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TORSION, AND AUTOMORPHIC FORMS ON THE MODULI
SPACE II: A STRUCTURE THEOREM
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ABSTRACT. In [59], we introduced an invariant of K3 surfaces with involu-
tion, which we obtained using equivariant analytic torsion. This invariant
gives rise to a function on the moduli space of K3 surfaces with involution
and is expressed as the Petersson norm of an automorphic form characterizing
the discriminant locus. In this paper, we study the structure of this automor-
phic form. Under certain assumption, we prove that the automorphic form is
expressed as the product of a certain Borcherds lift and the Igusa form.
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1. Introduction

In this paper, we study the structure of the invariant of K3 surfaces with invo-
lution introduced in [59]. Let us recall briefly this invariant.

A K3 surface with holomorphic involution (X,:) is called a 2-elementary K3
surface if ¢ acts non-trivially on the holomorphic 2-forms on X. Let Lg3 be the
K3 lattice, i.e., an even unimodular lattice of signature (3,19), which is isometric
to H?(X,Z) endowed with the cup-product pairing. Let M be a sublattice of L3
with rank r(M). A 2-elementary K3 surface (X,¢) is of type M if the invariant
sublattice of H?(X,Z) with respect to the t-action is isometric to M. By [43],
M C LLks3 must be a primitive 2-elementary Lorentzian sublattice. The parity of
the 2-elementary lattice M is denoted by §(M) € {0,1} (cf. [45]).

Let M~ be the orthogonal complement of M in Lgs. Let Q,,1 be the period
domain for 2-elementary K3 surfaces of type M, which is an open subset of a quadric
hypersurface of P(M+ ®C). We fix a connected component QLL of 2,1, which is
isomorphic to a bounded symmetric domain of type IV of dimension 20 —r(M). Let
Dyrr be the discriminant locus of QL ., which is a reduced divisor on QL . Let
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O(M+) be the group of isometries of M=, which acts properly discontinuously on
Qpre. Let OT (M=) be the subgroup of O(M=) with index 2 that preserves Q7 . .
The coarse moduli space of 2-elementary K3 surfaces of type M is isomorphic to
the analytic space M$,. = (2}, \ Dy2)/OT (M=) via the period map by [49],
[13], [45], [16], [59] and Proposition 11.2 below. The period of a 2-elementary K3
surface (X, ¢) of type M is denoted by wn(X,t) € M. .

Let (X,t) be a 2-elementary K3 surface of type M. In [59], we introduced a
real-valued invariant 7p7(X,¢), which we obtained using the equivariant analytic
torsion of (X,¢), the analytic torsions of the connected components of X* and a
certain Bott—Chern secondary class. (See [5], [4], [50] and Sect.5.) Since mpr(X,¢)
depends only on the isomorphism class of (X, ), we get the function

v MGy 2 wm(X, ) = (X, ) € Roo.

By [59], there exists an automorphic form ®; on QIJ\F/[ . with values in a certain
O (M+)-equivariant holomorphic line bundle on Q7 | such that

ML
L :
TJWZHCDJV[” 2v, leCI)M:V'DML, V€Z>().
Here || - || denotes the Petersson norm. By [59], @, is given by the Borcherds

d-function [7], [8] when M is exceptional.

The purpose of this paper is to give an explicit formula for 75; for a class of
non-exceptional M. We use two kinds of automorphic forms to express 7y, i.e.,
the Borcherds lift ¥y, (-, Fj;1) and the Igusa form x,, which we explain briefly.

In [7], [9], Borcherds developed the theory of automorphic forms with infinite
product over domains of type IV. (See also [28].) For an even 2-elementary lattice
A of signature (2,7(A) — 2), we define the Borcherds lift WA (-, F) as follows.

Let Ap be the discriminant group of A, which is a vector space over Z/2Z.
Let C[AA] be the group ring of Ax and let pp: Mpo(Z) — GL(C[A]) be the
Weil representation, where Mp2(Z) is the metaplectic double cover of SLy(Z). Let
{e;}yeca, be the standard basis of C[AA]. Let n(7) be the Dedekind n-function
and set 1y -sgs4-s(7) = n(7) " ¥n(27)3n(47) 8. Let O+ (1) be the theta function of
the (positive-definite) Aj-lattice. Then 1;-sgs4—s(7) and 0,+ (1) are modular forms
for the subgroup MTy(4) C Mpy(Z) corresponding to the congruence subgroup
T'o(4) € SL2(Z). Following [10] and [52], we define a C[A,]-valued holomorphic
function Fa(7) on the complex upper half-plane ) as

CYETD SR T (U
gEMT o (4)\Mp3(Z) !

Here we used the notation ¢|4(7) = ¢(‘gi§)(c7' +d)~* for a modular form ¢(7) for

MTo(4) of weight k with certain character and g = ((ZZ), Ver +d) € Mps(Z). By
[10] and [52], Fa(7) is an elliptic modular form for Mps(Z) of type pp with weight
2 — @ Then Wy (-, Fp) is defined as the Borcherds lift of Fy(7), which is an
automorphic form on QF for OT(A) by [9]. The Petersson norm || W1 (-, Fyso)||?
is an O*(M*)-invariant C*° function on Q.

Recall that the Igusa form of degree g is the Siegel modular form (with character
when g = 1,2) on the Siegel upper half-space &, of degree ¢ defined as the product



K3 SURFACES WITH INVOLUTION II 3

of all even theta constants (cf. [29])

Xg(£2) = H Oap(£2), €6, Yo =1.

(a,b) even

The Igusa form gives rise to another function on M¢,, as follows. For a 2-
elementary K3 surface (X, (), let X* denote the set of fixed points of ¢. By [45], X*
is the disjoint union of (possibly empty) compact Riemann surfaces, whose topo-
logical type is determined by M. Let g(M) € Z>( denote the total genus of X*.
The period of X* is denoted by £2(X"*) € &4(nr)/Sp2g(ar)(Z). By [59], there exist
a proper Zariski closed subset Z C D). and an Ot (M+)-equivariant holomorphic
map Jar: Qpre \ Z — Syary/Spag(ary(Z) that induces the map of moduli spaces

MG 3 wm (X, 1) — 2(X") € Sy(ar)/Sp2gar)(Z).

Then J}/|[xg(a)ll? is an O (M*)-invariant C* function on Q9. .
The following structure theorem for 7j; is the main result of this paper:

Theorem 1.1. (cf. Theorem 9.1) Let M be a primitive 2-elementary Lorentzian
sublattice of L3 satisfying the following two conditions (1), (2):

(1) 11 <r(M) <17 or (r(M),5(M)) = (10,1);

(2) Xg(ar)(£2(X*)) # 0 for some 2-elementary K3 surface (X, 1) of type M.
Then there exists a constant C)y; depending only on the lattice M such that the
following identity holds for all 2-elementary K3 surface (X,t) of type M :

,QQ(M)+1(29(1\/1)+1) _

g(M) .
v (X 0) Ot 1 ar (@ar (X 0), Far )17 [Ixg(an (X))

After Bruinier [14], Theorem 1.1 may not be surprizing. If M' contains an
even unimodular lattice of signature (2,2) as a direct summand and if there is a
Siegel modular form S such that div(J},5) is a Heegner divisor on Q]\JF/IL, then @y,
must be the product of a Borcherds lift and J;,S by [14, Th. 0.8], because the zero
divisor of ®,; is a Heegner divisor. For most of M with g(M) = 2, this explains the
factorization of 757 in Theorem 1.1. It is an interesting problem of understanding

the geometric meaning of the elliptic modular forms Fj and 771—8284—86§1+. We

remark that the same Borcherds lifts Wu(-, Fp) appear in the formulae for the
BCOV invariants of certain Calabi—Yau threefolds [18], [60], [63].

There are at least 30 isometry classes of primitive 2-elementary Lorentzian sub-
lattices of Lks satisfying Conditions (1) and (2) in Theorem 1.1. (See Theorem
9.3 and Remark 9.4.) There is an example of primitive 2-elementary Lorentzian
sublattice of L3 with rank 9 for which Theorem 1.1 holds. (See Theorem 9.2.) By
Theorem 1.1 and [59, Ths. 8.2 and 8.7], 7as and @, are determined for 33 isometry
classes of M. Notice that the total number of the isometry classes of primitive
2-elementary Lorentzian sublattice of L3 is 75 by Nikulin [45].

Following [59, Th. 8.7], we shall prove Theorem 1.1 by comparing the O (M=)-
invariant currents dd°log 7ar, ddlog || ¥ o (-, Fiyo )| and dd®log J3,lIx5 a1 (See
Sect.9.) The current dd°log mps was computed in [59]. In Sect. 8, the weight and the
zero divisor of Wy . (-, Fjro) shall be computed (cf. [9]), from which a formula for
dd®log ||V i (-, Fpro)|| follows. In Sect. 4, the current dd°log JJ’CI||X§(M) |2 shall be
computed. For this purpose, we estimate the number of the irreducible components
of the divisor Dy, /O(M*). (See Sect.11.)
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Since the Hartogs principle is used in the proof, we need the assumption r(M) <
17. In fact, Theorem 1.1 remains valid even if r(M) > 18. Since the proof of
Theorem 1.1 requires an analysis of 7j; near the boundary locus of the Baily-
Borel-Satake compactification of Q. /O (M=) when (M) > 18, these cases shall
be treated in the forthcoming paper. In Theorem 9.5, we shall prove that x4
vanishes identically on Jas (7, \Das2 ) for most of M with (r(M),5(M)) = (10,0),
so that Theorem 1.1 does not hold in these cases.

There are some applications of the Borcherds lift W4 (-, Fx) to the moduli space
of K3 surfaces. In [44], [16], the notion of lattice polarized K3 surfaces were
introduced, which extends the classical notion of polarized K3 surfaces to general
Lorentzian lattices. Since W (-, Fip) vanishes exactly on the discriminant locus Dy
when r(A) < 12, we get the following (cf. Corollaries 8.3 and 8.4):

Theorem 1.2. If M C Lgs is a primitive 2-elementary Lorentzian sublattice with
r(M) > 10, then the coarse moduli space of 2-elementary K3 surfaces of type M
and the coarse moduli space of ample M -polarized K3 surfaces are quasi-affine.

By [45], there are 49 isometry classes of primitive 2-elementary Lorentzian sub-
lattices M C Lgg with (M) > 10. It is not easy to find a primitive sublattice
A C Ligs of signature (2,7(A) — 2) such that there is an automorphic form on
vanishing exactly on Dy. (See e.g. [7], [8], [10], [11], [25, II], [35], [52]). For exam-
ple, if the discriminant locus of polarized K3 surfaces of degree 2d is irreducible,
there is no automorphic form on the coarse moduli space of polarized K3 surfaces
of degree 2d vanishing exactly on the discriminant locus [37, Sect. 3.3], [46].

This paper is organized as follows. In Sect.2, we recall some basic definitions
and properties of lattices. For a lattice with signature (2,n), the corresponding
modular variety is recalled. In Sect.3, we recall 2-elementary K3 surfaces and
their moduli spaces, and we study the singular fiber of an ordinary singular family
of 2-elementary K3 surfaces. In Sect.4, we study the current LZCZCJXIHX;JV[)||2

and we recall the notion of automorphic forms on Q]T/I .. In Sect. 5, we recall the
invariant 7p7. In Sect. 6, we recall Borcherds products. In Sect. 7, we construct the
elliptic modular form Fa(7). In Sect.8, we study the Borcherds lift Uy (-, Fi). In
Sect.9, we prove the main theorem. In Sect.10, we interpret the main theorem
into a statement about the equivariant determinant of the Laplacian of real K3
surfaces. In Sect.11, we determine the number of the irreducible components of
Dy /O(M?). In Sect. 12, we study the set of fixed points of a generic 2-elementary
K3 surface of type M for certain M with g(M) = 3.

Warning: In [59], we used the notation Qr, Mys, Das ete. in stead of Qi
M]\/[L, DML etc.
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proofs of Propositions 12.2 and 12.3 in Sect. 12. The author is partially supported
by the Grants-in-Aid for Scientific Research (B) 19340016 and (S) 17104001, JSPS.
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2. Lattices

A free Z-module of finite rank endowed with a non-degenerate, integral, sym-
metric bilinear form is called a lattice. We often identify a non-degenerate, integral,
symmetric matrix with the corresponding lattice. The rank of a lattice L is denoted
by r(L). The signature of L is denoted by sign(L) = (b™(L),b(L)). We define
o(L) :=b"(L) — b (L). A lattice L is Lorentzian if sign(L) = (1,r(L) — 1). For a
lattice L = (Z", (-,-)), we define L(k) := (Z", k(-,")).

The group of isometries of L is denoted by O(L). The set of roots of L is defined
by Ay :={d € L; (d,d) = —2}. For d € A, the corresponding reflection s4 € O(L)
is defined as sq4(z) := « + (x,d) d. The Weyl group of L is defined as the subgroup
of O(L) generated by {sq}aca, and is denoted by W(L). We define

IL::{dEALad/QgLV}a Z::{dEAL,d/QELV},

which are preserved by O(L). Let LY = Homg(L, Z) be the dual lattice of L, which
is naturally embedded into L ® Q. The finite abelian group Ay := LV /L is called
the discriminant group of L. For A € LV, we write A\ := A+ L € Ay. A lattice L
is unimodular if Ar, = 0. A lattice L is even if (x,z) € 2Z for all z € L. A lattice
is odd if it is not even. For simplicity, we often write x? for (z,x). A sublattice
M C L is primitive if L/M has no torsion elements. The level of an even lattice L
is the smallest positive integer [ such that [ \2/2 € Z for all A € LV.

2.1. Discriminant forms

For an even lattice L, the discriminant form qr, of Ap is the quadratic form on
Ay, with values in Q/2Z defined as qr,(I) := [? +2Z for | € Ay. The corresponding
bilinear form on Ay with values in Q/Z is denoted by by. Then by (I,1") = (I,I') +Z
for 1,1/ € Ap. Since A € LV lies in L if and only if (\,1) € Z for all [ € LV, the
bilinear form by, is non-degenerate, i.e., if by, (v,2) =0 mod Z for all x € Ay, then
v=0in Ar. We often write 42 (resp. (v,d)) for qr(7) (vesp. br(v,d)). The group
of automorphisms of Ay, preserving ¢z, and hence by, is denoted by O(qr). See [43]
for more about discriminant forms.

2.2. 2-elementary lattices

Set Zg := Z/2Z. An even lattice L is 2-elementary if there is an integer | € Z>g
with Ay = Z,. For a 2-elementary lattice L, we set [(L) := dimg, A;. Then
r(L) > I(L) and r(L) = I(L) mod 2 by [43, Th.3.6.2 (2)]. The parity §(L) of an
even 2-elementary lattice L is defined as

0 if 22€Z forallw € LY
6(L) := .
1 if 22¢Z for some x € LV.

The triplet (sign(L),l(L), (L)) determines the isometry class of an indefinite even
2-elementary lattice L by [43, Th.3.6.2].

Since Ay is a vector space over Z, and since the mapping A; > v — 2 €
%Z/Z > Zo is Zs-linear, there exists a unique element 1;, € Ay, called the char-
acteristic element of Ar, such that (vy,1.) = v? mod Z for all v € A;. By [43,
Sect. 3.9 pp.149-150], 1, satisfies the properties: g(1;) = 1, for all g € O(qyr);
1, = 0 if and only if 5(L) =0;if L = L'® LH, then 1, =15, & 1.

Let U= ((1) (1)) and let Ay, Doy, E7, Eg be the negative-definite Cartan matrix of
type Ay, Day, E7, Eg respectively, which are identified with the corresponding even
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lattices. Then U and Eg are unimodular, and A;, Doy, and E; are 2-elementary. Set
L3 =UapUpUa Eg @ Es.

For a sublattice A C L3, we define A+ := {I € Lgs; (I, A) = 0}. When A C Lgs
is primitive, then (Aa, —qp) = (Ap1,qpar) by [43, Cor.1.6.2].

Let I; ., be an odd unimodular Lorentzian lattice of rank m + 1. Then I; ,,,(2)
is an even 2-elementary Lorentzian lattice of rank m + 1.

Let M C Lks be a primitive 2-elementary Lorentzian sublattice. Let Ip; be the
involution on M @ M+ defined as In/(z,y) = (z, —y) for (z,y) € M & M+. Then
I extends uniquely to an involution on Lgs by [43, Cor.1.5.2]. We define

g(M) = {22 — r(M) = I(M)}/2, k(M) = {r(M) — [(M)}/2.

For d € A1, the smallest sublattice of L3 containing M and Zd is given by
[M Ld]:=(M*nd*-)*t.

By Lemma 11.3 below, [M L d] is again a 2-clementary Lorentzian lattice such that

(2.1) Iingia) = $a0 Iar = Ing 0 s, (M Ld* =Mtndt.

By e.g. [20, Appendix, Tables 1,2,3], M and M~ are expressed as a direct sum of
the 2-elementary lattices Af, Ay, U, U(2), Doy, E7, Eg, Eg(2).

2.3. Lorentzian lattices

Let L be a Lorentzian lattice. The set Cz, := {v € L ® R; v? > 0} is called the
light cone of L. Since L is Lorentzian, Cy, consists of two connected components,
which are written as Cf, C. . The closure of Cf in L ® R are written as Cf

For I € L®R, we set by := {v € Cf; (v,1) = 0}. Then h; # 0 if and only
if 2 < 0. Define (C})° := Cf \ Ugea, ha- By [12, Chap. V], the Weyl group
W (L) acts simply transitively on the set of connected components of (C})°. Any
connected component of (C;)° is called a Weyl chamber of L.

Let W be a Weyl chamber of L, so that (C})° = Hyewyw(W). We define
Af == {d € Ar; (v,d) > 0(Vv € W)}. Then Ay = A} 1T (—~A}) and W has
the expression W = {v € C/; (v,d) > 0(Vd € A})}. A hyperplane hy C L ® R,
d € A7 is called a wall of W if dim(hq N W) = r(L) — 1, where W is the closure
of Win L®R. We set II(L,W) := {d € A}; hq is a wall of W}, which is the
minimal set of roots defining W, i.e.,

(2.2) W= {veCl]; (v,d)>0,vdeII(LW)}

and any inequality (v,d) > 0, d € II(L,) is essential in (2.2).
A vector p € L ® Q is called a Weyl vector of (L,W) if {p,d) = 1 for all
d € II(L,W). A Lorentzian lattice does not necessarily have a Weyl vector.

