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Abstract. In [59], we introduced an invariant of K3 surfaces with involu-
tion, which we obtained using equivariant analytic torsion. This invariant
gives rise to a function on the moduli space of K3 surfaces with involution
and is expressed as the Petersson norm of an automorphic form characterizing
the discriminant locus. In this paper, we study the structure of this automor-
phic form. Under certain assumption, we prove that the automorphic form is
expressed as the product of a certain Borcherds lift and the Igusa form.
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1. Introduction

In this paper, we study the structure of the invariant of K3 surfaces with invo-
lution introduced in [59]. Let us recall briefly this invariant.

A K3 surface with holomorphic involution (X, ∂) is called a 2-elementary K3
surface if ∂ acts non-trivially on the holomorphic 2-forms on X. Let LK3 be the
K3 lattice, i.e., an even unimodular lattice of signature (3, 19), which is isometric
to H2(X,Z) endowed with the cup-product pairing. Let M be a sublattice of LK3

with rank r(M). A 2-elementary K3 surface (X, ∂) is of type M if the invariant
sublattice of H2(X,Z) with respect to the ∂-action is isometric to M . By [43],
M ⊂ LK3 must be a primitive 2-elementary Lorentzian sublattice. The parity of
the 2-elementary lattice M is denoted by δ(M) ∈ {0, 1} (cf. [45]).

Let M⊥ be the orthogonal complement of M in LK3. Let ≠M⊥ be the period
domain for 2-elementary K3 surfaces of type M , which is an open subset of a quadric
hypersurface of P(M⊥⊗C). We fix a connected component ≠+

M⊥ of ≠M⊥ , which is
isomorphic to a bounded symmetric domain of type IV of dimension 20−r(M). Let
DM⊥ be the discriminant locus of ≠+

M⊥ , which is a reduced divisor on ≠+
M⊥ . Let
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O(M⊥) be the group of isometries of M⊥, which acts properly discontinuously on
≠M⊥ . Let O+(M⊥) be the subgroup of O(M⊥) with index 2 that preserves ≠+

M⊥ .
The coarse moduli space of 2-elementary K3 surfaces of type M is isomorphic to
the analytic space Mo

M⊥ = (≠+
M⊥ \ DM⊥)/O+(M⊥) via the period map by [49],

[13], [45], [16], [59] and Proposition 11.2 below. The period of a 2-elementary K3
surface (X, ∂) of type M is denoted by $M (X, ∂) ∈Mo

M⊥ .
Let (X, ∂) be a 2-elementary K3 surface of type M . In [59], we introduced a

real-valued invariant τM (X, ∂), which we obtained using the equivariant analytic
torsion of (X, ∂), the analytic torsions of the connected components of X∂ and a
certain Bott–Chern secondary class. (See [5], [4], [50] and Sect. 5.) Since τM (X, ∂)
depends only on the isomorphism class of (X, ∂), we get the function

τM : Mo
M⊥ 3 $M (X, ∂) → τM (X, ∂) ∈ R>0.

By [59], there exists an automorphic form ΦM on ≠+
M⊥ with values in a certain

O+(M⊥)-equivariant holomorphic line bundle on ≠+
M⊥ , such that

τM = kΦMk−
1
2∫ , div ΦM = ∫DM⊥ , ∫ ∈ Z>0.

Here k · k denotes the Petersson norm. By [59], ΦM is given by the Borcherds
Φ-function [7], [8] when M is exceptional.

The purpose of this paper is to give an explicit formula for τM for a class of
non-exceptional M . We use two kinds of automorphic forms to express τM , i.e.,
the Borcherds lift ™M⊥(·, FM⊥) and the Igusa form χg, which we explain briefly.

In [7], [9], Borcherds developed the theory of automorphic forms with infinite
product over domains of type IV. (See also [28].) For an even 2-elementary lattice
Λ of signature (2, r(Λ)− 2), we define the Borcherds lift ™Λ(·, FΛ) as follows.

Let AΛ be the discriminant group of Λ, which is a vector space over Z/2Z.
Let C[AΛ] be the group ring of AΛ and let ρΛ : Mp2(Z) → GL(C[AΛ]) be the
Weil representation, where Mp2(Z) is the metaplectic double cover of SL2(Z). Let
{e∞}∞∈AΛ be the standard basis of C[AΛ]. Let η(τ) be the Dedekind η-function
and set η1−8284−8(τ) = η(τ)−8η(2τ)8η(4τ)−8. Let θA+

1
(τ) be the theta function of

the (positive-definite) A1-lattice. Then η1−8284−8(τ) and θA+
1
(τ) are modular forms

for the subgroup MΓ0(4) ⊂ Mp2(Z) corresponding to the congruence subgroup
Γ0(4) ⊂ SL2(Z). Following [10] and [52], we define a C[AΛ]-valued holomorphic
function FΛ(τ) on the complex upper half-plane H as

FΛ(τ) =
X

g∈MΓ0(4)\Mp2(Z)

n
η1−8284−8θ12−r(Λ)

A+
1

oØØØ
g
(τ) ρΛ(g−1) e0.

Here we used the notation φ|g(τ) = φ(aτ+b
cτ+d )(cτ + d)−k for a modular form φ(τ) for

MΓ0(4) of weight k with certain character and g = (
°a b
c d

¢
,
√

cτ + d) ∈ Mp2(Z). By
[10] and [52], FΛ(τ) is an elliptic modular form for Mp2(Z) of type ρΛ with weight
2 − r(Λ)

2 . Then ™Λ(·, FΛ) is defined as the Borcherds lift of FΛ(τ), which is an
automorphic form on ≠+

Λ for O+(Λ) by [9]. The Petersson norm k™M⊥(·, FM⊥)k2
is an O+(M⊥)-invariant C1 function on ≠+

M⊥ .
Recall that the Igusa form of degree g is the Siegel modular form (with character

when g = 1, 2) on the Siegel upper half-space Sg of degree g defined as the product
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of all even theta constants (cf. [29])

χg(≠) =
Y

(a,b) even

θa,b(≠), ≠ ∈ Sg, χ0 = 1.

The Igusa form gives rise to another function on Mo
M⊥ as follows. For a 2-

elementary K3 surface (X, ∂), let X∂ denote the set of fixed points of ∂. By [45], X∂

is the disjoint union of (possibly empty) compact Riemann surfaces, whose topo-
logical type is determined by M . Let g(M) ∈ Z≥0 denote the total genus of X∂.
The period of X∂ is denoted by ≠(X∂) ∈ Sg(M)/Sp2g(M)(Z). By [59], there exist
a proper Zariski closed subset Z ⊂ DM⊥ and an O+(M⊥)-equivariant holomorphic
map JM : ≠M⊥ \ Z → Sg(M)/Sp2g(M)(Z) that induces the map of moduli spaces

Mo
M⊥ 3 $M (X, ∂) → ≠(X∂) ∈ Sg(M)/Sp2g(M)(Z).

Then J∗Mkχg(M)k2 is an O+(M⊥)-invariant C1 function on ≠o
M⊥ .

The following structure theorem for τM is the main result of this paper:

Theorem 1.1. (cf. Theorem 9.1) Let M be a primitive 2-elementary Lorentzian
sublattice of LK3 satisfying the following two conditions (1), (2):

(1) 11 ≤ r(M) ≤ 17 or (r(M), δ(M)) = (10, 1);
(2) χg(M)(≠(X∂)) 6= 0 for some 2-elementary K3 surface (X, ∂) of type M .

Then there exists a constant CM depending only on the lattice M such that the
following identity holds for all 2-elementary K3 surface (X, ∂) of type M :

τM (X, ∂)−2g(M)+1(2g(M)+1) = CM k™M⊥($M (X, ∂), FM⊥)k2
g(M)

kχg(M)(≠(X∂))k16.

After Bruinier [14], Theorem 1.1 may not be surprizing. If M⊥ contains an
even unimodular lattice of signature (2, 2) as a direct summand and if there is a
Siegel modular form S such that div(J∗MS) is a Heegner divisor on ≠+

M⊥ , then ΦM

must be the product of a Borcherds lift and J∗MS by [14, Th. 0.8], because the zero
divisor of ΦM is a Heegner divisor. For most of M with g(M) = 2, this explains the
factorization of τM in Theorem 1.1. It is an interesting problem of understanding
the geometric meaning of the elliptic modular forms FΛ and η1−8284−8θk

A+
1
. We

remark that the same Borcherds lifts ™Λ(·, FΛ) appear in the formulae for the
BCOV invariants of certain Calabi–Yau threefolds [18], [60], [63].

There are at least 30 isometry classes of primitive 2-elementary Lorentzian sub-
lattices of LK3 satisfying Conditions (1) and (2) in Theorem 1.1. (See Theorem
9.3 and Remark 9.4.) There is an example of primitive 2-elementary Lorentzian
sublattice of LK3 with rank 9 for which Theorem 1.1 holds. (See Theorem 9.2.) By
Theorem 1.1 and [59, Ths. 8.2 and 8.7], τM and ΦM are determined for 33 isometry
classes of M . Notice that the total number of the isometry classes of primitive
2-elementary Lorentzian sublattice of LK3 is 75 by Nikulin [45].

Following [59, Th. 8.7], we shall prove Theorem 1.1 by comparing the O+(M⊥)-
invariant currents ddc log τM , ddc log k™M⊥(·, FM⊥)k and ddc log J∗Mkχ8

g(M)k2. (See
Sect. 9.) The current ddc log τM was computed in [59]. In Sect. 8, the weight and the
zero divisor of ™M⊥(·, FM⊥) shall be computed (cf. [9]), from which a formula for
ddc log k™M⊥(·, FM⊥)k follows. In Sect. 4, the current ddc log J∗Mkχ8

g(M)k2 shall be
computed. For this purpose, we estimate the number of the irreducible components
of the divisor DM⊥/O(M⊥). (See Sect. 11.)
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Since the Hartogs principle is used in the proof, we need the assumption r(M) ≤
17. In fact, Theorem 1.1 remains valid even if r(M) ≥ 18. Since the proof of
Theorem 1.1 requires an analysis of τM near the boundary locus of the Baily-
Borel-Satake compactification of ≠+

M⊥/O+(M⊥) when r(M) ≥ 18, these cases shall
be treated in the forthcoming paper. In Theorem 9.5, we shall prove that χg(M)

vanishes identically on JM (≠+
M⊥\DM⊥) for most of M with (r(M), δ(M)) = (10, 0),

so that Theorem 1.1 does not hold in these cases.
There are some applications of the Borcherds lift ™Λ(·, FΛ) to the moduli space

of K3 surfaces. In [44], [16], the notion of lattice polarized K3 surfaces were
introduced, which extends the classical notion of polarized K3 surfaces to general
Lorentzian lattices. Since ™Λ(·, FΛ) vanishes exactly on the discriminant locus DΛ

when r(Λ) ≤ 12, we get the following (cf. Corollaries 8.3 and 8.4):

Theorem 1.2. If M ⊂ LK3 is a primitive 2-elementary Lorentzian sublattice with
r(M) ≥ 10, then the coarse moduli space of 2-elementary K3 surfaces of type M
and the coarse moduli space of ample M -polarized K3 surfaces are quasi-affine.

By [45], there are 49 isometry classes of primitive 2-elementary Lorentzian sub-
lattices M ⊂ LK3 with r(M) ≥ 10. It is not easy to find a primitive sublattice
Λ ⊂ LK3 of signature (2, r(Λ)− 2) such that there is an automorphic form on ≠+

Λ
vanishing exactly on DΛ. (See e.g. [7], [8], [10], [11], [25, II], [35], [52]). For exam-
ple, if the discriminant locus of polarized K3 surfaces of degree 2d is irreducible,
there is no automorphic form on the coarse moduli space of polarized K3 surfaces
of degree 2d vanishing exactly on the discriminant locus [37, Sect. 3.3], [46].

This paper is organized as follows. In Sect. 2, we recall some basic definitions
and properties of lattices. For a lattice with signature (2, n), the corresponding
modular variety is recalled. In Sect. 3, we recall 2-elementary K3 surfaces and
their moduli spaces, and we study the singular fiber of an ordinary singular family
of 2-elementary K3 surfaces. In Sect. 4, we study the current ddcJ∗Mkχ8

g(M)k2

and we recall the notion of automorphic forms on ≠+
M⊥ . In Sect. 5, we recall the

invariant τM . In Sect. 6, we recall Borcherds products. In Sect. 7, we construct the
elliptic modular form FΛ(τ). In Sect. 8, we study the Borcherds lift ™Λ(·, FΛ). In
Sect. 9, we prove the main theorem. In Sect. 10, we interpret the main theorem
into a statement about the equivariant determinant of the Laplacian of real K3
surfaces. In Sect. 11, we determine the number of the irreducible components of
DM⊥/O(M⊥). In Sect. 12, we study the set of fixed points of a generic 2-elementary
K3 surface of type M for certain M with g(M) = 3.

Warning: In [59], we used the notation ≠M , MM , DM etc. in stead of ≠M⊥ ,
MM⊥ , DM⊥ etc.
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2. Lattices

A free Z-module of finite rank endowed with a non-degenerate, integral, sym-
metric bilinear form is called a lattice. We often identify a non-degenerate, integral,
symmetric matrix with the corresponding lattice. The rank of a lattice L is denoted
by r(L). The signature of L is denoted by sign(L) = (b+(L), b−(L)). We define
σ(L) := b+(L)− b−(L). A lattice L is Lorentzian if sign(L) = (1, r(L)− 1). For a
lattice L = (Zr, h·, ·i), we define L(k) := (Zr, kh·, ·i).

The group of isometries of L is denoted by O(L). The set of roots of L is defined
by ∆L := {d ∈ L; hd, di = −2}. For d ∈ ∆L, the corresponding reflection sd ∈ O(L)
is defined as sd(x) := x + hx, di d. The Weyl group of L is defined as the subgroup
of O(L) generated by {sd}d∈∆L and is denoted by W (L). We define

∆0
L := {d ∈ ∆L, d/2 6∈ L∨}, ∆00

L := {d ∈ ∆L, d/2 ∈ L∨},

which are preserved by O(L). Let L∨ = HomZ(L,Z) be the dual lattice of L, which
is naturally embedded into L⊗Q. The finite abelian group AL := L∨/L is called
the discriminant group of L. For ∏ ∈ L∨, we write ∏̄ := ∏ + L ∈ AL. A lattice L
is unimodular if AL = 0. A lattice L is even if hx, xi ∈ 2Z for all x ∈ L. A lattice
is odd if it is not even. For simplicity, we often write x2 for hx, xi. A sublattice
M ⊂ L is primitive if L/M has no torsion elements. The level of an even lattice L
is the smallest positive integer l such that l ∏2/2 ∈ Z for all ∏ ∈ L∨.

2.1. Discriminant forms
For an even lattice L, the discriminant form qL of AL is the quadratic form on

AL with values in Q/2Z defined as qL(l̄) := l2 + 2Z for l̄ ∈ AL. The corresponding
bilinear form on AL with values in Q/Z is denoted by bL. Then bL(l̄, l̄0) = hl, l0i+Z
for l̄, l̄0 ∈ AL. Since ∏ ∈ L∨ lies in L if and only if h∏, li ∈ Z for all l ∈ L∨, the
bilinear form bL is non-degenerate, i.e., if bL(∞, x) ≡ 0 mod Z for all x ∈ AL, then
∞ = 0 in AL. We often write ∞2 (resp. h∞, δi) for qL(∞) (resp. bL(∞, δ)). The group
of automorphisms of AL preserving qL and hence bL is denoted by O(qL). See [43]
for more about discriminant forms.

2.2. 2-elementary lattices
Set Z2 := Z/2Z. An even lattice L is 2-elementary if there is an integer l ∈ Z≥0

with AL
∼= Zl

2. For a 2-elementary lattice L, we set l(L) := dimZ2 AL. Then
r(L) ≥ l(L) and r(L) ≡ l(L) mod 2 by [43, Th. 3.6.2 (2)]. The parity δ(L) of an
even 2-elementary lattice L is defined as

δ(L) :=

(
0 if x2 ∈ Z for all x ∈ L∨

1 if x2 6∈ Z for some x ∈ L∨.

The triplet (sign(L), l(L), δ(L)) determines the isometry class of an indefinite even
2-elementary lattice L by [43, Th. 3.6.2].

Since AL is a vector space over Z2 and since the mapping AL 3 ∞ → ∞2 ∈
1
2Z/Z ∼= Z2 is Z2-linear, there exists a unique element 1L ∈ AL, called the char-
acteristic element of AL, such that h∞,1Li ≡ ∞2 mod Z for all ∞ ∈ AL. By [43,
Sect. 3.9 pp.149-150], 1L satisfies the properties: g(1L) = 1L for all g ∈ O(qL);
1L = 0 if and only if δ(L) = 0; if L = L0 ⊕ L00, then 1L = 1L0 ⊕ 1L00 .

Let U =
°0 1
1 0

¢
and let A1, D2k, E7, E8 be the negative-definite Cartan matrix of

type A1, D2k, E7, E8 respectively, which are identified with the corresponding even
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lattices. Then U and E8 are unimodular, and A1, D2k and E7 are 2-elementary. Set

LK3 := U⊕ U⊕ U⊕ E8 ⊕ E8.

For a sublattice Λ ⊂ LK3, we define Λ⊥ := {l ∈ LK3; hl,Λi = 0}. When Λ ⊂ LK3

is primitive, then (AΛ,−qΛ) ∼= (AΛ⊥ , qΛ⊥) by [43, Cor. 1.6.2].
Let I1,m be an odd unimodular Lorentzian lattice of rank m + 1. Then I1,m(2)

is an even 2-elementary Lorentzian lattice of rank m + 1.
Let M ⊂ LK3 be a primitive 2-elementary Lorentzian sublattice. Let IM be the

involution on M ⊕M⊥ defined as IM (x, y) = (x,−y) for (x, y) ∈ M ⊕M⊥. Then
IM extends uniquely to an involution on LK3 by [43, Cor. 1.5.2]. We define

g(M) := {22− r(M)− l(M)}/2, k(M) := {r(M)− l(M)}/2.

For d ∈ ∆M⊥ , the smallest sublattice of LK3 containing M and Zd is given by

[M ⊥ d] := (M⊥ ∩ d⊥)⊥.

By Lemma 11.3 below, [M ⊥ d] is again a 2-elementary Lorentzian lattice such that

(2.1) I[M⊥d] = sd ◦ IM = IM ◦ sd, [M ⊥ d]⊥ = M⊥ ∩ d⊥.

By e.g. [20, Appendix, Tables 1,2,3], M and M⊥ are expressed as a direct sum of
the 2-elementary lattices A+

1 , A1, U, U(2), D2k, E7, E8, E8(2).

2.3. Lorentzian lattices
Let L be a Lorentzian lattice. The set CL := {v ∈ L ⊗R; v2 > 0} is called the

light cone of L. Since L is Lorentzian, CL consists of two connected components,
which are written as C+

L , C−L . The closure of C±L in L⊗R are written as C±L .
For l ∈ L ⊗ R, we set hl := {v ∈ C+

L ; hv, li = 0}. Then hl 6= ∅ if and only
if l2 < 0. Define (C+

L )o := C+
L \

S
d∈∆L

hd. By [12, Chap.V], the Weyl group
W (L) acts simply transitively on the set of connected components of (C+

L )o. Any
connected component of (C+

L )o is called a Weyl chamber of L.
Let W be a Weyl chamber of L, so that (C+

L )o = qw∈W (L)w(W). We define
∆+

L := {d ∈ ∆L; hv, di > 0 (∀ v ∈ W)}. Then ∆L = ∆+
L q (−∆+

L) and W has
the expression W = {v ∈ C+

L ; hv, di > 0 (∀ d ∈ ∆+
L)}. A hyperplane hd ⊂ L ⊗R,

d ∈ ∆+
L is called a wall of W if dim(hd ∩ W) = r(L) − 1, where W is the closure

of W in L ⊗ R. We set Π(L,W) := {d ∈ ∆+
L ; hd is a wall of W}, which is the

minimal set of roots defining W, i.e.,

(2.2) W = {v ∈ C+
L ; hv, di > 0, ∀ d ∈ Π(L,W)}

and any inequality hv, di > 0, d ∈ Π(L,W) is essential in (2.2).
A vector % ∈ L ⊗ Q is called a Weyl vector of (L,W) if h%, di = 1 for all

d ∈ Π(L,W). A Lorentzian lattice does not necessarily have a Weyl vector.

2.4. Lattices of signature (2, n)
Let Λ be a lattice with sign(Λ) = (2, n). Define

≠Λ := {[x] ∈ P(Λ⊗C); hx, xi = 0, hx, x̄i > 0},

which has two connected components ≠±Λ . Each of ≠±Λ is isomorphic to a bounded
symmetric domain of type IV of dimension n. On ≠Λ, acts O(Λ) projectively. Set

O+(Λ) := {g ∈ O(Λ); g(≠±Λ ) = ≠±Λ},



K3 SURFACES WITH INVOLUTION II 7

which is a subgroup of O(Λ) of index 2 with ≠Λ/O(Λ) = ≠+
Λ/O+(Λ). Since O+(Λ)

is an arithmetic subgroup of Aut(≠+
Λ), O+(Λ) acts properly discontinuously on ≠+

Λ .
In particular, the stabilizer O+(Λ)[η] := {g ∈ O+(Λ); g · [η] = [η]} is finite for all
[η] ∈ ≠+

Λ , and the quotient

MΛ := ≠Λ/O(Λ) = ≠+
Λ/O+(Λ)

is an analytic space. There exists a compactification M∗
Λ of MΛ, called the Baily–

Borel–Satake compactification [1], such thatM∗
Λ is an irreducible normal projective

variety of dimension n with dim(M∗
Λ \MΛ) = 1.

For ∏ ∈ Λ⊗R, set
H∏ := {[x] ∈ ≠Λ; hx, ∏i = 0}.

Then H∏ 6= ∅ if and only if ∏2 < 0. We define the discriminant locus of ≠Λ by

DΛ :=
X

d∈∆Λ/±1

Hd,

which is a reduced divisor on ≠Λ. We define the reduced divisors D0Λ and D00Λ by

D0Λ =
X

d∈∆0
Λ/±1

Hd, D00Λ =
X

d∈∆00
Λ/±1

Hd.

Since ∆Λ = ∆0
Λ q ∆00

Λ, we have DΛ = D0Λ + D00Λ. For k ∈ Q<0 and ∞ ∈ AΛ with
∞ = −∞, we define the Heegner divisor of discriminant (∞, k) as (cf. [14, p.119])

HΛ(∞, k) :=
1
2

X

∏∈∞+Λ, ∏2=k

H∏ =
X

{∏∈∞+Λ, ∏2=k}/±1

H∏.

