) = X(P, 0, 0)ϕi

j(·),

S∗n(·, λn) = X(−PT , 0, 0)ϕ∗n(·), Sn(·, λn) = X(P, 0, 0)ϕn(·),
it follows from change of the order of integrals that

Gi∗
j (m) =

∫ x

0

{
m(τ)R(−PT , 0)(τ) +

∫ x

τ

m(t)K(−PT , 0, 0)(t, τ)dt

}
ϕi∗

j (τ)dτ ,

Gi
j(n) =

∫ x

0

(
ϕi

j(y)
)T

{
R(P, 0)(y)n(y) +

∫ x

y

KT (P, 0, 0)(t, y)n(t)dt

}
dy,

G∗n(m) =
∫ x

0

{
m(τ)R(−PT , 0)(τ) +

∫ x

τ

m(t)K(−PT , 0, 0)(t, τ)dt

}
ϕ∗n(τ)dτ ,

Gn(n) =
∫ x

0

(ϕn(y))T

{
R(P, 0)(y)n(y) +

∫ x

y

KT (P, 0, 0)(t, y)n(t)dt

}
dy.
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Therefore, the Parseval equality with respect to AP yields

N∑

i=1

mi∑

j=1

Gi∗
j (m)Gi

j(n)
ρi

+
∑

n∈Z

G∗n(m)Gn(n)
ρn

=
∫ x

0

{
m(y)R(−PT , 0)(y) +

∫ x

y

m(t)K(−PT , 0, 0)(t, y)dt

}

×
{

R(P, 0)(y)n(y) +
∫ x

y

KT (P, 0, 0)(t, y)n(t)dt

}
dy

=
∫ x

0

{
m(y) +

∫ x

y

m(t)K(−PT , 0, 0)(t, y)R(P, 0)(y)dt

}

×
{

n(y) +
∫ x

y

R(0, P )(y)KT (P, 0, 0)(t, y)n(t)dt

}
dy.

The last identity follows from R(−PT , 0)(·) = R(0, P )(·) = R−1(P, 0)(·).
By the assumption we see that

m(y) +
∫ x

y

m(t)K(−PT , 0,−µ)(t, y)R(P, 0)(y)dt = 0,

which is a Volterra integral equation with a continuous kernel, and therefore m(y) ≡ 0. ¤

(4.13) follows easily from Lemma 4.2 and Lemma 4.3. Consequently (1.6) admits a unique
solution. Moreover, this solution is of

(
C1(Ω)

)4
(for the proof see, e.g., Levitan and Sargsjan [5]).

Thus the proof of Theorem 1 is complete. ¤
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