2.4. Lattices of signature (2,n)
Let A be a lattice with sign(A) = (2,n). Define

Qp = {[m] €EPA®C); (z,2) =0, (z,7) > 0}7

which has two connected components QX Each of QX is isomorphic to a bounded
symmetric domain of type IV of dimension n. On Q,, acts O(A) projectively. Set

Ot (A) :={g € O(A); g(QF) = Q5 },
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which is a subgroup of O(A) of index 2 with Q4 /O(A) = Qf /O (A). Since OF(A)
is an arithmetic subgroup of Aut(Q}), O*(A) acts properly discontinuously on Q.
In particular, the stabilizer OF(A)},; := {g € OT(A); g - [] = [n]} is finite for all
[n] € QFf, and the quotient

My = Qpa/O(A) = QF /O (A)

is an analytic space. There exists a compactification M} of M, called the Baily—
Borel-Satake compactification [1], such that M3} is an irreducible normal projective
variety of dimension n with dim(M3} \ Mp) = 1.
For A € A®R, set
Hy = {[z] € Qp; (z,A) = 0}
Then Hy # () if and only if A2 < 0. We define the discriminant locus of Q5 by
Dy:= Y Hy,
deAy/+1
which is a reduced divisor on 5. We define the reduced divisors D and D} by
Dy= > Hg, Di= > Ha
deA) /41 deAy /%1

Since Ap = Ay I AY, we have Dy = D) + D}. For k € Q.o and v € Ay with
v = —, we define the Heegner divisor of discriminant (v, k) as (cf. [14, p.119])

1
HA(y, k) =5 > Hy= > H,.
AEy+A, A2=k {Aev+A, A2=k}/+1
Then Dy, D), D) are linear combinations of Heegner divisors. Notice that our
Ha(7, k) is the half of Ha(y, k) in [14].
Assume that A is a primitive 2-elementary sublattice of Lg3. We set
QZ = QA\DA, 7\ = QX/O(A)
For d € Ay, we have
HiNQpx = Qpnqe = Q[ALJ_d]L.
We define the subsets H; C Hy (d € Ay ) and DY C Dy by
HY :={[n] € Qf; OT(A) = {1, £s4}},  Dg:= > HS.
deAy/+1

If Hy # 0 (resp. Da # 0), then HJ (resp. DY) is a non-empty Zariski open subset
of Qpngr (resp. Dyp). Since O(A) preserves Dy and DY, we define

Dy :=Da/O(A), Dy :=D3/O(A) C Dy.

Then Dy N Sing My = 0 by [59, Prop.1.9 (5)]. For the number of the irreducible
components of Dy, see Corollary 11.16 below.

When A =U(N) @ L, a vector of A® C is denoted by (m, n,v), where m,n € C
and v € L ® C. The tube domain L ® R + i Cy, is identified with Q4 via the map

(23) L@R+iCL>z— [(—2%/2,1/N,2)] € Qy CP(A®C), 2€L®C

by [9, p.542]. The component of Q5 corresponding to L ® R +iC} via the isomor-
phism (2.3) is written as Q.
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3. K3 surfaces with involution

3.1. K3 surfaces with involution and their moduli space

A compact, connected, smooth complex surface X is called a K3 surface if it is
simply connected and has trivial canonical bundle Kx. Let X be a K3 surface.
Then H?(X,Z) endowed with the cup-product pairing is isometric to the K3 lattice
Lks. The Picard lattice of X is defined as Pic(X) := HV1(X,R) N H%(X,Z). An
isometry of lattices a: H?(X,Z) = L3 is called a marking of X. The pair (X, a)
is called a marked K3 surface, whose period is defined as

7T(X7OZ) = [a(ﬁ)] GP(LKS®C)7 nEHO(XvKX)\{O}

Let M C Lgs be a primitive 2-elementary Lorentzian sublattice. A K3 surface
equipped with a holomorphic involution ¢: X — X is called a 2-elementary K3
surface of type M if there exists a marking o of X satisfying

a0 (x,kx) = —1, F=a"tolyoa.
Equivalently, a(H3 (X,Z)) = M, where H3 (X, Z) := {l € H*(X, Z); .*| = +£l}.
Let (X,t) be a 2-elementary K3 surface of type M and let « be a marking with
0* = a~ ! oIy oa. Since H*%(X,C) C H?(X, C) and hence Pic(X) > H3(X,Z),
we have (X, o) € Qf,, and a(Pic(X)) D M. By [59, Th.1.8] and Proposition
11.2 below, the O(M=)-orbit of 7(X,¢) is independent of the choice of a marking
o with t* = a~'Ij;a. The Griffiths period of (X, ¢) is defined as the O(M=)-orbit

wur(X, 1) = O(M*Y)  7(X,0) € MY, ..

By [49], [13], [45], [16], [59, Th.1.8] and Proposition 11.2 below, the coarse moduli
space of 2-elementary K3 surfaces of type M is isomorphic to M$,. via the map
wys. In the rest of this paper, we identify the point wy(X,t) € M9, with the
isomorphism class of (X, ¢).

For a 2-elementary K3 surface (X, ), set X* := {z € X; 1(z) = z}.

Lemma 3.1. Let (X,1) be a 2-elementary K3 surface of type M.
(1) If M 2 U(2) ® Es(2), then X* = 0.
(2) If M 2 U@ Eg(2), then X* is the disjoint union of two elliptic curves.
(3) If M 2U(2) ® Es(2), U Eg(2), there exist a smooth irreducible curve C

of genus g(M) and smooth rational curves Ey,..., Eyry such that X' =
CUEIT--- I Egary-

Proof. See [45, Th.4.2.2]. O

After Lemma 3.1, a primitive 2-elementary Lorentzian sublattice M C Lgs is
said to be exceptional if M = U(2) & Eg(2) or U @ Eg(2).

For g > 0, let &, be the Siegel upper half-space of degree g. When g =1, &; is
the complex upper half-plane. We write $) for 1. Let Spag(Z) be the symplectic
group of degree 2g over Z and let A, := &,/Sp24(Z) be the Siegel modular variety
of degree g, where Spyy(Z) acts on &, by v - 2 = (A2 + B)(C2 + D)~! for
(é g) € Spag(Z). Then A, is a coarse moduli space of principally polarized Abelian
varieties of dimension g via the period map. The Satake compactification A} of A,
is a normal projective variety that contains A, as a dense Zariski open subset. We
have the equality of sets A7 = Ay T A;_q IT--- 1T Ao.
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After Lemma 3.1, the Jacobian variety of X* is defined as the complex torus
Jac(X"Y) == HY(X*,Ox.)/H (X", Z), which is equipped with the principal polar-
ization. Hence Jac(X") is a principally polarized Abelian variety of dimension
g(M), if M 2U(2) @Eg(2). When M = U(2) ®Eg(2), one has Jac(X*) = {0}. The
period of X*, i.e., the period of Jac(X"), is denoted by 2(X*) € Ay

For a 2-elementary K3 surface (X, ), we define

Tor(X,0) = To(wn(X,0) == 2(XY) € Ag(ar)-
Let IIpo: Qpr — Mjo be the projection and set J§, := j;[ ollyt |Q?\“. Then
J¢, is an O(M™)-equivariant holomorphic map from 04, to Agary with respect
to the trivial O(M=)-action on Agrp). By [59, Th.3.3], Jg, extends to an O(M*)-
equivariant holomorphic map Jys: Q9,, UDS,. — A;(M). Let Jpr: M, . UD?wL —

A;( M) denote the corresponding holomorphic extension of 7;/1.

Proposition 3.2. The map Jy extends to a meromorphic map from M3, to
A;(M). When r(M) > 19, J s extends to a holomorphic map from M3, . to A;(M).

Proof. By the Borel-Kobayashi-Ochiai extension theorem, J,; extends to a holo-
morphic map from M?, | \ (Sing M3, U SingDy,.) to A ary- Since My, s
normal, we get dim(Sing M},, U SingDj;1) < dim M3, — 2 when (M) < 18,
so that Jps extends to a meromorphic map from M7, . to AZ( M) in this case. If

r(M) = 19, M3, \ Mg,. consists of finite points. The result follows from the
Borel-Kobayashi-Ochiai extension theorem. If (M) = 20, the result is trivial. O

3.2. Degenerations of 2-elementary K3 surfaces

Let A C C be the unit disc. Let Z be a smooth complex threefold. Let p: Z — A
be a proper, surjective holomorphic function without critical points on Z\ p~1(0).
Let ¢+: Z — Z be a holomorphic involution preserving the fibers of p. We set
Zy = p~i(t) and 14 = |z, for t € A. Then p: (£,1) — A is called an ordinary
singular family of 2-elementary K3 surfaces of type M if p has a unique, non-
degenerate critical point on Zy and if (Z¢,¢;) is a 2-elementary K3 surface of type
M for all t € A*. Since Zj is a singular K3 surface, 1o € Aut(Zy) extends to an
anti-symplectic holomorphic involution 7o on the minimal resolution Z) of Zy, i.e.,
(70)* =—1on HO(ZO;KZO)~

Theorem 3.3. Let d € Aye and let Hy = IIy i (HS) be the image of HS by
the natural projection Iy : Qpre — Mpyso. Let v: A — My be a holomorphic
curve intersecting FZ transversally at v(0). Then there exists an ordinary singular
family of 2-elementary K3 surfaces pz: (Z,1) — A of type M with Griffiths period
map 7y, such that pz is projective and such that (Zo7 lo) is a 2-elementary K3 surface
of type [M L d] with Griffiths period v(0).

Proof. By [59, Th. 2.6], there exists an ordinary singular family of 2-elementary K3
surfaces pz: (Z£,1) — A of type M with Griffiths period map « such that pz is
projective. We prove that (Z),To) is a 2-elementary K3 surface of type [M L d].
Let oz € Zy be the unique critical point of pz. Let py: (¥,ty) — A be the
family induced from pz: (Z,1) — Abythemap A>t —t> € A. Then) = Zx A
and py = pry. The projection pr; induces an identification between (Y%, tyly,) and
(Zy2,142) for all t € A. Since the Picard-Lefschetz transformation for the family of
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K3 surfaces py|a-: Y|a — A* is trivial, there exists a marking 3: R?(py|a=)+«Z =
L3, a+. Let oy be the unique singular point of Y with pry(oy) = 0z. Since (¥, 0y)
is a three-dimensional ordinary double point, there exist two different resolutions
w: (X, E) — (V,oy) and 7': (X', E') — (Y,0y). By e.g. [59, Th.2.1 and Proof of
Th. 2.6] and the references therein, the following (i), (ii), (iii), (iv) hold:

(i) Set p:=pyomand p' := pyon’. Then p: X — A and p': X' — A are
simultaneous resolutions of py: Y — A, and they are smooth families of
K3 surfaces. The marking 3 induces a marking « for p: X — A and a
marking o/ for p’: X’ — A.

(i) E = 7 1(0y) is a smooth rational curve on Xy, and E' = (7')"1(0y) is a
smooth rational curve on X|). The marked family (p': X' — A, /) is the
elementary modification of (p: X — A, ) with center E (cf. [59, Sect. 2.1]).
Replacing S by go 8, g € T'(M) := {g € O(Lks); glp = Ipg} if necessary,
we have d = a(c1([E])).

(iii) Let e: X \ E — X’ \ E’ be the isomorphism defined as e := (7')~! o 7.
Then e is an isomorphism of fiber spaces over A* and the isomorphism
elx\g: Xo \ £ — X\ B extends to an isomorphism ¢€p: Xo — X with

(3.1) a0 (€0)* o ()™t = s4.

(iv) There exists an isomorphism @g3(Ip): X — X' of fiber spaces over A such
that the following diagrams are commutative (cf. [59, Eqs. (1.6), (2.8)]):

(3.2)
(X,E) —"— (¥,0) — (Z,0) Rplz £ ey, g
e R R .| -
(X', E) . (¥,0) —2= (Z,0) Lgs A LT Lks A

We define 6 := (€9) ' o prs(In)|x, € Aut(Xp). Since ' oeg = |x, by (iii) and
hence 7| x/\ g = (7| xo\£) © (€0) " |x7\ £, We get by the first diagram of (3.2)

(tlxo\E) © (Olxo\E) = (TIx0\E) © (€0) " |xp\er © Pr3(Iar) xo\ B
= (7|xp\er) © wr3(Im)| xo\E
= (lvo\{o}) © Tlxo\ B
which implies that (7]x,) 00 = (ty)[y, © (7|x,). Since Xo is the minimal resolution
of Zy, i.e., Xo = Zy and since (Yy, tyly,) = (Zo, to), this last equality implies that
0 is the involution on X induced from ¢g. Thus we have 6 = 7.
By (2.1), (3.1) and the second diagram of (3.2), we get
(3.3) oo 0" ag ' = anprs(In) () o ah(€g ) agt = In 0 sa = Ipnria)-
By (3.3), 8 =7p is an anti-symplectic involution of type [M L d]. O

Let C be a smooth complex surface. Let p: C — A be a proper, surjective
holomorphic function without critical points on C\p~1(0). Then p: C — A is called
an ordinary singular family of curves if p has a unique, non-degenerate critical point
on the central fiber p~1(0). Notice that an ordinary singular family of curves is not
necessarily a family of stable curves, since p~1(0) may contain a (—1)-curve of C.

Lemma 3.4. Let p: C — A be an ordinary singular family of curves of genus g
and set Cy == p~i(t) fort € A. Let J: A\ {0} — A, be the holomorphic map
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defined as J(t) := 2(Cy) for t € A\ {0}. Then J extends to a holomorphic map
from A to A% by setting J(0) := 2(Cy), where Cy is the normalization of Cy.

Proof. Since the result is obvious when g = 0, we assume g > 0. Since J is locally
liftable, J extends to a holomorphic map from A to A7 by the Borel-Kobayashi-
Ochiai extension theorem. Let Co = DII D 1I...II Dy be the decomposition into
the connected components of Cy. We may assume that D is singular and that all
D; are smooth. Let o € C be the unique critical point of p. Since Sing D = {o},
D consists of at most two irreducible components. There are two possible cases:
(i) D is irreducible; (ii) D is the join of two smooth curves A and B intersecting
transversally at o. When D is stable, the result follows from e.g. [19, Cor. 3.8],
[41, Sect.3 Th.3]. When D is not stable, then D = A + B and g(A4)g(B) = 0.
In this case, we may assume g(B) = 0, i.e., B = P!, Then B is a (—1)-curve
on C by Zariski’s lemma [2, Chap.III Lemma 8.2]. Let o: C — C be the blow-
down of B. Then P := poo~! extends to a holomorphic function from C to A.
Since p~1(0) = AII Dy I1...1I Dy, is a smooth reduced divisor of C, p: C — A
is a smooth morphism. Since J(t) = 2(p~1(t)) = 2(p~'(t)) for t # 0 and hence
lim; o J(¢) = limy_o 2(p 1 (¢)) = 2(p'(0)) by the smoothness of p, we get

lim J(£) = 2(ALLD; 1. 11 Dy) = QAL BILD, ... 1 Dy) = 2(Gy),
where we used the fact Jac(B) = {0} to get the second equality. O

If p: (£,1) — A is an ordinary singular family of 2-elementary K3 surfaces of
type M and if o € Z is the unique critical point of p, then there exists a system of
coordinates (U, (z1, z2, z3)) centered at o such that

(3.4) 1(z) = (—2z1,—22,—23) or (z1,22,—23), zelU.

If o(2) = (=21, —22, —23) on U, ¢ is said to be of type (0,3). If 1(z) = (21, 22, —23)
on U, ¢ is said to be of type (2,1).

Theorem 3.5. Let M C Lgs be a primitive 2-elementary Lorentzian sublattice.
For d € Ayru, the following identity holds

Imlag = Ji Layl -

Proof. Let p € ﬁ; and let v: A — M, be a holomorphic curve intersecting FZ
transversally at p = v(0). Let pz: (£,t) — A be an ordinary singular family of
2-elementary K3 surfaces of type M with Griffiths period map ~y, such that pz is
projective and such that (Zg, ip) is a 2-elementary K3 surface of type [M L d] with
Griffiths period (0) (cf. Theorem 3.3). Let o € Z be the unique critical point
of pz. Since Jar(p) = Jar(v(0)) = limg_o Jas(7(¢)) by the continuity of Jps and

50

since j([)MLd] (P) = J s Lq(Zo,t0) = 2((Zy)™) by Theorem 3.3, it suffices to prove
(3.5) Tar(p) = lim Tas (1(8)) = (Zo)) = Trsa (o).

Set Zt:={z € Z; 1(2) = z}.

(Case 1) Assume that ¢ is of type (0,3). By [59, Prop.2.5 (1)], C := 2*\ {o} is a
smooth complex surface and p|¢c: C — A is a proper holomorphic submersion. Set
Cy == (ple)~1(t). Then

(3.6) lim T3 (Zi, 1) = lim 2(Ct) = £2(Co)-
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Since Z;° = Cy I {0}, we get

(3.7) (Zo)™® = Co 11 P,
which yields that
(3.8) 2(Co) = 2((Zo)").

Eq. (3.5) follows from (3.6) and (3.8) in this case.
(Case 2) Assume that ¢ is of type (2,1). By [59, Prop.2.5 (2)], p|z.: Z2* — A'is
an ordinary singular family of curves. Let W — Z° be the normalization. Then

(3.9) lim T (Ze, ) = lim (Z') = (W) € Ay,

where the last equality follows from Lemma 3.4. Since Zo — Zg is the blow-u~p at
the ordinary double point o, it follows from the local description (3.4) that (Zp)*°
is the proper transform of Z¢°. Hence (Zp)% is a resolution of the singularity of

Z{°. Namely, we have W = (Zo)™, which together with (3.9), yields (3.5) in this
case. Since p is an arbitrary point of FZ, we get the result. O

Let us give some applications of Theorem 3.5.

Proposition 3.6. If g(M) =1 and d € A, ., then
Ju(H7) = Ao = AT \ A
Proof. By Lemma 11.5 below, g([M L d]) = g(M) —1 = 0. By Theorem 3.5, we
get Jar(H7) = Jfy g (HY) = Ao = A7\ A1 O
Proposition 3.7. If g(M) =1, then
J3(Q5,.) = Al

Proof. By Proposition 3.2, Jj; extends to a meromorphic map from Mi,L to AT
Since J3,(929,.) = Jm(M$,.) and since dim A7 = 1, we have J3,(29,.) = A7 if

7?\4 is non-constant. We see that 734 is non-constant.
Since g(M) = 1, we get by [45, p.1434, Table 1] or by [20, Appendix, Table 2]

(3.10) M*=Uel,, 1(2) (1<m<10), U@2)aUQ2) eb, UaU?2).

