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Abstract
In this paper we consider the stability of the inverse problem of determining a function

q(x) in a wave equation∂2
t u − ∆u + q(x)u = 0 in a bounded smooth domain inRn from

boundary observations. This information is enclosed in the hyperbolic (dynamic) Dirichlet-
to-Neumann map associated to the solutions to the wave equation. We prove in the case
of n ≥ 2 thatq(x) is uniquely determined by the range restricted to a subboundary of the
Dirichlet-to-Neumann map whose stability is a type of double logarithm.

1 Introduction

Let Ω ⊂ Rn be a bounded domain withC∞ boundaryΓ = ∂Ω. Throughout this paper we
assume that the spatial dimensionn ≥ 2. We consider the following initial boundary value
problem for the wave equation,






(∂2
t − ∆ + q(x))u(t, x) = 0 in Q ≡ (0, T ) × Ω,

u(0, x) = 0, ∂tu(0, x) = 0 in Ω,

u(t, x) = f(t, x) on Σ ≡ (0, T ) × Γ,

(1.1)

where a functionq(x) is assumed inW 1,∞(Ω). It is well known (see [19], [21]) that iff ∈
H1(Σ) andf(0, x) = 0, there exists a unique solutionu ∈ C([0, T ];H1(Ω))∩C1([0, T ];L2(Ω))
with ∂νu ∈ L2(Σ) to (1.1). Hereν(x) denotes the unit outward normal toΓ at x and we set
∂νu = ∇u · ν. We denote the solution to (1.1) byuq. Therefore we can define the Dirichlet-to-
Neumann map

Λq : H1(Σ) −→ L2(Σ)
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f 7−→ ∂νuq (1.2)

Using an energy estimate, one can prove thatΛq is continuous fromH1(Σ) toL2(Σ) (e.g., [19]).
The inverse problem is whether knowledge of the Dirichlet-to-Neumann map on a particular
subset of the boundary determines a functionq uniquely.

From the physical viewpoint, our inverse problem consists in determining the properties e.g.,
a dispersion term of an inhomogeneous medium by probing it with disturbances generated on
the boundary. The data are responses of the medium to these disturbances which are measured
on a suitable suboundary, and the goal is to recoverq(x) which describes the property of the
medium. Here we assume that the medium is quiet initially, andf is a disturbance which is
used to probe the medium. Roughly speaking, the data is∂νu measured on a subboundary for
different choices off .

Rakesh and Symes [25] uses complex geometrical optics solutions concentrating near lines
with any directionω ∈ S

n−1 to prove thatΛq determinesq(x) uniquely. In [25],Λq gives equiv-
alent information to the responses on the whole boundary for all the possible input disturbances.
Ramm and Sjöstrand [26] has extended the result in [25] to the case ofq depending onx and
t. Isakov [12] has considered the simultaneous determination of a zeroth order coefficient and
a damping coefficient. A key ingredient in the existing results, is the construction of complex
geometric optics solutions of the wave equation, concentrated along a line, and the relationship
between the hyperbolic Dirichlet-to-Neumann map and the X-ray transform play a crucial role.

The uniqueness by a local Dirichlet-to-Neumann map is solved well (e.g., Belishev [1],
Katchlov, Kurylev and Lassas [15], Kurylev and Lassas [18]). However the stability by a local
Dirichlet-to-Neumann map is not discussed comprehensively. For it, see Isakov and Sun [14]
where a local Dirichet-to-Neumann map yields a stability result in determining a coefficient in a
subdomain. In the case where the Dirichlet-to-Neumann map is considered on the whole lateral
boundaryΣ, the stability is established in Cipolatti and Lopez [9], Stefanov and Uhlmann [28],
Sun [29].

As for results by a finite number of data of Dirichlet-to-Neumann map, see Cheng and Naka-
mura [8], Cipolatti and Lopez [9], Rakesh [24]. There are very many works on Dirichlet-to-
Neumann maps, and so our references are far from being perfect, and see Cardoso and Mendoza
[7], Rachele [23], Romanov [27], Uhlmann [30] as related papers.