Then DΛ, D0Λ, D00Λ are linear combinations of Heegner divisors. Notice that our
HΛ(∞, k) is the half of HΛ(∞, k) in [14].

Assume that Λ is a primitive 2-elementary sublattice of LK3. We set

≠o
Λ := ≠Λ \ DΛ, Mo

Λ := ≠o
Λ/O(Λ).

For d ∈ ∆Λ, we have
Hd ∩ ≠Λ = ≠Λ∩d⊥ = ≠[Λ⊥⊥d]⊥ .

We define the subsets Ho
d ⊂ Hd (d ∈ ∆Λ) and Do

Λ ⊂ DΛ by

Ho
d := {[η] ∈ ≠+

Λ ; O+(Λ)[η] = {±1, ±sd}}, Do
Λ :=

X

d∈∆Λ/±1

Ho
d .

If Hd 6= ∅ (resp. DΛ 6= ∅), then Ho
d (resp. Do

Λ) is a non-empty Zariski open subset
of ≠Λ∩d⊥ (resp. DΛ). Since O(Λ) preserves DΛ and Do

Λ, we define

DΛ := DΛ/O(Λ), Do
Λ := Do

Λ/O(Λ) ⊂ DΛ.

Then Do
Λ ∩ SingMΛ = ∅ by [59, Prop. 1.9 (5)]. For the number of the irreducible

components of DΛ, see Corollary 11.16 below.
When Λ = U(N)⊕L, a vector of Λ⊗C is denoted by (m,n, v), where m,n ∈ C

and v ∈ L⊗C. The tube domain L⊗R + i CL is identified with ≠Λ via the map

(2.3) L⊗R + i CL 3 z → [(−z2/2, 1/N, z)] ∈ ≠Λ ⊂ P(Λ⊗C), z ∈ L⊗C

by [9, p.542]. The component of ≠Λ corresponding to L⊗R + i C+
L via the isomor-

phism (2.3) is written as ≠+
Λ .
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3. K3 surfaces with involution

3.1. K3 surfaces with involution and their moduli space
A compact, connected, smooth complex surface X is called a K3 surface if it is

simply connected and has trivial canonical bundle KX . Let X be a K3 surface.
Then H2(X,Z) endowed with the cup-product pairing is isometric to the K3 lattice
LK3. The Picard lattice of X is defined as Pic(X) := H1,1(X,R) ∩H2(X,Z). An
isometry of lattices α : H2(X,Z) ∼= LK3 is called a marking of X. The pair (X,α)
is called a marked K3 surface, whose period is defined as

π(X,α) := [α(η)] ∈ P(LK3 ⊗C), η ∈ H0(X,KX) \ {0}.

Let M ⊂ LK3 be a primitive 2-elementary Lorentzian sublattice. A K3 surface
equipped with a holomorphic involution ∂ : X → X is called a 2-elementary K3
surface of type M if there exists a marking α of X satisfying

∂∗|H0(X,KX) = −1, ∂∗ = α−1 ◦ IM ◦ α.

Equivalently, α(H2
+(X,Z)) = M , where H2

±(X,Z) := {l ∈ H2(X,Z); ∂∗l = ±l}.
Let (X, ∂) be a 2-elementary K3 surface of type M and let α be a marking with

θ∗ = α−1 ◦ IM ◦ α. Since H2,0(X,C) ⊂ H2
−(X,C) and hence Pic(X) ⊃ H2

+(X,Z),
we have π(X,α) ∈ ≠o

M⊥ and α(Pic(X)) ⊃ M . By [59, Th. 1.8] and Proposition
11.2 below, the O(M⊥)-orbit of π(X, ∂) is independent of the choice of a marking
α with ∂∗ = α−1IMα. The Griffiths period of (X, ∂) is defined as the O(M⊥)-orbit

$M (X, ∂) := O(M⊥) · π(X,α) ∈Mo
M⊥ .

By [49], [13], [45], [16], [59, Th. 1.8] and Proposition 11.2 below, the coarse moduli
space of 2-elementary K3 surfaces of type M is isomorphic to Mo

M⊥ via the map
$M . In the rest of this paper, we identify the point $M (X, ∂) ∈ Mo

M⊥ with the
isomorphism class of (X, ∂).

For a 2-elementary K3 surface (X, ∂), set X∂ := {x ∈ X; ∂(x) = x}.

Lemma 3.1. Let (X, ∂) be a 2-elementary K3 surface of type M .
(1) If M ∼= U(2)⊕ E8(2), then X∂ = ∅.
(2) If M ∼= U⊕ E8(2), then X∂ is the disjoint union of two elliptic curves.
(3) If M 6∼= U(2) ⊕ E8(2), U ⊕ E8(2), there exist a smooth irreducible curve C

of genus g(M) and smooth rational curves E1, . . . , Ek(M) such that X∂ =
C q E1 q · · · q Ek(M).

Proof. See [45, Th. 4.2.2]. §

After Lemma 3.1, a primitive 2-elementary Lorentzian sublattice M ⊂ LK3 is
said to be exceptional if M ∼= U(2)⊕ E8(2) or U⊕ E8(2).

For g ≥ 0, let Sg be the Siegel upper half-space of degree g. When g = 1, S1 is
the complex upper half-plane. We write H for S1. Let Sp2g(Z) be the symplectic
group of degree 2g over Z and let Ag := Sg/Sp2g(Z) be the Siegel modular variety
of degree g, where Sp2g(Z) acts on Sg by ∞ · ≠ := (A≠ + B)(C≠ + D)−1 for°A B
C D

¢
∈ Sp2g(Z). Then Ag is a coarse moduli space of principally polarized Abelian

varieties of dimension g via the period map. The Satake compactification A∗g of Ag

is a normal projective variety that contains Ag as a dense Zariski open subset. We
have the equality of sets A∗g = Ag qAg−1 q · · · q A0.
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After Lemma 3.1, the Jacobian variety of X∂ is defined as the complex torus
Jac(X∂) := H1(X∂,OX∂)/H1(X∂,Z), which is equipped with the principal polar-
ization. Hence Jac(X∂) is a principally polarized Abelian variety of dimension
g(M), if M 6∼= U(2)⊕E8(2). When M ∼= U(2)⊕E8(2), one has Jac(X∂) = {0}. The
period of X∂, i.e., the period of Jac(X∂), is denoted by ≠(X∂) ∈ Ag(M).

For a 2-elementary K3 surface (X, ∂), we define

J
o
M (X, ∂) = J

o
M ($M (X, ∂)) := ≠(X∂) ∈ Ag(M).

Let ΠM⊥ : ≠M⊥ →MM⊥ be the projection and set Jo
M := J

o
M ◦ΠM⊥ |≠o

M⊥
. Then

Jo
M is an O(M⊥)-equivariant holomorphic map from ≠o

M⊥ to Ag(M) with respect
to the trivial O(M⊥)-action on Ag(M). By [59, Th. 3.3], Jo

M extends to an O(M⊥)-
equivariant holomorphic map JM : ≠o

M⊥∪Do
M⊥ → A∗g(M). Let JM : Mo

M⊥∪D
o
M⊥ →

A∗g(M) denote the corresponding holomorphic extension of J
o
M .

Proposition 3.2. The map JM extends to a meromorphic map from M∗
M⊥ to

A∗g(M). When r(M) ≥ 19, JM extends to a holomorphic map from M∗
M⊥ to A∗g(M).

Proof. By the Borel–Kobayashi–Ochiai extension theorem, JM extends to a holo-
morphic map from M∗

M⊥ \ (SingM∗
M⊥ ∪ SingDM⊥) to A∗g(M). Since M∗

M⊥ is
normal, we get dim(SingM∗

M⊥ ∪ SingDM⊥) ≤ dimM∗
M⊥ − 2 when r(M) ≤ 18,

so that JM extends to a meromorphic map from M∗
M⊥ to A∗g(M) in this case. If

r(M) = 19, M∗
M⊥ \ Mo

M⊥ consists of finite points. The result follows from the
Borel–Kobayashi–Ochiai extension theorem. If r(M) = 20, the result is trivial. §

3.2. Degenerations of 2-elementary K3 surfaces
Let ∆ ⊂ C be the unit disc. Let Z be a smooth complex threefold. Let p : Z → ∆

be a proper, surjective holomorphic function without critical points on Z \ p−1(0).
Let ∂ : Z → Z be a holomorphic involution preserving the fibers of p. We set
Zt = p−1(t) and ∂t = ∂|Zt for t ∈ ∆. Then p : (Z, ∂) → ∆ is called an ordinary
singular family of 2-elementary K3 surfaces of type M if p has a unique, non-
degenerate critical point on Z0 and if (Zt, ∂t) is a 2-elementary K3 surface of type
M for all t ∈ ∆∗. Since Z0 is a singular K3 surface, ∂0 ∈ Aut(Z0) extends to an
anti-symplectic holomorphic involution ∂̃0 on the minimal resolution eZ0 of Z0, i.e.,
(e∂0)∗ = −1 on H0( eZ0,K eZ0

).

Theorem 3.3. Let d ∈ ∆M⊥ and let H
o
d := ΠM⊥(Ho

d) be the image of Ho
d by

the natural projection ΠM⊥ : ≠M⊥ →MM⊥ . Let ∞ : ∆ →MM⊥ be a holomorphic
curve intersecting H

o
d transversally at ∞(0). Then there exists an ordinary singular

family of 2-elementary K3 surfaces pZ : (Z, ∂) → ∆ of type M with Griffiths period
map ∞, such that pZ is projective and such that (Z̃0, ∂̃0) is a 2-elementary K3 surface
of type [M ⊥ d] with Griffiths period ∞(0).

Proof. By [59, Th. 2.6], there exists an ordinary singular family of 2-elementary K3
surfaces pZ : (Z, ∂) → ∆ of type M with Griffiths period map ∞ such that pZ is
projective. We prove that ( eZ0,e∂0) is a 2-elementary K3 surface of type [M ⊥ d].

Let oZ ∈ Z0 be the unique critical point of pZ . Let pY : (Y, ∂Y) → ∆ be the
family induced from pZ : (Z, ∂) → ∆ by the map ∆ 3 t → t2 ∈ ∆. Then Y = Z×∆∆
and pY = pr2. The projection pr1 induces an identification between (Yt, ∂Y |Yt) and
(Zt2 , ∂t2) for all t ∈ ∆. Since the Picard-Lefschetz transformation for the family of
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K3 surfaces pY |∆∗ : Y|∆∗ → ∆∗ is trivial, there exists a marking β : R2(pY |∆∗)∗Z ∼=
LK3,∆∗ . Let oY be the unique singular point of Y with pr2(oY) = oZ . Since (Y, oY)
is a three-dimensional ordinary double point, there exist two different resolutions
π : (X , E) → (Y, oY) and π0 : (X 0, E0) → (Y, oY). By e.g. [59, Th. 2.1 and Proof of
Th. 2.6] and the references therein, the following (i), (ii), (iii), (iv) hold:

(i) Set p := pY ◦ π and p0 := pY ◦ π0. Then p : X → ∆ and p0 : X 0 → ∆ are
simultaneous resolutions of pY : Y → ∆, and they are smooth families of
K3 surfaces. The marking β induces a marking α for p : X → ∆ and a
marking α0 for p0 : X 0 → ∆.

(ii) E = π−1(oY) is a smooth rational curve on X0, and E0 = (π0)−1(oY) is a
smooth rational curve on X 0

0. The marked family (p0 : X 0 → ∆, α0) is the
elementary modification of (p : X → ∆, α) with center E (cf. [59, Sect. 2.1]).
Replacing β by g ◦β, g ∈ Γ(M) := {g ∈ O(LK3); gIM = IMg} if necessary,
we have d = α(c1([E])).

(iii) Let e : X \ E → X 0 \ E0 be the isomorphism defined as e := (π0)−1 ◦ π.
Then e is an isomorphism of fiber spaces over ∆∗ and the isomorphism
e|X0\E : X0 \ E → X 0

0 \ E0 extends to an isomorphism ee0 : X0 → X 0
0 with

(3.1) α0 ◦ (ee0)∗ ◦ (α00)
−1 = sd.

(iv) There exists an isomorphism ϕK3(IM ) : X → X 0 of fiber spaces over ∆ such
that the following diagrams are commutative (cf. [59, Eqs. (1.6), (2.8)]):

(3.2)
(X , E) π−−−−→ (Y, o)

pr1−−−−→ (Z, o)

ϕK3(IM )

y ∂Y

y ∂

y

(X 0, E0) π0−−−−→ (Y, o)
pr1−−−−→ (Z, o)

R2p0∗Z
ϕK3(IM )∗−−−−−−−→ R2p∗Z

α0
y

yα

LK3,∆
IM−−−−→ LK3,∆

We define θ := (ee0)−1 ◦ϕK3(IM )|X0 ∈ Aut(X0). Since π0 ◦ee0 = π|X0 by (iii) and
hence π0|X0

0\E0 = (π|X0\E) ◦ (ee0)−1|X0
0\E0 , we get by the first diagram of (3.2)

(π|X0\E) ◦ (θ|X0\E) = (π|X0\E) ◦ (ee0)−1|X0
0\E0 ◦ ϕK3(IM )|X0\E

= (π0|X0
0\E0) ◦ ϕK3(IM )|X0\E

= (∂Y |Y0\{o}) ◦ π|X0\E ,

which implies that (π|X0) ◦ θ = (∂Y)|Y0 ◦ (π|X0). Since X0 is the minimal resolution
of Z0, i.e., X0 = eZ0 and since (Y0, ∂Y |Y0) = (Z0, ∂0), this last equality implies that
θ is the involution on X0 induced from ∂0. Thus we have θ = e∂0.

By (2.1), (3.1) and the second diagram of (3.2), we get

(3.3) α0 θ∗ α−1
0 = α0ϕK3(IM )∗(α00)

−1 ◦ α00(ee
−1
0 )∗α−1

0 = IM ◦ sd = I[M⊥d].

By (3.3), θ = e∂0 is an anti-symplectic involution of type [M ⊥ d]. §

Let C be a smooth complex surface. Let p : C → ∆ be a proper, surjective
holomorphic function without critical points on C\p−1(0). Then p : C → ∆ is called
an ordinary singular family of curves if p has a unique, non-degenerate critical point
on the central fiber p−1(0). Notice that an ordinary singular family of curves is not
necessarily a family of stable curves, since p−1(0) may contain a (−1)-curve of C.

Lemma 3.4. Let p : C → ∆ be an ordinary singular family of curves of genus g
and set Ct := p−1(t) for t ∈ ∆. Let J : ∆ \ {0} → Ag be the holomorphic map
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defined as J(t) := ≠(Ct) for t ∈ ∆ \ {0}. Then J extends to a holomorphic map
from ∆ to A∗g by setting J(0) := ≠(cC0), where bC0 is the normalization of C0.

Proof. Since the result is obvious when g = 0, we assume g > 0. Since J is locally
liftable, J extends to a holomorphic map from ∆ to A∗g by the Borel-Kobayashi-
Ochiai extension theorem. Let C0 = D qD1 q . . .qDk be the decomposition into
the connected components of C0. We may assume that D is singular and that all
Di are smooth. Let o ∈ C be the unique critical point of p. Since Sing D = {o},
D consists of at most two irreducible components. There are two possible cases:
(i) D is irreducible; (ii) D is the join of two smooth curves A and B intersecting
transversally at o. When D is stable, the result follows from e.g. [19, Cor. 3.8],
[41, Sect. 3 Th. 3]. When D is not stable, then D = A + B and g(A)g(B) = 0.
In this case, we may assume g(B) = 0, i.e., B ∼= P1. Then B is a (−1)-curve
on C by Zariski’s lemma [2, Chap. III Lemma 8.2]. Let σ : C → C be the blow-
down of B. Then p := p ◦ σ−1 extends to a holomorphic function from C to ∆.
Since p−1(0) = A q D1 q . . . q Dk is a smooth reduced divisor of C, p : C → ∆
is a smooth morphism. Since J(t) = ≠(p−1(t)) = ≠(p−1(t)) for t 6= 0 and hence
limt→0 J(t) = limt→0 ≠(p−1(t)) = ≠(p−1(0)) by the smoothness of p, we get

lim
t→0

J(t) = ≠(AqD1 q . . .qDk) = ≠(AqB qD1 q . . .qDk) = ≠(cC0),

where we used the fact Jac(B) = {0} to get the second equality. §

If p : (Z, ∂) → ∆ is an ordinary singular family of 2-elementary K3 surfaces of
type M and if o ∈ Z is the unique critical point of p, then there exists a system of
coordinates (U , (z1, z2, z3)) centered at o such that

(3.4) ∂(z) = (−z1,−z2,−z3) or (z1, z2,−z3), z ∈ U .

If ∂(z) = (−z1,−z2,−z3) on U , ∂ is said to be of type (0, 3). If ∂(z) = (z1, z2,−z3)
on U , ∂ is said to be of type (2, 1).

Theorem 3.5. Let M ⊂ LK3 be a primitive 2-elementary Lorentzian sublattice.
For d ∈ ∆M⊥ , the following identity holds

JM |Ho
d

= Jo
[M⊥d]|Ho

d
.

Proof. Let p ∈ H
o
d and let ∞ : ∆ →MM⊥ be a holomorphic curve intersecting H

o
d

transversally at p = ∞(0). Let pZ : (Z, ∂) → ∆ be an ordinary singular family of
2-elementary K3 surfaces of type M with Griffiths period map ∞, such that pZ is
projective and such that (Z̃0, ∂̃0) is a 2-elementary K3 surface of type [M ⊥ d] with
Griffiths period ∞(0) (cf. Theorem 3.3). Let o ∈ Z be the unique critical point
of pZ . Since JM (p) = JM (∞(0)) = limt→0 JM (∞(t)) by the continuity of JM and
since J

o
[M⊥d](p) = J

o
[M⊥d]( eZ0,e∂0) = ≠(( eZ0)e∂0) by Theorem 3.3, it suffices to prove

(3.5) JM (p) = lim
t→0

JM (∞(t)) = ≠(( eZ0)e∂0) = J
o
[M⊥d](p).

Set Z∂ := {z ∈ Z; ∂(z) = z}.
(Case 1) Assume that ∂ is of type (0, 3). By [59, Prop. 2.5 (1)], C := Z∂ \ {o} is a
smooth complex surface and p|C : C → ∆ is a proper holomorphic submersion. Set
Ct := (p|C)−1(t). Then

(3.6) lim
t→0

J
o
M (Zt, ∂t) = lim

t→0
≠(Ct) = ≠(C0).
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Since Z∂0
0 = C0 q {o}, we get

(3.7) ( eZ0)e∂0 = C0 qP1,

which yields that

(3.8) ≠(C0) = ≠(( eZ0)e∂0).

Eq. (3.5) follows from (3.6) and (3.8) in this case.
(Case 2) Assume that ∂ is of type (2, 1). By [59, Prop. 2.5 (2)], p|Z∂ : Z∂ → ∆ is
an ordinary singular family of curves. Let W → Z∂0

0 be the normalization. Then

(3.9) lim
t→0

J
o
M (Zt, ∂t) = lim

t→0
≠(Z∂t

t ) = ≠(W ) ∈ A∗g(M),

where the last equality follows from Lemma 3.4. Since eZ0 → Z0 is the blow-up at
the ordinary double point o, it follows from the local description (3.4) that ( eZ0)e∂0
is the proper transform of Z∂0

0 . Hence ( eZ0)e∂0 is a resolution of the singularity of
Z∂0

0 . Namely, we have W = ( eZ0)e∂0 , which together with (3.9), yields (3.5) in this
case. Since p is an arbitrary point of H

o
d, we get the result. §

Let us give some applications of Theorem 3.5.

Proposition 3.6. If g(M) = 1 and d ∈ ∆0
M⊥ , then

JM (Ho
d) = A0 = A∗1 \ A1.

Proof. By Lemma 11.5 below, g([M ⊥ d]) = g(M) − 1 = 0. By Theorem 3.5, we
get JM (Ho

d) = Jo
[M⊥d](H

o
d) = A0 = A∗1 \ A1. §

Proposition 3.7. If g(M) = 1, then

Jo
M (≠o

M⊥) = A∗1.

Proof. By Proposition 3.2, JM extends to a meromorphic map from M∗
M⊥ to A∗1.

Since Jo
M (≠o

M⊥) = JM (Mo
M⊥) and since dimA∗1 = 1, we have Jo

M (≠o
M⊥) = A∗1 if

J
o
M is non-constant. We see that J

o
M is non-constant.

Since g(M) = 1, we get by [45, p.1434, Table 1] or by [20, Appendix, Table 2]

(3.10) M⊥ ∼= U⊕ I1,m−1(2) (1 ≤ m ≤ 10), U(2)⊕ U(2)⊕ D4, U⊕ U(2).

By (3.10), ∆0
M⊥ 6= ∅. Let d ∈ ∆0

M⊥ . By Proposition 3.6, we get JM (Ho
d) = A0 =

A∗1 \ A1. Since JM (≠o
M⊥) ⊂ A1, this implies that JM is non-constant. §

Proposition 3.8. If g(M) = 1 and d ∈ ∆00
M⊥ , then

JM (Ho
d) ⊂ A1.

Proof. Since d ∈ ∆00
M⊥ , we get g([M ⊥ d]) = g(M) = 1 by Lemma 11.5 below. By

Theorem 3.5, we get JM (Ho
d) = Jo

[M⊥d](H
o
d) ⊂ Jo

[M⊥d](≠
o
[M⊥d]⊥) ⊂ A1. §

Proposition 3.9. If g(M) = 2 and d ∈ ∆0
M⊥ , then

JM (Ho
d) = A∗2 \ A2.

Proof. By Proposition 11.5 below, g([M ⊥ d]) = 1. By Theorem 3.5, we get

JM (Ho
d) = Jo

[M⊥d](H
o
d) = J[M⊥d](≠o

[M⊥d]⊥) = A∗1 = A∗2 \ A2,

where the third equality follows from Proposition 3.7. §
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We define the divisor N2 ⊂ A2 as

N2 := {≠(E1 × E2) ∈ A2; E1, E2 are elliptic curves}.

Proposition 3.10. Let g(M) = 2 and d ∈ ∆M⊥ . Then JM (Ho
d) ∩ N2 6= ∅ if and

only if the following conditions are satisfied:

M ∼= I1,8(2), d ∈ ∆00
M⊥ , d/2 ≡ 1M⊥ mod M⊥.