By (3.10), A, # 0. Let d € A’,,.. By Proposition 3.6, we get Jy(HS) = Ay =
Aj\ Ay Since Jp(99,.) C Ay, this implies that Jj, is non-constant. O

Proposition 3.8. If g(M) =1 and d € A}, ., then

JM(HS) C Al.
Proof. Since d € A, ., we get g([M L d]) = g(M) =1 by Lemma 11.5 below. By

Theorem 3.5, we get Jy (HY) = J[‘}\/ud](Hg) C J[(;WLd](QFJVILd]i) C A O
Proposition 3.9. If (M) =2 and d € A, ., then
Tu(HG) = A3\ As.
Proof. By Proposition 11.5 below, g([M L d]) = 1. By Theorem 3.5, we get
Tt (H) = T (D) = Tt v Uy ) = AL = A3\ Ao,
where the third equality follows from Proposition 3.7. O
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We define the divisor Ny C A, as
Ny :={Q(F; x E3) € Ay; Ey, E5 are elliptic curves}.

Proposition 3.10. Let g(M) =2 and d € Apri. Then Jy(HG) NNy # 0 if and
only if the following conditions are satisfied:

M =T, 5(2), de Al ., d/2=1y. mod M*.
In particular, if either M 21, 5(2) ord ¢ A%, ord/2# 1)L mod M+t then
J]\/[(HS) C .AQ \N2

Proof. Assume Jy (H3) NNz # (). By Proposition 3.9, d € A”, .. By Theorem 3.5,

J[MLd](QfMLd]J—) NNy D J[MLd](Hg) NNy = JM(Hg) NN, 74— 0.

Let (X,¢) be a 2-elementary K3 surface of type [M L d] such that Jip 1 q(X,¢) €
No. If [M L d) 2 U@ Eg(2),U(2) & Eg(2), there exists an irreducible smooth curve
C of genus g([M L d]) with Jjpr14)(X,¢) = $2(C) by Lemma 3.1. By d € A%, and
Lemma 11.5 below, we get g([M L d]) = 2. However, the period of an irreducible
smooth curve of genus 2 lies in A \ M. This contradicts the condition £2(C) € Ns.
Thus [M L d] = U@ Es(2) or [M L d = U(2) @ Es(2). If [M L d] = U(2) ® Es(2),
then C' = () by Lemma 3.1 (1), which contradicts the condition 2(C) € N,. We
get [M L d] =2 U ®Eg(2) and hence M+ Nd+ = [M L d*t 2U®UoEg(2). Set

L:=7d=A,. Since d € A%, , we get by (11.4) below

(3.11) Mt =(M'nd)eL2UaUaEs(2) @ L.
Since r(M) =22 —r(M+) =9, I(M) =I(M+) =9 and §(M) = 6(M+) = 1, we get
M =21, 5(2). Since §(M+ Ndt) =§U@U®Eg(2)) =0 and hence 1y;1qq1 = 0,
we deduce from (3.11) that 13,0 = 1p1qge @1y, =11 =d/21in Apsu.

Conversely, assume that M =1, g(2), d € A},,, and d/2 = 1)1 mod M*+. We
get the decomposition M+ = (M+Nd*)® L by (11.4) below. Then r(M+Ndt) =
r(M+)—1=12and (Mt Nd+) = I(M+)—1 = 8. Let us see that §(M+Nd*) = 0.
Let z € (Mt Ndt)Y and k € Z. Set y := z + k(d/2) € (M+)V. By the definition
of 1,71, we get

—k/2 = (y,d/2) = (y, 1) = (y,y) = (x,2) — k*/2 mod Z.

Hence 22 = k(k—1)/2=0 mod Z. Since x € (M+Nd*)Y is an arbitrary element,
we get §(MLNdt) = 0. Since the isometry class of M+ Nd' is determined by the
triplet (r,1,8) by [43, Th.3.6.2], we get M+ Nd+t = U@ U@ Eg(2). By Lemma 3.1
(2) and Theorem 3.5, we get Jas(HJ) C Na. This proves the proposition. O

4. Automorphic forms on the period domain

4.1. The Igusa cusp form and its pull-back on Q.
Let Fy := (&4 x C)/Sp(2g, Z) be the Hodge line bundle on A, where Sp(2g,Z)
acts on &4 x C as follows: For v = (ég) € Sp(29,Z) and (£2,§) € 6, x C,

v (92,€) = (AR + B)(CQ2 + D)™, det(CQ2 + D)*¢).

Then F, is a holomorphic line bundle on A, in the sense of orbifolds. There is
an integer v € N such that 7} is a line bundle on A, in the ordinary sense. By
Baily-Borel-Satake, 7" extends uniquely to a very ample line bundle on A; for

m > 0. In this case, let .TZW denote the holomorphic extension of Fg to A;.
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An element of HO(Ay, F7) is identified with a Siegel modular form on &, of

weight k. For g > 0, we define the Igusa form as

X!](‘Q) = H ea,b(‘Q)v
(a,b) even
where a,b € {0,4}9 and 0,4(02) ==Y, cz0 exp{mi'(n + a)2(n + a) + 27i* (n + a)b}
is the corresponding theta constant. Here (a,b) is even if 4‘ab =0 mod 2. When
g =0, we define x( := 1. By [29, Lemma 10], XS is a Siegel modular form of weight
2971(29 4 1). Set
enull,g = {[‘Q] € ‘Ag; Xg(‘Q) = 0}7

which is a reduced divisor on A,. It is classical that No = Opun 2. (See e.g. [39,
Chap.II, Cors. 3.12, 3.15, 3.17].) In Sect. 9, XZ shall play the crucial role.

Define the Petersson metric | - || 7, on Fy by
(4.1) I3, (2) = (et Tm Q)2 (2,6) € &, x C.

Since x5 is a Siegel modular form, || Xg”i is a C* function on A, in the

29+1(2941)
g
8”2

all? for [Ixg

sense of orbifolds. For simplicity, we write ||x ||229+1(29+1).
9

Lemma 4.1. Letp: C — A be an ordinary singular family of curves of genus g and
set Oy == p~1(t) fort € A. Let Cy be the normalization of Co with genus g(Cy).
(1) If Cy is irreducible and g(Co) = g — 1, there exists h(t) € O(A) such that

log x4 (£2(Cy))*||* = 2%~ log [t|* + log |1 (t)|* + O(loglog[t[™") (¢ — 0).
(2) If g =2 and if Cy is the disjoint union of two elliptic curves, then
log [[x2(£2(C1))*|I* = 8log [t|* + O(loglog [t|~") (¢ — 0).
Proof. (1) By [19, Cor.3.8], one can write

A+w(t)} €A, A= < 1 togl)
9 o 0971 0971

where 0,1 is the zero vector of C9~1, O,_; is the (g — 1) x (g — 1)-zero matrix,
and 1 (t) is a holomorphic function on A with values in complex symmetric g X g-

matrices. If we write ¢(0) = (ﬁ;i;z), then 122 € G4_1.

Write 2 = (Ztgj), where z € 9, w € C971, Z € S,_1. We follow [40, p.370,

Sect. 3]. Let a; = 1/2. There is a holomorphic function f, ;(¢,w, Z) such that

logt
27

(4.2) Q2(Cy) = [

9a b(n) _ Z eTri(nl+%)2z+2ﬂ'i(n1+%)tw(n/+a')+7rit(n'+a')Z(n/+a')+27rit (n+a)b
n=(n1,n')EZXZI~1
— eﬂ'iz/4fa7b(627riz’ w, Z)
The number of even (a,b) with a; = 1/2 is given by 229=1_ Similarly, let a; = 0.
There is a holomorphic function g, ({,w, Z) such that
0, b(Q) _ Z ewinfz+27rin1tw(n’+a')+ﬂ'it(n'+a’)Z(n'+a')+27rit (n+a)b
n=(ni,n')EZXZI~1

=1+ e g, (™ w, 7).
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Hence there is a holomorphic function F({,w, Z) in the variables {,w, Z such that
(4.3)
XQ(Q)S _ H aa,b(Q)g _ (6%)8.22(9—1)F(6wisz7z) _ (eQﬂiz)22g—2F(ewiz,w’ Z)
even
Since X; is a Siegel modular form and hence x,(2 + A)® = x,(2)%, F(¢,w,2) is
an even function in ¢. By (4.3), there exists h(t) € O(A) such that

logt 8 229—2

4.4 ——A = .
(@) G (e u) = h)
Since Im(l;%;/\ + ¥(t)) = —5= log|t|A + Im¢(0) + O([t]) with (0) = (ﬁ;ﬁ;g),
Yoz € G4_1, we get

logt det I
(4.5) det Tm <‘L5,A + W)) _ _detImeas, 4 0q),

2m 27

The result follows from (4.2), (4.4), (4.5).
(2) Since g = 2 and Cj is reducible, we deduce from [19, Cor.3.8] the existence of
a holomorphic map ¥: A — &5 with

acy =il vo= (0 2) vo=(7 §). vimes azo
The result follows from e.g. [58, Eq. (A.24)]. O

Let we, be the Sp(2g, Z)-invariant Kahler form on &, defined as
we, (1) := —ddlogdet Im T, TEG,.

Let w4, be the Kahler form on A, in the sense of orbifolds induced from we,. The
following equation of (1, 1)-forms on A, holds

wa, =c1(Fg, | - 1l7,)-
Let Z(M) C Z be the ideal defined as follows: ¢ € Z(M) if and only if there
. —q * « .. =4
exists F o) € Hl(Ag(M), OAZ<M)) with F ool a,0n = }';J(M).
Let i: QF,. UD$,. — Qy1 be the inclusion. For ¢ € (M), we set

. * 4
/\;1\/1 = l*OQ;/,LUDLJ. (JM]:g(M)).

By [59, Lemma 3.6] and Proposition 3.2, the Oq , -module Aj, is an invertible
sheaf on Q.. We identify A}, with the corresponding holomorphic line bundle on
Qare. By [59, Lemma 3.7] and Proposition 3.2, the O(M™)-action on AY;|qo  upe

ML ML
induced from the O(M~)-equivariant map Jys, extends to the one on A%,. Hence

A%, is equipped with the structure of an O(M 1)-equivariant line bundle on Xy
Let || - [[xe, be the O(M+)-invariant Hermitian metric on A%‘Q;{L defined as
-l = 507 -l

By (4.1), (Ji[)"wa,,, is a € closed semi-positive (1,1)-form on Qf,, such
that ¢ (J3,) wa,o = ca(Xiglas 1+ llag,)- Since dim Qe \ Q5,0 UDG,L) <
dimQp,1 — 2 when (M) < 18, we can define the closed positive (1,1)-current
JwW A, o0 Qpre as the trivial extension of (Ji)*wa,,, from QfF,, to Q1 by
[59, Th.3.9] and [54, p.53 Th.1]. When (M) = 19, (J§,)*wa,,,,, extends triv-
ially to a closed positive (1,1)-current Jy,wa,,,, on Qy1, because (Ji,)*wa, .,
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has Poincaré growth along D1 by [59, Prop. 3.8]. By [59, Th.3.13] and [54, p. 53
Th. 1], the Hermitian metric [ - [[\a on A%\Q?ML extends to a singular Hermitian

metric on A%,, whose curvature current on Q. is given by
(4.6) ClO‘?Mﬂ - H)‘?w) = qJ&wAg(M)'

Let £ € Z-o be such that 29M)+1(290M) | 1)¢ € T(M). Then F @

extends to a holomorphic line bundle on .AZ( M) Since 3 g( M) is a holomorphic
29(M)+1(99(M) 1)

section of F_ I ( Ay 1s an O(M L)-invariant holomorphic section
2D+ (0(01)
)‘?\/[ A [ J3:(Q%,1) € Onuitg(ar), We define

D= div(J]’(/[Xzf ))-
Since Jy is O(M+)-equivariant with respect to the trivial O(M+)-action on ALy
D is an O(M™)-invariant effective divisor on ;.. By [59, Th.3.13], [54, p.53
Th. 1] and (4.6), log H']]V[Xq(]\/[ || lies in L] (€25,+) and satisfies the following equa-
tion of currents on Q.
(4.7) —dd®log || Txxsian |17 = 290D 29D L 1)0 T3 wa, ) — 0o
Recall that the divisor D/M . was defined in Sect. 2.4.

Proposition 4.2. Let { € Z~ be such that 29M+1(29(M) 1 1)¢ € T(M).

(1) Assume 11 < r(M) < 17 or (r(M),0(M)) = (10,1). If J§,(Q,.) &
Onuit,g(nr), there exist a € Z>q and an O(M™)-invariant effective divisor E
on Q1 such that

dlv(JMX (M)) =2(229W=2 4 )¢ D}, + E.
In particular, the following equations of currents on Qpro holds:

—dd°log ||JMXg(M)||2 — 29(M)+1(29(M)_|_1)€ J}\k/lu‘)Ag(M)_2(229(M)*2_|_a)€(SIDZML —bp.
(2) Assume g(M) =2 and r(M) < 10, i.e., M =21, 5(2). There exists a € Z>o

such that the following equation of divisors on Q1 holds:
le(JMXg(M)) (84 2a)(D)y,1 + 160 H o (1pp0,—1/2).
In particular, the following equations of currents on Qpro holds:

—dd®1og || T3 12 = 400 Tigwa, ) — (84 20)00p, 1600, (1, . ~1/2)-

g(M)
Proof. Since D is effective, we can write ® = ZdEA}/,L m(d) Hqg+ E, where m(d) €
Z>( and E is an effective divisor on Q). with dim(D},, N E) < dimD),, — 1.
Since g(Hq) = Hyq) for all g € O(M*) and d € A, , the O(M*)-invariance of D
implies that m(g(d)) = m(d) for all g € O(M~*) and d € A, . Since O(M™) acts
transitively on A’;, by Proposition 11.15 below, there exists a € Z>( with

(4.8) D=aDjy. +E.

Let d € Ay and p € F;. Let v: A — M1 be a holomorphic curve inter-
secting H transversally at v(0) = p such that v(A*) € My, \ (Dye UD). By
Theorem 3.3, there exists an ordinary singular family of 2-elementary K3 surfaces

z: (Z,1) — A of type M with Griffiths period map =, such that (Zo,i) is a
2-elementary K3 surface of type [M L d] with Griffiths period «(0).
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Since the natural projection Ily;1: Qp1 — My, is doubly ramified along HY
by [59, Prop.1.9 (4)], there exists a holomorphic curve ¢: A — Q;,1 intersecting
H§ transversally at ¢(0) € Hg such that 1T, (c(t)) = v(¢*). Hence we have

(4.9) Ja(e(t)) = 2(Z:8).

12
(1) Assume d € Ay, . If vis of type (0,3), g([M L d]) = g(M) by [59, Prop. 2.5].
Since g([M L d]) = g(M)—1 by Lemma 11.5 below, we get a contradiction. Hence
¢ must be of type (2,1). By [59, Prop.2.5], p|z.: 2* — A is an ordinary singular
family of curves. By Lemma 4.1 (1), there exists h(t) € O(A) such that

(4.10) log|lxg(an (2(Z"))%||* = 22002 log |t]* + log | A(1)|* + Ologlog |t ).

Since y(A*) N D = () by the choice of v, h(t) does not vanish identically on A by
(4.4). Let a € Z>o be the multiplicity of h(t) at ¢ = 0. By (4.9) and (4.10), we get

(4.11)  log [Ixg(an) (Jar (e(t))*|I* = 2(229D72 4 a)¢ log |t]* + O(loglog t| "),

which yields that Hy C supp® for d € A’,,. Comparing (4.7), (4.8) and (4.11),
we get o = 2(229(M)=2 4 q){ in (4.8). Since D and D), are O(M™)-invariant, so
is E. This proves (1).

(2) Assume M =1, 8(2), d € A%,., d/2 = 1;,1. As was proved in Proposition
3.10, [M L d] = U & Eg(2). If ¢ is of type (0,3), then Z° is the disjoint union of
a smooth curve of genus 2 and an isolated point by [59, Prop. 2.5], which implies
that Jp(7(0)) € Az \ M. However, we get the contradiction by Theorem 3.5:

Jar(7(0)) = Jf 1y (7(0)) = Jgmg2)(1(0)) € Nz,

where the last inclusion follows from Lemma 3.1 (2). Hence ¢ must be of type (2, 1).

By [59, Prop.2.5], p|z.: 2* — A is an ordinary singular family of curves. Since
the normalization of (Zp)* is the disjoint union of two elliptic curves by Lemma
3.1 (2) and Theorem 3.5, (Zy)* is the join of two elliptic curves intersecting at one
point transversally. By Lemma 4.1 (2), we get

(4.12) 1og [[xg(ar)(£22(2;))*||* = 8 log|t|* + O(loglog [t| ) (t — 0).
By (4.9) and (4.12), we get
(4.13)  loglIxgan (Jar(c(t)®[|* = 16 log[¢[* + O(loglog [t| ") (t — 0).
By Lemma 3.1, we get Ja(Q9,.) = J5,(29,.) € Az \ buun,2. By Proposition
3.10, we get Jpr (Ugens L dj2#1,,. HS) C Az \ 6yun 2. By these two inclusions,

’
M

Jm Qg/[L U U Hj CAQ\onuILQ,
deA” | d/2#1,,.

which implies that J;,x3‘ does not vanish on Q,, U UdeA;\’“,d/zleL HY. Hence

(Q9,. UD3,)ND C (9%, UDY, )\ | Q9,0 U U HY
deAy |, d/2#L,,
=D3,.\ U HS
deA/]CIL s d/2$1ML

C Dy UHp (Lp0,—1/2).
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Since Qp1 \ (2%, UDG,.) is an analytic subset of codimension 2 in /., we get
The desired formula follows from (4.8), (4.11), (4.13), (4.14). O

Remark 4.3. In the proof of Theorem 9.1, we shall prove ¢ = F = 0 under the
assumption of Proposition 4.2. When g(M) = 0, this is trivial. When g(M) = 1,
this follows from the inclusion ® C Dj,;. and the estimate log |h(t)] = O(1) in
Lemma 4.1 (1). When g(M) =2, we get E =0 because ® C Dj;..