In this paper we prove alog log-type estimate which shows that a dispersion termq depends
stably on the Dirichlet-to-Neumann map even when the boundary measurement is taken only
on a subbundary which is slightly larger than the half of the boundaryΓ.

Our inverse problem is formulated with many boundary measurements. On the other hand,
as for a different formulation of inverse problems with a single measurement, the main method-
ology is based on anL2-weighted inequality called a Carleman estimate, and was introduced
by Bukhgeim and Klibanov [4]. Furthermore, as for applications of Carleman estimates to in-
verse problems, we can refer to Bellassoued [2], Imanuvilov and Yamamoto [11], Isakov [13],
Klibanov [16], Klibanov and Timonov [17]. Most of those papers treat the determination of
spatially varying functions by a single measurement. As for observability inequalities by means
of a Carleman estimate, see [17].
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In order to formulate our result, we need to introduce some notations. Henceforth we arbi-
trarily choose

ω0 ∈ S
n−1 ≡ {ω ∈ R

n; |ω| = 1}
and fixε > 0. By (x · y) we denote the scalar product ofx, y ∈ R

n and set

Γ+,ε(ω0) = {x ∈ Γ; (ν(x) · ω0) > ε} , Γ−,ε(ω0) = Γ\Γ+,ε(ω0),

Σ+,ε(ω0) = (0, T ) × Γ+,ε(ω0), Σ−,ε(ω0) = Σ\Σ+,ε(ω0).

We also writeΓ+(ω0) = Γ+,0(ω0), Σ+(ω0) = Σ+,0(ω0) as well asΓ−(ω0) = Γ−,0(ω0) and
Σ−(ω0) = Σ−,0(ω0).
We introduce the local Dirichlet-to-Neumann map by

Λ′
q : H1(Σ) −→ L2(Σ−,ε(ω0))

f 7−→ Λ′
q(f) = ∂νuq

∣∣∣
Σ−,ε(ω0)

. (1.3)

By
∥∥Λ′

q1
− Λ′

q2

∥∥ we denote the operator norm.
The main result of this paper can be stated as follows.

Theorem 1 Assume thatT > diamΩ. Let q1, q2 ∈ Hα(Ω), α > n
2

+ 1, such that‖qj‖Hα(Ω)
≤

M . Then there exist constantsC > 0 ands1, s2 ∈ (0, 1) such that

‖q1 − q2‖L∞(Ω) ≤ C
[∥∥Λ′

q1
− Λ′

q2

∥∥s1 +
(
log

∣∣log
∥∥Λ′

q1
− Λ′

q2

∥∥∣∣)−s2
]
, (1.4)

whereC depends onΩ,M , ε, n, α ands1, s2.

Our proof is inspired by techniques used by Bukhgeim and Uhlmann [5] which proves a
uniqueness theorem from an inverse problem for an elliptic equation. Their idea in turn goes
back to the work of Calderón [6]. Our problem turns out to be easier because geometric optics
solutions interact with the interior ofΩ in the hyperbolic case but not in the elliptic case. The
main idea is to probe the medium by real geometric optics solutions of the wave equation,
concentrated along a line, starting on one side of the boundary, and measure responses of the
medium on other side of the boundary. A response gives a line integral ofq.

The plan of this paper is as follows. Some basic lemmata are given in section 2. Section 3
is devoted to the proof of Theorem 1.

2 Preliminaries

In this section we collect some results from [3] which are needed in the proof of Theorem 1.
The first one is the Carleman estimate for the hyperbolic operator∂2

t − ∆ + q(x). For fixed
ω ∈ S

n−1, we introduce the functionsφj, j = 1, 2, defined by

φ1(t, x;ω) = x · ω + t, φ2(t, x;ω) = x · ω − (T − t), ω ∈ S
n−1.