In particular, if either M 6∼= I1,8(2) or d 6∈ ∆00
M⊥ or d/2 6≡ 1M⊥ mod M⊥, then

JM (Ho
d) ⊂ A2 \ N2.

Proof. Assume JM (Ho
d)∩N2 6= ∅. By Proposition 3.9, d ∈ ∆00

M⊥ . By Theorem 3.5,

J[M⊥d](≠o
[M⊥d]⊥) ∩N2 ⊃ J[M⊥d](Ho

d) ∩N2 = JM (Ho
d) ∩N2 6= ∅.

Let (X, ∂) be a 2-elementary K3 surface of type [M ⊥ d] such that J[M⊥d](X, ∂) ∈
N2. If [M ⊥ d] 6∼= U⊕E8(2), U(2)⊕E8(2), there exists an irreducible smooth curve
C of genus g([M ⊥ d]) with J[M⊥d](X, ∂) = ≠(C) by Lemma 3.1. By d ∈ ∆00

M⊥ and
Lemma 11.5 below, we get g([M ⊥ d]) = 2. However, the period of an irreducible
smooth curve of genus 2 lies in A2 \N2. This contradicts the condition ≠(C) ∈ N2.
Thus [M ⊥ d] ∼= U⊕ E8(2) or [M ⊥ d] ∼= U(2)⊕ E8(2). If [M ⊥ d] ∼= U(2)⊕ E8(2),
then C = ∅ by Lemma 3.1 (1), which contradicts the condition ≠(C) ∈ N2. We
get [M ⊥ d] ∼= U ⊕ E8(2) and hence M⊥ ∩ d⊥ = [M ⊥ d]⊥ ∼= U ⊕ U ⊕ E8(2). Set
L := Z d ∼= A1. Since d ∈ ∆00

M⊥ , we get by (11.4) below

(3.11) M⊥ = (M⊥ ∩ d⊥)⊕ L ∼= U⊕ U⊕ E8(2)⊕ L.

Since r(M) = 22− r(M⊥) = 9, l(M) = l(M⊥) = 9 and δ(M) = δ(M⊥) = 1, we get
M ∼= I1,8(2). Since δ(M⊥ ∩ d⊥) = δ(U ⊕ U ⊕ E8(2)) = 0 and hence 1M⊥∩d⊥ = 0,
we deduce from (3.11) that 1M⊥ = 1M⊥∩d⊥ ⊕ 1L = 1L = d/2 in AM⊥ .

Conversely, assume that M ∼= I1,8(2), d ∈ ∆00
M⊥ , and d/2 ≡ 1M⊥ mod M⊥. We

get the decomposition M⊥ = (M⊥ ∩ d⊥)⊕L by (11.4) below. Then r(M⊥ ∩ d⊥) =
r(M⊥)−1 = 12 and l(M⊥∩d⊥) = l(M⊥)−1 = 8. Let us see that δ(M⊥∩d⊥) = 0.
Let x ∈ (M⊥ ∩ d⊥)∨ and k ∈ Z. Set y := x + k(d/2) ∈ (M⊥)∨. By the definition
of 1M⊥ , we get

−k/2 = hy, d/2i ≡ hy,1M⊥i ≡ hy, yi ≡ hx, xi − k2/2 mod Z.

Hence x2 ≡ k(k−1)/2 ≡ 0 mod Z. Since x ∈ (M⊥∩d⊥)∨ is an arbitrary element,
we get δ(M⊥ ∩ d⊥) = 0. Since the isometry class of M⊥ ∩ d⊥ is determined by the
triplet (r, l, δ) by [43, Th. 3.6.2], we get M⊥ ∩ d⊥ ∼= U⊕U⊕ E8(2). By Lemma 3.1
(2) and Theorem 3.5, we get JM (Ho

d) ⊂ N2. This proves the proposition. §

4. Automorphic forms on the period domain

4.1. The Igusa cusp form and its pull-back on ≠M⊥

Let Fg := (Sg×C)/Sp(2g,Z) be the Hodge line bundle on Ag, where Sp(2g,Z)
acts on Sg ×C as follows: For ∞ =

°A B
C D

¢
∈ Sp(2g,Z) and (≠, ξ) ∈ Sg ×C,

∞ · (≠, ξ) := ((A≠ + B)(C≠ + D)−1, det(C≠ + D)k ξ).

Then Fg is a holomorphic line bundle on Ag in the sense of orbifolds. There is
an integer ∫ ∈ N such that F∫

g is a line bundle on Ag in the ordinary sense. By
Baily–Borel–Satake, Fm∫

g extends uniquely to a very ample line bundle on A∗g for
m ¿ 0. In this case, let Fm∫

g denote the holomorphic extension of Fm∫
g to A∗g.
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An element of H0(Ag,Fk
g ) is identified with a Siegel modular form on Sg of

weight k. For g > 0, we define the Igusa form as

χg(≠) :=
Y

(a,b) even

θa,b(≠),

where a, b ∈ {0, 1
2}

g and θa,b(≠) :=
P

n∈Zg exp{πit(n + a)≠(n + a) + 2πit(n + a)b}
is the corresponding theta constant. Here (a, b) is even if 4tab ≡ 0 mod 2. When
g = 0, we define χ0 := 1. By [29, Lemma 10], χ8

g is a Siegel modular form of weight
2g+1(2g + 1). Set

θnull,g := {[≠] ∈ Ag; χg(≠) = 0},
which is a reduced divisor on Ag. It is classical that N2 = θnull,2. (See e.g. [39,
Chap. II, Cors. 3.12, 3.15, 3.17].) In Sect. 9, χ8

g shall play the crucial role.
Define the Petersson metric k · kFg on Fg by

(4.1) kξk2Fg
(≠) := (det Im ≠)|ξ|2, (≠, ξ) ∈ Sg ×C.

Since χ8
g is a Siegel modular form, kχ8

gk2F2g+1(2g+1)
g

is a C1 function on Ag in the

sense of orbifolds. For simplicity, we write kχ8
gk2 for kχ8

gk2F2g+1(2g+1)
g

.

Lemma 4.1. Let p : C → ∆ be an ordinary singular family of curves of genus g and
set Ct := p−1(t) for t ∈ ∆. Let Ĉ0 be the normalization of C0 with genus g(Ĉ0).

(1) If C0 is irreducible and g(Ĉ0) = g − 1, there exists h(t) ∈ O(∆) such that

log kχg(≠(Ct))8k2 = 22g−2 log |t|2 + log |h(t)|2 + O(log log |t|−1) (t → 0).

(2) If g = 2 and if Ĉ0 is the disjoint union of two elliptic curves, then

log kχ2(≠(Ct))8k2 = 8 log |t|2 + O(log log |t|−1) (t → 0).

Proof. (1) By [19, Cor.3.8], one can write

(4.2) ≠(Ct) =
∑
log t

2πi
Λ + √(t)

∏
∈ Ag, Λ =

µ
1 t0g−1

0g−1 Og−1

∂

where 0g−1 is the zero vector of Cg−1, Og−1 is the (g − 1) × (g − 1)-zero matrix,
and √(t) is a holomorphic function on ∆ with values in complex symmetric g × g-
matrices. If we write √(0) =

°√11 √12
√21 √22

¢
, then √22 ∈ Sg−1.

Write ≠ =
°z tω

ω Z

¢
, where z ∈ H, ω ∈ Cg−1, Z ∈ Sg−1. We follow [40, p.370,

Sect. 3]. Let a1 = 1/2. There is a holomorphic function fa,b(≥, ω, Z) such that

θa,b(≠) =
X

n=(n1,n0)∈Z×Zg−1

eπi(n1+ 1
2 )2z+2πi(n1+ 1

2 )tω(n0+a0)+πit(n0+a0)Z(n0+a0)+2πit(n+a)b

= eπiz/4fa,b(e2πiz, ω, Z).

The number of even (a, b) with a1 = 1/2 is given by 22(g−1). Similarly, let a1 = 0.
There is a holomorphic function ga,b(≥, ω, Z) such that

θa,b(≠) =
X

n=(n1,n0)∈Z×Zg−1

eπin2
1z+2πin1

tω(n0+a0)+πit(n0+a0)Z(n0+a0)+2πit(n+a)b

= 1 + eπizga,b(eπiz, ω, Z).
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Hence there is a holomorphic function F (≥, ω, Z) in the variables ≥, ω, Z such that
(4.3)
χg(≠)8 =

Y

even

θa,b(≠)8 = (e
πiz
4 )8·2

2(g−1)
F (eπiz, ω, Z) = (e2πiz)2

2g−2
F (eπiz, ω, Z).

Since χ8
g is a Siegel modular form and hence χg(≠ + Λ)8 = χg(≠)8, F (≥, ω, Z) is

an even function in ≥. By (4.3), there exists h(t) ∈ O(∆) such that

(4.4) χg

µ
log t

2πi
Λ + √(t)

∂8

= t2
2g−2

h(t).

Since Im( log t
2πi Λ + √(t)) = − 1

2π log |t|Λ + Im √(0) + O(|t|) with √(0) =
°√11 √12
√21 √22

¢
,

√22 ∈ Sg−1, we get

(4.5) det Im
µ

log t

2πi
Λ + √(t)

∂
= −det Im √22

2π
log |t|+ O(1).

The result follows from (4.2), (4.4), (4.5).
(2) Since g = 2 and C0 is reducible, we deduce from [19, Cor.3.8] the existence of
a holomorphic map √ : ∆ → S2 with

≠(Ct) = [√(t)], √(0) =
µ

√1 0
0 √2

∂
, √0(0) =

µ
0 a
a 0

∂
, √1, √2 ∈ H, a 6= 0.

The result follows from e.g. [58, Eq. (A.24)]. §

Let ωSg be the Sp(2g,Z)-invariant Kähler form on Sg defined as

ωSg (τ) := −ddc log det Im τ, τ ∈ Sg.

Let ωAg be the Kähler form on Ag in the sense of orbifolds induced from ωSg . The
following equation of (1, 1)-forms on Ag holds

ωAg = c1(Fg, k · kFg ).

Let I(M) ⊂ Z be the ideal defined as follows: q ∈ I(M) if and only if there
exists Fq

g(M) ∈ H1(A∗g(M),O∗A∗g(M)
) with Fq

g(M)|Ag(M) = Fq
g(M).

Let i : ≠o
M⊥ ∪ Do

M⊥ ↪→ ≠M⊥ be the inclusion. For q ∈ I(M), we set

∏q
M := i∗O≠o

M⊥∪Do
M⊥

(J∗MF
q
g(M)).

By [59, Lemma 3.6] and Proposition 3.2, the O≠M⊥ -module ∏q
M is an invertible

sheaf on ≠M⊥ . We identify ∏q
M with the corresponding holomorphic line bundle on

≠M⊥ . By [59, Lemma 3.7] and Proposition 3.2, the O(M⊥)-action on ∏q
M |≠o

M⊥∪Do
M⊥

induced from the O(M⊥)-equivariant map JM , extends to the one on ∏q
M . Hence

∏q
M is equipped with the structure of an O(M⊥)-equivariant line bundle on ∏q

M .
Let k · k∏q

M
be the O(M⊥)-invariant Hermitian metric on ∏q

M |≠o
M⊥

defined as

k · k∏q
M

:= (Jo
M )∗k · kFq

g(M)
.

By (4.1), (Jo
M )∗ωAg(M) is a C1 closed semi-positive (1, 1)-form on ≠o

M⊥ such
that q (Jo

M )∗ωAg(M) = c1(∏q
M |≠o

M⊥
, k · k∏q

M
). Since dim≠M⊥ \ (≠o

M⊥ ∪ Do
M⊥) ≤

dim≠M⊥ − 2 when r(M) ≤ 18, we can define the closed positive (1, 1)-current
J∗MωAg(M) on ≠M⊥ as the trivial extension of (Jo

M )∗ωAg(M) from ≠o
M⊥ to ≠M⊥ by

[59, Th. 3.9] and [54, p. 53 Th. 1]. When r(M) = 19, (Jo
M )∗ωAg(M) extends triv-

ially to a closed positive (1, 1)-current J∗MωAg(M) on ≠M⊥ , because (Jo
M )∗ωAg(M)
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has Poincaré growth along DM⊥ by [59, Prop. 3.8]. By [59, Th. 3.13] and [54, p. 53
Th. 1], the Hermitian metric k · k∏q

M
on ∏q

M |≠o
M⊥

extends to a singular Hermitian
metric on ∏q

M , whose curvature current on ≠M⊥ is given by

(4.6) c1(∏q
M , k · k∏q

M
) = q J∗MωAg(M) .

Let ` ∈ Z>0 be such that 2g(M)+1(2g(M) + 1)` ∈ I(M). Then F2g(M)+1(2g(M)+1)`
g(M)

extends to a holomorphic line bundle on A∗g(M). Since χ8`
g(M) is a holomorphic

section of F2g(M)+1(2g(M)+1)`
g(M) , J∗Mχ8`

g(M) is an O(M⊥)-invariant holomorphic section

of ∏2g(M)+1(2g(M)+1)`
M . If Jo

M (≠o
M⊥) 6⊂ θnull,g(M), we define

D := div(J∗Mχ8`
g(M)).

Since JM is O(M⊥)-equivariant with respect to the trivial O(M⊥)-action on A∗g(M),
D is an O(M⊥)-invariant effective divisor on ≠M⊥ . By [59, Th. 3.13], [54, p. 53
Th. 1] and (4.6), log kJ∗Mχ8

g(M)k lies in L1
loc(≠M⊥) and satisfies the following equa-

tion of currents on ≠M⊥

(4.7) −ddc log kJ∗Mχ8`
g(M)k2 = 2g(M)+1(2g(M) + 1)` J∗MωAg(M) − δD.

Recall that the divisor D0M⊥ was defined in Sect. 2.4.

Proposition 4.2. Let ` ∈ Z>0 be such that 2g(M)+1(2g(M) + 1)` ∈ I(M).
(1) Assume 11 ≤ r(M) ≤ 17 or (r(M), δ(M)) = (10, 1). If Jo

M (≠o
M⊥) 6⊂

θnull,g(M), there exist a ∈ Z≥0 and an O(M⊥)-invariant effective divisor E
on ≠M⊥ such that

div(J∗Mχ8`
g(M)) = 2(22g(M)−2 + a)`D0M⊥ + E.

In particular, the following equations of currents on ≠M⊥ holds:

−ddc log kJ∗Mχ8`
g(M)k2 = 2g(M)+1(2g(M)+1)` J∗MωAg(M)−2(22g(M)−2+a)` δD0

M⊥
−δE .

(2) Assume g(M) = 2 and r(M) < 10, i.e., M ∼= I1,8(2). There exists a ∈ Z≥0

such that the following equation of divisors on ≠M⊥ holds:

div(J∗Mχ8`
g(M)) = (8 + 2a)`D0M⊥ + 16`HM⊥(1M⊥ ,−1/2).

In particular, the following equations of currents on ≠M⊥ holds:

−ddc log kJ∗Mχ8`
g(M)k2 = 40` J∗MωAg(M) − (8 + 2a)` δD0

M⊥
− 16` δHM⊥ (1M⊥ ,−1/2).

Proof. Since D is effective, we can write D =
P

d∈∆0
M⊥

m(d) Hd +E, where m(d) ∈
Z≥0 and E is an effective divisor on ≠M⊥ with dim(D0M⊥ ∩ E) ≤ dimD0M⊥ − 1.
Since g(Hd) = Hg(d) for all g ∈ O(M⊥) and d ∈ ∆0

M⊥ , the O(M⊥)-invariance of D

implies that m(g(d)) = m(d) for all g ∈ O(M⊥) and d ∈ ∆0
M⊥ . Since O(M⊥) acts

transitively on ∆0
M⊥ by Proposition 11.15 below, there exists α ∈ Z≥0 with

(4.8) D = αD0M⊥ + E.

Let d ∈ ∆M⊥ and p ∈ H
o
d. Let ∞ : ∆ → MM⊥ be a holomorphic curve inter-

secting H
o
d transversally at ∞(0) = p such that ∞(∆∗) ⊂ MM \ (DM⊥ ∪ D). By

Theorem 3.3, there exists an ordinary singular family of 2-elementary K3 surfaces
pZ : (Z, ∂) → ∆ of type M with Griffiths period map ∞, such that (Z̃0, ∂̃0) is a
2-elementary K3 surface of type [M ⊥ d] with Griffiths period ∞(0).
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Since the natural projection ΠM⊥ : ≠M⊥ →MM⊥ is doubly ramified along Ho
d

by [59, Prop. 1.9 (4)], there exists a holomorphic curve c : ∆ → ≠M⊥ intersecting
Ho

d transversally at c(0) ∈ Ho
d such that ΠM⊥(c(t)) = ∞(t2). Hence we have

(4.9) JM (c(t)) = ≠(Z∂t2

t2 ).

(1) Assume d ∈ ∆0
M⊥ . If ∂ is of type (0, 3), g([M ⊥ d]) = g(M) by [59, Prop. 2.5].

Since g([M ⊥ d]) = g(M)− 1 by Lemma 11.5 below, we get a contradiction. Hence
∂ must be of type (2, 1). By [59, Prop. 2.5], p|Z∂ : Z∂ → ∆ is an ordinary singular
family of curves. By Lemma 4.1 (1), there exists h(t) ∈ O(∆) such that

(4.10) log kχg(M)(≠(Z∂t
t ))8k2 = 22g(M)−2 log |t|2 + log |h(t)|2 + O(log log |t|−1).

Since ∞(∆∗) ∩D = ∅ by the choice of ∞, h(t) does not vanish identically on ∆ by
(4.4). Let a ∈ Z≥0 be the multiplicity of h(t) at t = 0. By (4.9) and (4.10), we get

(4.11) log kχg(M)(JM (c(t)))8`k2 = 2(22g(M)−2 + a)` log |t|2 + O(log log |t|−1),

which yields that Hd ⊂ suppD for d ∈ ∆0
M⊥ . Comparing (4.7), (4.8) and (4.11),

we get α = 2(22g(M)−2 + a)` in (4.8). Since D and D0M⊥ are O(M⊥)-invariant, so
is E. This proves (1).

(2) Assume M ∼= I1,8(2), d ∈ ∆00
M⊥ , d/2 = 1M⊥ . As was proved in Proposition

3.10, [M ⊥ d] ∼= U ⊕ E8(2). If ∂ is of type (0, 3), then Z∂0
0 is the disjoint union of

a smooth curve of genus 2 and an isolated point by [59, Prop. 2.5], which implies
that JM (∞(0)) ∈ A2 \ N2. However, we get the contradiction by Theorem 3.5:

JM (∞(0)) = Jo
[M⊥d](∞(0)) = Jo

U⊕E8(2)
(∞(0)) ∈ N2,

where the last inclusion follows from Lemma 3.1 (2). Hence ∂ must be of type (2, 1).
By [59, Prop. 2.5], p|Z∂ : Z∂ → ∆ is an ordinary singular family of curves. Since

the normalization of (Z0)∂0 is the disjoint union of two elliptic curves by Lemma
3.1 (2) and Theorem 3.5, (Z0)∂0 is the join of two elliptic curves intersecting at one
point transversally. By Lemma 4.1 (2), we get

(4.12) log kχg(M)(≠(Z∂t
t ))8k2 = 8 log |t|2 + O(log log |t|−1) (t → 0).

By (4.9) and (4.12), we get

(4.13) log kχg(M)(JM (c(t)))8k2 = 16 log |t|2 + O(log log |t|−1) (t → 0).

By Lemma 3.1, we get JM (≠o
M⊥) = Jo

M (≠o
M⊥) ⊂ A2 \ θnull,2. By Proposition

3.10, we get JM (
S

d∈∆00
M⊥ , d/2 6≡1M⊥

Ho
d) ⊂ A2 \ θnull,2. By these two inclusions,

JM



≠o
M⊥ ∪

[

d∈∆00
M⊥ , d/2 6≡1M⊥

Ho
d



 ⊂ A2 \ θnull,2,

which implies that J∗Mχ8`
2 does not vanish on ≠o

M⊥ ∪
S

d∈∆00
M⊥ , d/2 6≡1M⊥

Ho
d . Hence

(≠o
M⊥ ∪ Do

M⊥) ∩D ⊂ (≠o
M⊥ ∪ Do

M⊥) \



≠o
M⊥ ∪

[

d∈∆00
M⊥ , d/2 6≡1M⊥

Ho
d





= Do
M⊥ \

[

d∈∆00
M⊥ , d/2 6≡1M⊥

Ho
d

⊂ D0M⊥ ∪HM⊥(1M⊥ ,−1/2).
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Since ≠M⊥ \ (≠o
M⊥ ∪Do

M⊥) is an analytic subset of codimension 2 in ≠M⊥ , we get

(4.14) D ⊂ D0M⊥ ∪HM⊥(1M⊥ ,−1/2).

The desired formula follows from (4.8), (4.11), (4.13), (4.14). §

Remark 4.3. In the proof of Theorem 9.1, we shall prove a = E = 0 under the
assumption of Proposition 4.2. When g(M) = 0, this is trivial. When g(M) = 1,
this follows from the inclusion D ⊂ DM⊥ and the estimate log |h(t)| = O(1) in
Lemma 4.1 (1). When g(M) = 2, we get E = 0 because D ⊂ DM⊥ .

Remark 4.4. A key in the proof of Proposition 4.2 (1) is the fact that O(M⊥)
acts transitively on ∆0

M⊥ . In fact, O+(M⊥) acts transitively on ∆0
M⊥ . To see

this, since O(M⊥) acts transitively on ∆0
M⊥ , it suffices to prove the existences of

d ∈ ∆0
M⊥ and g ∈ O(M⊥) \ O+(M⊥) with g(d) = d. By [20, Appendix, Tables

1,2,3], we have M⊥ = U ⊕ L if g(M) > 0. Since ∆0
M⊥ = ∅ when g(M) = 0,

we may assume g(M) > 0 and M⊥ = U ⊕ L. Let d ∈ ∆U ⊂ ∆M⊥ . Then
g = 1U ⊕−1L ∈ O(M⊥) \O+(M⊥) by (2.3), and g(d) = d.

4.2. Automorphic forms on ≠+
Λ

Let Λ be a lattice of signature (2, r(Λ) − 2). We fix a vector lΛ ∈ Λ ⊗R with
hlΛ, lΛi ≥ 0, and we set

jΛ(∞, [η]) :=
h∞(η), lΛi
hη, lΛi

[η] ∈ ≠+
Λ , ∞ ∈ O+(Λ).

Since HlΛ = ∅, jΛ(∞, ·) is a nowhere vanishing holomorphic function on ≠+
Λ .