Remark 4.4. A key in the proof of Proposition 4.2 (1) is the fact that O(M™)
acts transitively on A’ . In fact, O (M™) acts transitively on A’ . To see
this, since O(M*) acts transitively on A’ ., it suffices to prove the existences of
de Ay, and g € O(M*)\ O (M*) with g(d) = d. By [20, Appendix, Tables
1,2,3], we have M+ = U@ L if g(M) > 0. Since A),, = 0 when g(M) = 0,
we may assume g(M) > 0 and M+ = U@ L. Let d € Ay C Ayr. Then
g=1ly® -1y € O(M*)\ O (M*) by (2.3), and g(d) = d.

4.2. Automorphic forms on QX
Let A be a lattice of signature (2,7(A) — 2). We fix a vector Iy € A ® R with
(Ia,1p) > 0, and we set
’ (), la
inn = T e e e or ),
<777 lA>
Since H;, =0, ja(v,") is a nowhere vanishing holomorphic function on Q3.
Let I' € OF(A) be a cofinite subgroup. A holomorphic function f € O(Q}) is
called an automorphic form on QX for T' of weight p if

SO =x() dalty, )P £, leQf, ~eT,

where y: I' — C* is a character. For an automorphic form f on QX for ' of weight
p, the Petersson norm || f|| is the function on Q} defined as

L _ o)
Hf([n])“ = KA([W]) |f([77])| ) KA([”]) = |<TI,1A>|2.

If 7(A) > 5, then ||f||? is a T-invariant C*° function on Qf, because the group
I'/[[,T] is finite and Abelian and hence X is finite in this case.
We also consider automorphic forms on QL . with values in the sheaf \%,.

Definition 4.5. Let M C L3 be a primitive 2-elementary Lorentzian sublattice.
Let x be a character of OT(M™). Let p,q € Z. Then ¥ € H°(Q}, ., \,) is called
an automorphic form on QLL for Ot (M=) of weight (p, q) if for all v € OF (ML),

V(y-[n)) =x() jare (v, )P (2 (), ] € Q3.

For an automorphic form ¥ on Q. for OT (M=) of weight (p, q), the Petersson

norm of ¥ is a C function on Q7 , defined as

M+

(4.15) [ (@DI? = Knrs ()P - 1€)X, 1] € Qe
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5. The invariant 7, of 2-elementary K3 surfaces of type M

Let (X,¢) be a 2-elementary K3 surface of type M. Identify Zs with the sub-
group of Aut(X) generated by ¢. Let k be a Zo-invariant Kéhler form on X. Set
vol(X, k) := (2m) 2 [ k?/2!. Let 1) be a nowhere vanishing holomorphic 2-form on
X. The L2—norm_0f 1 is defined as 072 := 2m)~2 [y n A7

Let Oy, = 2(9 + 0*)? be the d-Laplacian acting on C* (0, g)-forms on X. Let
0(0o,q) be the spectrum of Oy 4. For A € o(0o,q), let Ey4(A) be the eigenspace
of Oy, with respect to the eigenvalue \. Since Zs preserves k, Ey 4() is a finite-
dimensional unitary representation of Zy. For s € C, set

CO’Q(L)(S) = Z ’I‘I“(L|E07q(>\)))\_s.

A€o (Uo.q)\{0}

Then (o,q(¢)(s) converges absolutely when Res > dim X, admits a meromorphic
continuation to the complex plane C, and is holomorphic at s = 0. The equivariant
analytic torsion of the trivial Hermitian line bundle on (X, k) is defined as

72, (X, £)(0) = exp[= > (=1)q GG 4(1)(0)].
920
We refer to [50], [5], [6], [23], [4], [38], [31] for more about equivariant and non-
equivariant analytic torsion.

Let X* = >, C; be the decomposition of the fixed point set of ¢ into the con-
nected components. Set vol(Cj, k|c,) := (2m)~! fCi klo;. Let ¢1(Cy, klc;) be the
Chern form of (T'C;, k|¢;) and let 7(C;, k|c;) be the analytic torsion of the trivial
Hermitian line bundle on (C;, k|¢;). We define

i

14— (M)

(X, 0) = vol(X, k)™ 5 712,(X,K)(¢) H Vol(Cy, k|e;)T(Ci, Elc;)

X exp l/ log A7 Vol(X, k)
8 Je, K220 )2

which is independent of the choice of xk by [59, Th.5.7]. Hence 7a/(X,¢) is an
invariant of the pair (X, ¢), so that 75; descends to a function on M9, .

c1(Cs, k Ci)] ;
C;

Theorem 5.1. If r(M) < 17, there exist an integer v € Z~o and an automorphic
form @y on Qpo for OF (M) of weight (v(r(M)—6), 4v) with zero divisor v D1
such that for every 2-elementary K3 surface (X,t) of type M,

(X, 0) = [ar (e (X, )] 72
Proof. The result follows from [59, Main Th.] and Proposition 11.2 below. O

6. Borcherds products

6.1. Modular forms for Mpy(Z)

Recall that $ C C is the complex upper half-plane. Let Mpy(Z) be the meta-
plectic double cover of SLy(Z) (cf. [10, Sect.2]), which is generated by the two
elements S := ((}7,),v/7) and T := ((}1),1). For v = ((*%),Ver +d) € Mps(Z)
and 7 € 9, we set j(v,7) :=+Ver +dand y-7:= (ar +b)/(cT + d).

Let M be an even lattice. Let C[Ajs] be the group ring of the discriminant
group Apr. Let {e,},ca,, be the standard basis of C[Ays]. The Weil representation



20 KEN-ICHI YOSHIKAWA

pa: Mpa(Z) — GL(C[A)]) is defined as follows [10, Sect. 2]:
o)

in? 17 T2 —omi
61 puD)ey =c"Te, pu(S)ey =y Y e e,
Y

A C[Aj;]-valued holomorphic function F(7) on $) is a modular form of type par
with weight w € 17 if the following conditions (a), (b) are satisfied:

(a) For v € Mpy(Z) and 7 € §, F(y-7) = (v, ) par () - F(7).
(b) F(7) =3 ca, © etz ¢y(k) ™7, where Lis the level of M, ¢, (k) € Z
for all k € 1Z and ¢, (k) = 0 for k < 0.
By the first condition of (6.1), [14, Eq. (1.4)] and Condition (a), we get

: 2
62) Cw(k):{o if k¢72/2+z

c_~(k) if ke~?/24+Z.

The group O(M) acts on C[Ap] by g(ey) := eg(,), where g € O(qns) is the
element induced by g € O(M). For a modular form F of type py, we define
Aut(M, F) :={g € O(M); g(F') = F'}. Then Aut(M, F) is a cofinite subgroup of
O(M), since O(qar) is finite and since Aut(M, F) D ker{O(M) — O(qm)}-

6.2. Borcherds products

Let A be an even lattice of signature (2,r(A) — 2) with level [. Assume that A is
2-elementary and that A = U(IN) @ L. A vector of A ® Q is denoted by (m,n,v),
where m,n € Q and v € L ® Q. We write a vector of Ay in the same manner. If
F(1) =3 ca, f~(7) ey is amodular form of type pa, then F'(7) induces a modular
form F|;(7) of type pr, with the same weight as follows [9, Th.5.3]:

N—-1
(6.3) Flo(m):= > frm@en,  foaam) = frzon(T)
AEAL n=0

Write F|L(T) = 32 ca, €y 2y ca2 7 Ly (K) e? k7 By [9, Sect. 6, p.517], F|L(7)
2
induces a chamber structure of CZF;

(6.4) €)%y, =Ci\ U hy = HaeaAWa,
AELY, A2<0, ¢, 5(A2/2)#£0

where hy = At = {v € L&R; (v,\) = 0} and {W, }aea is the set of connected
components of (Cf)%lL. Each component W, is called a Weyl chamber of F|p (7).
In general, W, is not a Weyl chamber of L in the sense of Sect.2.3. If A\ € L& R
satisfies (A, w) > 0 for all w € W,, we write A - W, > 0.

_ 2mikT
Theorem 6.1. Let F(1) =3 4, € Zke“’—;—kz cy(k)e be a modular form of

type pa with weight o(A)/2. Then there exists a meromorphic automorphic form
Ua(2, F) on Qf for Aut(A, F) N O*(A) of weight co(0)/2 such that

. 1
d1v(\I/A(-,F)):§ > a(W/2)Hy = > cs(A\2/2) Hy.
AEAV, A2<0 AEAY /£1,A2<0

If W is a Weyl chamber of F|r, then there exists a vector o(L, F|,, W) € L ® Q
such that Up(z, F) is expressed as the following infinite product near the cusp under
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the identification (2.8): For z € L ® R+ iW with (Im 2)? > 0,

‘I’A(Z, F) — 627ri<Q(L’F|L7W),Z> H H 2m( (A2)+2 ))C(%,O,X)(AZ/Z).
AELY, AW>0n€Z/NZ
Proof. See [9, Th.13.3], [14, Th. 3.22]. O

The automorphic form Wy (z, F) is called the Borcherds product or the Borcherds
lift of F'(T), and the vector o(L, F|r, W) is called the Weyl vector of W, (-, F'). See
[9, Th.10.4], [10, p.321 Correction] for an explicit formula for o(L, F|p, W).

7. 2-elementary lattices and elliptic modular forms
Throughout Section 7, we assume that A is an even 2-elementary lattice.

7.1. A construction of modular form of type p, for 2-elementary lattices
Set MT(4) := {((zdb),\/cr +d) € Mp2(Z); c=0 mod 4}. Let w € 1Z and let
X: MT(4) — C* be a character. A holomorphic function f(7) on $ is a modular
form for MTy(4) of weight w with character y if the following (a), (b) are satisfied:
(a) f(y-7)=3(y.7)*"x(7) f(7) for all y € MTo(4) and 7 € §.
(b) f(r)= Zkeiz c(k) e*™*7 with c(k) = 0 for k < 0.
Set ¢ = €™ for 7 € §. Let n(1) = ¢"/**T[>2,(1 — ¢") be the Dedekind
n-function and let

T =3 d"T s =Yg da(r) = (-1

nez neZ nezZ
be the Jacobi theta functions. Notice that we use the notation ¢ = 2™ while
g = €™ in [15, Chap.4]. Recall that A; is the negative-definite one-dimensional
Aq-lattice (—2). Set Af := A;(—1) = (2), which is the positive-definite A;-lattice.
For d € {0,1/2}, let 9AT+d/2(T) be the theta function of Af:

Opt (1) := 93(27), 9A1++1/2(7') = 15(27).

By [10, Lemma 5.2], there exists a character xg: MT'g(4) — {1, +i} such that
0A+( 7) is a modular form for MT(4) of weight 1/2 with character xq.

For k € Z, define f(0 (1), (1 (1) € O(9) and the series {c,(co)(l)}lez7 {Cél)(l)}lez+k/4
by

n(27)% 0, +
9 :(— ch =q¢ ' +8+2k+0(q),
T lEZ
n(47)%0,+
)= 16— = 3 207 (g = 21 (k4 16)° + 0(g")).
lek itZ

We define holomorphic functions g,(C (1) € O(9), i € Z/AZ by
g (M= 3 g’
=% mod 4
By definition,
S o0 = DD O
T) = = T/4).
i n(7)%n(7/4)% g

I€Z/AZ
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For a modular form ¢(7) of weight [ for MT¢(4) and for g € Mpy(Z), we define
Slg(7) := o9 7) (g, 7).

The following key construction of modular forms of type pa is due to Borcherds.

Proposition 7.1. Let ¢(7) be a modular form for MT'g(4) of weight I with character
o(A)
Xo

and set

Bal¢](7) := > dly(T) palg™t) eo.

gEMTo(4)\Mp2(Z)
Then Ba[¢](7) is independent of the choice of representatives of MTo(4)\Mp2(Z).
Moreover, Bx[¢](T) is a modular form for Mps(Z) of type pa with weight I.

Proof. See [52, Th.6.2]. See also [9, Lemma 2.6], [10, Proof of Lemma 11.1]. O

Lemma 7.2. The function f,go)('r) is a modular form for MTy(4) of weight 74+g

with character X’g.

Proof. The result follows from [10, Lemma5.2 and Th. 6.2]. O
Set Z =52 = (—(}9).i) and V := 571725 = ((')), V=27 + 1).

Lemma 7.3. The coset MTo(4)\MT(1) is represented by {1, S, ST, ST?,ST3,V}.

Proof. Since #MTy(4)\Mp2(Z) = 6 by [53, Prop.1.43 (1)] and since none of two
elements of {1,.S, ST, ST?, ST3,V} represent the same element of MT(4)\Mps(Z),
we get the result. O

Recall that the characteristic element 14 € Ax was defined in Sect. 2.2. Define
Vo, V1, Va2, v3 € C[A] by
Vi = Z €es.

§€AN,62=k/2 mod 2
Lemma 7.4. The following identities hold:

3
_ Lo KA . _
(1) pa((STHNeg=i7 272 Y iy, (2) pa(V Y eo =eq,.
k=0

Proof. (1) Since S~ = SZ3 and since pp(Z)e, =i M e_, by (6.1), we get

- R )
pa(S™1) e = pa(S) pa(Z?) g = 7™ FNEE E s =i"% E es.
SEAN SEAN

This, together with the first equation of (6.1), yields (1).
(2) By [10, p.325 1.16], we get

pA(ST™28) eq = i~ 7™M | Ay~ Z 2 (1047} g — jmo () e1,,
7,6€AN

where we used the identity 37, e2mi(retr) = 3 A 2Tt IA) = | Ap| 6y,
(cf. [10, Lemma 3.1]) to get the second equality. Since S 1= 87 =738, we get

pA(V_l) ey = pA(Z) pA(ST_QS) ey = i_U(A)pA(Z)3 ey, = i—o(A) =30 (A) €1, —€1,.
This proves (2). O
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Lemma 7.5. The following identities hold:

W Ol =T (TR) @ A =10,

Proof. We apply [9, Th.5.1] to the lattice A = (2). Since Ay = (2)V/(2) =
{0, 3}, the group ring C[AAT] is equipped with the standard basis {eg,e;/2}. Set
O+ (1) := 0, (T)eo + 9A1++1/2(7') e1/2. By [9, Th.5.1] applied to A, we get
(7.1) Ou+(9-7) =3(9,7) pa+(9)Ou+(7), g€ Mpy(Z).
By (6.1) and (7.1), we have

O, (ST 1) = (ST, 1) { &z g, (r) +i 2220, 0(r)

V2i V2i
0, (V1) = j(Vi7) {eo Ot 1 )a(7) + 1/20,+ <T)} .

Comparing the coefficients of ey, we get

(72)  Outlsmi(7) = (2¢)*%{9A1+(7) 0,51 p(T)} = (21')*%%1+ (7:1) :

(7.3) eAj lv(r) = HAT+1/2(T>-
Here the second equality of (7.2) is the consequence of the following identity:

T +l Tin2(r min? (T ;
0A1+ (—4 ) = Z e2min”(tT+0)/4 Z e2min®(r+1)/4 :9A1(7)+Zl9A1++1/2(T)-

neven n odd
Set 1y-sgsg-s (1) 1= (1) 3n(27)3n(47)~8, which is a modular form for MT(4)
by Lemma 7.2. Since ST' = ((} 7}), V7 +1) and since n(—7"1)% = 74(7)® by [10,
Lemma 6.1], we get

s 1
771*8284*8‘ST1 (T) = (T +1)2 159848 <— )

T+1

-eetn() () ()
St () (5F)

_ T+ 8 T+ -8 T+
x n(T+1)"%y <T> W(T) :24771—8284—8< n >,

which, together with (7.2), yields (1).
Since V = ((712 (i), V=27 + 1) and since 1;-sgs4—s(7) has weight —4, we get

T -8 27 8 4t -8
—sg84- = (=2r+ 1)y ——— S — . —
Moy () = (2274 1) "(-27+1> ”(—27+1> ”(—27+1>
—4 4 —4
1 1 11
=(=2r+D*(2- = 1—— - ——
(=27 +1) ( 7') ( 27’) (2 47)
1\ ® 1\ /1 1\°
2= 1—— S
1 -8
=2rtn(2-=)
T 27

—_
\
| —
oo
3
7 N\
N |
\
5=
N—
&
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We define h(7) :=n(r + 1) ™8n(27 + 1)%n(47 + 2)~8 for 7 € §. Then

1
(74) 771-8284-8 ‘V(T) = 167’4 h <—4—) .
T
Set ¢ := exp(2mi/48). Since h(7) is equal to
¢RI T (- (o)) e [ - ) Ha 5 [J-¢*) %)
n=1 n=1 n=1

= —¢ '[[{O =)+ (=) (L =) P+ 7)Y
n=1

_ _qfl H(l _ q2n)78(1 +q2n)78(1 +q2n71)78
n=1

and since we have the identities ¥2(27) = 2¢"/4 T[22, (1 — ¢**)(1 + ¢*")? and

(7.5) 93(27) = H(l — QQ")(I + q2n—1)27 04(27) = H<1 _ q2n)<1 _ g2

n=1 n=1

by [15, p.105, Eqgs.(32-36) |, we get

(7.6)  02(2r)*0s(27)* = 2% [[ (1 — *)P(1 + ¢*)P(1 +¢*")® = —2*N(r) "
n=1
By [15, p.104, Eq.(20) ], we have
192(7771)4 = —72194(7)4, 193(77'71)4 = 77'2193(7')4,
which, together with (7.6), yield the identity

1\ . 1\ 1\
(o) =2 (o) o)

= —7r493(27) M4 (27) 2

(7.7)

-8
[e%s} 1— 2n 1— 4n 1— An—2
_ H( ")( q42( ")
(1—g*)
3 00_ 1— q2n)2 -8 B _
— . 4{Hnoo1( — 4 (27) 165 (41)8.
(= ¢ (27)" Pn(47)
Here we used (7.5) to get the third equality. We deduce from (7.4), (7.7) that
(7.8) m-sasq-s|v (1) = =16 7(27) ™ (47)".
We get (2) from (7.3) and (7.8). O

Definition 7.6. For a 2-elementary lattice A, define a C[Ax]-valued holomorphic
function Fa(7) on $ by

3
0 4—c(A)—=1L(A) 1 1
Fa (T) = fS(-Q—)U(A)(T) e +2 2 gé-i)-a(A) <T) vi+ f8(+)U(A) (T) €15
=0
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By the Fourier expansions of f’io)(T) and f (1)(7) at ¢ = 0, we get the following
Fourier expansion of F(7) at ¢ = 0:
(7.9)

Fa(r)={q"+24+20(A) +O(q)} eg +2 {24+20(A)+ O(q)} vo
+0(g"*) v1 + O0(¢"?) va + g == {q*1/4 + O(q3/4)} V3

_ 212+o’(

4—o(A)=1(A)
2

(24+0(A) ¢+ O(q")} ex,.