Then we have the following Carleman type estimate:
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Lemma 2.1 ([3]) Let q ∈ L∞(Ω) such that‖q‖L∞(Ω) ≤ M . There exist constantsλ0 > 0 and
C > 0 such that forj = 1, 2, the following estimate holds true:

∫

Q

e−2λφj(t,x;ω)(λ2 |u|2 + |∇u|2)dxdt+ λ

∫

Σ+(ω)

(ω · ν)e−2λφj(t,x;ω) |∂νu|2 dσdt

≤ C

∫

Q

e−2λφj(t,x;ω)
∣∣(∂2

t − ∆ + q(x)
)
u
∣∣2 dxdt− λ

∫

Σ−(ω)

(ω · ν)e−2λφj(t,x;ω) |∂νu|2 dσdt

for everyu ∈ H2(Q) with u|Σ = 0, u|t=0 = ∂tu|t=0 = 0 andλ ≥ λ0.

Using Lemma 2.1 and a Carleman estimate in Sobolev spaces of negative order proved in [3]
we are able to construct real geometric optics solutions for the wave operator, which are crucial
ingredients in the proof of Theorem 1. In this section, we precise and explain the existence of
exponentially growing solutions. By selecting suitably small̺ > 0, we assume that

T > diamΩ + 4̺. (2.1)

Denote
Ω̺ =

{
x ∈ R

n\Ω; dist(x,Ω) < ̺
}
.

Henceforthq ∈ Hα(Ω) is regarded as a function inHα(Rn) with ‖q‖Hα(Rn) ≤ C‖q‖Hα(Ω) by
the zero extension toRn \ (Ω ∪ Ω̺).

Letχ ∈ C∞
0 (Ω̺). Then we have

suppχ ∩ Ω = ∅, (suppχ± Tω) ∩ Ω = ∅. (2.2)

Let
χ1(t, x) = χ(x+ tω), χ2(t, x) = χ(x− (T − t)ω).

Lemma 2.2 ([3]) Let q ∈ Hα(Ω) such that‖q‖Hα(Ω) ≤ M andω ∈ Sn−1. Forλ large enough
we can construct a special solutionu(j) of

(∂2
t − ∆ + q(x))u(t, x) = 0 in Q, u|t=0 = ∂tu|t=0 = 0 in Ω

in the form
u(j)(t, x) = eλφj(t,x;ω)

(
χj(t, x) + ψ(j)

q (t, x;λ)
)
, j = 1, 2,

whereψ(j)
q satisfies

∥∥ψ(j)
q (·, ·;λ)

∥∥
L2(0,T ;Hk(Ω))

≤ C

λ1−k
‖χ‖H5(Rn) ; k = 0, 1, 2,

whereC > 0 depends only onΩ, T andM .

We can similarly prove
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Lemma 2.3 ([3]) Let q ∈ Hα(Ω) such that‖q‖Hα(Ω) ≤ M andω ∈ S
n−1. Forλ large enough

we can construct a special solutionu(j) of

(∂2
t − ∆ + q(x))u(t, x) = 0 in Q, u|t=T = ∂tu|t=T = 0 in Ω

in the form
u(j)(t, x) = e−λφj(t,x;ω)

(
χj(t, x) + ψ(j)

q (t, x;λ)
)
; j = 1, 2,

whereψ(j)
q satisfies

∥∥ψ(j)
q (·, ·;λ)

∥∥
L2(0,T ;Hk(Ω))

≤ C

λ1−k
‖χ‖H5(Rn) , k = 0, 1, 2,

whereC > 0 depends only onΩ, T andM .

We will apply this lemmas withφj(t, x, ω) whereω varies in a neighbourhood aroundω0 on
Sn−1 and estimate the Fourier transform ofq1 − q1 in a conic subset ofRn. In order to extend
the estimate on the conic subset to an estimate on the ball, we use an idea of Heck and Wang
[10] and conditional stability for analytic continuation established by Vessella [31].

3 Stability Estimate

In this section, we complete the proof of Theorem 1. The key is the combination of the exponen-
tially growing solutions of equation (1.1) and theX-ray transform. We shall use the following
notations. Forε > 0 andω0 ∈ S

n−1, by

Vε(ω0) =
{
ω ∈ S

n−1; |ω − ω0| <
ε

2

}

we denote a neighbourhood aroundω0 onSn−1. Then for eachω ∈ Vε(ω0)

Σ−, ε
2
(ω) ⊂ Σ−,ε(ω0).