Let Γ ⊂ O+(Λ) be a cofinite subgroup. A holomorphic function f ∈ O(≠+
Λ) is

called an automorphic form on ≠+
Λ for Γ of weight p if

f(∞ · [η]) = χ(∞) jΛ(∞, [η])p f([η]), [η] ∈ ≠+
Λ , ∞ ∈ Γ,

where χ : Γ → C∗ is a character. For an automorphic form f on ≠+
Λ for Γ of weight

p, the Petersson norm kfk is the function on ≠+
Λ defined as

kf([η])k2 := KΛ([η])p |f([η])|2, KΛ([η]) :=
hη, η̄i

|hη, lΛi|2
.

If r(Λ) ≥ 5, then kfk2 is a Γ-invariant C1 function on ≠+
Λ , because the group

Γ/[Γ,Γ] is finite and Abelian and hence χ is finite in this case.
We also consider automorphic forms on ≠+

M⊥ with values in the sheaf ∏q
M .

Definition 4.5. Let M ⊂ LK3 be a primitive 2-elementary Lorentzian sublattice.
Let χ be a character of O+(M⊥). Let p, q ∈ Z. Then ™ ∈ H0(≠+

M⊥ , ∏q
M ) is called

an automorphic form on ≠+
M⊥ for O+(M⊥) of weight (p, q) if for all ∞ ∈ O+(M⊥),

™(∞ · [η]) = χ(∞) jM⊥(∞, [η])p ∞(™([η])), [η] ∈ ≠+
M⊥ .

For an automorphic form ™ on ≠+
M⊥ for O+(M⊥) of weight (p, q), the Petersson

norm of ™ is a C1 function on ≠+
M⊥ defined as

(4.15) k™([η])k2 := KM⊥([η])p · k™([η])k2∏q
M

, [η] ∈ ≠+
M⊥ .
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5. The invariant τM of 2-elementary K3 surfaces of type M

Let (X, ∂) be a 2-elementary K3 surface of type M . Identify Z2 with the sub-
group of Aut(X) generated by ∂. Let ∑ be a Z2-invariant Kähler form on X. Set
vol(X,∑) := (2π)−2

R
X ∑2/2!. Let η be a nowhere vanishing holomorphic 2-form on

X. The L2-norm of η is defined as kηk2L2 := (2π)−2
R

X η ∧ η̄.
Let §0,q = 2(@̄ + @̄∗)2 be the @̄-Laplacian acting on C1 (0, q)-forms on X. Let

σ(§0,q) be the spectrum of §0,q. For ∏ ∈ σ(§0,q), let E0,q(∏) be the eigenspace
of §0,q with respect to the eigenvalue ∏. Since Z2 preserves ∑, E0,q(∏) is a finite-
dimensional unitary representation of Z2. For s ∈ C, set

≥0,q(∂)(s) :=
X

∏∈σ(§0,q)\{0}

Tr (∂|E0,q(∏)) ∏−s.

Then ≥0,q(∂)(s) converges absolutely when Re s > dimX, admits a meromorphic
continuation to the complex plane C, and is holomorphic at s = 0. The equivariant
analytic torsion of the trivial Hermitian line bundle on (X,∑) is defined as

τZ2(X,∑)(∂) := exp[−
X

q≥0

(−1)qq ≥ 00,q(∂)(0)].

We refer to [50], [5], [6], [23], [4], [38], [31] for more about equivariant and non-
equivariant analytic torsion.

Let X∂ =
P

i Ci be the decomposition of the fixed point set of ∂ into the con-
nected components. Set vol(Ci, ∑|Ci) := (2π)−1

R
Ci

∑|Ci . Let c1(Ci, ∑|Ci) be the
Chern form of (TCi, ∑|Ci) and let τ(Ci, ∑|Ci) be the analytic torsion of the trivial
Hermitian line bundle on (Ci, ∑|Ci). We define

τM (X, ∂) := vol(X,∑)
14−r(M)

4 τZ2(X,∑)(∂)
Y

i

Vol(Ci, ∑|Ci)τ(Ci, ∑|Ci)

× exp

"
1
8

Z

Ci

log
µ

η ∧ η̄

∑2/2!
· Vol(X,∑)
kηk2L2

∂ØØØØ
Ci

c1(Ci, ∑|Ci)

#

,

which is independent of the choice of ∑ by [59, Th. 5.7]. Hence τM (X, ∂) is an
invariant of the pair (X, ∂), so that τM descends to a function on Mo

M⊥ .

Theorem 5.1. If r(M) ≤ 17, there exist an integer ∫ ∈ Z>0 and an automorphic
form ΦM on ≠M⊥ for O+(M⊥) of weight (∫(r(M)−6), 4∫) with zero divisor ∫DM⊥

such that for every 2-elementary K3 surface (X, ∂) of type M ,

τM (X, ∂) = kΦM ($M (X, ∂))k− 1
2∫ .

Proof. The result follows from [59, Main Th.] and Proposition 11.2 below. §

6. Borcherds products

6.1. Modular forms for Mp2(Z)
Recall that H ⊂ C is the complex upper half-plane. Let Mp2(Z) be the meta-

plectic double cover of SL2(Z) (cf. [10, Sect. 2]), which is generated by the two
elements S := (

°0−1
1 0

¢
,
√

τ) and T := (
°1 1
0 1

¢
, 1). For ∞ = (

°a b
c d

¢
,
√

cτ + d) ∈ Mp2(Z)
and τ ∈ H, we set j(∞, τ) :=

√
cτ + d and ∞ · τ := (aτ + b)/(cτ + d).

Let M be an even lattice. Let C[AM ] be the group ring of the discriminant
group AM . Let {e∞}∞∈AM be the standard basis of C[AM ]. The Weil representation
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ρM : Mp2(Z) → GL(C[AM ]) is defined as follows [10, Sect. 2]:

(6.1) ρM (T ) e∞ := eπi∞2
e∞ , ρM (S) e∞ :=

i−
σ(M)

2

|AM |1/2

X

δ∈AM

e−2πih∞,δieδ.

A C[AM ]-valued holomorphic function F (τ) on H is a modular form of type ρM

with weight w ∈ 1
2Z if the following conditions (a), (b) are satisfied:

(a) For ∞ ∈ Mp2(Z) and τ ∈ H, F (∞ · τ) = j(∞, τ)2w ρM (∞) · F (τ).
(b) F (τ) =

P
∞∈AM

e∞
P

k∈ 1
l Z

c∞(k) e2πikτ , where l is the level of M , c∞(k) ∈ Z
for all k ∈ 1

l Z and c∞(k) = 0 for k ø 0.
By the first condition of (6.1), [14, Eq. (1.4)] and Condition (a), we get

(6.2) c∞(k) =

(
0 if k 6∈ ∞2/2 + Z
c−∞(k) if k ∈ ∞2/2 + Z.

The group O(M) acts on C[AM ] by g(e∞) := eḡ(∞), where ḡ ∈ O(qM ) is the
element induced by g ∈ O(M). For a modular form F of type ρM , we define
Aut(M,F ) := {g ∈ O(M); g(F ) = F}. Then Aut(M,F ) is a cofinite subgroup of
O(M), since O(qM ) is finite and since Aut(M,F ) ⊃ ker{O(M) → O(qM )}.

6.2. Borcherds products
Let Λ be an even lattice of signature (2, r(Λ)− 2) with level l. Assume that Λ is

2-elementary and that Λ = U(N) ⊕ L. A vector of Λ ⊗Q is denoted by (m,n, v),
where m,n ∈ Q and v ∈ L ⊗Q. We write a vector of AΛ in the same manner. If
F (τ) =

P
∞∈AΛ

f∞(τ) e∞ is a modular form of type ρΛ, then F (τ) induces a modular
form F |L(τ) of type ρL with the same weight as follows [9, Th. 5.3]:

(6.3) F |L(τ) :=
X

∏∈AL

fL+∏(τ) e∏, fL+∏(τ) :=
N−1X

n=0

f( n
N ,0,∏̄)(τ).

Write F |L(τ) =
P

∞∈AL
e∞

P
k∈ ∞2

2 +Z
cL,∞(k) e2πikτ . By [9, Sect. 6, p.517], F |L(τ)

induces a chamber structure of C+
L :

(6.4) (C+
L )0F |L := C+

L \
[

∏∈L∨, ∏2<0, cL,∏̄(∏2/2) 6=0

h∏ = qα∈AWα,

where h∏ = ∏⊥ = {v ∈ L ⊗R; hv, ∏i = 0} and {Wα}α∈A is the set of connected
components of (C+

L )0F |L . Each component Wα is called a Weyl chamber of F |L(τ).
In general, Wα is not a Weyl chamber of L in the sense of Sect. 2.3. If ∏ ∈ L⊗R
satisfies h∏, wi > 0 for all w ∈ Wα, we write ∏ · Wα > 0.

Theorem 6.1. Let F (τ) =
P

∞∈AΛ
e∞

P
k∈ ∞2

2 +Z
c∞(k) e2πikτ be a modular form of

type ρΛ with weight σ(Λ)/2. Then there exists a meromorphic automorphic form
™Λ(z, F ) on ≠+

Λ for Aut(Λ, F ) ∩O+(Λ) of weight c0(0)/2 such that

div(™Λ(·, F )) =
1
2

X

∏∈Λ∨, ∏2<0

c∏̄(∏2/2) H∏ =
X

∏∈Λ∨/±1, ∏2<0

c∏̄(∏2/2) H∏.

If W is a Weyl chamber of F |L, then there exists a vector %(L,F |L,W) ∈ L ⊗Q
such that ™Λ(z, F ) is expressed as the following infinite product near the cusp under
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the identification (2.3): For z ∈ L⊗R + iW with (Im z)2 ¿ 0,

™Λ(z, F ) = e2πih%(L,F |L,W),zi
Y

∏∈L∨, ∏·W>0

Y

n∈Z/NZ

(1− e2πi(h∏,zi+ n
N ))c( n

N
,0,∏̄)(∏

2/2)
.

Proof. See [9, Th. 13.3], [14, Th. 3.22]. §

The automorphic form ™Λ(z, F ) is called the Borcherds product or the Borcherds
lift of F (τ), and the vector %(L,F |L,W) is called the Weyl vector of ™Λ(·, F ). See
[9, Th. 10.4], [10, p.321 Correction] for an explicit formula for %(L,F |L,W).

7. 2-elementary lattices and elliptic modular forms

Throughout Section 7, we assume that Λ is an even 2-elementary lattice.

7.1. A construction of modular form of type ρΛ for 2-elementary lattices
Set MΓ0(4) := {(

°a b
c d

¢
,
√

cτ + d) ∈ Mp2(Z); c ≡ 0 mod 4}. Let w ∈ 1
2Z and let

χ : MΓ0(4) → C∗ be a character. A holomorphic function f(τ) on H is a modular
form for MΓ0(4) of weight w with character χ if the following (a), (b) are satisfied:

(a) f(∞ · τ) = j(∞, τ)2wχ(∞) f(τ) for all ∞ ∈ MΓ0(4) and τ ∈ H.
(b) f(τ) =

P
k∈ 1

4Z c(k) e2πikτ with c(k) = 0 for k ø 0.

Set q = e2πiτ for τ ∈ H. Let η(τ) = q1/24
Q1

n=1(1 − qn) be the Dedekind
η-function and let

ϑ2(τ) =
X

n∈Z

q(n+ 1
2 )2/2, ϑ3(τ) =

X

n∈Z

qn2/2, ϑ4(τ) =
X

n∈Z

(−1)nqn2/2

be the Jacobi theta functions. Notice that we use the notation q = e2πiτ while
q = eπiτ in [15, Chap. 4]. Recall that A1 is the negative-definite one-dimensional
A1-lattice h−2i. Set A+

1 := A1(−1) = h2i, which is the positive-definite A1-lattice.
For d ∈ {0, 1/2}, let θA+

1 +d/2(τ) be the theta function of A+
1 :

θA+
1
(τ) := ϑ3(2τ), θA+

1 +1/2(τ) := ϑ2(2τ).

By [10, Lemma 5.2], there exists a character χθ : MΓ0(4) → {±1,±i} such that
θA+

1
(τ) is a modular form for MΓ0(4) of weight 1/2 with character χθ.

For k ∈ Z, define f (0)
k (τ), f (1)

k (τ) ∈ O(H) and the series {c(0)
k (l)}l∈Z, {c(1)

k (l)}l∈Z+k/4

by

f (0)
k (τ) :=

η(2τ)8 θA+
1
(τ)k

η(τ)8η(4τ)8
=

X

l∈Z

c(0)
k (l) ql = q−1 + 8 + 2k + O(q),

f (1)
k (τ) := −16

η(4τ)8 θA+
1 + 1

2
(τ)k

η(2τ)16
=

X

l∈ k
4 +Z

2c(1)
k (l) ql = −2k+4 q

k
4 {1 + (k + 16)q2 + O(q4)}.

We define holomorphic functions g(i)
k (τ) ∈ O(H), i ∈ Z/4Z by

g(i)
k (τ) :=

X

l≡i mod 4

c(0)
k (l) ql/4.

By definition,
X

i∈Z/4Z

g(i)
k (τ) =

η(τ/2)8 θA+
1
(τ/4)k

η(τ)8η(τ/4)8
= f (0)

k (τ/4).
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For a modular form φ(τ) of weight l for MΓ0(4) and for g ∈ Mp2(Z), we define

φ|g(τ) := φ(g · τ) j(g, τ)−2l.

The following key construction of modular forms of type ρΛ is due to Borcherds.

Proposition 7.1. Let φ(τ) be a modular form for MΓ0(4) of weight l with character
χσ(Λ)

θ and set
BΛ[φ](τ) :=

X

g∈MΓ0(4)\Mp2(Z)

φ|g(τ) ρΛ(g−1) e0.

Then BΛ[φ](τ) is independent of the choice of representatives of MΓ0(4)\Mp2(Z).
Moreover, BΛ[φ](τ) is a modular form for Mp2(Z) of type ρΛ with weight l.

Proof. See [52, Th. 6.2]. See also [9, Lemma 2.6], [10, Proof of Lemma 11.1]. §

Lemma 7.2. The function f (0)
k (τ) is a modular form for MΓ0(4) of weight −4+ k

2

with character χk
θ .

Proof. The result follows from [10, Lemma 5.2 and Th. 6.2]. §

Set Z := S2 = (−
°1 0
0 1

¢
, i) and V := S−1T 2S = (

° 1 0
−2 1

¢
,
√
−2τ + 1).

Lemma 7.3. The coset MΓ0(4)\MΓ(1) is represented by {1, S, ST, ST 2, ST 3, V }.

Proof. Since #MΓ0(4)\Mp2(Z) = 6 by [53, Prop. 1.43 (1)] and since none of two
elements of {1, S, ST, ST 2, ST 3, V } represent the same element of MΓ0(4)\Mp2(Z),
we get the result. §

Recall that the characteristic element 1Λ ∈ AΛ was defined in Sect. 2.2. Define
v0,v1,v2,v3 ∈ C[AΛ] by

vk :=
X

δ∈AΛ, δ2≡k/2 mod 2

eδ.

Lemma 7.4. The following identities hold:

(1) ρΛ((ST l)−1) e0 = i
σ(Λ)

2 2−
l(Λ)
2

3X

k=0

i−lk vk, (2) ρΛ(V −1) e0 = e1Λ .

Proof. (1) Since S−1 = SZ3 and since ρΛ(Z) e∞ = i−σ(Λ) e−∞ by (6.1), we get

ρΛ(S−1) e0 = ρΛ(S) ρΛ(Z3) e0 = iσ(Λ) i−
σ(Λ)

2

|AΛ|1/2

X

δ∈AΛ

eδ = i
σ(Λ)

2 2−
l(Λ)
2

X

δ∈AΛ

eδ.

This, together with the first equation of (6.1), yields (1).
(2) By [10, p.325 l.16], we get

ρΛ(ST−2S) e0 = i−σ(Λ)|AΛ|−1
X

∞,δ∈AΛ

e2πi{h∞,δi+∞2} eδ = i−σ(Λ) e1Λ ,

where we used the identity
P

∞∈AΛ
e2πih∞,≤+∞i =

P
∞∈AΛ

e2πih∞,≤+1Λi = |AΛ| δ1Λ,≤

(cf. [10, Lemma 3.1]) to get the second equality. Since S−1 = S7 = Z3S, we get

ρΛ(V −1) e0 = ρΛ(Z)3ρΛ(ST−2S) e0 = i−σ(Λ)ρΛ(Z)3 e1Λ = i−σ(Λ)i−3σ(Λ) e1Λ = e1Λ .

This proves (2). §
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Lemma 7.5. The following identities hold:

(1) f (0)
k |ST l(τ) = 2

8−k
2 i−

k
2 f (0)

k

µ
τ + l

4

∂
, (2) f (0)

k |V (τ) = f (1)
k (τ).

Proof. We apply [9, Th. 5.1] to the lattice A+
1 = h2i. Since AA+

1
= h2i∨/h2i =

{0, 1
2}, the group ring C[AA+

1
] is equipped with the standard basis {e0, e1/2}. Set

ΘA+
1
(τ) := θA+

1
(τ) e0 + θA+

1 +1/2(τ) e1/2. By [9, Th. 5.1] applied to A+
1 , we get

(7.1) ΘA+
1
(g · τ) = j(g, τ) ρA+

1
(g)ΘA+

1
(τ), g ∈ Mp2(Z).

By (6.1) and (7.1), we have

ΘA+
1
(ST l · τ) = j(ST l, τ)

n
e0+e1/2√

2i
θA+

1
(τ) + il

e0−ie1/2√
2i

θA+
1 +1/2(τ)

o
,

ΘA+
1
(V · τ) = j(V, τ)

n
e0 θA+

1 +1/2(τ) + e1/2 θA+
1
(τ)

o
.

Comparing the coefficients of e0, we get

(7.2) θA+
1
|ST l(τ) = (2i)−

1
2 {θA+

1
(τ) + ilθA+

1 +1/2(τ)} = (2i)−
1
2 θA+

1

µ
τ + l

4

∂
,

(7.3) θA+
1
|V (τ) = θA+

1 +1/2(τ).

Here the second equality of (7.2) is the consequence of the following identity:

θA+
1

µ
τ + l

4

∂
=

X

n even

e2πin2(τ+l)/4 +
X

n odd

e2πin2(τ+l)/4 = θA+
1
(τ) + ilθA+

1 +1/2(τ).

Set η1−8284−8(τ) := η(τ)−8η(2τ)8η(4τ)−8, which is a modular form for MΓ0(4)
by Lemma 7.2. Since ST l = (

°1 −1
1 l

¢
,
√

τ + l) and since η(−τ−1)8 = τ4η(τ)8 by [10,
Lemma 6.1], we get

η1−8284−8 |ST l(τ) = (τ + l)
8
2 η1−8284−8

µ
− 1

τ + l

∂

= (τ + l)4 η

µ
− 1

τ + l

∂−8

η

µ
− 2

τ + l

∂8

η

µ
− 4

τ + l

∂−8

= (τ + l)4 (τ + l)−4
µ

τ + l

2

∂4 µ
τ + l

4

∂−4

× η(τ + l)−8η

µ
τ + l

2

∂8

η

µ
τ + l

4

∂−8

= 24η1−8284−8

µ
τ + l

4

∂
,

which, together with (7.2), yields (1).
Since V = (

° 1 0
−2 1

¢
,
√
−2τ + 1) and since η1−8284−8(τ) has weight −4, we get

η1−8284−8 |V (τ) = (−2τ + 1)4 η

µ
τ

−2τ + 1

∂−8

η

µ
2τ

−2τ + 1

∂8

η

µ
4τ

−2τ + 1

∂−8

= (−2τ + 1)4
µ

2− 1
τ

∂−4 µ
1− 1

2τ

∂4 µ
1
2
− 1

4τ

∂−4

× η

µ
2− 1

τ

∂−8

η

µ
1− 1

2τ

∂8

η

µ
1
2
− 1

4τ

∂−8

= 24τ4 η

µ
2− 1

τ

∂−8

η

µ
1− 1

2τ

∂8

η

µ
1
2
− 1

4τ

∂−8

.



24 KEN-ICHI YOSHIKAWA

We define h(τ) := η(τ + 1
2 )−8η(2τ + 1)8η(4τ + 2)−8 for τ ∈ H. Then

(7.4) η1−8284−8 |V (τ) = 16τ4 h

µ
− 1

4τ

∂
.

Set ≥ := exp(2πi/48). Since h(τ) is equal to

≥−8+16−32{q− 8
24

1Y

n=1

(1− (−q)n)−8}{q 16
24

1Y

n=1

(1− q2n)8}{q− 32
24

1Y

n=1

(1− q4n)−8}

= −q−1
1Y

n=1

{(1− q2n)−8(1 + q2n−1)−8} · (1− q2n)8 · {(1− q2n)−8(1 + q2n)−8}

= −q−1
1Y

n=1

(1− q2n)−8(1 + q2n)−8(1 + q2n−1)−8

and since we have the identities ϑ2(2τ) = 2q1/4
Q1

n=1(1− q2n)(1 + q2n)2 and

(7.5) ϑ3(2τ) =
1Y

n=1

(1− q2n)(1 + q2n−1)2, ϑ4(2τ) =
1Y

n=1

(1− q2n)(1− q2n−1)2

by [15, p.105, Eqs.(32-36) ], we get

(7.6) ϑ2(2τ)4ϑ3(2τ)4 = 24q
1Y

n=1

(1− q2n)8(1 + q2n)8(1 + q2n−1)8 = −24h(τ)−1.

By [15, p.104, Eq.(20) ], we have

ϑ2(−τ−1)4 = −τ2ϑ4(τ)4, ϑ3(−τ−1)4 = −τ2ϑ3(τ)4,

which, together with (7.6), yield the identity

(7.7)

h

µ
− 1

4τ

∂
= −24ϑ2

µ
− 1

2τ

∂−4

ϑ3

µ
− 1

2τ

∂−4

= −τ−4ϑ3(2τ)−4ϑ4(2τ)−4

= −τ−4

( 1Y

n=1

(1− q2n)2(1 + q2n−1)2(1− q2n−1)2
)−4

= −τ−4

( 1Y

n=1

(1− q2n)(1− q4n)(1− q4n−2)
(1− q4n)

)−8

= −τ−4

ΩQ1
n=1(1− q2n)2Q1
n=1(1− q4n)

æ−8

= −τ−4η(2τ)−16η(4τ)8.

Here we used (7.5) to get the third equality. We deduce from (7.4), (7.7) that

(7.8) η1−8284−8 |V (τ) = −16 η(2τ)−16η(4τ)8.