Theorem 7.7. (1) Fa(r) = Ba[ni-sosa- 89 To) 1(7). In particular, Fp(T) is
a modular form for Mpy(Z) of type pa wzth weight o(A)/2.
(2) The group O(A) preserves Fa, i.e., Aut(Fa, A) = O(A).
(3) If bt (A) <2 and o(A) > —12, FA(T) has integral Fourier coefficients.

Proof. (1) Set k =8+ 0(A) and ¢(7) = f,go)(T) in Proposition 7.1. Since f]go) (1) is
a modular form for MTo(4) of weight (k—8)/2 = o(A)/2 with character x5 = XZ(A)
by Lemma 7.2, BA[fIEO)KT) is a modular form for Mps(Z) of type pa with weight
o(A)/2 by Proposition 7.1. We prove that Fy = BA[f,EO)]. Since k =8 4+ o(A) and
|Ap| = 2™ we deduce from Lemmas 7.4 (1) and 7.5 (1) that

(7.10)
- 10 3 5 0 [T+ ;
S 7O Lsri(7) pa (ST 1) eg = S 2044 Zf( ( )._l,vj
=0 =0
3 3
o) T\
S (—4 )i
j=01=0
(A)+1(A) 3 3
=2 2 Z (S)(T—i—l)

j=01=0 s€Z/4Z

Recall that £ (1) = 2% @) ¢". Since ¢\ (1) = 3, _. voq 2 0 (n) g/4,
we get

gl(:) (7_ + l) _ Z Cg]) (n) e27rin(7'+l)/4 _ Z c](CO) (n) iSl qn/4’

n=s mod 4 n=s mod 4

which yields that

3 3
SoirtlgP = > ) Y i g = 45,907 (7).
=0

n=s mod 4 =0

Hence we get

Z S ity = Y 4600 (n) =490 (7),

1=0 s€Z/4Z SEZ/AZ

which, together with (7.10), yields that

3
(7.11) Zf150)|STL (1) - pa ((STZ)_l) e = ECES Z
1=0

=0
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Similarly, we get by Lemmas 7.4 (2) and 7.5 (2)

(7.12) v (r) paV Y e = 17 (7) e,

By (7.11) and (7.12), we get Fy = Bo[f”].

(2) Since g(e,) = eg(y) for g € O(A) and v € Ay, we get g(v;) = v; forall g € O(A)
by the definition of v;. Since the characteristic vector 1, is O(ga)-invariant, we get
g(1a) =14 for all g € O(A).

(3) Since flgo) (1), g,(cj)(T)7 f]gl)(’]') have integral Fourier coefficients for k > —4,
it suffices to prove by Definition 7.6 that ZM € Z when bt (A) < 2. Since
a(A) =207 (A)—r(A), 7(A) > I(A) and r(A) = I(A) mod 2, we get 4—a(A)—I(A) =
2(2—=bT(A)) +7(A)—I(A) >0and 4 — o (A) — I[(A) =0 mod 2. O

Remark 7.8. When A = U2 @ Eg, we have Fizqg, (1) = Ea(7)?/n(7)?%, where E4(7)
is the Eisenstein series of weight 4. By [28, Sects. 3.3 and 4], Fy2gg, (7) seems to be
closely related with the elliptic genus of a certain vector bundle on a K3 surface.
Is Fp(7) related with the elliptic genera of some manifolds? The universal factor
()" tn27)n(47)" in ,go)(r) appears in the definition of elliptic genera, because
R(1) = ¢*/®n(r) " 'n(27)n(47)~! in [36, p.7 1.7]. Is this coincidence accidental?
7.2. Applications to 2-elementary Lorentzian lattices

Recall that F induces a modular form Fj |z, of type p;, when A = U(N)@® L (cf.
Sect.6.2). Since A is 2-elementary, N € {1,2} and L is 2-elementary in this case.

Lemma 7.9. If A=U(N) @ L, then Fa|L = Fp.
Proof. Write FA|L(T) = > 4, (FalL)4(7) ey. Since 1yv) = (0,0), we get 15 =

((0,0),1z). Since ((n/N,0),7)? =+? mod 2 for v € Ay, we get by Definition 7.6
and the definition of (Fa|r)(7) (cf. (6.3))

(7.13)
‘]\/'274 A= géllg(A (1) (v#0,1,,7*=1)
(Fal)y (1) = £ (1) + N2 =520 () (v =0)
() + N2 g0 () (v = 10).
In the last equality, we used the formula 1% = % mod 2, which follows from

(6.2), (7.9). If N =1, Ay = A, and hence Fp|r, = Fp = F, by Definition 7.6 and
(7.13). Assume N = 2. Since o(A) = o(L) and I(A) = I(L) + 2, we get Fplr, = Fr,
by comparing the definition of Fy, with (7.13). This proves the lemma. O

Lemma 7.10. Let L be a 2-elementary Lorentzian lattice. If r(L) < 10, a subset
of C+ 1s a Weyl chamber of L if and only if it is a Weyl chamber of Fy, .

Proof. Write F(T) =3 ca, €22, 2.y cr~(k)g*. By (6.4), it suffices to prove

that if A € LY, A* < 0 and ¢, 5(\*/2) ;é 0, then hy = hy for some d € Ay. Since
8 + o(L) > 0, this follows from (7.9). O

Theorem 7.11. Let L be a 2-elementary Lorentzian lattice with r(L) < 10 and let
W be a Weyl chamber of L. Then

1 if de A}, NII(L,W)

L, F;,,W),d) = .
(o(L,FL,W),d) {Qk(L>+1 if deA?NII(LW).

In particular, the following hold:
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(1) If Al =0, then o(L, Fr,, W) is a Weyl vector of (L, W).

(2) If Ay =0, then o(L, Fr,, W)/(28(F) 4+ 1) is a Weyl vector of (L, W).
Proof. We follow [9, Th.11.2, Th.12.1]. By Lemma 7.10, W is a Weyl chamber
of Fr(r). Let d € II(L,W). Then hy is the wall separating W and s4(W). Since
sq € W(L) acts trivially on Ay, we get by [9, p. 514 1.22 and p. 534 1.22] the identity
Sd(Q(La FLa W)) = Q(L, FL, sd(W)) NamelY? we have
(714) Q(La FLa W) - Q(La FLa Sd(W)) = 7<Q(L7 FL? W)7 d> d.

Write FL(T) = D> ca, €y Zk6L22+Z cr~(k)¢®. By the wall crossing formula of
Borcherds [9, Cors. 6.3 and 6.4], we get

(7.15)
o(L, Fp, W) = o(L, Fr,s4(W)) = — > cr 5(A%/2) A
AELY, ha=hg, \-W>0
—cr5(=1)d if de A, NII(L,W)
- { —cp (=18 —erp(-1)d it deALNI(LW)
f -a if de A, NII(L,W)
B { —(2"0) ¢ 1)d if de AYnI(LW),

where the third equality follows from (7.9). (Since I'(=1/2) = —2+/m, it seems
that the minus sign is necessary in the formula for ®;(v) — ®2(v) in [9, Cor.6.4].)
Comparing (7.14) and (7.15), we get (o(L, Fr,,W),d) = 1 (resp. 2F“) 4-1) for all
de A, NII(L,W) (resp. d € A7 NII(L,W)). This proves the theorem. O
Remark 7.12. By e.g. [20, Appendix, Tables 1,3], the table of primitive 2-elementary
Lorentzian sublattices of L3 with A7 =0 (resp. A} = 0) is given as follows:

(i) A? =0 if and only if §(A) = 0 or L = AT, A] @ Eg, A} @ EZ?.

(ii) A% =0 if and only if k(L) =0, i.e., 7(L) = I(L).
The proof is parallel to those of Propositions 11.6 and 11.10 below.

We give a geometric interpretation of Theorem 7.11.

Theorem 7.13. Let (X, 1) be a 2-elementary K3 surface with Pic(X) = H2 (X, Z).
If r(Pic(X)) < 10, there is a nef Q-divisor Dx on X with the following properties:

(1) *c1(Dx) = c1(Dx) for every p € Aut(X).

(2) For every smooth rational curve E on X,

1 if ¢1(F)/2 ¢ Pic(X)V
Dx-FE= - . .
2k(Pie(X)) 11 if ¢(F)/2 € Pic(X)V.

Proof. The real vector space H''!(X, R) endowed with the cup-product pairing is
a Lorentzian vector space. Let Cy € H%'(X,R) be the light cone of H(X,R)
containing a Kihler class. Let Ky C HY(X,R) be the set of Kihler classes on
X. Let Exc(X) denote the set of smooth rational curves on X and let W(X) :=
W (Pic(X)) be the Weyl group of Pic(X). By [42, Remark 3.5 i)],
(7.16) Kx ={k €C¥%; (k,c1(E)) > 0, VE € Exc(X)}.
The ample cone of X is defined as Ax := Kx N (Pic(X) ® R). By (7.16), we get
(7.17) Ax = {r € Cli ()i (K,c1(E)) >0,V E € Exc(X)}.
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Since W (X) preserves Pic(X) and since Kx is a fundamental domain for the W (X)-
action on C+ by [2, Chap. VIII, Prop.3.10], Ax is a fundamental domain for the
W (X)-action on Cplc(x) By [42, Remark 3.5 i)], the minimal set of inequalities
defining Ay is given by {(x,c1(F)) > 0} pepxc(x)- By comparing (2.2) and (7.17),
the set of fundamental roots IT(Pic(X), Ax) is given by

(7.18) M(Pic(X), Ax) = {c1(E) € Apie(x); E € Exc(X)}.

Let Dx be a Q-divisor on X such that c¢;(Dx) = o(Pic(X), Fpic(x), Ax) €
Pic(X) ® Q. From Theorem 7.11 and (7.18), (2) follows. We prove that Dx is nef.

Assume Pic(X) 2 U @ Eg(2), U(2) ® Es(2), I3 9(2). Since r(Pic(X)) < 10 and
hence r(Pic(X)) + {(Pic(X)) < 18 by this assumption, W (X) is a subgroup of
O(Pic(X)) with finite index by [45, Th.4.4.1]. Since {(¢1(Dx),d) > 0 for all d €
II(Pic(X), Ax) by (2), we get ¢1(Dx) € C‘L by [47, Th.1.4.3 and (1.4.5)]. Namely,
D% > 0, which, together with (2), implies that Dx is nef by [42, Sect. 3.5].

Assume Pic(X) =2 U @ Es(2), U(2) ® Es(2), [1,9(2). By [9, Th. 10.4], we get

((1,0),0) if Pic(X)=UaEg(2)
ci(Dx)=1¢ 0 if Pic(X)=U(2) @ Eg(2)
(3,-1,...,-3) if Pic(X) I (2),

which yields that D% = 0. This, together with (2), implies that Dy is nef.
By [9, p.514 1.22 and p. 534 1.22], we get for all g € O(Pic(X))

(719) g(Q(PlC(X)a FPic(X)7 -AX)) = Q(PIC(X) FPlc (AX))

Since ¢*Pic(X) = Pic(X) and ¢(Exc(X)) = Exc(X) for all v € Aut(X), it follows
from (7.17) that Im{Aut(X) — O(Pic(X))} preserves Ax, i.e., p*Ax = Ax for all
¢ € Aut(X). Hence (1) follows from (7.19). O

Remark 7.14. By an explicit formula for ¢;(Dx) = o(L, Fr, W) in [9, Th.10.4],
one can see that ¢;(Dx) = 1picx) mod Pic(X) and that Dx is ample if Pic(X) 2
U(2), Up Es(2), U(2) #Es(2), I 9(2). Since we do not use the explicit formula for
¢1(Dx) in the rest of this paper, we omit it.

8. Borcherds products for 2-elementary lattices

Throughout this section, we assume that A is a 2-elementary lattice with sign(A) =
(2,7(A) — 2). Recall that the divisors D\ and D} on Qp were defined in Sect. 2.4.

Theorem 8.1. If r(A) < 12, the Borcherds lift Ua(-, Fp) is a holomorphic auto-
morphic form on QF for O (A) with zero divisor

div(Wa (-, Fr)) = D) + (20102 L 1) DY,
The weight w(A) of WA (-, Fa) is given by the following formula:

w(h) {(16 PO 1) —8(1 - 6(4)) (r(A) = 12)
(16

16 — r(A)) (20 =IAD/2 4 1) (r(A) <12).

Proof. Since r(A) < 12 and sign(A) = (2,7(A) — 2), we get o(A) = 4 — r(A) and
840(A) > 0. By (7.9), we see that the Fourier coefficients of F () are non-negative
for negative exponents ¢%, a < 0 and that the coefficient of eq,, i.e., éi)a(A) (1),
is regular at ¢ = 0. By Theorem 7.7 (2), we get Aut(A, Fy) = O(A). Write
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FA(T) = X ca, €y Zk€3;+z ca~(k)q®. By Theorem 6.1 and (7.9), UA(-, F) is
an automorphic form for O*(A) such that
(8.1)
div(Va (-, Fr)) = > cax(A\?/2) Hy
AEAY /£1,22<0

_ 3 ea5(A2/2) Hy + > eax(N?/2) Hy

AEA/EL, N2 /2=—1 AEAV/E1,72/2=—1/4
—o (M)l (M) =N
= Y m+2FY Y H=Dy+ (@ + 1),
AEAN/E1 AeAY /+1

By Theorem 6.1, w(A) = ¢ 5(0)/2. If r(A) = 12 and §(A) = 0, then 1, = 0,
which, substituted into (7.9), implies that
(8.2)

Fa(r)={q " +24+20(A)+0(q)} e +2 {24 +20(A) 4+ O(q)} vo
4—o(A)—1(A)

+O(q1/4) v +O(q1/2) vy + 2 2 {q71/4 +O(q3/4)} V3
+{-16 + O(q)} eo.

Since v( contains ey with multiplicity one and since o(A) = 4 — r(A), we deduce
from (8.2) that
0
w(A) = —CA702( )
This proves the formula for w(A) when r(A) = 12 and §(A) = 0.
If r(A) < 12 or (r(A),0(A)) = (12,1), the coefficient of e1, does not contribute
to ca,0(0) by (7.9), so that

14— (A)—L(A)
2

14— (A)—L(A) r(A)—L(A)
2

(12+0(A)) =8 = (16—r(A)) (277 +1)-8.

= 1240(A)+2

w(A) = CA%(O) =124 0(A)+27 7 (124 0(A) = (16— r(A)27TT -+ 1)
in this case. This completes the proof of Theorem 8.1. O
Corollary 8.2. If r(A) <12 and A} =0, then div(¥A(-, Fr)) = Da.

Proof. Since A’ = (), the result follows from Theorem 8.1. O

For the table of primitive 2-elementary sublattices A C L3 with r(A) < 12 and
A =0, see Proposition 11.6 below.

Corollary 8.3. The coarse moduli space of 2-elementary K3 surfaces of type M
is quasi-affine if r(M) > 10.

Proof. Set A := M~. Since r(M) > 10, we get r(A) < 12. A holomorphic automor-
phic form on Q4 is identified with a holomorphic section of an ample line bundle over
M by Baily—Borel-Satake [1]. Hence My \ div(WA (-, Fp)) is quasi-affine. Since
supp div(W (-, Fi)) = D by Theorem 8.1 and hence M§ = Mp \ div(P, (-, Fr)),
we get the result. O

In [44, Sect. 2], [16, Sects.1-3], the notion of lattice polarized K3 surface was
introduced, and their moduli spaces were studied. We follow the definition in [16].

Corollary 8.4. If M is a primitive 2-elementary Lorentzian sublattice of L3 with
r(M) > 10, then the coarse moduli space of ample M-polarized K3 surfaces is
quasi-affine.
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Proof. Set Gy = ker{OT(M*) — O(qps1)}, where O (M=) — O(qp;1) denotes
the natural homomorphism. By [16, p.2607], the coarse moduli space of ample
M-polarized K3 surfaces is isomorphic to the analytic space Q%,,/Gy. By this
description, the proof of the corollary is similar to that of Corollary 8.3. (]

For the table of isometry classes of primitive 2-elementary Lorentzian sublattices
M C Lgs with (M) > 10, see [20, Appendix, Tables 1,2,3]; there are 49 isometry
classes. There are some examples of lattices A with b+ (A) = 2 admitting an auto-
morphic form on Q7 with zero divisor Dy. See [7, Sect. 16 Examples 1,2,3], [8], [10,
Sect. 12], [11, Examples 2.1, 2.2], [25, II, Th.5.2.1], [35, Th. 6.4], [52, Sect. 10] etc.

Remark 8.5. By [569, Th.5.9], there exists a strongly pluri-subharmonic function
on Mg, if r(M) > 6. In particular, M, contains no complete curves when
r(M) > 6. The existence of a strongly pluri-subharmonic function on a quasi-
projective variety X does not necessarily imply the quasi-affiness of X. See [26,
p. 232 Example 3.2] for a counter example. If (M) > 6, is M$,. quasi-affine?

Theorem 8.6. When A = U @ U @ Eg(2) @ Ay, the Borcherds lift Uo (-, Fp) is a
meromorphic automorphic form for O (A) of weight 15 with zero divisor

D)\ + 5D} — 8Ha(1p,—1/2).

Proof. We have r(A) = 13, I(A) =9, 0(A) = —9 and 6(A) = 1. By Theorem 6.1
and (7.9), the weight of W (-, F)\) is given by (124 (A))(2(4—7(M-UAN/2 L 1) = 15
and the divisor of W, (-, F) is given by

4—o(A)—L(A)

Da+2 2 D} =22 oWy, (14, -1/2) = D) + 5D} — 8H (1, —1/2),

where —212+7(M 7, (14, —3) comes from the negative coefficient of qSWT(A)elA in
(7.9). This proves the theorem. O

Assume A = U(N) @ L, where L is a 2-elementary Lorentzian lattice with
r(L) < 10 and N € {1,2}. Hence r(A) < 12, and Fp|y, = FL by Lemma 7.9.
By [9, Th.13.3], Definition 7.6 and the definitions of f,go) (1), f,gl)(T) and g,(;) (1),
the infinite product for W, (-, Fy) is given explicitly as follows:

Uy (2, Fp) = *mio2 I1 (1 — e2mi2) ) eo ) (37/2)
AEL, AW>0,A2>—2

r(A)—1(A)
o L -
AE2LY, A-W>0, 22> -2
« H (1— ezm‘<,\,z>)2c;1+)m)(x2/2)7
AE(14L), A W>0,A2>0
where W C L ® R is a Weyl chamber of L by Lemma 7.10 and ¢ = o(L, F1,, W) €
L ® Q is the Weyl vector of (L, Fr,,W).