3.1 Preliminary estimate

Lemma 3.1 Let q1, q2 ∈ Hα(Ω) such that‖qj‖Hα(Ω) ≤M andq = q2 − q1. There existβ > 0,
C > 0 such that for anyω ∈ Vε(ω0) andχ ∈ C∞

0 (Ω̺) the following estimates holds true:
∣∣∣∣
∫ T

−T

∫Rn

χ2(x)q(x+ tω)dxdt

∣∣∣∣ ≤ C

(
1√
λ
‖q‖L∞(Ω) + eβλ

∥∥Λ′
q1
− Λ′

q2

∥∥
)
‖χ‖2

H5(Rn) . (3.1)

for any sufficiently largeλ > 0. HereC depends only onΩ, T andM .

Proof . For λ sufficiently large, Lemma 2.2 guarantees the existence of the exponentially
growing solutionsu(j)

2 , j = 1, 2, to
(
∂2
t − ∆ + q2(x)

)
u(t, x) = 0 in Q, u(0, ·) = ∂tu(0, ·) = 0 in Ω

5



in the form
u

(j)
2 (t, x) = eλφj(t,x;ω)

(
χj(t, x) + ψ(j)

q2
(t, x, λ)

)
, (3.2)

whereψ(j)
q2 satisfies

∥∥ψ(j)
q2

(·, ·, λ)
∥∥
L2(0,T ;Hk(Ω))

≤ C

λ1−k
‖χ‖H5(Rn) , k = 0, 1, 2. (3.3)

By u(j)
1 , j = 1, 2, we denote the solutions to






(∂2
t − ∆ + q1(x))u

(j)
1 = 0, in Q,

u
(j)
1 (0, x) = ∂tu

(j)
1 (0, x) = 0, in Ω,

u
(j)
1 (t, x) = u

(j)
2 (t, x) := fj,λ(t, x), on Σ.

Defining
u(j) = u

(j)
1 − u

(j)
2 , q(x) = q2(x) − q1(x),

we have 




(∂2
t − ∆ + q1(x))u

(j) = q(x)u
(j)
2 , in Q,

u(j)(0, x) = ∂tu
(j)(0, x) = 0, in Ω,

u(j)(t, x) = 0, on Σ.

For sufficiently largeλ, Lemma 2.3 guarantees the existence of exponentially growing solutions
v(j) to the backward wave equation

(
∂2
t − ∆ + q1(x)

)
v(t, x) = 0, (t, x) ∈ Q, v(T, x) = ∂tv(T, x) = 0, x ∈ Ω,

of the form
v(j)(t, x) = e−λφj(t,x;ω)

(
χj(t, x) + ψ(j)

q1
(t, x, λ)

)
, (3.4)

corresponding toq1 andφj, j = 1, 2, whereψ(j)
q1 satisfies

∥∥ψ(j)
q1

(·, ·;λ)
∥∥
L2(0,T ;Hk(Ω))

≤ C

λ1−k
‖χ‖H5(Rn) , k = 0, 1, 2. (3.5)

Integrating by parts and using the Green’s formula, we obtain
∫

Q

[(
∂2
t − ∆ + q1(x)

)
u(j)(t, x)

]
v(j)(t, x)dxdt =

∫

Q

q(x)u
(j)
2 (t, x)v(j)(t, x)dxdt

=

∫

Σ

∂νu
(j)(t, x)v(j)(t, x)dσdt. (3.6)

It follows from (3.2), (3.4) and (3.6) that
∫

Q

q(x)χ2
j (t, x)dxdt+

∫

Q

q(x)χj(t, x)(ψ
(j)
q1

(t, x;λ) + ψ(j)
q2

(t, x;λ))dxdt
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+

∫

Q

q(x)ψ(j)
q1

(t, x;λ)ψ(j)
q2

(t, x;λ)dxdt

=

∫

Σ+,ε/2(ω)

∂νu
(j)(χj(t, x) + ψq1(t, x))e

−λφj(t,x;ω)dσdt

+

∫

Σ−,ε/2(ω)