We get (2) from (7.3) and (7.8). §

Definition 7.6. For a 2-elementary lattice Λ, define a C[AΛ]-valued holomorphic
function FΛ(τ) on H by

FΛ(τ) := f (0)
8+σ(Λ)(τ) e0 + 2

4−σ(Λ)−l(Λ)
2

3X

l=0

g(l)
8+σ(Λ)(τ)vl + f (1)

8+σ(Λ)(τ) e1Λ .
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By the Fourier expansions of f (0)
k (τ) and f (1)

k (τ) at q = 0, we get the following
Fourier expansion of FΛ(τ) at q = 0:
(7.9)

FΛ(τ) =
©
q−1 + 24 + 2 σ(Λ) + O(q)

™
e0 + 2

4−σ(Λ)−l(Λ)
2 {24 + 2 σ(Λ) + O(q)} v0

+ O(q1/4)v1 + O(q1/2)v2 + 2
4−σ(Λ)−l(Λ)

2

n
q−1/4 + O(q3/4)

o
v3

− 212+σ(Λ) q
8+σ(Λ)

4 {1 + (24 + σ(Λ)) q2 + O(q4)} e1Λ .

Theorem 7.7. (1) FΛ(τ) = BΛ[η1−8284−8θ8+σ(Λ)

A+
1

](τ). In particular, FΛ(τ) is
a modular form for Mp2(Z) of type ρΛ with weight σ(Λ)/2.

(2) The group O(Λ) preserves FΛ, i.e., Aut(FΛ,Λ) = O(Λ).
(3) If b+(Λ) ≤ 2 and σ(Λ) ≥ −12, FΛ(τ) has integral Fourier coefficients.

Proof. (1) Set k = 8+σ(Λ) and φ(τ) = f (0)
k (τ) in Proposition 7.1. Since f (0)

k (τ) is
a modular form for MΓ0(4) of weight (k−8)/2 = σ(Λ)/2 with character χk

θ = χσ(Λ)
θ

by Lemma 7.2, BΛ[f (0)
k ](τ) is a modular form for Mp2(Z) of type ρΛ with weight

σ(Λ)/2 by Proposition 7.1. We prove that FΛ = BΛ[f (0)
k ]. Since k = 8 + σ(Λ) and

|AΛ| = 2l(Λ), we deduce from Lemmas 7.4 (1) and 7.5 (1) that
(7.10)

3X

l=0

f (0)
k |ST l(τ) ρΛ

°
(ST l)−1

¢
e0 =

3X

l=0

2
8−k
2 i−

k
2 i

σ(Λ)
2 |AΛ|−

1
2

3X

j=0

f (0)
k

µ
τ + l

4

∂
i−lj vj

= 2
−σ(Λ)−l(Λ)

2

3X

j=0

3X

l=0

f (0)
k

µ
τ + l

4

∂
i−lj vj

= 2−
σ(Λ)+l(Λ)

2

3X

j=0

3X

l=0

X

s∈Z/4Z

g(s)
k (τ + l) i−lj vj .

Recall that f (0)
k (τ) =

P1
n=−1 c(0)

k (n) qn. Since g(s)
k (τ) =

P
n≡s mod 4 c(0)

k (n) qn/4,
we get

g(s)
k (τ + l) =

X

n≡s mod 4

c(0)
k (n) e2πin(τ+l)/4 =

X

n≡s mod 4

c(0)
k (n) isl qn/4,

which yields that
3X

l=0

i−jlg(s)
k (τ + l) =

X

n≡s mod 4

c(0)
k (n)

3X

l=0

i(s−j)l qn/4 = 4δjs g(s)
k (τ).

Hence we get
3X

l=0

X

s∈Z/4Z

i−jlg(s)
k (τ + l) =

X

s∈Z/4Z

4 δsj g(s)
k (τ) = 4 g(j)

k (τ),

which, together with (7.10), yields that

(7.11)
3X

l=0

f (0)
k |ST l(τ) · ρΛ

°
(ST l)−1

¢
e0 = 2

4−σ(Λ)−l(Λ)
2

3X

j=0

g(j)
k (τ)vj .
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Similarly, we get by Lemmas 7.4 (2) and 7.5 (2)

(7.12) f (0)
k |V (τ) ρΛ(V −1) e0 = f (1)

k (τ) e1Λ .

By (7.11) and (7.12), we get FΛ = BΛ[f (0)
k ].

(2) Since g(e∞) = eḡ(∞) for g ∈ O(Λ) and ∞ ∈ AΛ, we get g(vi) = vi for all g ∈ O(Λ)
by the definition of vi. Since the characteristic vector 1Λ is O(qΛ)-invariant, we get
ḡ(1Λ) = 1Λ for all g ∈ O(Λ).
(3) Since f (0)

k (τ), g(j)
k (τ), f (1)

k (τ) have integral Fourier coefficients for k ≥ −4,
it suffices to prove by Definition 7.6 that 2

4−σ(Λ)−l(Λ)
2 ∈ Z when b+(Λ) ≤ 2. Since

σ(Λ) = 2b+(Λ)−r(Λ), r(Λ) ≥ l(Λ) and r(Λ) ≡ l(Λ) mod 2, we get 4−σ(Λ)−l(Λ) =
2(2− b+(Λ)) + r(Λ)− l(Λ) ≥ 0 and 4− σ(Λ)− l(Λ) ≡ 0 mod 2. §

Remark 7.8. When Λ = U2⊕E8, we have FU2⊕E8(τ) = E4(τ)2/η(τ)24, where E4(τ)
is the Eisenstein series of weight 4. By [28, Sects. 3.3 and 4], FU2⊕E8(τ) seems to be
closely related with the elliptic genus of a certain vector bundle on a K3 surface.
Is FΛ(τ) related with the elliptic genera of some manifolds? The universal factor
η(τ)−1η(2τ)η(4τ)−1 in f (0)

k (τ) appears in the definition of elliptic genera, because
R(1) = q1/8η(τ)−1η(2τ)η(4τ)−1 in [36, p.7 l.7]. Is this coincidence accidental?

7.2. Applications to 2-elementary Lorentzian lattices
Recall that FΛ induces a modular form FΛ|L of type ρL when Λ = U(N)⊕L (cf.

Sect. 6.2). Since Λ is 2-elementary, N ∈ {1, 2} and L is 2-elementary in this case.

Lemma 7.9. If Λ = U(N)⊕ L, then FΛ|L = FL.

Proof. Write FΛ|L(τ) =
P

∞∈AL
(FΛ|L)∞(τ) e∞ . Since 1U(N) = (0, 0), we get 1Λ =

((0, 0),1L). Since ((n/N, 0), ∞)2 = ∞2 mod 2 for ∞ ∈ AL, we get by Definition 7.6
and the definition of (FΛ|L)(τ) (cf. (6.3))
(7.13)

(FΛ|L)∞(τ) =






N 2
4−σ(Λ)−l(Λ)

2 g(l)
8+σ(Λ)(τ) (∞ 6= 0,1L, ∞2 ≡ l

2 )

f (0)
8+σ(Λ)(τ) + N 2

4−σ(Λ)−l(Λ)
2 g(0)

8+σ(Λ)(τ) (∞ = 0)

f (1)
8+σ(Λ)(τ) + N 2

4−σ(Λ)−l(Λ)
2 g(σ(Λ))

8+σ(Λ)(τ) (∞ = 1L).

In the last equality, we used the formula 12
Λ ≡ σ(Λ)

2 mod 2, which follows from
(6.2), (7.9). If N = 1, AΛ = AL and hence FΛ|L = FΛ = FL by Definition 7.6 and
(7.13). Assume N = 2. Since σ(Λ) = σ(L) and l(Λ) = l(L) + 2, we get FΛ|L = FL

by comparing the definition of FL with (7.13). This proves the lemma. §

Lemma 7.10. Let L be a 2-elementary Lorentzian lattice. If r(L) ≤ 10, a subset
of C+

L is a Weyl chamber of L if and only if it is a Weyl chamber of FL.

Proof. Write FL(τ) =
P

∞∈AL
e∞

P
k∈ ∞2

2 +Z
cL,∞(k) qk. By (6.4), it suffices to prove

that if ∏ ∈ L∨, ∏2 < 0 and cL,∏̄(∏2/2) 6= 0, then h∏ = hd for some d ∈ ∆L. Since
8 + σ(L) ≥ 0, this follows from (7.9). §

Theorem 7.11. Let L be a 2-elementary Lorentzian lattice with r(L) ≤ 10 and let
W be a Weyl chamber of L. Then

h%(L,FL,W), di =

(
1 if d ∈ ∆0

L ∩Π(L,W)
2k(L) + 1 if d ∈ ∆00

L ∩Π(L,W).

In particular, the following hold:
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(1) If ∆00
L = ∅, then %(L,FL,W) is a Weyl vector of (L,W).

(2) If ∆0
L = ∅, then %(L,FL,W)/(2k(L) + 1) is a Weyl vector of (L,W).

Proof. We follow [9, Th. 11.2, Th. 12.1]. By Lemma 7.10, W is a Weyl chamber
of FL(τ). Let d ∈ Π(L,W). Then hd is the wall separating W and sd(W). Since
sd ∈ W (L) acts trivially on AL, we get by [9, p. 514 l.22 and p. 534 l.22] the identity
sd(%(L,FL,W)) = %(L,FL, sd(W)). Namely, we have

(7.14) %(L,FL,W)− %(L,FL, sd(W)) = −h%(L,FL,W), di d.

Write FL(τ) =
P

∞∈AL
e∞

P
k∈ ∞2

2 +Z
cL,∞(k) qk. By the wall crossing formula of

Borcherds [9, Cors. 6.3 and 6.4], we get
(7.15)
%(L,FL,W)− %(L,FL, sd(W)) = −

X

∏∈L∨, h∏=hd, ∏·W>0

cL,∏̄(∏2/2) ∏

=

(
−cL,0̄(−1) d if d ∈ ∆0

L ∩Π(L,W)
−c

L, d̄
2
(− 1

4 )d
2 − cL,0̄(−1) d if d ∈ ∆00

L ∩Π(L,W)

=

(
−d if d ∈ ∆0

L ∩Π(L,W)
−(2k(L) + 1) d if d ∈ ∆00

L ∩Π(L,W),

where the third equality follows from (7.9). (Since Γ(−1/2) = −2
√

π, it seems
that the minus sign is necessary in the formula for Φ1(v) − Φ2(v) in [9, Cor. 6.4].)
Comparing (7.14) and (7.15), we get h%(L,FL,W), di = 1 (resp. 2k(L) + 1) for all
d ∈ ∆0

L ∩Π(L,W) (resp. d ∈ ∆00
L ∩Π(L,W)). This proves the theorem. §

Remark 7.12. By e.g. [20, Appendix, Tables 1,3], the table of primitive 2-elementary
Lorentzian sublattices of LK3 with ∆00

L = ∅ (resp. ∆0
L = ∅) is given as follows:

(i) ∆00
L = ∅ if and only if δ(Λ) = 0 or L ∼= A+

1 , A+
1 ⊕ E8, A+

1 ⊕ E⊕2
8 .

(ii) ∆0
L = ∅ if and only if k(L) = 0, i.e., r(L) = l(L).

The proof is parallel to those of Propositions 11.6 and 11.10 below.

We give a geometric interpretation of Theorem 7.11.

Theorem 7.13. Let (X, ∂) be a 2-elementary K3 surface with Pic(X) = H2
+(X,Z).

If r(Pic(X)) ≤ 10, there is a nef Q-divisor DX on X with the following properties:
(1) ϕ∗c1(DX) = c1(DX) for every ϕ ∈ Aut(X).
(2) For every smooth rational curve E on X,

DX · E =

(
1 if c1(E)/2 6∈ Pic(X)∨

2k(Pic(X)) + 1 if c1(E)/2 ∈ Pic(X)∨.

Proof. The real vector space H1,1(X,R) endowed with the cup-product pairing is
a Lorentzian vector space. Let C+

X ⊂ H1,1(X,R) be the light cone of H1,1(X,R)
containing a Kähler class. Let KX ⊂ H1,1(X,R) be the set of Kähler classes on
X. Let Exc(X) denote the set of smooth rational curves on X and let W (X) :=
W (Pic(X)) be the Weyl group of Pic(X). By [42, Remark 3.5 i)],

(7.16) KX = {∑ ∈ C+
X ; h∑, c1(E)i > 0, ∀E ∈ Exc(X)}.

The ample cone of X is defined as AX := KX ∩ (Pic(X)⊗R). By (7.16), we get

(7.17) AX = {∑ ∈ C+
Pic(X); h∑, c1(E)i > 0, ∀E ∈ Exc(X)}.
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Since W (X) preserves Pic(X) and since KX is a fundamental domain for the W (X)-
action on C+

X by [2, Chap.VIII, Prop. 3.10], AX is a fundamental domain for the
W (X)-action on C+

Pic(X). By [42, Remark 3.5 i)], the minimal set of inequalities
defining AX is given by {h∑, c1(E)i > 0}E∈Exc(X). By comparing (2.2) and (7.17),
the set of fundamental roots Π(Pic(X),AX) is given by

(7.18) Π(Pic(X),AX) = {c1(E) ∈ ∆Pic(X); E ∈ Exc(X)}.
Let DX be a Q-divisor on X such that c1(DX) = %(Pic(X), FPic(X),AX) ∈

Pic(X)⊗Q. From Theorem 7.11 and (7.18), (2) follows. We prove that DX is nef.
Assume Pic(X) 6∼= U ⊕ E8(2), U(2) ⊕ E8(2), I1,9(2). Since r(Pic(X)) ≤ 10 and

hence r(Pic(X)) + l(Pic(X)) ≤ 18 by this assumption, W (X) is a subgroup of
O(Pic(X)) with finite index by [45, Th. 4.4.1]. Since hc1(DX), di > 0 for all d ∈
Π(Pic(X),AX) by (2), we get c1(DX) ∈ C+

X by [47, Th. 1.4.3 and (1.4.5)]. Namely,
D2

X ≥ 0, which, together with (2), implies that DX is nef by [42, Sect. 3.5].
Assume Pic(X) ∼= U⊕ E8(2), U(2)⊕ E8(2), I1,9(2). By [9, Th. 10.4], we get

c1(DX) =






((1, 0), 0) if Pic(X) ∼= U⊕ E8(2)
0 if Pic(X) ∼= U(2)⊕ E8(2)
( 3
2 ,− 1

2 , . . . ,− 1
2 ) if Pic(X) ∼= I1,9(2),

which yields that D2
X = 0. This, together with (2), implies that DX is nef.

By [9, p. 514 l.22 and p. 534 l.22], we get for all g ∈ O(Pic(X))

(7.19) g(%(Pic(X), FPic(X),AX)) = %(Pic(X), FPic(X), g(AX)).

Since ϕ∗Pic(X) = Pic(X) and ϕ(Exc(X)) = Exc(X) for all ϕ ∈ Aut(X), it follows
from (7.17) that Im{Aut(X) → O(Pic(X))} preserves AX , i.e., ϕ∗AX = AX for all
ϕ ∈ Aut(X). Hence (1) follows from (7.19). §

Remark 7.14. By an explicit formula for c1(DX) = %(L,FL,W) in [9, Th. 10.4],
one can see that c1(DX) ≡ 1Pic(X) mod Pic(X) and that DX is ample if Pic(X) 6∼=
U(2), U⊕E8(2), U(2)⊕E8(2), I1,9(2). Since we do not use the explicit formula for
c1(DX) in the rest of this paper, we omit it.

8. Borcherds products for 2-elementary lattices

Throughout this section, we assume that Λ is a 2-elementary lattice with sign(Λ) =
(2, r(Λ)− 2). Recall that the divisors D0Λ and D00Λ on ≠Λ were defined in Sect. 2.4.

Theorem 8.1. If r(Λ) ≤ 12, the Borcherds lift ™Λ(·, FΛ) is a holomorphic auto-
morphic form on ≠+

Λ for O+(Λ) with zero divisor

div(™Λ(·, FΛ)) = D0Λ + (2(r(Λ)−l(Λ))/2 + 1)D00Λ.

The weight w(Λ) of ™Λ(·, FΛ) is given by the following formula:

w(Λ) =

(
(16− r(Λ))(2(r(Λ)−l(Λ))/2 + 1)− 8(1− δ(Λ)) (r(Λ) = 12)
(16− r(Λ))(2(r(Λ)−l(Λ))/2 + 1) (r(Λ) < 12).

Proof. Since r(Λ) ≤ 12 and sign(Λ) = (2, r(Λ) − 2), we get σ(Λ) = 4 − r(Λ) and
8+σ(Λ) ≥ 0. By (7.9), we see that the Fourier coefficients of FΛ(τ) are non-negative
for negative exponents qα, α < 0 and that the coefficient of e1Λ , i.e., f (1)

8+σ(Λ)(τ),
is regular at q = 0. By Theorem 7.7 (2), we get Aut(Λ, FΛ) = O(Λ). Write
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FΛ(τ) =
P

∞∈AΛ
e∞

P
k∈ ∞2

2 +Z
cΛ,∞(k) qk. By Theorem 6.1 and (7.9), ™Λ(·, FΛ) is

an automorphic form for O+(Λ) such that
(8.1)
div(™Λ(·, FΛ)) =

X

∏∈Λ∨/±1, ∏2<0

cΛ,∏̄(∏2/2) H∏

=
X

∏∈Λ/±1, ∏2/2=−1

cΛ,0̄(∏2/2) H∏ +
X

∏∈Λ∨/±1, ∏2/2=−1/4

cΛ,∏̄(∏2/2) H∏

=
X

∏∈∆Λ/±1

H∏ + 2
4−σ(Λ)−l(Λ)

2
X

∏∈∆00
Λ/±1

H∏ = D0Λ + (2
r(Λ)−l(Λ)

2 + 1)D00Λ.

By Theorem 6.1, w(Λ) = cΛ,0̄(0)/2. If r(Λ) = 12 and δ(Λ) = 0, then 1Λ = 0,
which, substituted into (7.9), implies that
(8.2)

FΛ(τ) =
©
q−1 + 24 + 2σ(Λ) + O(q)

™
e0 + 2

4−σ(Λ)−l(Λ)
2 {24 + 2σ(Λ) + O(q)} v0

+ O(q1/4)v1 + O(q1/2)v2 + 2
4−σ(Λ)−l(Λ)

2

n
q−1/4 + O(q3/4)

o
v3

+ {−16 + O(q)} e0.

Since v0 contains e0 with multiplicity one and since σ(Λ) = 4 − r(Λ), we deduce
from (8.2) that

w(Λ) =
cΛ,0(0)

2
= 12+σ(Λ)+2

4−σ(Λ)−l(Λ)
2 (12+σ(Λ))−8 = (16−r(Λ))(2

r(Λ)−l(Λ)
2 +1)−8.

This proves the formula for w(Λ) when r(Λ) = 12 and δ(Λ) = 0.
If r(Λ) < 12 or (r(Λ), δ(Λ)) = (12, 1), the coefficient of e1Λ does not contribute

to cΛ,0(0) by (7.9), so that

w(Λ) =
cΛ,0(0)

2
= 12 + σ(Λ) + 2

4−σ(Λ)−l(Λ)
2 (12 + σ(Λ)) = (16− r(Λ))(2

r(Λ)−l(Λ)
2 + 1)

in this case. This completes the proof of Theorem 8.1. §

Corollary 8.2. If r(Λ) ≤ 12 and ∆00
Λ = 0, then div(™Λ(·, FΛ)) = DΛ.

Proof. Since ∆00
Λ = ∅, the result follows from Theorem 8.1. §

For the table of primitive 2-elementary sublattices Λ ⊂ LK3 with r(Λ) ≤ 12 and
∆00

Λ = ∅, see Proposition 11.6 below.

Corollary 8.3. The coarse moduli space of 2-elementary K3 surfaces of type M
is quasi-affine if r(M) ≥ 10.

Proof. Set Λ := M⊥. Since r(M) ≥ 10, we get r(Λ) ≤ 12. A holomorphic automor-
phic form on ≠Λ is identified with a holomorphic section of an ample line bundle over
M∗

Λ by Baily–Borel–Satake [1]. Hence MΛ \ div(™Λ(·, FΛ)) is quasi-affine. Since
supp div(™Λ(·, FΛ)) = DΛ by Theorem 8.1 and hence Mo

Λ = MΛ \ div(™Λ(·, FΛ)),
we get the result. §

In [44, Sect. 2], [16, Sects. 1–3], the notion of lattice polarized K3 surface was
introduced, and their moduli spaces were studied. We follow the definition in [16].

Corollary 8.4. If M is a primitive 2-elementary Lorentzian sublattice of LK3 with
r(M) ≥ 10, then the coarse moduli space of ample M -polarized K3 surfaces is
quasi-affine.
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Proof. Set GM := ker{O+(M⊥) → O(qM⊥)}, where O+(M⊥) → O(qM⊥) denotes
the natural homomorphism. By [16, p.2607], the coarse moduli space of ample
M -polarized K3 surfaces is isomorphic to the analytic space ≠o

M⊥/GM . By this
description, the proof of the corollary is similar to that of Corollary 8.3. §

For the table of isometry classes of primitive 2-elementary Lorentzian sublattices
M ⊂ LK3 with r(M) ≥ 10, see [20, Appendix, Tables 1,2,3]; there are 49 isometry
classes. There are some examples of lattices Λ with b+(Λ) = 2 admitting an auto-
morphic form on ≠+

Λ with zero divisor DΛ. See [7, Sect. 16 Examples 1,2,3], [8], [10,
Sect. 12], [11, Examples 2.1, 2.2], [25, II, Th. 5.2.1], [35, Th. 6.4], [52, Sect. 10] etc.

Remark 8.5. By [59, Th. 5.9], there exists a strongly pluri-subharmonic function
on Mo

M⊥ if r(M) > 6. In particular, Mo
M⊥ contains no complete curves when

r(M) > 6. The existence of a strongly pluri-subharmonic function on a quasi-
projective variety X does not necessarily imply the quasi-affiness of X. See [26,
p. 232 Example 3.2] for a counter example. If r(M) > 6, is Mo

M⊥ quasi-affine?

Theorem 8.6. When Λ = U ⊕ U ⊕ E8(2) ⊕ A1, the Borcherds lift ™Λ(·, FΛ) is a
meromorphic automorphic form for O+(Λ) of weight 15 with zero divisor

D0Λ + 5D00Λ − 8HΛ(1Λ,−1/2).