Ezample 8.7. Let A =U(2) @U(2) Eg(2). We have [(A) = 12 and w(A) = 0. This
A admits no primitive embedding into L3 by [43, Th.1.12.1]. Since Aj = (), we get
Dp = 0, so that Ux(-, Fp) is a constant function. This F(7) gives an example of
non-trivial elliptic modular form for Mps(Z) whose Borcherds lift becomes trivial.
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Ezample 8.8. Let A = U @ U(2) @ Eg(2). We have I(A) = 10 and w(A) = 4. Then
WA(+, Fp) is the Borcherds ®-function of dimension 10. See [7, Sect. 15, Example
4], 8], [9, Example 13.7], [22, Sect. 11], [34, Remark 4.7, Th. 7.1], [51], [59, Sect. 8.1]
for more about this example and related results.

Example 8.9. Let A = U? @ Eg(2). We have [(A) = 8 and w(A) = 12. Then
Up(, Fp) = \I/A(~,@A1+6 (7)/n(7)?%) is the restriction of the Borcherds ®-function

of dimension 26 to Q, where © (1) is the theta function [9, Sect.4] for the
positive-definite 16-dimensional Barnes-Wall lattice Af;. See [59, Sect. 8.2].

Ezample 8.10. Let A = U ® U(2) ® D3. We have [(A) = 6 and w(A) = 28. Kondo
[35, Th. 6.4] used W (-, F)y) in the study of the projective model of the moduli space
of 8 points on PL. By [35, Th.6.7 and its proof], W, (-, F5)'® is expressed as the
product of certain 105 additive Borcherds lifts [9, Sect. 14]. See also [22, Sect. 12].

Ezample 8.11. Let A = U® U @ Eg. Then I(A) = 0 and w(A) = 252. We get
Fo(1) = E4(7)?/n(1)**, where E,(7) is the Eisenstein series of weight 4. The
corresponding Borcherds lift W (-, Fn) = WA(+, E4(7)?/n(7)?*) was introduced by
Borcherds [7, Th. 10.1, Sect. 16 Example 1]. By Harvey—Moore [28, Sects. 4 and 5],
WA (-, E4(7)?/n(7)?*) appears in the formula for the one-loop coupling renormaliza-
tion [28, Eqs. (4.1), (4.5), (4.16), (4.27)].

Example 8.12. When A = U? @ Dy, WA (-, Fp) coincides with the automorphic
form A of Freitag-Hermann [21, Th.11.6]. Notice that the weight of A is 72 in
our definition (cf. [21, p.250 1.21-1.23]). By [21, Proof of Th.11.5], W (-, Fy) is
expressed as the product of certain 36 theta functions.

Ezample 8.13. When A =15 4(2), Ua(+, Fi) is the product of all even Freitag theta
functions [56], [61, Th.7.9], so that the structure of Wy, ,(9)(, F1, ,(2)) is similar
to that of Yygueenz (', Fueu@enz), Yuzen, (- Fuzep,). For the corresponding
2-elementary K3 surfaces, see [56].

Ezample 8.14. When A = Iy 5(2), Ua(+, Fa) coincides with the automorphic form
A1y of Gritsenko-Nikulin [25, II, Example 3.4 and Th.5.2.1]. When A = U? @ Ay,
U, (-, Fp) coincides with the automorphic form A2As5 of Gritsenko-Nikulin [25, 11,
Examples 2.4 and 3.9, Th.5.2.1].

9. An explicit formula for 7,

Theorem 9.1. Let M be a primitive 2-elementary Lorentzian sublattice of Lxs.
Assume that M satisfies the following two conditions:

(1) 11 <r(M) <17 or (r(M),6(M)) = (10,1).

(2) J3,(Q2%,1) € Onug(ar)-
Then there exists a non-zero constant Cys depending only on the lattice M such
that for every 2-elementary K3 surface (X,¢) of type M,

(9.1)
T (X, ¢) Cur Vs (e (X, 1), Fago )| Ixg(ar) (2(X4))1™°.
29(M)+1(99(M) 4 1y¢

Let £ € Z~( be an integer such that ]-'g( M) extends to a very ample
line bundle on A7 /). We may assume v = 29(M)=1(29(M) 1 1)¢ in Theorem 5.1.
By Theorem 9.1, we have

(9.2) By =C2W (- Fyye)

—20(M)+1(99(M) 41y 29 (M)

7 iy
ooy
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Proof. By our assumption, r(M=+) < 12. When r(M1) = 12, we have §(M) = 1.
We set A = M+ in Theorem 8.1. Then we have 16 — r(A) = r(M) — 6 and
PAIA) _yy _ rADHON _ gy

Recall that Ky € C*°(Q},.) was defined in Sect.4.2. Let wyso be the Kéhler

form of the Bergman metric on Q7

ML les

wyrL = —ddlog K.
By [59, Eq. (7.1)], we have the following equation of currents on Q,,.:

r(M)—6

(9.3) dd®log Ty = 1

" 1
Wyt + JMwAg(M) — Z(SDMi .
By Theorem 8.1, (4.15) and the Poincaré-Lelong formula, we get
(9.4)
— 291 44 log || W ppo (-, Fppo )12

= 2900712000 L 1) (r(M) = 6)wyys — 2000 M bp, = 29D 7H(2900 4 D)5

By Proposition 4.2 (1), there exist a € Z>o and an O (M')-invariant effective
divisor E on Q;\Z | such that

(9.5)

—dd®1og || T3, X5 an I? = 29T (29D 1 1) T3y

g(M)

2(229(M)=2 4 4 )¢ oy 0.

By (9.3-5), we get the following equation of currents on Q]T/[ L

c g(M)+199(M) g(M)—1 «
o) Al P P T I
=—2a€5y _5E-
ML

1

loc™
function on Q}, ., we deduce from (9.6) and [59, Th.3.17] the existences of an
integer m and an OF (M+)-invariant meromorphic function ¢y on QL 1 with zero

divisor m(2af D). + E) such that

Since log 7ar, 1og || U are (-, Fare)| and log ||J1T/IX2((ZM)|| are O (M*)-invariant L

g(M)+159g9(M) ¢ g(M)—1 « m
O N Ry T 0 TS 1P = lear P

Since M3, ., the Baily—Borel-Satake compactification of Mj;1, is an irreducible
normal projective variety and since dim(M3,. \ M) < dim M3, — 2 by the
condition r(M) < 17, oy descends to a meromorphic function on M3, .. Since
@n is a meromorphic function on M7, whose divisor is effective, pps must be a
constant function on M, . Hence a = 0 and E = 0. Setting Cjs := [pp|~>/™ in
(9.7), we get the result. O

Theorem 9.2. If M =1 g(2), there exists a non-zero constant C depending only
on the lattice M such that for every 2-elementary K3 surface (X,t) of type M,

(X, 0) 7Y = Cour [V (@ar (X, 1), Faro) 1 Ixgoan (£2(X )16
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Proof. Since M =1 g(2), we get M+ =2 Ud UdEg(2) ® A by e.g. [20, Appendix,
Table 2]. By (9.3) and Proposition 4.2 (2), we get

dd{—40¢ log Tas — log || T3, x5}
(9.8) =/ {—30 wyrs +100p,, — (8+2a)dp, | —16 5HML<1ML,7%>}
iy {—30wML +(2-20)0p, | +106pr  — 16 5HW(1MN;)} .

By (9.8) and [59, Th. 3.17], there is a meromorphic automorphic form ¢,; on QLL
for OF (M) of weight 30¢ with

(9.9) div o = £{(2 = 2a)Dy,;0 + 10D, — 16 Hppo (1pp0,—1/2)}
such that
(9.10) 40 log Tas + log || T3, X542 = — log ||oar?.

Since O+ (ML) /[0 (M™1),0F (M™)] is a finite Abelian group, there exists v € Z
such that ¢4, and W, (-, Fj;1)?” are automorphic forms with trivial character.
By Theorem 8.6 and (9.9), (W1 (-, Far)*/oar)? is an OF (M+)-invariant mero-
morphic function on Q;\Z . with

div(W s (-, Frg)? Jonr)” = v8{2D),0 +10Dy,0 — 16H 0 (10, —1/2)}
—vt{(2 - 2a)6D;uL + 10 %ﬁéu — 16 6HMJ~(1I\/IJ~’7%)}
= 2avl D). .

Since div(W ;1 (-, Fase ) /o) is an effective divisor on QLL, the same argument
as in the proof of Theorem 9.1 using the Hartogs theorem implies a = 0 and hence

the existence of a non-zero constant Cp; with
(9.11) orr = Cyf” Wags (-, Fype) .
By (9.10), (9.11), we get the result. O

Theorem 9.3. Let M C Lgs be a primitive 2-elementary Lorentzian sublattice.
Assume that M is non-exceptional and satisfies one of the following two conditions:
(1) g(M)<2,9<r(M) <17
(2) g(M) =3, r(M) = 10, (r(M),5(M)) # (10,0).
Then either M satisfies the Conditions (1) and (2) in Theorem 9.1 or M =1, g(2).
In particular, Eqs. (9.1) and (9.2) hold for these M.

Proof. (1) Let g(M) < 1 and 10 < (M) < 17. Since M is not exceptional, M
satisfies Condition (1) in Theorem 9.1 by [45, p.1434, Table 1]. Since AgNbnun,g = 0
when g € {0,1}, we get J3,(29,.) C Agar) \ Onun,gary- Hence Condition (2) in
Theorem 9.1 holds when g(M) <1 and (M) < 17.

Let g(M) = 2 and 10 < r(M) < 17. Since M is not exceptional, (r(M),d(M)) #
(10,0), so that Condition (1) in Theorem 9.1 holds. Since M % U @ Eg(2), we get
J5(95,0) € Az \ N2 by Lemma 3.1. Since Oy, = Nz, we get J5,(Q9,.) C
Ag \ i 2. Thus M satisfies Condition (2) in Theorem 9.1 in this case.

Let g(M) =2 and r(M) =9. Then M =1 g(2) by [45, p.1434, Table 1].

(2) Let g(M) =3, (M) > 10 and (r(M),6(M)) # (10,0). Then Condition (1) in
Theorem 9.1 holds. If Condition (2) in Theorem 9.1 does not hold for some M,

(9.12) T (Q9,2) C Onuns-
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By [20, p.14 Figure 1 and p.23 Table 1], we can write M+ = UaUoD,® AT, where
0 <m < 4. Let {dy,...,dn} be the standard basis of AT* whose Gram matrix is
—2-1,,. Then dy,...,d,, € A'](ﬂ. We define 2-elementary lattices My inductively
by M1 := [My, L dyy1], Mo := M. Then M- 2 UaUa D, ® A" *. By Lemma
11.5, we get g(My) = 3 for all Mj,.

Assume J§, (onw,j) C Opun,3. Since Jpy, is a continuous map from onw,g upe

15

is dense in Qﬁﬂi U D?Wk“ we get by Theorem 3.5 and (9.12)

o

to Az and since 0, ,
k

JI(\)/[k+1( ?V[Ij-ﬂ) C Jm (D?\/[ﬁ_) - JX/[k (Q?Mﬁ-) C Onun 3-

Hence JKMH(Q;/[L ) C Onu,3 N Az = Opun,3. In particular, we get J§, (29,.) C
k+1 m m
Onui,3- Recall that the period of a curve of genus 3 lies in 6,3 if and only if
the curve is hyperelliptic by [29, Lemma 11]. Since M;5 =~ U @ U @ D, and hence
M,, = U & Dy, the inclusion JH(}EBDM(Q(()U@DHH) C Onun,3 implies that the non-
rational component of X* is a hyperelliptic curve of genus 3 for every 2-elementary
K3 surface (X, ) of type U @ Dyo. This contradicts Proposition 12.3 (2) below.
Thus, if g(M) =3, #(M) > 10 and (r(M),6(M)) # (10,0), then we never have the
inclusion (9.12). Namely, M satisfies Condition (2) in Theorem 9.1. O

Remark 9.4. If M satisfies Condition (1) or (2) in Theorem 9.3, then M~ is given
by the following table by [20, Appendix, Tables 1,2,3]:

(0) If g(M) = 0, M~ is isometric to one of the following 7 lattices:
UR2)@ AT @AY (2<Ek<8).

(1) If g(M) = 1, then M~ is isometric to one of the following 9 lattices:

UsAf @AY (2<k<9), U2 aU2) oD,
(2) If g(M) = 2, then M~ is isometric to one of the following 10 lattices:
UaU®AY (1<k<9), UoU?2) aD,.

(3) If g(M) = 3, then M~ is isometric to one of the following 5 lattices:

UasUeDs®Af (0<k<4).

After Theorem 9.3, we conjecture the following: If M satisfies Condition (1) in
Theorem 9.1, then M satisfies Condition (2). In particular, if M satisfies Condition
(1) in Theorem 9.1, then Egs. (9.1) and (9.2) hold.

Theorem 9.5. If r(M) =10, §(M) =0 and M # U(2) & Es(2), then
i (Q41) C Onung(ar)-
Proof. Assume J3;(Q%,.) € Onuig(ar)- Since S(M+) =0,

g(M)—19g(M) g(M) _
2 (2 +1)¢ ® (Ji 2 1

o :=Upa(, Foye) Xo(nr))

is an automorphic form on QF,, for OF (M) of weight 29(*)=1(229(M) —1)¢(4,4)
by Theorem 8.1. Since J§,(€2,.) & Onuin,g(ar), we get ¢ # 0. Recall that v =
29(M)=1(29(M) 1 1)¢ in Theorem 5.1. Since

29(M) _q
V= /Py,
is an Ot (M~)-invariant meromorphic function on QX/I L
phic function on M3,,. We compute the divisor of 1.

1 extends to a meromor-
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Since 6(M™*) = 0, we get DY, = () by Proposition 11.8 below. Since r(M) = 10
and M 2 U(2) & Eg(2), we get g(M) > 0 by Lemma 3.1. By Proposition 4.2 (1)
and Theorem 8.1, we get
(9.13)

div(p) = 29D =1(29(M) L 1)) | 4 (290 — 1){2(229D=2 1 q)¢ D), , + E}

= {29M)=1(929(M) 4 1) 4 24 (29M) — 1)\ D), + (29 — 1) E.
By Theorem 5.1,
(9.14) div(®y) = v D), = 290129 L 1)) |
By (9.13) and (9.14), we get
div(y) = div(p) — (29 — 1) div(®yy)

9.15
(9:15) = {290 4 96 (29M) _ 1)}, + (29 — 1) E.

Since £ > 1, a > 0 and since F is an effective divisor, div(v) is a non-zero effective
divisor on QL . by (9.15). This contradicts the fact that ) descends to a meromor-
phic function on M3, . Since J§,(29,.) & Onun,g(ar) yields a contradiction, we get
the desired inclusion J3;(92%,.) C Ohung(amr)- |

Ezample 9.6. Let (r(M),0(M),g(M)) = (10,0,2). Then M = U @ Eg(2). Since
Onuil,2 = N2 and Jar(99,.) € N2 by Lemma 3.1 (2), we get Jas(29,.) C bhun,2 in
this case. This confirms Theorem 9.5 when g(M) = 2.

Ezample 9.7. Let (r(M),6(M),g(M)) = (10,0,3). Then M 2 U(2) @ Dy & Dy. In
Proposition 12.2 below, we shall prove that if (X, () is a 2-elementary K3 surface
of type M = U(2) ® Dy & Dy and if Pic(X) = M, the non-rational component of
X" is hyperelliptic. In this case, Jy(X,t) = 2(X*) € Opun3. Since the periods
of 2-elementary K3 surfaces of type M = U(2) ® Dy @& Dy with Picard lattice M
form a dense subset of M¢,, by e.g. [48, p.411], we get Jas(Q2$,.) C Onun,z. This
confirms Theorem 9.5 when g(M) = 3.

Question 9.8. Is div(Jj\}Xsf M)) a linear combination of Heegner divisors on QL 7
If it is the case and if M+ = U? @ K for some K, ‘I)M/JMX 9(M) will be expressed
as a Borcherds product by [14, Th. 0.8]. Is there a Siegel modular form ¢ on & ,r)
such that div(J;,%) is a linear combination of Heegner divisors on Q]T/[i?

10. An application to real K3 surfaces

In this section, we study the equivariant determinant of real K3 surfaces. We
refer to [17], [62] for more details about real K3 surfaces.

The pair of a K3 surface and an anti-holomorphic involution is called a real K3
surface. Let (Y,o) be a real K3 surface. There exists a primitive 2-elementary
Lorentzian sublattice M C Lxs and a marking o of Y such that ac*a™! = Ip;. A
holomorphic 2-form 7 on Y is defined over R if o*n = 7. Let v be a o-invariant
Ricci-flat Kahler metric on Y with volume 1. Let Ay ) be the Laplacian of (Y, ).
Since o preserves v, A(y,,) commutes with the g-action on C*°(Y’). We define
C(Y) = {f € C®(Y);0*f = £f}, which are preserved by Ay.y. We set
Ayt = Awylezer). Let Ce(Y,7)(s) denote the spectral zeta function of
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A(y,y),+- Then it converges absolutely for Res > 0 and extends meromorphically
to the complex plane C, and it is holomorphic at s = 0. We define

detyz, Ay, (o) = exp[—C} (Y, 7)(0) + ¢_ (Y, 7)(0)].

Let Y(R) :={y € Y; o(y) = y} be the set of real points of (Y, o) and let Y(R) =
I1;C; be the decomposition into the connected components. Then Y (R) is the dis-
joint union of oriented two-dimensional manifolds. The Riemannian metric g|y (r)
induces a complex structure on Y (R). The Jacobian variety of Y(R) equipped
with this complex structure is denoted by Jac(Y' (R), 7|y ®)). Let A(c, 4).) be the
Laplacian of the Riemannian manifold (C;,~|c;) and let ¢(Cy,v|c,)(s) denote the
spectral zeta function of A The regularized determinant of A¢, ;| ;) I8
defined as

i#'YICi).
det*A(Chﬂci) :=exp [—C(Cy,7|c,) (0)] .
After [62, Def. 4.4], we define
* -2
7(Y,0,7) = {dety, Ay (o)} ] Vol(Ci, vy

Ci) (det*A(Cm’Y\Ci))il’

Theorem 10.1. Let (Y,0) be a real K3 surface and let « be a marking of Y such
that ac*a~! = Iy, Let v be a o-invariant Ricci-flat Kdhler metric on Y with
volume 1. Let w, be the Kdhler form of v, and let n, be a holomorphic 2-form on
Y defined over R such that ny A7, = 2w2. If M satisfies Conditions (1) and (2)
in Theorem 9.1, then the following identity holds:

—4(27M) 1) log 7(Y, 9,7) = log | W+ (awy + V=1Tm 1), )|
+ 207900 og [[xg(an) (2(Y (R), Ay ) I* + Cirs
where Cy; = 2log Cyr and w, 1, are identified with their cohomology classes.