∂νu
(j)(t, x)v(j)(t, x)dσdt. (3.7)

Since (3.3) and (3.5) imply
∣∣∣∣
∫

Q

q(x)χj(t, x)(ψ
(j)
q1

(t, x;λ) + ψ(j)
q2

(t, x;λ))dxdt

∣∣∣∣ ≤
C

λ
‖χ‖L2(Rn) ‖χ‖H5(Rn)

and ∣∣∣∣

∫

Q

q(x)ψ(j)
q1

(t, x;λ)ψ(j)
q2

(t, x;λ)dxdt

∣∣∣∣ ≤
C

λ2
‖χ‖2

H5(Rn) .

Furthermore we have
∣∣∣∣∣

∫

Σ−,ε/2(ω)

∂νu
(j)(t, x)v(j)(t, x)dσdt

∣∣∣∣∣ ≤ ‖∂νu(j)‖L2(Σ−,ε/2(ω))‖v(j)‖L2(Σ−,ε/2(ω))

≤
∥∥v(j)

∥∥
L2(0,T ;H1(Ω))

∥∥∂νu(j)
∥∥
L2(Σ−,ε/2(ω))

≤ Ceβ1λ ‖χ‖H5(Rn) ‖Λ′
q1

(f jλ) − Λ′
q2

(f jλ)‖L2(Σ−,ε/2(ω)) (3.8)

for some positive constantsC andβ1.
By the wave equation, we have

‖∂2
t u

(j)
2 ‖L2(Q) ≤ C‖u(j)

2 ‖L2(0,T ;H2(Ω)),

and so
‖u(j)

2 ‖H2(Q) ≤ C‖u(j)
2 ‖L2(0,T ;H2(Ω)).

Hence (3.2) and (3.3) yield

‖u(j)
2 ‖H2(Q) ≤ Cλeβ1λ‖χ‖H5(Rn).

Moreover, sinceω ∈ Vε(ω0), we obtainΣ−,ε/2(ω) ⊂ Σ−,ε(ω0) and
∥∥Λ′

q1
(f jλ) − Λ′

q2
(f jλ)

∥∥
L2(Σ−,ε/2(ω))

≤
∥∥Λ′

q1
(f jλ) − Λ′

q2
(f jλ)

∥∥
L2(Σ−,ε(ω0))

≤ ‖Λ′
q1
− Λ′

q2
‖‖f jλ‖H1(Σ)

≤ ‖Λ′
q1
− Λ′

q2
‖‖u(j)

2 ‖H2(Q)

≤ Ceβ2λ ‖χ‖H5(Rn) ‖Λ′
q1
− Λ′

q2
‖. (3.9)

Hence, by (3.7), we obtain
∣∣∣∣
∫

Q

q(x)χ2
j (t, x)dxdt

∣∣∣∣ ≤ C

λ
‖χ‖2

H5(Rn) + C ‖χ‖H5(Rn) ‖e−λφj∂νu
(j)‖L2(Σ+,ε/2(ω))
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+Ceβ3λ ‖χ‖2
H5(Rn) ‖Λ′

q1
− Λ′

q2
‖. (3.10)

By Lemma 2.1, we obtain

ελ

∫

Σ+,ε/2(ω)

∣∣∂νu(j)
∣∣2 e−2λφj(t,x;ω)dxdt ≤ λ

∫

Σ+(ω)

(ω · ν)
∣∣∂νu(j)

∣∣2 e−2λφj(t,x;ω)dσdt

≤ C

∫

Q

∣∣∣q(x)u(j)
2 (x, t)

∣∣∣
2

e−2λφj(t,x;ω)dxdt+ Ceβ4λ

∫

Σ−(ω)

∣∣∂νu(j)
∣∣2 dσdt

≤ C

∫

Q

∣∣q(x)
(
χj(t, x) + ψ(j)

q2
(t, x, λ)

)∣∣2 dxdt +Ceβ5λ

∫

Σ−(ω)

∣∣∂νu(j)
∣∣2 dσdt

≤ C ‖χ‖2
H5(Rn) +Ceβ5λ

∫

Σ−(ω)

∣∣∂νu(j)
∣∣2 dσdt

≤ C ‖χ‖2
H5(Rn) +Ceβ5λ‖Λ′

q1
(f jλ) − Λ′

q1
(f jλ)‖2

L2(Σ−(ω)).