Proof. We have r(Λ) = 13, l(Λ) = 9, σ(Λ) = −9 and δ(Λ) = 1. By Theorem 6.1
and (7.9), the weight of ™Λ(·, FΛ) is given by (12+σ(Λ))(2(4−σ(Λ)−l(Λ))/2 +1) = 15
and the divisor of ™Λ(·, FΛ) is given by

DΛ + 2
4−σ(Λ)−l(Λ)

2 D00Λ − 212+σ(Λ)HΛ(1Λ,−1/2) = D0Λ + 5D00Λ − 8HΛ(1Λ,−1/2),

where −212+σ(Λ)HΛ(1Λ,− 1
2 ) comes from the negative coefficient of q

8+σ(Λ)
4 e1Λ in

(7.9). This proves the theorem. §

Assume Λ = U(N) ⊕ L, where L is a 2-elementary Lorentzian lattice with
r(L) ≤ 10 and N ∈ {1, 2}. Hence r(Λ) ≤ 12, and FΛ|L = FL by Lemma 7.9.
By [9, Th. 13.3], Definition 7.6 and the definitions of f (0)

k (τ), f (1)
k (τ) and g(i)

k (τ),
the infinite product for ™Λ(·, FΛ) is given explicitly as follows:

(8.3)

™Λ(z, FΛ) = e2πih%,zi
Y

∏∈L, ∏·W>0, ∏2≥−2

(1− e2πih∏,zi)c(0)
8+σ(Λ)(∏

2/2)

×
Y

∏∈2L∨, ∏·W>0, ∏2≥−2

(1− eπiNh∏,zi)2
r(Λ)−l(Λ)

2 c(0)
8+σ(Λ)(∏

2/2)

×
Y

∏∈(1L+L), ∏·W>0, ∏2≥0

(1− e2πih∏,zi)2c(1)
8+σ(Λ)(∏

2/2),

where W ⊂ L⊗R is a Weyl chamber of L by Lemma 7.10 and % = %(L,FL,W) ∈
L⊗Q is the Weyl vector of (L,FL,W).

Example 8.7. Let Λ = U(2)⊕U(2)⊕E8(2). We have l(Λ) = 12 and w(Λ) = 0. This
Λ admits no primitive embedding into LK3 by [43, Th. 1.12.1]. Since ∆Λ = ∅, we get
DΛ = ∅, so that ™Λ(·, FΛ) is a constant function. This FΛ(τ) gives an example of
non-trivial elliptic modular form for Mp2(Z) whose Borcherds lift becomes trivial.
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Example 8.8. Let Λ = U⊕ U(2)⊕ E8(2). We have l(Λ) = 10 and w(Λ) = 4. Then
™Λ(·, FΛ) is the Borcherds Φ-function of dimension 10. See [7, Sect. 15, Example
4], [8], [9, Example 13.7], [22, Sect. 11], [34, Remark 4.7, Th. 7.1], [51], [59, Sect. 8.1]
for more about this example and related results.

Example 8.9. Let Λ = U2 ⊕ E8(2). We have l(Λ) = 8 and w(Λ) = 12. Then
™Λ(·, FΛ) = ™Λ(·,ΘΛ+

16
(τ)/η(τ)24) is the restriction of the Borcherds Φ-function

of dimension 26 to ≠Λ, where ΘΛ+
16

(τ) is the theta function [9, Sect. 4] for the
positive-definite 16-dimensional Barnes–Wall lattice Λ+

16. See [59, Sect. 8.2].

Example 8.10. Let Λ = U⊕ U(2)⊕ D2
4. We have l(Λ) = 6 and w(Λ) = 28. Kondō

[35, Th. 6.4] used ™Λ(·, FΛ) in the study of the projective model of the moduli space
of 8 points on P1. By [35, Th. 6.7 and its proof], ™Λ(·, FΛ)15 is expressed as the
product of certain 105 additive Borcherds lifts [9, Sect. 14]. See also [22, Sect. 12].

Example 8.11. Let Λ = U ⊕ U ⊕ E8. Then l(Λ) = 0 and w(Λ) = 252. We get
FΛ(τ) = E4(τ)2/η(τ)24, where E4(τ) is the Eisenstein series of weight 4. The
corresponding Borcherds lift ™Λ(·, FΛ) = ™Λ(·, E4(τ)2/η(τ)24) was introduced by
Borcherds [7, Th. 10.1, Sect. 16 Example 1]. By Harvey–Moore [28, Sects. 4 and 5],
™Λ(·, E4(τ)2/η(τ)24) appears in the formula for the one-loop coupling renormaliza-
tion [28, Eqs. (4.1), (4.5), (4.16), (4.27)].

Example 8.12. When Λ = U2 ⊕ D4, ™Λ(·, FΛ) coincides with the automorphic
form ∆ of Freitag–Hermann [21, Th. 11.6]. Notice that the weight of ∆ is 72 in
our definition (cf. [21, p.250 l.21–l.23]). By [21, Proof of Th. 11.5], ™Λ(·, FΛ) is
expressed as the product of certain 36 theta functions.

Example 8.13. When Λ = I2,4(2), ™Λ(·, FΛ) is the product of all even Freitag theta
functions [56], [61, Th. 7.9], so that the structure of ™I2,4(2)(·, FI2,4(2)) is similar
to that of ™U⊕U(2)⊕D2

4
(·, FU⊕U(2)⊕D2

4
), ™U2⊕D4(·, FU2⊕D4). For the corresponding

2-elementary K3 surfaces, see [56].

Example 8.14. When Λ = I2,3(2), ™Λ(·, FΛ) coincides with the automorphic form
∆11 of Gritsenko–Nikulin [25, II, Example 3.4 and Th. 5.2.1]. When Λ = U2 ⊕ A1,
™Λ(·, FΛ) coincides with the automorphic form ∆4

5∆35 of Gritsenko–Nikulin [25, II,
Examples 2.4 and 3.9, Th. 5.2.1].

9. An explicit formula for τM

Theorem 9.1. Let M be a primitive 2-elementary Lorentzian sublattice of LK3.
Assume that M satisfies the following two conditions:

(1) 11 ≤ r(M) ≤ 17 or (r(M), δ(M)) = (10, 1).
(2) Jo

M (≠o
M⊥) 6⊂ θnull,g(M).

Then there exists a non-zero constant CM depending only on the lattice M such
that for every 2-elementary K3 surface (X, ∂) of type M ,
(9.1)
τM (X, ∂)−2g(M)+1(2g(M)+1) = CM k™M⊥($M (X, ∂), FM⊥)k2

g(M)
kχg(M)(≠(X∂)k16.

Let ` ∈ Z>0 be an integer such that F2g(M)+1(2g(M)+1)`
g(M) extends to a very ample

line bundle on A∗g(M). We may assume ∫ = 2g(M)−1(2g(M) + 1)` in Theorem 5.1.
By Theorem 9.1, we have

(9.2) ΦM = C`/2
M ™M⊥(·, FM⊥)2

g(M)−1` ⊗ J∗Mχ8`
g(M).
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Proof. By our assumption, r(M⊥) ≤ 12. When r(M⊥) = 12, we have δ(M) = 1.
We set Λ = M⊥ in Theorem 8.1. Then we have 16 − r(Λ) = r(M) − 6 and
r(Λ)−l(Λ)

2 = 11− r(M)+l(M)
2 = g(M).

Recall that KM⊥ ∈ C1(≠+
M⊥) was defined in Sect. 4.2. Let ωM⊥ be the Kähler

form of the Bergman metric on ≠+
M⊥ , i.e.,

ωM⊥ := −ddc log KM⊥ .

By [59, Eq. (7.1)], we have the following equation of currents on ≠M⊥ :

(9.3) ddc log τM =
r(M)− 6

4
ωM⊥ + J∗MωAg(M) −

1
4
δDM⊥ .

By Theorem 8.1, (4.15) and the Poincaré-Lelong formula, we get
(9.4)
− 2g(M)−1 ddc log k™M⊥(·, FM⊥)k2

= 2g(M)−1(2g(M) + 1)(r(M)− 6) ωM⊥ − 2g(M)−1δD0
M⊥

− 2g(M)−1(2g(M) + 1)δD00
M⊥

.

By Proposition 4.2 (1), there exist a ∈ Z≥0 and an O+(M⊥)-invariant effective
divisor E on ≠+

M⊥ such that
(9.5)
−ddc log kJ∗Mχ8`

g(M)k2 = 2g(M)+1(2g(M)+1)` J∗MωAg(M)−2(22g(M)−2+a)` δD0
M⊥
−δE .

By (9.3-5), we get the following equation of currents on ≠+
M⊥ :

(9.6)
− ddc log

h
τ2g(M)+1(2g(M)+1)`
M k™M⊥(·, FM⊥)2

g(M)−1` ⊗ J∗Mχ8`
g(M)k2

i

= −2a` δD0
M⊥

− δE .

Since log τM , log k™M⊥(·, FM⊥)k and log kJ∗Mχ8`
g(M)k are O+(M⊥)-invariant L1

loc-
function on ≠+

M⊥ , we deduce from (9.6) and [59, Th. 3.17] the existences of an
integer m and an O+(M⊥)-invariant meromorphic function ϕM on ≠+

M⊥ with zero
divisor m(2a`D0M⊥ + E) such that

(9.7) τ2g(M)+1(2g(M)+1)`
M k™M⊥(·, FM⊥)2

g(M)−1` ⊗ J∗Mχ8`
g(M)k2 = |ϕM |2/m.

Since M∗
M⊥ , the Baily–Borel–Satake compactification of MM⊥ , is an irreducible

normal projective variety and since dim(M∗
M⊥ \ MM⊥) ≤ dimM∗

M⊥ − 2 by the
condition r(M) ≤ 17, ϕM descends to a meromorphic function on M∗

M⊥ . Since
ϕM is a meromorphic function on M∗

M⊥ whose divisor is effective, ϕM must be a
constant function on M∗

M⊥ . Hence a = 0 and E = 0. Setting CM := |ϕM |−2/m in
(9.7), we get the result. §

Theorem 9.2. If M ∼= I1,8(2), there exists a non-zero constant CM depending only
on the lattice M such that for every 2-elementary K3 surface (X, ∂) of type M ,

τM (X, ∂)−40 = CM k™M⊥($M (X, ∂), FM⊥)k4kχg(M)(≠(X∂)k16.
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Proof. Since M ∼= I1,8(2), we get M⊥ ∼= U⊕U⊕E8(2)⊕A1 by e.g. [20, Appendix,
Table 2]. By (9.3) and Proposition 4.2 (2), we get

(9.8)

ddc{−40` log τM − log kJ∗Mχ8`
2 k2}

= `
n
−30 ωM⊥ + 10 δDM⊥ − (8 + 2a) δD0

M⊥
− 16 δHM⊥ (1M⊥ ,− 1

2 )

o

= `
n
−30 ωM⊥ + (2− 2a)δD0

M⊥
+ 10 δD00

M⊥
− 16 δHM⊥ (1M⊥ ,− 1

2 )

o
.

By (9.8) and [59, Th. 3.17], there is a meromorphic automorphic form ϕM on ≠+
M⊥

for O+(M⊥) of weight 30` with

(9.9) div ϕM = ` {(2− 2a)D0M⊥ + 10D00M⊥ − 16HM⊥(1M⊥ ,−1/2)}
such that

(9.10) 40` log τM + log kJ∗Mχ8`
2 k2 = − log kϕMk2.

Since O+(M⊥)/[O+(M⊥), O+(M⊥)] is a finite Abelian group, there exists ∫ ∈ Z>0

such that ϕ∫
M and ™M⊥(·, FM⊥)2∫ are automorphic forms with trivial character.

By Theorem 8.6 and (9.9), (™M⊥(·, FM⊥)2`/ϕM )∫ is an O+(M⊥)-invariant mero-
morphic function on ≠+

M⊥ with

div(™M⊥(·, FM⊥)2`/ϕM )∫ = ∫`{2D0M⊥ + 10D00M⊥ − 16HM⊥(1M⊥ ,−1/2)}
− ∫`{(2− 2a)δD0

M⊥
+ 10 δD00

M⊥
− 16 δHM⊥ (1M⊥ ,− 1

2 )}

= 2a∫`D0M⊥ .

Since div(™M⊥(·, FM⊥)2`/ϕM )∫ is an effective divisor on ≠+
M⊥ , the same argument

as in the proof of Theorem 9.1 using the Hartogs theorem implies a = 0 and hence
the existence of a non-zero constant CM with

(9.11) ϕM = C`/2
M ™M⊥(·, FM⊥)2`.

By (9.10), (9.11), we get the result. §

Theorem 9.3. Let M ⊂ LK3 be a primitive 2-elementary Lorentzian sublattice.
Assume that M is non-exceptional and satisfies one of the following two conditions:

(1) g(M) ≤ 2, 9 ≤ r(M) ≤ 17
(2) g(M) = 3, r(M) ≥ 10, (r(M), δ(M)) 6= (10, 0).

Then either M satisfies the Conditions (1) and (2) in Theorem 9.1 or M ∼= I1,8(2).
In particular, Eqs. (9.1) and (9.2) hold for these M .

Proof. (1) Let g(M) ≤ 1 and 10 ≤ r(M) ≤ 17. Since M is not exceptional, M
satisfies Condition (1) in Theorem 9.1 by [45, p.1434, Table 1]. Since Ag∩θnull,g = ∅
when g ∈ {0, 1}, we get Jo

M (≠o
M⊥) ⊂ Ag(M) \ θnull,g(M). Hence Condition (2) in

Theorem 9.1 holds when g(M) ≤ 1 and r(M) ≤ 17.
Let g(M) = 2 and 10 ≤ r(M) ≤ 17. Since M is not exceptional, (r(M), δ(M)) 6=

(10, 0), so that Condition (1) in Theorem 9.1 holds. Since M 6∼= U⊕ E8(2), we get
Jo

M (≠o
M⊥) ⊂ A2 \ N2 by Lemma 3.1. Since θnull,2 = N2, we get Jo

M (≠o
M⊥) ⊂

A2 \ θnull,2. Thus M satisfies Condition (2) in Theorem 9.1 in this case.
Let g(M) = 2 and r(M) = 9. Then M ∼= I1,8(2) by [45, p.1434, Table 1].

(2) Let g(M) = 3, r(M) ≥ 10 and (r(M), δ(M)) 6= (10, 0). Then Condition (1) in
Theorem 9.1 holds. If Condition (2) in Theorem 9.1 does not hold for some M ,

(9.12) Jo
M (≠o

M⊥) ⊂ θnull,3.
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By [20, p.14 Figure 1 and p.23 Table 1], we can write M⊥ ∼= U⊕U⊕D4⊕Am
1 , where

0 ≤ m ≤ 4. Let {d1, . . . , dm} be the standard basis of Am
1 whose Gram matrix is

−2 · 1m. Then d1, . . . , dm ∈ ∆00
M⊥ . We define 2-elementary lattices Mk inductively

by Mk+1 := [Mk ⊥ dk+1], M0 := M . Then M⊥
k
∼= U⊕U⊕D4⊕Am−k

1 . By Lemma
11.5, we get g(Mk) = 3 for all Mk.

Assume Jo
Mk

(≠o
M⊥

k
) ⊂ θnull,3. Since JMk is a continuous map from ≠o

M⊥
k
∪ Do

M⊥
k

to A3 and since ≠o
M⊥

k
is dense in ≠o

M⊥
k
∪ Do

M⊥
k

, we get by Theorem 3.5 and (9.12)

Jo
Mk+1

(≠o
M⊥

k+1
) ⊂ JMk(Do

M⊥
k

) ⊂ Jo
Mk

(≠o
M⊥

k
) ⊂ θnull,3.

Hence Jo
Mk+1

(≠o
M⊥

k+1
) ⊂ θnull,3 ∩ A3 = θnull,3. In particular, we get Jo

Mm
(≠o

M⊥
m

) ⊂
θnull,3. Recall that the period of a curve of genus 3 lies in θnull,3 if and only if
the curve is hyperelliptic by [29, Lemma 11]. Since M⊥

m
∼= U ⊕ U ⊕ D4 and hence

Mm
∼= U ⊕ D12, the inclusion Jo

U⊕D12
(≠o

(U⊕D12)⊥
) ⊂ θnull,3 implies that the non-

rational component of X∂ is a hyperelliptic curve of genus 3 for every 2-elementary
K3 surface (X, ∂) of type U ⊕ D12. This contradicts Proposition 12.3 (2) below.
Thus, if g(M) = 3, r(M) ≥ 10 and (r(M), δ(M)) 6= (10, 0), then we never have the
inclusion (9.12). Namely, M satisfies Condition (2) in Theorem 9.1. §

Remark 9.4. If M satisfies Condition (1) or (2) in Theorem 9.3, then M⊥ is given
by the following table by [20, Appendix, Tables 1,2,3]:

(0) If g(M) = 0, M⊥ is isometric to one of the following 7 lattices:

U(2)⊕ A+
1 ⊕ Ak

1 (2 ≤ k ≤ 8).

(1) If g(M) = 1, then M⊥ is isometric to one of the following 9 lattices:

U⊕ A+
1 ⊕ Ak

1 (2 ≤ k ≤ 9), U(2)⊕ U(2)⊕ D4.

(2) If g(M) = 2, then M⊥ is isometric to one of the following 10 lattices:

U⊕ U⊕ Ak
1 (1 ≤ k ≤ 9), U⊕ U(2)⊕ D4.

(3) If g(M) = 3, then M⊥ is isometric to one of the following 5 lattices:

U⊕ U⊕ D4 ⊕ Ak
1 (0 ≤ k ≤ 4).

After Theorem 9.3, we conjecture the following: If M satisfies Condition (1) in
Theorem 9.1, then M satisfies Condition (2). In particular, if M satisfies Condition
(1) in Theorem 9.1, then Eqs. (9.1) and (9.2) hold.

Theorem 9.5. If r(M) = 10, δ(M) = 0 and M 6∼= U(2)⊕ E8(2), then

Jo
M (≠o

M⊥) ⊂ θnull,g(M).

Proof. Assume Jo
M (≠o

M⊥) 6⊂ θnull,g(M). Since δ(M⊥) = 0,

ϕ := ™M⊥(·, FM⊥)2
g(M)−1(2g(M)+1)` ⊗ (J∗Mχ8`

g(M))
2g(M)−1

is an automorphic form on ≠+
M⊥ for O+(M⊥) of weight 2g(M)−1(22g(M) − 1)`(4, 4)

by Theorem 8.1. Since Jo
M (≠o

M⊥) 6⊂ θnull,g(M), we get ϕ 6≡ 0. Recall that ∫ =
2g(M)−1(2g(M) + 1)` in Theorem 5.1. Since

√ := ϕ/Φ2g(M)−1
M

is an O+(M⊥)-invariant meromorphic function on ≠+
M⊥ , √ extends to a meromor-

phic function on M∗
M⊥ . We compute the divisor of √.
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Since δ(M⊥) = 0, we get D00M⊥ = ∅ by Proposition 11.8 below. Since r(M) = 10
and M 6∼= U(2) ⊕ E8(2), we get g(M) > 0 by Lemma 3.1. By Proposition 4.2 (1)
and Theorem 8.1, we get
(9.13)

div(ϕ) = 2g(M)−1(2g(M) + 1)`D0M⊥ + (2g(M) − 1){2(22g(M)−2 + a)`D0M⊥ + E}

= {2g(M)−1(22g(M) + 1) + 2a (2g(M) − 1)}`D0M⊥ + (2g(M) − 1) E.

By Theorem 5.1,

(9.14) div(ΦM ) = ∫D0M⊥ = 2g(M)−1(2g(M) + 1)`D0M⊥ .

By (9.13) and (9.14), we get

(9.15)
div(√) = div(ϕ)− (2g(M) − 1) div(ΦM )

= {2g(M) + 2a (2g(M) − 1)}`D0M⊥ + (2g(M) − 1) E.

Since ` ≥ 1, a ≥ 0 and since E is an effective divisor, div(√) is a non-zero effective
divisor on ≠+

M⊥ by (9.15). This contradicts the fact that √ descends to a meromor-
phic function on M∗

M⊥ . Since Jo
M (≠o

M⊥) 6⊂ θnull,g(M) yields a contradiction, we get
the desired inclusion Jo

M (≠o
M⊥) ⊂ θnull,g(M). §

Example 9.6. Let (r(M), δ(M), g(M)) = (10, 0, 2). Then M ∼= U ⊕ E8(2). Since
θnull,2 = N2 and JM (≠o

M⊥) ⊂ N2 by Lemma 3.1 (2), we get JM (≠o
M⊥) ⊂ θnull,2 in

this case. This confirms Theorem 9.5 when g(M) = 2.

Example 9.7. Let (r(M), δ(M), g(M)) = (10, 0, 3). Then M ∼= U(2)⊕ D4 ⊕ D4. In
Proposition 12.2 below, we shall prove that if (X, ∂) is a 2-elementary K3 surface
of type M = U(2) ⊕ D4 ⊕ D4 and if Pic(X) = M , the non-rational component of
X∂ is hyperelliptic. In this case, JM (X, ∂) = ≠(X∂) ∈ θnull,3. Since the periods
of 2-elementary K3 surfaces of type M = U(2) ⊕ D4 ⊕ D4 with Picard lattice M
form a dense subset of Mo

M⊥ by e.g. [48, p.411], we get JM (≠o
M⊥) ⊂ θnull,3. This

confirms Theorem 9.5 when g(M) = 3.

Question 9.8. Is div(J∗Mχ8`
g(M)) a linear combination of Heegner divisors on ≠+

M⊥?
If it is the case and if M⊥ ∼= U2 ⊕K for some K, ΦM/J∗Mχ8`

g(M) will be expressed
as a Borcherds product by [14, Th. 0.8]. Is there a Siegel modular form √ on Sg(M)

such that div(J∗M√) is a linear combination of Heegner divisors on ≠+
M⊥?

10. An application to real K3 surfaces

In this section, we study the equivariant determinant of real K3 surfaces. We
refer to [17], [62] for more details about real K3 surfaces.

The pair of a K3 surface and an anti-holomorphic involution is called a real K3
surface. Let (Y, σ) be a real K3 surface. There exists a primitive 2-elementary
Lorentzian sublattice M ⊂ LK3 and a marking α of Y such that ασ∗α−1 = IM . A
holomorphic 2-form η on Y is defined over R if σ∗η = η̄. Let ∞ be a σ-invariant
Ricci-flat Kähler metric on Y with volume 1. Let ∆(Y,∞) be the Laplacian of (Y, ∞).
Since σ preserves ∞, ∆(Y,∞) commutes with the σ-action on C1(Y ). We define
C1
± (Y ) := {f ∈ C1(Y ); σ∗f = ±f}, which are preserved by ∆(Y,∞). We set

∆(Y,∞),± := ∆(Y,∞)|C1± (Y ). Let ≥±(Y, ∞)(s) denote the spectral zeta function of
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∆(Y,∞),±. Then it converges absolutely for Re s ¿ 0 and extends meromorphically
to the complex plane C, and it is holomorphic at s = 0. We define

det∗Z2
∆(Y,∞)(σ) := exp[−≥ 0+(Y, ∞)(0) + ≥ 0−(Y, ∞)(0)].