Proof. The result follows from Theorem 9.1 and [62, Lemma 4.5 Eq. (4.6)]. O

11. The irreducible components of the discriminant locus

In this section, we prove some technical results concerning lattices used in earlier
sections and we give a formula for the number of the irreducible components of
Dyrr. We use Nikulin’s theory of discriminant forms, for which we refer to [43].

11.1. A proof of the equality I'y; = O(M*)

Let M be a primitive sublattice of L3 and set Hyy := Lg3/(M @ M*). Since
Lgs is unimodular, we get M & M+ C Lgs = LY,; C MY & (M*)Y, so that
Hy C Ay®Apyn. Letpy: Hyy — Apgand po: Hyp — Ajpr be the homomorphism
induced by the projections Ay; Ay — Appand Apy @Ay — Ajpo, respectively.
By [43, Props. 1.5.1 and 1.6.1], the following are known:

(a) p1 and po are isomorphisms.
(b) Ap = Ao via the isomorphism 'yjl\‘ffvﬁ ‘=poop; .
() anre o Vyfare = —aur-

Recall that g € O(M*) induces g € O(qp1). For g € O(M?1), we set ¢, =

(Y3, )"Logoaie . Then ¢, € Aut(Ap).

Lemma 11.1. The automorphism vy preserves qur, i.e., g € O(qar).
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Proof. For an arbitrary m € Ay, we get
g (Vg (M) = anr (Vyfara) "t 0 Govyss, . (M)
= —qur(go ’Y;]\J/ffﬁ/p (m))
=~ (VypS (M) = e (M),

where the second and the last equalities follow from Condition (c¢) and the third
equality follows from the fact g € O(qz1). O

Assume that M C Lg3 is a primitive 2-elementary Lorentzian sublattice. Recall
that the isometry In; € O(ILk3) was defined in Sect.2.2. In [59, Sect. 1.4 (c)], we
introduced the following subgroup I'yy € O(M*):

Tar = {glye € O(M™1); g € O(Lgs), go Iny = Inj o gl
Proposition 11.2. The following equality holds:
Ly = O(M?1).

Proof. By the definition of I'yy, it suffices to prove O(M*) C I'ps. Let g € O(M™)
be an arbitrary element. Since M is 2-elementary and indefinite, the natural ho-
momorphism O(M) — O(gum) is surjective by [43, Th.3.6.3], which implies the
existence of ¥, € O(M) with 1, = ¥,. Define g :=¥, & g € O(M & M~). Then
(11.1) Taar 0¥y = Yy oy =g oyFa .
By (11.1) and the criterion of Nikulin [43, Cor. 1.5.2], we get g € O(ILk3). We have
goly =1Ipogon M@ M* because for all (m,n) € M & M+,

goIy(m,n) =g(m,—n) = (Py(m),—g(n)) = Ins(¥y(m), g(n)) = Inr o g(m, n).
Since M @ M+ linearly spans L3 ® Q, we have go Iy, = Iy 0g in O(Lgs). Hence
g € T'ar. This proves the inclusion O(M*) C T'yy. O

11.2. A formula for g([M L d])

Lemma 11.3. Let d € Ay. The smallest primitive 2-elementary Lorentzian
sublattice of Ls containing M & Zd is given by [M 1 d] = (M*+Nd+)*,.

Proof. Set L := Zd = A;. Then [M L d] is the smallest primitive Lorentzian
sublattice of L k3 containing M@ L. Since M®L C [M Ld] C [M LdY c MVeLY
and hence [M L d/(M @& L) c [M L dV/(M®L) C Ay & Ay = ZMT
Apriag = [M L d]Y/[M L d] is a vector space over Zs. O
Lemma 11.4. Let d € Ay;1. Then

(M) +1 if de A,

(M) -1 if deA],..

Proof. Set A := M+, N := M+ nd*, L :=2Zd= A, and S := A/(N @ L). The
inclusions of lattices N L C A C AY C NV @ LV yields that

(11.2) S=A/(NoL)CA/(NOL)C Ay ® AL.

Let St = {v € Ay @ Ar; byer(v,5) = 0 mod Z, Vs € S} be the orthogonal
complement of S with respect to the discriminant bilinear form bygr. Since S+ =
AV/(N®L),weget Ayyr = AV /A = S+ /S by (11.2). Since byg . is non-degenerate,

(11.3) (M) = dimg, S*/S =I(N)+1—-2dimg, S = I(M*+Nd*+)+1-2dimg, S.

(Mt ndt) = {
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Let x € M*. Since v = (x—&—(x—;wd)—@d and since CE—I—#CZ € (M+ndhH)eQ
@dEQd,Weget
S=0<= M'=M'nd")aZd
— (z,d)=0 mod2 (Vze M%)
— (r,d/2)cZ (VxeM?)
= d/2¢€ (M) = deA]..

Let d € AY,.. By (11.4), we get M+ = (M* N d*) ® Zd, which yields that
I((M*nd*+) =1(M~*)— 1. This proves the assertion when d € A}, .

Let d € A!,.. We prove dimz, S = 1. Let py: S — Ar and pa: S — Ay be the
natural projections. Since L and N are primitive sublattices of A, p; and py are
injective. If pi(S) = 0, then the injectivity of p; implies S = 0, which contradicts
dimgz, S > 0. Hence p;(S) # 0. Since Ap = Zs, we get p1(S) = AL, so that
p1: S — Ap is an isomorphism. We set ng := ps o py '(d/2) € Ay. Then

is orthogonal to

(11.4)

(11.5) S =Zy(d/2,nq) C AL, ® An.
By (11.5), we get dimgz, S = 1 and hence [(M+ Nd+) =I(M*)+ 1 by (11.3). This
proves the assertion when d € A’M 1. O

Lemma 11.5. Letd € Ay Then

g(M)—1 if dea,,,

g([M L d]) = { g(M)  if deAl,..

Proof. Since r(M+ Nd*) =r(M+) -1 and
g(M) = {r(M*) —1(M)}/2,  g(IM Ld)) ={r(M*"nd")—1(M"nd")}/2
the result follows from Lemma 11.4. O

11.3. The number of the irreducible components of D) /O(A)
In Sects. 11.3 and 11.4, we assume that A is a primitive 2-elementary sublattice
of Lxs with sign(A) = (2,r(A) — 2).

Proposition 11.6. A =0 if and only if one of the following (1) or (2) holds:
(1) 6(A) =0
(2) (6(A),r(A),I(N) =(1,2,2), (1,3,1), (1,10,2), (1,11,1), (1,18,2), (1,19,1).

Proof. If §(A) = 0 and A # 0, there exists d € A/{. Since d/2 € AY and (d/2)? =
—1/2 ¢ Z, we get the contradiction §(A) = 1. Hence 6(A) = 0 implies A = 0.
Assume that 6(A) =1 and AY = 0. If ¢ > 0 in [20, Appendix, Table 2], then we
get A # () because A; is a direct summand in this case. If t = 0 and §(A) =1, A
must be isometric to one of the following lattices by [20, Appendix, Table 2]:

(11.6) (A1)®?, AT 0U, (AT)**0Es, AT 0 UG Es, (AN)*?0ES?, AT 0 UGES”.

We see that A = 0 for the lattices (11.6). Let A be one of the above six lattices.
Then we can write A = (A])®* @ L, where k = 1,2 and L is an even unimodular
lattice. If d € A, write d = (u,v) with u € (AT)®* and v € L. Since d/2 € AV,
we get w :=v/2 € L, so that d = (u,2w). Since —2 = d* = u? + 4w? = u? mod 8,
we get u? = 6 mod 8. On the other hand, since a? = 0,2 mod 8 for all a € Af
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and since k = 1,2, we get u? = 0,2,4 mod 8, which contradicts u?> = 6 mod 8.
Hence A = () for the lattices (11.6). O

Proposition 11.7. The following holds:
#(AR/O(N)) = #{0(d* N A) € Zo; d € AR} < 2.

Proof. Let d,d’ € A. Then I(d+ N A) =1((d')* N A) by Lemma 11.4. We prove
that d and d’ lie on the same O(A)-orbit if and only if §(d+ NA) = §((d' )+ N A).

Assume §(dt NA) = 6((d)t N A). By [43, Th.3.6.2], there exists an isometry
p:dtNA=(d)ENA. Since A =Zd @ (d+NA) =Zd & ((d)*NA) by (11.4), we
get an element v € O(A) with v(d) = d’ by defining

y:Zd® (dFNA) > (vd,\) — (vd,p(\) € Zd @ ((d)E N A).

Conversely, assume the existence of v € O(A) with v(d) = d’. Since y(d+NA) =
(d)t N A, we get §(d- N A) =6((d)* N A). This proves the assertion. a

Proposition 11.8. Set N (A) := #(A%/O(A)). Then

0 if 6=0
0 if 6=1, ( ):( , ),(3, 1),(10 2) (11 1) ( 8 2),(19, 1)
NN(A> = 2 if 6=1, ( ) = ( ) )7 (535) ( ) ( ) (]‘373)ﬂ (1375)7
(13,7),(13,9), (17,5)

1 if (4,r,1) : otherwise

Proof. The first two equalities follow from Proposition 11.6. Set r = r(A) and
[ = I(A). Assume that #(A%/O(A)) = 2. Since A} # 0, we get 6(A) = 1 by
Proposition 11.6. By Proposition 11.7 and (11.4), #(A%/O(A)) = 2 if and only if
there exist 2-elementary lattices L, L’ of signature (2,r—3) with (6(L),(L),l(L)) =
(L,r—=1,1—1) and (6(L"),r(L"),I(L")) = (0,7 — 1,1 — 1) such that A X L ® A; =
L’ ® A;. Namely, (r — 1,1 — 1) satisfies the following property:
(P) Both of (0, — 1,1 — 1) and (1,7 — 1,1 — 1) are realized by primitive 2-
elementary sublattices of L3 with signature (2,7 — 3).
In view of the table [45, p.1434, Table 1] of 2-elementary sublattices of Lys (cf.
Remark 11.9 below), the pair (r—1,1—1) with property (P) is one of the following:

(4,2),(4,4),(8,4),(8,6),(12,2), (12,4), (12,6), (12,8), (12, 10), (16,4), (20, 2),
so that the possible pairs of (r(A),l(A)) are given as follows:
(5,3),(5,5),(9,5),(9,7),(13,3),(13,5),(13,7),(13,9), (13,11), (17, 5), (21, 3).

By [45, p.1434, Table 1], there are no primitive 2-elementary sublattices of Lys
with invariants (1,13,11), (1,21,3), and all other triplets (d,7,1) are realized by
primitive 2-elementary sublattices of Lx3. This proves the result. O

Remark 11.9. In [45, p.1434, Table 1], the triplets (,r,1) are considered for prim-
itive 2-elementary Lorentzian sublattices of Li3. To get a table of the triplets
(6,7,1) for primitive 2-elementary sublattices of Lxs with signature (2,7 — 2), we
must replace r by 22 — r in [45, p.1434, Table 1], because they are always the
orthogonal complement of a primitive 2-elementary Lorentzian sublattice of L.
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11.4. The number of the irreducible components of D) /O(A)
Proposition 11.10. A, =0 if and only if r(A) = I(A).

Proof. If 7(A) = I(A), then A\/2 € AY for all A € A, so that A’y = (. Conversely,
assume Ay = (). If A contains U, Dyy, E7, Eg, then A’ # ). This, compared with
[20, Appendix, Tables 2,3], yields that A must be isometric to Iz 5(2) (0 < k < 10)
or U(2) ® U(2), so that r(A) = I[(A). This proves the result. O

Lemma 11.11. Assume that Ay #0. If d € Ay, then
r(dNA)=r(A) -1, I(d*nA)=1A)+1, S(d-nNA)=1.
In particular, the isometry class of d*- N A is independent of the choice of d € Ay.

Proof. We set L := Zd = A;, N := d* N A, and S := A/(L® N). By (11.2),
S is a vector space over Zg with S C Ay @ Ax. Since S # 0 by (11.4), we get
I(N)=1(A) 4+ 1 by Lemma 11.4. We prove §(N) = 1.

By (11.5), there exists a unique ng € Ay such that S = Zs(d/2,n4) C AL © An.
Since (d/2,n4) € S =A/(L® N), we get qr,(d/2) + gnv(nqg) =0 mod 2Z. Namely,

(11.7) gy (ng) = —qr(d/2) =1/2 mod 2Z.
Since ng € Ay, we get 6(N) =1 by (11.7). This proves the lemma. O
If Ay # 0, we define the 2-elementary lattice OA as
ON = d*+ N A, de A},

whose isometry class is independent of the choice of d € Ay by Lemma 11.5. We
set

Bop = {v € Aga; qoa(v) =1/2 mod 2Z}.
Let p: AY @ (OA)Y — A, @ Aga be the projection. For p € By, set
Sy =12Zy(d/2,u) C Ap, & Apn, A, =p1(S,) C AY @ (OA)Y.
Then A, is equipped with the bilinear form induced from the one on AY @ (9A)Y.

Lemma 11.12. A, is an even 2-elementary lattice with sign(A,) = (2,r(A) — 2)
and I(A,) = I1(A).

Proof. Let S/f C Ap, ® Apa be the orthogonal complement of S, in Ay, & Aga
with respect to the discriminant bilinear form by, ® bsa. Since S, is an isotropic
subspace of A, ® Apa by the condition pu € Baa, A, is an even integral lattice.
Since A}, = p~!(S;;) and since p: AY & (OA)Y — Ay, & Apy is surjective,

An, =N /A =p(S) /07 (S)) = S, /Su C (An, ® Asn) /S,

is a vector space over Zg, so that A, is 2-elementary. By (11.3) and Lemma 11.11,
I(A,) = dimg, Ay, = I(OA) + 1 — 2dimz, S, = I(A). Since Ay ® OA C A, C
AY @ (0A)Y, we get sign(A,) = (2,7(A) — 2). This proves the lemma. O

Lemma 11.13. Let u € Bop. Then

(r(A),I(A), 1) if  p# Loa
(T(A)al(A)7O) if =14
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Proof. By Lemma 11.12, r(A,) = r(A) and I(A,) = I(A). It suffices to prove that
d(A,) = 0if and only if 14 € Baa and p = 1gp. Let 2 = (b%,u) € Sf;, beZ,
v € Agp and let (£,p1) € S,. Weget z- (4,) = -2 +v-p=0 mod Z. Since
bQ
2

b
x E*E+I/2E*§+I/~13AEV-(13A7/1)5.%'(0,131\7#) mod Z

forallz € S j and since Al\j = p_l(Sj), we get the result as follows:
(AL =0 qaeona(r)=0 modZ (Vze Sﬁ‘)
<  bppon(T, (0,190 —p)) =0 modZ (Vz e S,i‘)
= (0,198 — p) € (S;)" = Sy = Zo(d/2, )
<~ u=1pa-
This proves the lemma. [l
Lemma 11.14. Let p € Baa. Then A= A, if and only if
L1y if O(A) =1
“{ —1pa if S(A)=0.

Proof. Since the isometry class of the indefinite 2-elementary lattice A is determined
by the triplet (sign(A),l(A),d(A)), the result follows from Lemma 11.13. O

Proposition 11.15. Set N'(A) := #(A,/O(A)). Then
N'(A) = 0 if r(A)=1(A)
1t (M) > I(A).

Proof. Let d,d' € Ay. Weset N=d*NA, N'=(d)'NA, L=2dand L' =Zd'.
By Lemma 11.11, there exist isometries 3: N = 0A and §': N’ = JA. By (11.5),
(11.7), there exist unique ng € Ay, ng € Ans such that B(ng), 8'(ne) € Bga and

(11.8) A/(L&® N) =Zs(d/2,n4), A/(L'® N = Zo(d' /2,nq).
By (11.8) and the definition of A, 3(ng), 3 (na) € Baa are such that
(11.9) AB(nd) = AE’(nd/) ~A.

By [43, Cor. 1.5.2] and (11.8), there exists v € O(A) with v(d) = d’ if and only
if there exists an isometry a: N = N’ with a(ng) = ng, where a: (An,qay) —
(AN7,qa,,) is the isometry induced by . Equivalently, d and d’ lie on the same
O(A)-orbit if and only if there exists g € O(9A) with g(B(nq)) = B'(ng). Since
the natural homomorphism O(9A) — O(gan) is surjective by [43, Th.3.6.3], d and
d’ lie on the same O(A)-orbit if and only if 3(ng), 3'(na) € Baa lie on the same

O(gan)-orbit. This implies that
#(AL/O(N)) < #[{n € Ban; Ay = A}/O(qon))

(11.10) _ ) #{n € Boas 1 # 192}/O(qon)] if  8(A)
#[{u € Ban; 1 =192}/O(qon)] if 0(A)

1
0

L

where the first inequality follows from (11.9), the second equality follows from
Lemma 11.14 and the last equality follows from [43, Lemma 3.9.1]. The result
follows from Proposition 11.10 and (11.10). O
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Theorem 11.16. Set N(A) := #(Ar/O(A)). Then

it (6,7,1) =(0,4,4),(1,2,2)

if 9=0,r>1

if é=1Lr=0Lr>2,1r#5

it 0=1,(rl)= ( 1),(10,2),(11,1),(18,2),(19,1)

it 6=1, (r,1)=(5,3),(9,5),(9,7),(13,3),(13,5),
(13, 7),(13,9),(17,5)

2 if (0,7,1) : otherwise

W = == O

Proof. Since N(A) = N'(A)+ N"(A), the result follows from Propositions 11.8 and
11.15. O

Corollary 11.17. Let M C Lgs be a primitive 2-elementary Lorentzian su_blattice.

Let N (M) be the number of the irreducible components of the divisor Dy =

Dy JO(ML) on Mysi. Then

if  (6,7,1) =(0,18,4),(1,20,2)

if 6=0,r4+1<22

if 0=1,r4+101=22,r<20,r+#17

if §=1,(r,1)=(19,1),(12,2), (11,1), (4,2), (3,1)

it §=1, (r,l) =(17,3),(13,5),(13,7), (9, 3),(9,5),
(9,7),(9,9),(5,5)

2 if (6,7,1) : otherwise.