Using again (3.9), we obtain
∫

Σ+,ε/2(ω)

∣∣∂νu(j)
∣∣2 e−2λφj(t,x;ω)dxdt ≤ C

(
1

λ
+ eβ6λ‖Λ′

q1
− Λ′

q2
‖2

)
‖χ‖2

H5(Rn) .

Hence it follows from (3.9) and (3.10) that
∣∣∣∣
∫

Q

q(x)χ2
j(t, x)dxdt

∣∣∣∣ ≤
C√
λ
‖χ‖2

H5(Rn) + Ceβ7λ ‖χ‖2
H5(Rn) ‖Λ′

q1
− Λ′

q2
‖.

Therefore we obtain

∣∣∣∣

∫ T

−T

∫Rn

χ2(x)q(x + tω)dxdt

∣∣∣∣ ≤
2∑

j=1

∣∣∣∣

∫

Q

q(x)χ2
j (t, x)dxdt

∣∣∣∣

≤ C

(
1√
λ

+ eβλ‖Λ′
q1
− Λ′

q2
‖
)
‖χ‖2

H5(Rn) .

This completes the proof of the lemma.

3.2 X-ray transform

The X-ray transformP maps a function inRn into the set of its line integrals. More precisely,
if ω ∈ S

n−1 andx ∈ R
n,

P(f)(ω, x) :=

∫Rf(x+ sω)ds,

is the integral off over the straight line throughx with the directionω. It is easy to see that
P(f)(ω, x) does not change ifx is moved in the directionω. Therefore we normally restrict
x to ω⊥ = {θ ∈ Rn; θ · ω = 0}, and we can considerP as a function on the tangent bundle
T =

{
(ω, x) : ω ∈ Sn−1, x ∈ ω⊥

}
(e.g., Natterer [22]).
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Lemma 3.2 There exist constantsC > 0, µ > 0, δ > 0 andλ0 > 0 such that for allω ∈ Vε(ω0)
we have

|P(q)(ω, y)| ≤ C

λδ
‖q‖L∞(Ω) + Ceµλ

∥∥Λ′
q1
− Λ′

q2

∥∥ , a.ey ∈ R
n

for anyλ ≥ λ0.

Proof . Let θ ∈ C∞
0 (Rn) be a positive function which is supported in the unit ball and

‖θ‖L2(Rn) = 1. Define

χh(x) = h−n/2θ

(
x− y

h

)

wherey ∈ Ω̺ andh > 0 is sufficiently small.
Put

r(x, ω) =

∫ T

−T

q(x− tω)dt.

Then we have

|r(y, ω)| =

∣∣∣∣
∫Rn

χ2
h(x)r(y, ω)dx

∣∣∣∣ ≤
∣∣∣∣
∫Rn

χ2
h(x)r(x, ω)dx

∣∣∣∣

+

∣∣∣∣
∫Rn

χ2
h(x)(r(y, ω) − r(x, ω))dx

∣∣∣∣ .

SinceHα(Ω) ⊂ C1(Ω) byα > n
2

+ 1 and‖q‖Hα(Ω) ≤M , we have

|r(y, ω) − r(x, ω)| ≤ C |x− y| .

Applying Lemma 3.1 withχ = χh, we obtain

|r(y, ω)| ≤ C

(
1√
λ

+ eµλ
∥∥Λ′

q1
− Λ′

q2

∥∥
)
‖χh‖2

H5(Rn) + C

∫Rn

|x− y|χ2
h(x)dx. (3.11)

On the other hand, we have

‖χh‖H5(Rn) ≤ Ch−5,

∫Rn

|x− y|χ2
h(x)dx ≤ Ch.