Let Y (R) := {y ∈ Y ; σ(y) = y} be the set of real points of (Y, σ) and let Y (R) =
qiCi be the decomposition into the connected components. Then Y (R) is the dis-
joint union of oriented two-dimensional manifolds. The Riemannian metric g|Y (R)

induces a complex structure on Y (R). The Jacobian variety of Y (R) equipped
with this complex structure is denoted by Jac(Y (R), ∞|Y (R)). Let ∆(Ci,∞|Ci )

be the
Laplacian of the Riemannian manifold (Ci, ∞|Ci) and let ≥(Ci, ∞|Ci)(s) denote the
spectral zeta function of ∆(Ci,∞|Ci )

. The regularized determinant of ∆(Ci,∞|Ci )
is

defined as
det∗∆(Ci,∞|Ci )

:= exp [−≥(Ci, ∞|Ci)
0(0)] .

After [62, Def. 4.4], we define

τ(Y, σ, ∞) :=
©
det∗Z2

∆(Y,∞)(σ)
™−2 Y

i

Vol(Ci, ∞|Ci) (det∗∆(Ci,∞|Ci )
)−1.

Theorem 10.1. Let (Y, σ) be a real K3 surface and let α be a marking of Y such
that ασ∗α−1 = IM . Let ∞ be a σ-invariant Ricci-flat Kähler metric on Y with
volume 1. Let ω∞ be the Kähler form of ∞, and let η∞ be a holomorphic 2-form on
Y defined over R such that η∞ ∧ η̄∞ = 2ω2

∞ . If M satisfies Conditions (1) and (2)
in Theorem 9.1, then the following identity holds:

−4(2g(M) + 1) log τ(Y, σ, ∞) = log k™M⊥(α(ω∞ +
√
−1Im η∞), FM⊥)k2

+ 2(4−g(M)) log kχg(M)(≠(Y (R), ∞|Y (R)))k2 + C 0
M ,

where C 0
M = 2 log CM and ω∞ , η∞ are identified with their cohomology classes.

Proof. The result follows from Theorem 9.1 and [62, Lemma 4.5 Eq. (4.6)]. §

11. The irreducible components of the discriminant locus

In this section, we prove some technical results concerning lattices used in earlier
sections and we give a formula for the number of the irreducible components of
DM⊥ . We use Nikulin’s theory of discriminant forms, for which we refer to [43].

11.1. A proof of the equality ΓM = O(M⊥)
Let M be a primitive sublattice of LK3 and set HM := LK3/(M ⊕M⊥). Since

LK3 is unimodular, we get M ⊕ M⊥ ⊂ LK3 = L∨K3 ⊂ M∨ ⊕ (M⊥)∨, so that
HM ⊂ AM⊕AM⊥ . Let p1 : HM → AM and p2 : HM → AM⊥ be the homomorphism
induced by the projections AM⊕AM⊥ → AM and AM⊕AM⊥ → AM⊥ , respectively.
By [43, Props. 1.5.1 and 1.6.1], the following are known:

(a) p1 and p2 are isomorphisms.
(b) AM

∼= AM⊥ via the isomorphism ∞LK3
M,M⊥ := p2 ◦ p−1

1 .
(c) qM⊥ ◦ ∞LK3

M,M⊥ = −qM .

Recall that g ∈ O(M⊥) induces g ∈ O(qM⊥). For g ∈ O(M⊥), we set √g :=
(∞LK3

M,M⊥)−1 ◦ g ◦ ∞LK3
M,M⊥ . Then √g ∈ Aut(AM ).

Lemma 11.1. The automorphism √g preserves qM , i.e., √g ∈ O(qM ).
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Proof. For an arbitrary m ∈ AM , we get

qM (√g(m)) = qM ((∞LK3
M,M⊥)−1 ◦ g ◦ ∞LK3

M,M⊥(m))

= −qM⊥(g ◦ ∞LK3
M,M⊥(m))

= −qM⊥(∞LK3
M,M⊥(m)) = qM (m),

where the second and the last equalities follow from Condition (c) and the third
equality follows from the fact g ∈ O(qM⊥). §

Assume that M ⊂ LK3 is a primitive 2-elementary Lorentzian sublattice. Recall
that the isometry IM ∈ O(LK3) was defined in Sect. 2.2. In [59, Sect. 1.4 (c)], we
introduced the following subgroup ΓM ⊂ O(M⊥):

ΓM := {g|M⊥ ∈ O(M⊥); g ∈ O(LK3), g ◦ IM = IM ◦ g}.
Proposition 11.2. The following equality holds:

ΓM = O(M⊥).

Proof. By the definition of ΓM , it suffices to prove O(M⊥) ⊂ ΓM . Let g ∈ O(M⊥)
be an arbitrary element. Since M is 2-elementary and indefinite, the natural ho-
momorphism O(M) → O(qM ) is surjective by [43, Th. 3.6.3], which implies the
existence of ™g ∈ O(M) with √g = ™g. Define eg := ™g ⊕ g ∈ O(M ⊕M⊥). Then

(11.1) ∞LK3
M,M⊥ ◦ ™g = ∞LK3

M,M⊥ ◦ √g = g ◦ ∞LK3
M,M⊥ .

By (11.1) and the criterion of Nikulin [43, Cor. 1.5.2], we get eg ∈ O(LK3). We have
eg ◦ IM = IM ◦ eg on M ⊕M⊥ because for all (m,n) ∈ M ⊕M⊥,

eg ◦ IM (m,n) = eg(m,−n) = (™g(m),−g(n)) = IM (™g(m), g(n)) = IM ◦ eg(m,n).

Since M ⊕M⊥ linearly spans LK3⊗Q, we have eg ◦ IM = IM ◦eg in O(LK3). Hence
eg ∈ ΓM . This proves the inclusion O(M⊥) ⊂ ΓM . §

11.2. A formula for g([M ⊥ d])

Lemma 11.3. Let d ∈ ∆M⊥ . The smallest primitive 2-elementary Lorentzian
sublattice of LK3 containing M ⊕ Zd is given by [M ⊥ d] = (M⊥ ∩ d⊥)⊥.

Proof. Set L := Zd ∼= A1. Then [M ⊥ d] is the smallest primitive Lorentzian
sublattice of LK3 containing M⊕L. Since M⊕L ⊂ [M ⊥ d] ⊂ [M ⊥ d]∨ ⊂ M∨⊕L∨

and hence [M ⊥ d]/(M ⊕ L) ⊂ [M ⊥ d]∨/(M ⊕ L) ⊂ AM ⊕ AL
∼= Zl(M)+1

2 ,
A[M⊥d] = [M ⊥ d]∨/[M ⊥ d] is a vector space over Z2. §

Lemma 11.4. Let d ∈ ∆M⊥ . Then

l(M⊥ ∩ d⊥) =

(
l(M⊥) + 1 if d ∈ ∆0

M⊥

l(M⊥)− 1 if d ∈ ∆00
M⊥ .

Proof. Set Λ := M⊥, N := M⊥ ∩ d⊥, L := Zd ∼= A1, and S := Λ/(N ⊕ L). The
inclusions of lattices N ⊕ L ⊂ Λ ⊂ Λ∨ ⊂ N∨ ⊕ L∨ yields that

(11.2) S = Λ/(N ⊕ L) ⊂ Λ∨/(N ⊕ L) ⊂ AN ⊕AL.

Let S⊥ := {v ∈ AN ⊕ AL; bN⊕L(v, s) ≡ 0 mod Z, ∀ s ∈ S} be the orthogonal
complement of S with respect to the discriminant bilinear form bN⊕L. Since S⊥ =
Λ∨/(N⊕L), we get AM⊥ = Λ∨/Λ = S⊥/S by (11.2). Since bN⊕L is non-degenerate,

(11.3) l(M⊥) = dimZ2 S⊥/S = l(N)+1−2 dimZ2 S = l(M⊥∩d⊥)+1−2 dimZ2 S.
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Let x ∈ M⊥. Since x = (x+ hx,di
2 d)− hx,di

2 d and since x+ hx,di
2 d ∈ (M⊥∩d⊥)⊗Q

is orthogonal to hx,di
2 d ∈ Q d, we get

(11.4)

S = 0 ⇐⇒ M⊥ = (M⊥ ∩ d⊥)⊕ Z d

⇐⇒ hx, di ≡ 0 mod 2 (∀x ∈ M⊥)

⇐⇒ hx, d/2i ∈ Z (∀x ∈ M⊥)

⇐⇒ d/2 ∈ (M⊥)∨ ⇐⇒ d ∈ ∆00
M⊥ .

Let d ∈ ∆00
M⊥ . By (11.4), we get M⊥ = (M⊥ ∩ d⊥) ⊕ Zd, which yields that

l(M⊥ ∩ d⊥) = l(M⊥)− 1. This proves the assertion when d ∈ ∆00
M⊥ .

Let d ∈ ∆0
M⊥ . We prove dimZ2 S = 1. Let p1 : S → AL and p2 : S → AN be the

natural projections. Since L and N are primitive sublattices of Λ, p1 and p2 are
injective. If p1(S) = 0, then the injectivity of p1 implies S = 0, which contradicts
dimZ2 S > 0. Hence p1(S) 6= 0. Since AL

∼= Z2, we get p1(S) = AL, so that
p1 : S → AL is an isomorphism. We set nd := p2 ◦ p−1

1 (d/2) ∈ AN . Then

(11.5) S = Z2(d/2, nd) ⊂ AL ⊕AN .

By (11.5), we get dimZ2 S = 1 and hence l(M⊥ ∩ d⊥) = l(M⊥) + 1 by (11.3). This
proves the assertion when d ∈ ∆0

M⊥ . §

Lemma 11.5. Let d ∈ ∆M⊥ . Then

g([M ⊥ d]) =

(
g(M)− 1 if d ∈ ∆0

M⊥

g(M) if d ∈ ∆00
M⊥ .

Proof. Since r(M⊥ ∩ d⊥) = r(M⊥)− 1 and

g(M) = {r(M⊥)− l(M⊥)}/2, g([M ⊥ d]) = {r(M⊥ ∩ d⊥)− l(M⊥ ∩ d⊥)}/2,

the result follows from Lemma 11.4. §

11.3. The number of the irreducible components of D00Λ/O(Λ)
In Sects. 11.3 and 11.4, we assume that Λ is a primitive 2-elementary sublattice

of LK3 with sign(Λ) = (2, r(Λ)− 2).

Proposition 11.6. ∆00
Λ = ∅ if and only if one of the following (1) or (2) holds:

(1) δ(Λ) = 0
(2) (δ(Λ), r(Λ), l(Λ)) = (1, 2, 2), (1, 3, 1), (1, 10, 2), (1, 11, 1), (1, 18, 2), (1, 19, 1).

Proof. If δ(Λ) = 0 and ∆00
Λ 6= ∅, there exists d ∈ ∆00

Λ. Since d/2 ∈ Λ∨ and (d/2)2 =
−1/2 6∈ Z, we get the contradiction δ(Λ) = 1. Hence δ(Λ) = 0 implies ∆00

Λ = ∅.
Assume that δ(Λ) = 1 and ∆00

Λ = ∅. If t > 0 in [20, Appendix, Table 2], then we
get ∆00

Λ 6= ∅ because A1 is a direct summand in this case. If t = 0 and δ(Λ) = 1, Λ
must be isometric to one of the following lattices by [20, Appendix, Table 2]:

(11.6) (A+
1 )⊕2, A+

1 ⊕U, (A+
1 )⊕2⊕E8, A+

1 ⊕U⊕E8, (A+
1 )⊕2⊕E⊕2

8 , A+
1 ⊕U⊕E⊕2

8 .

We see that ∆00
Λ = ∅ for the lattices (11.6). Let Λ be one of the above six lattices.

Then we can write Λ = (A+
1 )⊕k ⊕ L, where k = 1, 2 and L is an even unimodular

lattice. If d ∈ ∆00
Λ, write d = (u, v) with u ∈ (A+

1 )⊕k and v ∈ L. Since d/2 ∈ Λ∨,
we get w := v/2 ∈ L, so that d = (u, 2w). Since −2 = d2 = u2 + 4w2 ≡ u2 mod 8,
we get u2 ≡ 6 mod 8. On the other hand, since a2 ≡ 0, 2 mod 8 for all a ∈ A+

1
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and since k = 1, 2, we get u2 ≡ 0, 2, 4 mod 8, which contradicts u2 ≡ 6 mod 8.
Hence ∆00

Λ = ∅ for the lattices (11.6). §

Proposition 11.7. The following holds:

#(∆00
Λ/O(Λ)) = #{δ(d⊥ ∩ Λ) ∈ Z2; d ∈ ∆00

Λ} ≤ 2.

Proof. Let d, d0 ∈ ∆00
Λ. Then l(d⊥ ∩ Λ) = l((d0)⊥ ∩ Λ) by Lemma 11.4. We prove

that d and d0 lie on the same O(Λ)-orbit if and only if δ(d⊥ ∩ Λ) = δ((d0)⊥ ∩ Λ).
Assume δ(d⊥ ∩ Λ) = δ((d0)⊥ ∩ Λ). By [43, Th. 3.6.2], there exists an isometry

ϕ : d⊥ ∩Λ ∼= (d0)⊥ ∩Λ. Since Λ = Zd⊕ (d⊥ ∩Λ) = Zd0 ⊕ ((d0)⊥ ∩Λ) by (11.4), we
get an element ∞ ∈ O(Λ) with ∞(d) = d0 by defining

∞ : Zd⊕ (d⊥ ∩ Λ) 3 (∫ d, ∏) → (∫ d0, ϕ(∏)) ∈ Zd0 ⊕ ((d0)⊥ ∩ Λ).

Conversely, assume the existence of ∞ ∈ O(Λ) with ∞(d) = d0. Since ∞(d⊥∩Λ) =
(d0)⊥ ∩ Λ, we get δ(d⊥ ∩ Λ) = δ((d0)⊥ ∩ Λ). This proves the assertion. §

Proposition 11.8. Set N 00(Λ) := #(∆00
Λ/O(Λ)). Then

N 00(Λ) =






0 if δ = 0
0 if δ = 1, (r, l) = (2, 2), (3, 1), (10, 2), (11, 1), (18, 2), (19, 1)
2 if δ = 1, (r, l) = (5, 3), (5, 5), (9, 5), (9, 7), (13, 3), (13, 5),

(13, 7), (13, 9), (17, 5)
1 if (δ, r, l) : otherwise

Proof. The first two equalities follow from Proposition 11.6. Set r = r(Λ) and
l = l(Λ). Assume that #(∆00

Λ/O(Λ)) = 2. Since ∆00
Λ 6= ∅, we get δ(Λ) = 1 by

Proposition 11.6. By Proposition 11.7 and (11.4), #(∆00
Λ/O(Λ)) = 2 if and only if

there exist 2-elementary lattices L, L0 of signature (2, r−3) with (δ(L), r(L), l(L)) =
(1, r − 1, l − 1) and (δ(L0), r(L0), l(L0)) = (0, r − 1, l − 1) such that Λ ∼= L ⊕ A1

∼=
L0 ⊕ A1. Namely, (r − 1, l − 1) satisfies the following property:

(P) Both of (0, r − 1, l − 1) and (1, r − 1, l − 1) are realized by primitive 2-
elementary sublattices of LK3 with signature (2, r − 3).

In view of the table [45, p.1434, Table 1] of 2-elementary sublattices of LK3 (cf.
Remark 11.9 below), the pair (r−1, l−1) with property (P) is one of the following:

(4, 2), (4, 4), (8, 4), (8, 6), (12, 2), (12, 4), (12, 6), (12, 8), (12, 10), (16, 4), (20, 2),

so that the possible pairs of (r(Λ), l(Λ)) are given as follows:

(5, 3), (5, 5), (9, 5), (9, 7), (13, 3), (13, 5), (13, 7), (13, 9), (13, 11), (17, 5), (21, 3).

By [45, p.1434, Table 1], there are no primitive 2-elementary sublattices of LK3

with invariants (1, 13, 11), (1, 21, 3), and all other triplets (δ, r, l) are realized by
primitive 2-elementary sublattices of LK3. This proves the result. §

Remark 11.9. In [45, p.1434, Table 1], the triplets (δ, r, l) are considered for prim-
itive 2-elementary Lorentzian sublattices of LK3. To get a table of the triplets
(δ, r, l) for primitive 2-elementary sublattices of LK3 with signature (2, r − 2), we
must replace r by 22 − r in [45, p.1434, Table 1], because they are always the
orthogonal complement of a primitive 2-elementary Lorentzian sublattice of LK3.
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11.4. The number of the irreducible components of D0Λ/O(Λ)

Proposition 11.10. ∆0
Λ = ∅ if and only if r(Λ) = l(Λ).

Proof. If r(Λ) = l(Λ), then ∏/2 ∈ Λ∨ for all ∏ ∈ Λ, so that ∆0
Λ = ∅. Conversely,

assume ∆0
Λ = ∅. If Λ contains U, D2k, E7, E8, then ∆0

Λ 6= ∅. This, compared with
[20, Appendix, Tables 2,3], yields that Λ must be isometric to I2,k(2) (0 ≤ k ≤ 10)
or U(2)⊕ U(2), so that r(Λ) = l(Λ). This proves the result. §

Lemma 11.11. Assume that ∆0
Λ 6= ∅. If d ∈ ∆0

Λ, then

r(d⊥ ∩ Λ) = r(Λ)− 1, l(d⊥ ∩ Λ) = l(Λ) + 1, δ(d⊥ ∩ Λ) = 1.

In particular, the isometry class of d⊥ ∩ Λ is independent of the choice of d ∈ ∆0
Λ.

Proof. We set L := Zd ∼= A1, N := d⊥ ∩ Λ, and S := Λ/(L ⊕ N). By (11.2),
S is a vector space over Z2 with S ⊂ AL ⊕ AN . Since S 6= 0 by (11.4), we get
l(N) = l(Λ) + 1 by Lemma 11.4. We prove δ(N) = 1.

By (11.5), there exists a unique nd ∈ AN such that S = Z2(d/2, nd) ⊂ AL⊕AN .
Since (d/2, nd) ∈ S = Λ/(L⊕N), we get qL(d/2) + qN (nd) ≡ 0 mod 2Z. Namely,

(11.7) qN (nd) ≡ −qL(d/2) ≡ 1/2 mod 2Z.

Since nd ∈ AN , we get δ(N) = 1 by (11.7). This proves the lemma. §

If ∆0
Λ 6= ∅, we define the 2-elementary lattice @Λ as

@Λ := d⊥ ∩ Λ, d ∈ ∆0
Λ,

whose isometry class is independent of the choice of d ∈ ∆0
Λ by Lemma 11.5. We

set
B@Λ := {v ∈ A@Λ; q@Λ(v) ≡ 1/2 mod 2Z}.

Let p : A∨1 ⊕ (@Λ)∨ → AA1 ⊕A@Λ be the projection. For µ ∈ B@Λ, set

Sµ := Z2(d/2, µ) ⊂ AA1 ⊕A@Λ, Λµ := p−1(Sµ) ⊂ A∨1 ⊕ (@Λ)∨.

Then Λµ is equipped with the bilinear form induced from the one on A∨1 ⊕ (@Λ)∨.

Lemma 11.12. Λµ is an even 2-elementary lattice with sign(Λµ) = (2, r(Λ) − 2)
and l(Λµ) = l(Λ).

Proof. Let S⊥µ ⊂ AA1 ⊕ A@Λ be the orthogonal complement of Sµ in AA1 ⊕ A@Λ

with respect to the discriminant bilinear form bA1 ⊕ b@Λ. Since Sµ is an isotropic
subspace of AA1 ⊕ A@Λ by the condition µ ∈ B@Λ, Λµ is an even integral lattice.
Since Λ∨µ = p−1(S⊥µ ) and since p : A∨1 ⊕ (@Λ)∨ → AA1 ⊕A@Λ is surjective,

AΛµ = Λ∨µ/Λµ = p−1(S⊥µ )/p−1(Sµ) = S⊥µ /Sµ ⊂ (AA1 ⊕A@Λ)/Sµ

is a vector space over Z2, so that Λµ is 2-elementary. By (11.3) and Lemma 11.11,
l(Λµ) = dimZ2 AΛµ = l(@Λ) + 1 − 2 dimZ2 Sµ = l(Λ). Since A1 ⊕ @Λ ⊂ Λµ ⊂
A∨1 ⊕ (@Λ)∨, we get sign(Λµ) = (2, r(Λ)− 2). This proves the lemma. §

Lemma 11.13. Let µ ∈ B@Λ. Then

(r(Λµ), l(Λµ), δ(Λµ)) =

(
(r(Λ), l(Λ), 1) if µ 6= 1@Λ

(r(Λ), l(Λ), 0) if µ = 1@Λ.
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Proof. By Lemma 11.12, r(Λµ) = r(Λ) and l(Λµ) = l(Λ). It suffices to prove that
δ(Λµ) = 0 if and only if 1@Λ ∈ B@Λ and µ = 1@Λ. Let x = (bd

2 , ∫) ∈ S⊥µ , b ∈ Z,
∫ ∈ A@Λ and let (d

2 , µ) ∈ Sµ. We get x · (d
2 , µ) ≡ − b

2 + ∫ · µ ≡ 0 mod Z. Since

x2 ≡ −b2

2
+ ∫2 ≡ − b

2
+ ∫ · 1@Λ ≡ ∫ · (1@Λ − µ) ≡ x · (0,1@Λ − µ) mod Z

for all x ∈ S⊥µ and since Λ∨µ = p−1(S⊥µ ), we get the result as follows:

δ(Λµ) = 0 ⇐⇒ qA1⊕@Λ(x) ≡ 0 mod Z (∀x ∈ S⊥µ )

⇐⇒ bA1⊕@Λ(x, (0,1@Λ − µ)) ≡ 0 mod Z (∀x ∈ S⊥µ )

⇐⇒ (0,1@Λ − µ) ∈ (S⊥µ )⊥ = Sµ = Z2(d/2, µ)
⇐⇒ µ = 1@Λ.

This proves the lemma. §

Lemma 11.14. Let µ ∈ B@Λ. Then Λ ∼= Λµ if and only if

µ

(
6= 1@Λ if δ(Λ) = 1
= 1@Λ if δ(Λ) = 0.