W~ ~ =k O

Proof. Since Dy = ZdeAML H, and since Hy = H 4 if and only if d and d’ lie on

the same O(M™)-orbit, the set of irreducible components of D1 is identified with
Ay /JO(M?1), so that N (M) = N(M*). We get the result by Theorem 11.16. O

Remark 11.18. Let M C Lgs be a primitive 2-elementary Lorentzian sublattice.
Let [M] be the isometry class of M, which corresponds to a vertex of the K3-graph
Ik 3 of Finashin-Kharlamov [20, Figure 1]. Comparing I' k3 and Corollary 11.17, we
see that N (M) is exactly the number of edges in '3 going out [M]. In I'k3, an odd
edge going out [M] corresponds to the set A}, /O(M™), even non-Wu edge going
out [M] corresponds to the O(M=*)-orbit of a root d € Ay, , with 6(d*NM*) =1,
and an even Wu edge going out [M] corresponds to the O(M1)-orbit of a root
d € A}, with §(d- N M~+) = 0. By Theorem 3.3, [M] and [M’] are connected
by an oriented edge from [M] to [M’] if and only if there exist g € O(Lk3) and
d € Ay with g(M') = [M L d], i.e., Mgy is an irreducible component of
Dy

12. Appendix: Some geometric properties of the set of fixed points

In this section, we prove some geometric properties of the set of fixed points of
2-elementary K3 surfaces used in earlier sections. The proof of the main results of
this section, Propositions 12.2 and 12.3, have been suggested by S. Kondo.

Let S be a compact complex smooth surface. By a (—m)-curve of S, we mean
a smooth rational curve on S with self-intersection number —m. For divisors C, D
on S, we write C' ~ D if C' is linearly equivalent to D. For divisors C, D on S, let
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C'- D denote the intersection number of C and D. Recall that an irreducible divisor
D on S is exceptional if D? < 0. The set of all irreducible exceptional divisors on
S is denoted by Exc(S). For E € Exc(S), the blow-down of E is a smooth complex
surface if and only if E is a (—1)-curve (cf. [2, Chap.III, Th. 4.2]).

Let E be a (—1)-curve on S and let 0: S — S be the blow-down of E. Let C C S
be an irreducible curve and set C = o(C). If we set pu = multg(E)ﬁ, then

(12.1) p=C-E, T =C%+u2

by e.g. [27, Chap.V, Prop.3.6, Cor.3.7]. Hence o(Exc(S)) D Exc(S). If p =
C-E =1in (12.1) and if C is smooth, C' is smooth by the equality mult,z)C = 1.
In this case, o induces an isomorphism from C' to C.

When X is a K3 surface, Pic(X) is identified with H*(X, O%), and Exc(X) is
the set of (—2)-curves on X. Recall that for a 2-elementary K3 surface (X, ), there
is an inclusion Pic(X) D H3(X,Z).

Lemma 12.1. Let (X,t) be a 2-elementary K3 surface and set Y := X/v. Let
p: X — Y be the quotient map. If Pic(X) = H3(X,Z), the following hold:
(1) If D is a divisor on X, then D ~ (D). In particular, v preserves every
(=2)-curve on X and Exc(Y) = p(Exc(X)).
(2) For E € Exc(X), regard E := p(E) as a reduced divisor on'Y. Then

w2 _ | -4 if Ecx
] -1 if E¢ X

Proof. (1) Let L be an arbitrary holomorphic line bundle on X. Since Pic(X) =
H?(X,Z) and hence ¢1(L) = t*¢1 (L), we get ¢*L = L. In particular, D ~ ¢(D) for
every divisor D on X. If E € Exc(X), then E = («(E) by [32, Lemma 1.4].

Let C € Exc(Y). Then C := p~!(C) is a divisor on X. Assume that C is
reducible, and let D be an irreducible component of C'. By the irreducibility of C,
p(D) = p(«(D)) = C. Since p: X — Y is a double covering and hence C' = DU(D),
the reducibility of C' implies that D # (D) and C = D+ (D). Since C? = 20° <0
by the projection formula, we get 0 > C? = 2(D? + D -(D)). Since D-1(D) > 0 by
the irreducibility of D and D # (D), we get D?> < 0. Hence D € Exc(X). Since
«(D) = D by [32, Lemma 1.4], this contradicts the reducibility of C. We get the
irreducibility of C. Since C? = 262, we get Exc(Y) = p(Exc(X)).

(2) Since we have the equation of divisors p*E = 2F (resp. p*E = E) if E C X*

(resp. E ¢ X'), we get the result by the identities £ = —2 and (p*E)? = 9E. O

12.1. The case M 2 U(2) ® Dy ® Dy

Proposition 12.2. Let (X, 1) be a 2-elementary K3 surface of type U(2) Dy ®Dy.
Let C be the non-rational irreducible component of X*. If Pic(X) = H3(X,Z), C is

isomorphic to a curve of bidegree (4,2) on P*xPL. In particular, C is hyperelliptic.

Proof. By [35, Props.2.6 (ii) and 2.9], Exc(X) consists of 18 (—2)-curves. Let
Exc(X) = {So, 51, F1,...,Fs, F1,...,Fs}. By [33, p.230], we may assume that

(12.2) E-So=F-S=1,  FE;-S =F,-Sy=0,

(123) Sk -Sl = —2(5191, E,LEJ :F,LFJ = _26ij7 EZ'~FJ‘ :2(2]
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By (12.2), E; NSy (resp. F; N S1) consists of a unique point. Since an element
of Exc(X) is t-invariant by Lemma 12.1 (1), we get «(E; N Sp) = E; NSy and
W(F;NS1) = F; NSy Hence E; NSy C X* and F; NSy C X*, which yields that
#(So N XY) > #(So NU;E;) = 8 and #(S51 N X*) > #(Sy NU;F;) = 8. Recall
that a non-trivial holomorphic involution on P! has exactly 2 fixed points. Since ¢
induces an involution on the rational curve Sy (resp. S1), we get t|s, = idg, and
t|s, =idg,. Thus SpIl.S; C X*. Since g(M) = 3 and k(M) = 2 for M = U(2) &D3,
there exists by Lemma 3.1 (3) a smooth curve C of genus 3 with X* = CII.S,11.5;.
Since Fj, F; ¢ X* and since ¢ preserves each F; and Fj, ¢ has exactly 2 fixed points
on each of E; and Fj, ie., E; - X* = F; - X* = 2. By (12.2), we get

(12.4) C-E;=C-F;=1 (1<4,5<8).

Let Y be the quotient of X by candlet p: X =Y = X/t be the quotient map.
Set Sk :=p(Sk), Ei :=p(E;), F; :=p(F;), C :=p(C). By Lemma 12.1 (1), we get
EXC(Y) = {go,gl,El, RN 7E8,F1, “e 7F8}.

Since Sp I1 .51 C X* and E;, F; ¢ X*, we get by (12.2-4) and Lemma 12.1 (2)

(12.5) E;, - So=F, -5 =1, E;-S
(126) gk 'gl = _45kl7 El 'Ej = Fz 'Fj == _5ij7 Ez 'Fj == (51']'7
(12.7) C-E;=C-F;=

By (12.5-7), the configuration of the curves Ey, ..., Fg,S,S1,C on Y is given as
follows in Figure 1, in which a (—1)-curve is denoted by a thick line and the number
in the bracket is the self-intersection number.

NN N N 7777 C
Py Fy F3 Fy s Fg Fr Fg
FIGURE 1

Let 0: Y — Z be the blow-down of the mutually disjoint 8 (—1)-curves Ey, --- , E4,

Fs,--,Fs. Set S} := o(Sk), El := o(E;), F}:=o(F;) and C" := o(C). By (12.1),
we get Exc(Z) C o(Exc(Y)) = {S}, S, EL,...,E{, Fy,...,F;}. By Figure 1 and
(12.1), the configuration of the curves C’, S{, S1, Ef,...,E}, F{,...,Fj on Z is
given as follows in Figure 2.

By Figure 2, the self-intersection number of any curve of o(Exc(Y)) is equal to
0, so that Exc(Z) = (. This, together with the rationality of Z, implies Z = P?
or P! x P'. Since Z contains a curve with self-intersection number 0, we get
Z =2 P! x P!. By Figure 2 again, we may assume that S, is a divisor of bidegree
(0,1) and that E] and Fj are divisors of bidegree (1,0). Since C"- S5 = C"- 5] = 4
and C' - E} = C" - F| = 2 by Figure 2, C' is an irreducible curve of bidegree (4, 2)
on P! x P!, Since the projection pry: P! x P! — P! induces a double covering
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© © o (© B By Br @ Ej
Cfl
(0) So

C’ C’ c’ C’
(0) S
C/

F R F F O  ©  ©  ©

FIGURE 2

from C’ to P!, C' is hyperelliptic. Since plc: C — C is an isomorphism by the
definition of p and since o|z: C' — C’ is an isomorphism by (12.1) and (12.7), the
composition (o o p)|c induces an isomorphism between C' and C”. O

12.2. The case M Z U & Dy,

Let R~ be the set of positive real numbers. For a Lorentzian lattice M, we
define L(M) := {[v] € (M @ R\ {0})/Ro; v > 0} and we identify £(M) with the
hyperboloid {v € M ® R; v? = 1}, which is equipped with the Riemannian metric
induced from the inner product on M. Then L£(M) consists of two connected
components LT (M) and L~ (M), each of which is a hyperbolic space of dimension
r(M) — 1. When M is the Picard lattice of an algebraic K3 surface X, we define
LT (X) as the component of £(Pic(X)) containing ample classes.

In the following proposition, which is the key to the proof of Theorem 9.3 (2),
we use Kodaira’s notation for singular fibers of elliptic fibration, for which we refer
to [30], [2, Chap.V Sect. 7].

Proposition 12.3. Let (X,:) be a 2-elementary K3 surface of type U ® Dy, As-
sume that Pic(X) = H_%_(X, Z). Then the following hold:

(1) X contains exactly 15 (—2)-curves oo, ...,oa. If o # o, then a; - o €
{0,1}. The dual graph T of these 15 (—2)-curves Exc(X) is given as follows
in Figure 3, where each vertexr denotes the corresponding (—2)-curve and
two vertices corresponding to o; and o; are connected by an edge if and
only if o; - oy = 1.

13

ag ag Qg Q5 Q4 Q3 Qg a1 & o171 |[X10

Q14
FIGURE 3. The dual graph T of Exc(X)

(2) Let C be the non-rational irreducible component of X*. Then C is isomor-
phic to a smooth plane quartic curve. In particular, C is non-hyperelliptic.

Proof. (1) Since Pic(X) 2 U @ Eg @ Dy, the hyperbolic plane U C Pic(X) defines
an elliptic fibration m: X — P! with a section ag by [32, Lemma 2.1 (i)]. By [32,
Lemma 2.2], 7: X — P! has a singular fiber of type IT* and a singular fiber of
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type I5. Let Frr« := a1 + 200 + 3oz + 4oy + bas + 6ag + 3oy + dag + 29 be the
singular fiber of type IT* and let F]g = 2010+ 11 + @12 + a3+ a4 be the singular
fiber of type I}, where i, ..., a4 are (—2)-curves on X. The dual graphs of Fyy-
and Fs are given by the corresponding subgraphs of I' by e.g. [2, Chap.5, Sect. 7,
Table 3]. Since ayg is a section and hence oy - Frp« = 1, we get

(128) Oéo'()q:l, Oéo'OéiZO (QSZSQ)
Similarly, since g - F7z = 1, we may assume that
(129) Qg - 11 = 1, Qo - 10 = Qg - 12 = g - 13 =— O - 14 =0.
By (12.8), (12.9), the dual graph of {ay,...,a14} is given by I as in Figure 3.

Let W(T') be the discrete subgroup of motions of £*(X) generated by the re-
flections {sq,; 7 = 0,...,14}, where s4,[v] := [v + (v - ;) c1(;)] for [v] € LT(X).
Then T is the Coxeter diagram of W (T') (cf. [55, Sect. 1]). Set

C:={[v] € (Pic(X) @ R\ {0})/Rso; v-c; >0(i=0,...,14)},

which is a convex polyhedron in the sphere (Pic(X) ® R\ {0})/Rso. By [12,
Chap. V], C N LT(X) is a fundamental domain for the W (I')-action on £ (X).
Since any maximal extended Dynkin diagram in I' is either Fg @ D4 or Dps and

since both of them have the maximal rank 12, T" satisfies the condition in [55, Th. 2.6
bis.]. By [55, Th.2.6 bis.], CN L*(X) has finite volume. By [55, p.335 1.28], we get

(12.10) C C LT(X),
where the closures are considered in the sphere (Pic(X) ®@ R\ {0})/R>o.

If there exists a (—2)-curve E ¢ {ap,...,a14}, then E-a; > 0 for 0 < i < 14,
so that ¢;(Ox(F)) € L(X) by (12.10). This implies the contradiction E? > 0,
because E € Exc(X). This proves that Exc(X) = {ao, ..., 014}

(2) By Lemma 12.1 (1), ¢ preserves the 15 (—2)-curves «p, . .., a14. By [32, Lemma
2.3 (ii)], we get ap C X*. If F is a fiber of the elliptic fibration 7: X — P!, then
t(F) ~ F by Lemma 12.1 (1), so that «(F) is again a fiber of . Since ag C X* and
since ay is a section of 7, we get FNu(F) D FNag # . Hence ¢ preserves the fibers
of m. Since the dual graph of Frr- (resp. FIS) is Fg (resp. Dy), we deduce from
[32, Lemma 2.3 (i)] that as T ag T ag I g IT g9 C X*. Since H_%_(X7 Z) 2 U Do
and hence g(H? (X, Z)) = 3, k(H3(X,Z)) = 6, we get by Lemma 3.1 (3)

(12.11) XL:CHQOHQQHa4Ha6Ha9Ha10, g(C):g.

Since t(a;) = o; and «o; ¢ X* for i = 1,3,5,7,8,11,12,13,14 by Lemma 12.1 (1)
and (12.11), we get X* - «; = 2 for these i. By [32, Lemma 2.3 (i)] and Figure 3,
we get

(12.12) C-a;=1 (1=17,12,13,14), C-a; =0 (otherwise).

(Step 0) Set Ry := X/i, which is a smooth rational surface. Let p: X — Ry be the
quotient map. We set ago) = p(ay) and C® := p(C). By Lemma 12.1 (1), we get
Exc(Ro) = {a\”,...,a\9}. By (12.12), we get

(1213) €@ .al¥ =1 (i=7,1213,14), C©.al” =0 (otherwise).
The configuration of the curves C(O),aéo), .. .,aﬁ) is given as in Figure 4 from

Figure 3, Lemma 12.1 (2) and (12.13). In the figures below, we use the following
convention: a (—1)-curve is denoted by a thick line; the number in the bracket is the
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self-intersection number; we write «; (resp. C) for ozz(-k) (resp. C'®)) for simplicity.

Qa7
Qg (0% [e%:} aq Qg1 12 Qa3 Q14
C C
\ Q10 (—4)
Qg Qg oy (e%)] Qo
(-4 (—4) (—4) (-4 (—4)

FIGURE 4

(Step 1) Let 01: Ry — Ry be the blow-down of the 9 disjoint (—1)-curves a( ), where
i=1,3,5,7,811,12,13,14. Set a" := o1 (al”) for j = 0,2,4,6,9,10 and C<1> =
01(C©). By (12.1) and Figure 4, the configuration of these curves is given as in

Figure 5. By Figure 4 and (12.1), we get Exc(Ry) = {aél),aél), 4(1 ,aél), aél)}.

/c
Q9 (=2) Qg (_2)040 C C C
} } } o (0)
(675 (%)
(=2

FIGURE 5

(Step 2) Let 02: Ry — Ra be the blow-down of the (—1)-curve ozél). Set oz§-2) =
aa(aV) for j = 0,2,4,9,10 and C® := 0,(CW). By (12.1) and Figure 5, the
configuration of these curves is given as in Figure 6, where C®) passes through the

point a92) N a(2) By Figure 5 and (12.1), we get Exc(Rz) = {a(()z), (2), af) (2)}

a0 (0)

C
|

Qg
(=2) ( 2)
FIGURE 6

(Step 3) Let o03: Ry — R3 be the blow-down of the (—1)-curve afl ). Set af’) =
03(a§2)) for j = 0,2,9,10 and C®) := g3(C?). By (12.1) and Figure 6, the con-
figuration of these curves is given as in Figure 7, where C®) is tangent to ag(,g) of
order 2 at oaéS) (3) By Figure 6 and (12.1), we get Exc(R3) = {ao ,aé?’), 513)}.
(Step 4) Let 04: R3 — R4 be the blow-down of the (—1)-curve oz2 . Set o @ =
04( ) for j =0,9,10 and C® := g,(C®). By (12.1) and Figure 7, the conﬁgu—

ration of these curves is given as in Figure 8, where C® is tangent to aé4) of order
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ag € c ¢ C

} } } g (0)
(65 (7))
(-2)
FIGURE 7

3 at ozgl) N aé4). By Figure 7 and (12.1), we get Exc(Ry) = {a(()4)}.

/

Qg C C
(0) |
‘ a9 (0)

C
|
(7)) ‘
FIGURE 8
Step 5) Let 05: Ry — Rs be the blow-down of the (—1)-curve o, Set ol® =
( 0 [

05(a§4)) for i = 9,10 and C®) := g5(C™). By (12.1) and Figure 8, the configura-

tion of these curves is given as in Figure 9, where C'(®) is tangent to aé5) of order

4 at ag(f) N ozi%).
Cw C C C
| | | aqo (1)

g
(1)

FIGURE 9

(Step 6) Since Exc(R5) = () by Figure 9, Rjs is a rational surface without excep-
tional curves. Hence Rs =2 P2 or R; = P! x P!. Since Rj contains a curve
with self-intersection number 1, we get Rs = P2. In each blow-down oiv1: Ry —
Rit1, CY intersects transversally the exceptional curves of o;y1, so that o,
induces an isomorphism from C® to CU*1 for all i. Since the composition
0 1= 0504030201p: X — Rs induces an isomorphism between C' and C®), C is iso-
morphic to the smooth plane quartic C®) ¢ P2. Since the canonical line bundle of
C is very ample by the adjunction formula K¢ = Op2(1)|c), C is non-hyperelliptic
(cf. [27, Chap.IV, Example 5.2.1]). O
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