Then by (3.1) and (3.11), we have for allω ∈ Vε(ω0)

∣∣∣∣
∫ T

−T

q(y − tω)dt

∣∣∣∣ ≤
C√
λ
h−10 + Ch−10eµλ

∥∥Λ′
q1
− Λ′

q2

∥∥ +Ch, a.ey ∈ Ω̺.

We selecth such that

h =
1√
λ
h−10.

Then there exist constantsδ > 0 andβ > 0 such that
∣∣∣∣

∫ T

−T

q(y + tω)dt

∣∣∣∣ ≤
C

λδ
+ Ceβλ

∥∥Λ′
q1
− Λ′

q2

∥∥ , a.ey ∈ Ω̺.
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SinceT > DiamΩ andq|Rn\(Ω∪Ω̺) = 0, we obtain for allω ∈ Vε(ω0)

|P(q)(ω, y)| =

∣∣∣∣
∫Rq(y + tω)dt

∣∣∣∣ ≤
C

λδ
+Ceβλ

∥∥Λ′
q1
− Λ′

q2

∥∥ , a.ey ∈ R
n,

so that the proof of the lemma is completed.

Let
Kε =

⋃

ω∈V(ω0)

ω⊥,

and let

f̂(ξ) = (Ff)(ξ) = (2π)−
n−1

2

∫

ω⊥

f(x)e−ix·ξdσx

for f ∈ L1(ω⊥) wheredσx is the(n − 1)-dimensional standard volume element onx ∈ ω⊥,
while

q̂(ξ) = (2π)−
n
2

∫Rn

q(y)e−iy·ξdy

for q ∈ L1(Rn).

Lemma 3.3 There exist constantsC > 0, µ > 0, δ > 0 andλ0 > 0 such that

|q̂(ξ)| ≤ C

λδ
‖q‖L∞(Ω) + Ceµλ

∥∥Λ′
q1
− Λ′

q2

∥∥ , ξ ∈ Kε

for anyλ ≥ λ0.

Proof . Let q ∈ L1(Rn). By the change of variabley = x + tω ∈ ω⊥ ⊕ Rω = R
n with

dy = dσdt, noting thatξ ∈ ω⊥ impliesx · ξ = x · ξ + tω · ξ = y · ξ, we have

F(Pq(ω, ·))(ξ) = (2π)−
n−1

2

∫

ω⊥

∫Rq(x+ tω)e−ix·ξdtdσ

=
√

2π(2π)−
n
2

∫Rn

q(y)e−iy·ξdy =
√

2πq̂(ξ), ξ ∈ ω⊥

(e.g., [22]). ForR > 0 such thatΩ ⊂ B(0, R), we obtain

F(P(q)(ω, ·))(ξ) = (2π)−
n−1

2

∫

ω⊥∩B(0,R)

P(q)(ω, x)e−ix·ξdx =
√

2πq̂(ξ).

In terms of Lemma 3.2, the proof is completed.
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3.3 Proof of the stability estimate

LetB(0, ρ) = {x ∈ Rn; |x| < ρ} and|γ| = γ1 + · · · + γn for γ ∈ (N ∪ {0})n.

Lemma 3.4 ([31]) Let W be an open set ofB(0; 1), andF an analytic function inB(0; 2)
having the following property: there exist constantsM, η > 0 such that

‖∂γF‖L∞(B(0,2)) ≤
M |γ|!
η|γ|

, ∀γ ∈ (N ∪ {0})n.

Then
‖F‖L∞(B(0,1)) ≤ (2M)1−µ

(
‖F‖L∞(W)

)µ
,

whereµ ∈ (0, 1) depends onn, η and|W|.

The lemma is conditional stability for the analytic continuation, and see Lavrent’ev, Romanov
and Shishat·skĭı[20] for classical results.

For fixedτ > 0 andq ∈ L1(Rn), let us setFτ (ξ) = q̂(τξ) for ξ ∈ R
n. Then it is easily seen

thatF is analytic and

|∂γFτ (ξ)| ≤ (2π)−
n
2 ‖q‖L1(Ω)

τ |γ|

((DiamΩ)−1)|γ|
≤ C

τ |γ|

|γ|!(T−1)|γ|
|γ|! ≤ C

eτ

(T−1)|γ|
|γ|!.

Therefore, applying Lemma 3.4 in the setW = Kε ∩B(0, 1) with M = Ceτ andη = T−1, we
can take a constantµ ∈ (0, 1) depending only onε, n andT such that

|Fτ (ξ)| ≤ Ceτ (1−µ) ‖Fτ‖µL∞(W) , ∀ ξ ∈ B(0, 1).

Hence, by the fact thatτKε = {τξ; ξ ∈ Kε} = Kε, we obtain

|q̂(ξ)| =
∣∣Fτ (τ−1ξ)

∣∣ ≤ Ceτ (1−µ) ‖Fτ‖µL∞(W) = Ceτ (1−µ) ‖q̂‖µL∞(Kε) , ξ ∈ B(0, τ). (3.12)

We now estimate theH−1(Rn) norm ofq. For allτ > 0 we have

‖q‖2/µ

H−1(Rn)
=

[∫

|ξ|≤τ

|q̂(ξ)|2 (1 + |ξ|2)−1dξ +

∫

|ξ|>τ

|q̂(ξ)|2 (1 + |ξ|2)−1dξ

]1/µ

≤ C

[
τn ‖q̂‖2

L∞(B(0,τ)) + τ−2 ‖q‖2
L2(Ω)

]1/µ

.

Substituting (3.12) and applying Lemma 3.3, we obtain

‖q‖2/µ

H−1(Rn)
≤ C

[
τn/µe2τ(

1−µ
µ )eCλ

∥∥Λ′
q1
− Λ′

q2

∥∥2
+ λ−2δτn/µe2τ(

1−µ
µ ) + τ−

2
µ

]
. (3.13)

Let τ0 > 0 be sufficiently large andτ > τ0. Set

λ = τ
n+2
2δµ e

τ(1−µ
δµ ).
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By τ > τ0, we can assume thatλ > λ0. Thenτ
n
µ e

2τ(1−µ
µ )λ−2δ = τ

− 2
µ and (3.13) yields

‖q‖2/µ

H−1(Rn)
≤ C

[
τ

n
µ eψ(τ)

∥∥Λ′
q1
− Λ′

q2

∥∥2
+ τ

− 2
µ

]
, (3.14)

whereψ is defined by

ψ(τ ) =

(
2τ

(
1 − µ

µ

)
+ Cτ

n+2
2δµ e

τ( 1−µ
δµ )

)
.

It is easily seen that
τ

n
µ eψ(τ) ≤ ee

Aτ

, τ > τ0

for someA depending only onΩ, ε, δ andµ. Substitute the above inequality into (3.14) and we
obtain

‖q‖H−1(Ω) ≤ ‖q‖H−1(Rn) ≤ C
(
ee

Aτ ∥∥Λ′
q1
− Λ′

q2

∥∥2
+ τ−2/µ

)µ/2
.

Now, in order to minimize the right-hand side with respect toτ , we set

τ =
1

A
log

∣∣log ‖Λ′
q1
− Λ′

q2
‖
∣∣ (3.15)

and we obtain

‖q‖H−1(Ω) ≤ C

[ ∥∥Λ′
q1
− Λ′

q2

∥∥ +
(
log

∣∣log
∥∥Λ′

q1
− Λ′

q2

∥∥∣∣)−2/µ
]µ/2

(3.16)

provided that the right-hand side of (3.15)> τ0. If the right-hand side≤ τ0 then there exists a
constantc0 > 0 such that ∥∥Λ′

q1
− Λ′

q2

∥∥ ≥ c0.

Thus, we have

‖q‖H−1(Ω) ≤ C ‖q‖Hα(Ω) ≤
2CM

c
µ/2
0

c
µ/2
0 ≤ C ′

∥∥Λ′
q1
− Λ′

q2

∥∥µ/2 .

Therefore, (3.16) holds in the both cases. The conclusion follows from the interpolation in-
equality betweenH−1(Ω) andHα(Ω), and the Sobolev imbedding theorem.
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