Proof. Since the isometry class of the indefinite 2-elementary lattice Λ is determined
by the triplet (sign(Λ), l(Λ), δ(Λ)), the result follows from Lemma 11.13. §

Proposition 11.15. Set N 0(Λ) := #(∆0
Λ/O(Λ)). Then

N 0(Λ) =

(
0 if r(Λ) = l(Λ)
1 if r(Λ) > l(Λ).

Proof. Let d, d0 ∈ ∆0
Λ. We set N = d⊥ ∩ Λ, N 0 = (d0)⊥ ∩ Λ, L = Zd and L0 = Zd0.

By Lemma 11.11, there exist isometries β : N ∼= @Λ and β0 : N 0 ∼= @Λ. By (11.5),
(11.7), there exist unique nd ∈ AN , nd0 ∈ AN 0 such that β̄(nd), β̄0(nd0) ∈ B@Λ and

(11.8) Λ/(L⊕N) = Z2(d/2, nd), Λ/(L0 ⊕N 0) = Z2(d0/2, nd0).

By (11.8) and the definition of Λµ, β̄(nd), β̄0(nd0) ∈ B@Λ are such that

(11.9) Λβ̄(nd)
∼= Λβ̄0(nd0 )

∼= Λ.

By [43, Cor. 1.5.2] and (11.8), there exists ∞ ∈ O(Λ) with ∞(d) = d0 if and only
if there exists an isometry α : N ∼= N 0 with ᾱ(nd) = nd0 , where ᾱ : (AN , qAN ) →
(AN 0 , qAN0 ) is the isometry induced by α. Equivalently, d and d0 lie on the same
O(Λ)-orbit if and only if there exists g ∈ O(@Λ) with ḡ(β̄(nd)) = β̄0(nd0). Since
the natural homomorphism O(@Λ) → O(q@Λ) is surjective by [43, Th. 3.6.3], d and
d0 lie on the same O(Λ)-orbit if and only if β̄(nd), β̄0(nd0) ∈ B@Λ lie on the same
O(q@Λ)-orbit. This implies that

(11.10)

#(∆0
Λ/O(Λ)) ≤ # [{µ ∈ B@Λ; Λµ

∼= Λ}/O(q@Λ)]

=

(
# [{µ ∈ B@Λ; µ 6= 1@Λ}/O(q@Λ)] if δ(Λ) = 1
# [{µ ∈ B@Λ; µ = 1@Λ}/O(q@Λ)] if δ(Λ) = 0

= 1,

where the first inequality follows from (11.9), the second equality follows from
Lemma 11.14 and the last equality follows from [43, Lemma 3.9.1]. The result
follows from Proposition 11.10 and (11.10). §
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Theorem 11.16. Set N(Λ) := #(∆Λ/O(Λ)). Then

N(Λ) =






0 if (δ, r, l) = (0, 4, 4), (1, 2, 2)
1 if δ = 0, r > l

1 if δ = 1, r = l, r > 2, r 6= 5
1 if δ = 1, (r, l) = (3, 1), (10, 2), (11, 1), (18, 2), (19, 1)
3 if δ = 1, (r, l) = (5, 3), (9, 5), (9, 7), (13, 3), (13, 5),

(13, 7), (13, 9), (17, 5)
2 if (δ, r, l) : otherwise

Proof. Since N(Λ) = N 0(Λ)+N 00(Λ), the result follows from Propositions 11.8 and
11.15. §

Corollary 11.17. Let M ⊂ LK3 be a primitive 2-elementary Lorentzian sublattice.
Let N (M) be the number of the irreducible components of the divisor DM⊥ =
DM⊥/O(M⊥) on MM⊥ . Then

N (M) =






0 if (δ, r, l) = (0, 18, 4), (1, 20, 2)
1 if δ = 0, r + l < 22
1 if δ = 1, r + l = 22, r < 20, r 6= 17
1 if δ = 1, (r, l) = (19, 1), (12, 2), (11, 1), (4, 2), (3, 1)
3 if δ = 1, (r, l) = (17, 3), (13, 5), (13, 7), (9, 3), (9, 5),

(9, 7), (9, 9), (5, 5)
2 if (δ, r, l) : otherwise.

Proof. Since DM⊥ =
P

d∈∆M⊥
Hd and since Hd = Hd0 if and only if d and d0 lie on

the same O(M⊥)-orbit, the set of irreducible components of DM⊥ is identified with
∆M⊥/O(M⊥), so that N (M) = N(M⊥). We get the result by Theorem 11.16. §

Remark 11.18. Let M ⊂ LK3 be a primitive 2-elementary Lorentzian sublattice.
Let [M ] be the isometry class of M , which corresponds to a vertex of the K3-graph
ΓK3 of Finashin-Kharlamov [20, Figure 1]. Comparing ΓK3 and Corollary 11.17, we
see that N (M) is exactly the number of edges in ΓK3 going out [M ]. In ΓK3, an odd
edge going out [M ] corresponds to the set ∆0

M⊥/O(M⊥), even non-Wu edge going
out [M ] corresponds to the O(M⊥)-orbit of a root d ∈ ∆00

M⊥ with δ(d⊥ ∩M⊥) = 1,
and an even Wu edge going out [M ] corresponds to the O(M⊥)-orbit of a root
d ∈ ∆00

M⊥ with δ(d⊥ ∩ M⊥) = 0. By Theorem 3.3, [M ] and [M 0] are connected
by an oriented edge from [M ] to [M 0] if and only if there exist g ∈ O(LK3) and
d ∈ ∆M⊥ with g(M 0) = [M ⊥ d], i.e., Mg(M 0)⊥ is an irreducible component of
DM⊥ .

12. Appendix: Some geometric properties of the set of fixed points

In this section, we prove some geometric properties of the set of fixed points of
2-elementary K3 surfaces used in earlier sections. The proof of the main results of
this section, Propositions 12.2 and 12.3, have been suggested by S. Kondō.

Let S be a compact complex smooth surface. By a (−m)-curve of S, we mean
a smooth rational curve on S with self-intersection number −m. For divisors C,D
on S, we write C ∼ D if C is linearly equivalent to D. For divisors C,D on S, let
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C ·D denote the intersection number of C and D. Recall that an irreducible divisor
D on S is exceptional if D2 < 0. The set of all irreducible exceptional divisors on
S is denoted by Exc(S). For E ∈ Exc(S), the blow-down of E is a smooth complex
surface if and only if E is a (−1)-curve (cf. [2, Chap. III, Th. 4.2]).

Let E be a (−1)-curve on S and let σ : S → S be the blow-down of E. Let C ⊂ S
be an irreducible curve and set C = σ(C). If we set µ = multσ(E)C, then

(12.1) µ = C · E, C
2 = C2 + µ2

by e.g. [27, Chap.V, Prop. 3.6, Cor. 3.7]. Hence σ(Exc(S)) ⊃ Exc(S). If µ =
C ·E = 1 in (12.1) and if C is smooth, C is smooth by the equality multσ(E)C = 1.
In this case, σ induces an isomorphism from C to C.

When X is a K3 surface, Pic(X) is identified with H1(X,O∗X), and Exc(X) is
the set of (−2)-curves on X. Recall that for a 2-elementary K3 surface (X, ∂), there
is an inclusion Pic(X) ⊃ H2

+(X,Z).

Lemma 12.1. Let (X, ∂) be a 2-elementary K3 surface and set Y := X/∂. Let
p : X → Y be the quotient map. If Pic(X) = H2

+(X,Z), the following hold:
(1) If D is a divisor on X, then D ∼ ∂(D). In particular, ∂ preserves every

(−2)-curve on X and Exc(Y ) = p(Exc(X)).
(2) For E ∈ Exc(X), regard E := p(E) as a reduced divisor on Y . Then

E
2 =

(
−4 if E ⊂ X∂

−1 if E 6⊂ X∂.

Proof. (1) Let L be an arbitrary holomorphic line bundle on X. Since Pic(X) =
H2

+(X,Z) and hence c1(L) = ∂∗c1(L), we get ∂∗L ∼= L. In particular, D ∼ ∂(D) for
every divisor D on X. If E ∈ Exc(X), then E = ∂(E) by [32, Lemma 1.4].

Let C ∈ Exc(Y ). Then C := p−1(C) is a divisor on X. Assume that C is
reducible, and let D be an irreducible component of C. By the irreducibility of C,
p(D) = p(∂(D)) = C. Since p : X → Y is a double covering and hence C = D∪∂(D),
the reducibility of C implies that D 6= ∂(D) and C = D+∂(D). Since C2 = 2C

2
< 0

by the projection formula, we get 0 > C2 = 2(D2 +D · ∂(D)). Since D · ∂(D) ≥ 0 by
the irreducibility of D and D 6= ∂(D), we get D2 < 0. Hence D ∈ Exc(X). Since
∂(D) = D by [32, Lemma 1.4], this contradicts the reducibility of C. We get the
irreducibility of C. Since C2 = 2C

2, we get Exc(Y ) = p(Exc(X)).
(2) Since we have the equation of divisors p∗E = 2E (resp. p∗E = E) if E ⊂ X∂

(resp. E 6⊂ X∂), we get the result by the identities E2 = −2 and (p∗E)2 = 2E
2. §

12.1. The case M ∼= U(2)⊕ D4 ⊕ D4

Proposition 12.2. Let (X, ∂) be a 2-elementary K3 surface of type U(2)⊕D4⊕D4.
Let C be the non-rational irreducible component of X∂. If Pic(X) = H2

+(X,Z), C is
isomorphic to a curve of bidegree (4, 2) on P1×P1. In particular, C is hyperelliptic.

Proof. By [35, Props. 2.6 (ii) and 2.9], Exc(X) consists of 18 (−2)-curves. Let
Exc(X) = {S0, S1, E1, . . . , E8, F1, . . . , F8}. By [33, p.230], we may assume that

(12.2) Ei · S0 = Fi · S1 = 1, Ei · S1 = Fi · S0 = 0,

(12.3) Sk · Sl = −2δkl, Ei · Ej = Fi · Fj = −2δij , Ei · Fj = 2δij .
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By (12.2), Ei ∩ S0 (resp. Fi ∩ S1) consists of a unique point. Since an element
of Exc(X) is ∂-invariant by Lemma 12.1 (1), we get ∂(Ei ∩ S0) = Ei ∩ S0 and
∂(Fi ∩ S1) = Fi ∩ S1. Hence Ei ∩ S0 ⊂ X∂ and Fi ∩ S1 ⊂ X∂, which yields that
#(S0 ∩ X∂) ≥ #(S0 ∩ ∪iEi) = 8 and #(S1 ∩ X∂) ≥ #(S0 ∩ ∪iFi) = 8. Recall
that a non-trivial holomorphic involution on P1 has exactly 2 fixed points. Since ∂
induces an involution on the rational curve S0 (resp. S1), we get ∂|S0 = idS0 and
∂|S1 = idS1 . Thus S0qS1 ⊂ X∂. Since g(M) = 3 and k(M) = 2 for M = U(2)⊕D2

4,
there exists by Lemma 3.1 (3) a smooth curve C of genus 3 with X∂ = CqS0qS1.
Since Ei, Fj 6⊂ X∂ and since ∂ preserves each Ei and Fj , ∂ has exactly 2 fixed points
on each of Ei and Fj , i.e., Ei ·X∂ = Fj ·X∂ = 2. By (12.2), we get

(12.4) C · Ei = C · Fj = 1 (1 ≤ i, j ≤ 8).

Let Y be the quotient of X by ∂ and let p : X → Y = X/∂ be the quotient map.
Set Sk := p(Sk), Ei := p(Ei), F j := p(Fj), C := p(C). By Lemma 12.1 (1), we get

Exc(Y ) = {S0, S1, E1, . . . , E8, F 1, . . . , F 8}.
Since S0 q S1 ⊂ X∂ and Ei, Fj 6⊂ X∂, we get by (12.2–4) and Lemma 12.1 (2)

(12.5) Ei · S0 = F i · S1 = 1, Ei · S1 = F i · S0 = 0,

(12.6) Sk · Sl = −4δkl, Ei · Ej = F i · F j = −δij , Ei · F j = δij ,

(12.7) C · Ei = C · F j = 1.

By (12.5–7), the configuration of the curves E1, . . . , F 8, S0, S1, C on Y is given as
follows in Figure 1, in which a (−1)-curve is denoted by a thick line and the number
in the bracket is the self-intersection number.

❅
❅

❅
❅

❅
❅

❅
❅

E1

°
°

°
°

°
°

°
°

F 1

❅
❅

❅
❅

❅
❅

❅
❅

E2

°
°

°
°

°
°

°
°

F 2

❅
❅

❅
❅

❅
❅

❅
❅

E3

°
°

°
°

°
°

°
°

F 3

❅
❅

❅
❅

❅
❅

❅
❅

E4

°
°

°
°

°
°

°
°

F 4

❅
❅

❅
❅

❅
❅

❅
❅

E5

°
°

°
°

°
°

°
°

F 5

❅
❅

❅
❅

❅
❅

❅
❅

E6

°
°

°
°

°
°

°
°

F 6

❅
❅

❅
❅

❅
❅

❅
❅

E7

°
°

°
°

°
°

°
°

F 7

❅
❅

❅
❅

❅
❅

❅
❅

E8

°
°

°
°

°
°

°
°

F 8

C

C

S0(−4)

S1(−4)

Figure 1

Let σ : Y → Z be the blow-down of the mutually disjoint 8 (−1)-curves E1, · · · , E4,
F 5, · · · , F 8. Set S0k := σ(Sk), E0

i := σ(Ei), F 0
j := σ(F j) and C 0 := σ(C). By (12.1),

we get Exc(Z) ⊂ σ(Exc(Y )) = {S00, S01, E0
5, . . . , E

0
8, F

0
1, . . . , F

0
4}. By Figure 1 and

(12.1), the configuration of the curves C 0, S00, S01, E0
5, . . . , E

0
8, F 0

1, . . . , F
0
4 on Z is

given as follows in Figure 2.
By Figure 2, the self-intersection number of any curve of σ(Exc(Y )) is equal to

0, so that Exc(Z) = ∅. This, together with the rationality of Z, implies Z ∼= P2

or P1 × P1. Since Z contains a curve with self-intersection number 0, we get
Z ∼= P1 × P1. By Figure 2 again, we may assume that S0k is a divisor of bidegree
(0, 1) and that E0

i and F 0
j are divisors of bidegree (1, 0). Since C 0 · S00 = C 0 · S01 = 4

and C 0 · E0
i = C 0 · F 0

j = 2 by Figure 2, C 0 is an irreducible curve of bidegree (4, 2)
on P1 × P1. Since the projection pr1 : P1 × P1 → P1 induces a double covering
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F 0
1

(0)

F 0
2

(0)

F 0
3

(0)

F 0
4

(0) E0
5

(0)

E0
6

(0)

E0
7

(0)

E0
8

(0)

S00(0)

S01(0)

°
°

°
°

C 0
°

°
°

°

C 0
°

°
°

°

C 0
°

°
°

°

C 0

°
°

°
°
C 0

°
°

°
°
C 0

°
°

°
°
C 0

°
°

°
°
C 0

C 0

C 0

Figure 2

from C 0 to P1, C 0 is hyperelliptic. Since p|C : C → C is an isomorphism by the
definition of p and since σ|C : C → C 0 is an isomorphism by (12.1) and (12.7), the
composition (σ ◦ p)|C induces an isomorphism between C and C 0. §

12.2. The case M ∼= U⊕ D12

Let R>0 be the set of positive real numbers. For a Lorentzian lattice M , we
define L(M) := {[v] ∈ (M ⊗R \ {0})/R>0; v2 > 0} and we identify L(M) with the
hyperboloid {v ∈ M ⊗R; v2 = 1}, which is equipped with the Riemannian metric
induced from the inner product on M . Then L(M) consists of two connected
components L+(M) and L−(M), each of which is a hyperbolic space of dimension
r(M) − 1. When M is the Picard lattice of an algebraic K3 surface X, we define
L+(X) as the component of L(Pic(X)) containing ample classes.

In the following proposition, which is the key to the proof of Theorem 9.3 (2),
we use Kodaira’s notation for singular fibers of elliptic fibration, for which we refer
to [30], [2, Chap.V Sect. 7].

Proposition 12.3. Let (X, ∂) be a 2-elementary K3 surface of type U⊕ D12. As-
sume that Pic(X) = H2

+(X,Z). Then the following hold:
(1) X contains exactly 15 (−2)-curves α0, . . . , α14. If αi 6= αj, then αi · αj ∈

{0, 1}. The dual graph Γ of these 15 (−2)-curves Exc(X) is given as follows
in Figure 3, where each vertex denotes the corresponding (−2)-curve and
two vertices corresponding to αi and αj are connected by an edge if and
only if αi · αj = 1.

❢
α9

❢
α8

❢
α6

❢α7 ❢
α5

❢
α4

❢
α3

❢
α2

❢
α1

❢
α0

❢
α11

❢
α10

❢α13

❢α12

❢α14

Figure 3. The dual graph Γ of Exc(X)

(2) Let C be the non-rational irreducible component of X∂. Then C is isomor-
phic to a smooth plane quartic curve. In particular, C is non-hyperelliptic.

Proof. (1) Since Pic(X) ∼= U⊕ E8 ⊕ D4, the hyperbolic plane U ⊂ Pic(X) defines
an elliptic fibration π : X → P1 with a section α0 by [32, Lemma 2.1 (i)]. By [32,
Lemma 2.2], π : X → P1 has a singular fiber of type II∗ and a singular fiber of
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type I∗0 . Let FII∗ := α1 + 2α2 + 3α3 + 4α4 + 5α5 + 6α6 + 3α7 + 4α8 + 2α9 be the
singular fiber of type II∗ and let FI∗0 := 2α10 +α11 +α12 +α13 +α14 be the singular
fiber of type I∗0 , where α1, . . . , α14 are (−2)-curves on X. The dual graphs of FII∗

and FI∗0 are given by the corresponding subgraphs of Γ by e.g. [2, Chap. 5, Sect. 7,
Table 3]. Since α0 is a section and hence α0 · FII∗ = 1, we get

(12.8) α0 · α1 = 1, α0 · αi = 0 (2 ≤ i ≤ 9).

Similarly, since α0 · FI∗0 = 1, we may assume that

(12.9) α0 · α11 = 1, α0 · α10 = α0 · α12 = α0 · α13 = α0 · α14 = 0.

By (12.8), (12.9), the dual graph of {α0, . . . , α14} is given by Γ as in Figure 3.
Let W (Γ) be the discrete subgroup of motions of L+(X) generated by the re-

flections {sαi ; i = 0, . . . , 14}, where sαi [v] := [v + (v · αi) c1(αi)] for [v] ∈ L+(X).
Then Γ is the Coxeter diagram of W (Γ) (cf. [55, Sect. 1]). Set

C := {[v] ∈ (Pic(X)⊗R \ {0})/R>0; v · αi ≥ 0 (i = 0, . . . , 14)},
which is a convex polyhedron in the sphere (Pic(X) ⊗ R \ {0})/R>0. By [12,
Chap.V], C ∩ L+(X) is a fundamental domain for the W (Γ)-action on L+(X).
Since any maximal extended Dynkin diagram in Γ is either eE8 ⊕ eD4 or eD12 and
since both of them have the maximal rank 12, Γ satisfies the condition in [55, Th. 2.6
bis.]. By [55, Th. 2.6 bis.], C ∩L+(X) has finite volume. By [55, p.335 l.28], we get

(12.10) C ⊂ L+(X),

where the closures are considered in the sphere (Pic(X)⊗R \ {0})/R>0.
If there exists a (−2)-curve E 6∈ {α0, . . . , α14}, then E · αi ≥ 0 for 0 ≤ i ≤ 14,

so that c1(OX(E)) ∈ L+(X) by (12.10). This implies the contradiction E2 ≥ 0,
because E ∈ Exc(X). This proves that Exc(X) = {α0, . . . , α14}.
(2) By Lemma 12.1 (1), ∂ preserves the 15 (−2)-curves α0, . . . , α14. By [32, Lemma
2.3 (ii)], we get α0 ⊂ X∂. If F is a fiber of the elliptic fibration π : X → P1, then
∂(F ) ∼ F by Lemma 12.1 (1), so that ∂(F ) is again a fiber of π. Since α0 ⊂ X∂ and
since α0 is a section of π, we get F ∩∂(F ) ⊃ F ∩α0 6= ∅. Hence ∂ preserves the fibers
of π. Since the dual graph of FII∗ (resp. FI∗0 ) is eE8 (resp. eD4), we deduce from
[32, Lemma 2.3 (i)] that α2 qα4 qα6 qα9 qα10 ⊂ X∂. Since H2

+(X,Z) ∼= U⊕D12

and hence g(H2
+(X,Z)) = 3, k(H2

+(X,Z)) = 6, we get by Lemma 3.1 (3)

(12.11) X∂ = C q α0 q α2 q α4 q α6 q α9 q α10, g(C) = 3.

Since ∂(αi) = αi and αi 6⊂ X∂ for i = 1, 3, 5, 7, 8, 11, 12, 13, 14 by Lemma 12.1 (1)
and (12.11), we get X∂ · αi = 2 for these i. By [32, Lemma 2.3 (i)] and Figure 3,
we get

(12.12) C · αi = 1 (i = 7, 12, 13, 14), C · αj = 0 (otherwise).

(Step 0) Set R0 := X/∂, which is a smooth rational surface. Let p : X → R0 be the
quotient map. We set α(0)

i := p(αi) and C(0) := p(C). By Lemma 12.1 (1), we get
Exc(R0) = {α(0)

0 , . . . , α(0)
14 }. By (12.12), we get

(12.13) C(0) · α(0)
i = 1 (i = 7, 12, 13, 14), C(0) · α(0)

j = 0 (otherwise).

The configuration of the curves C(0), α(0)
0 , . . . , α(0)

14 is given as in Figure 4 from
Figure 3, Lemma 12.1 (2) and (12.13). In the figures below, we use the following
convention: a (−1)-curve is denoted by a thick line; the number in the bracket is the
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self-intersection number; we write αi (resp. C) for α(k)
i (resp. C(k)) for simplicity.

°
°

°

α9
(−4)

❅
❅

❅

❅
❅

❅

α8

°
°

°
°

°
°

α6
(−4)

α7

❅
❅

❅

❅
❅

❅

α5

°
°

°

α4
(−4)

❅
❅

❅

❅
❅

❅

α3

°
°

°

α2
(−4)

❅
❅

❅

❅
❅

❅

α1

°
°

°

α0
(−4)

❅
❅

❅

❅
❅

❅

α11

α10 (−4)

α12 α13 α14°
°

°

C C

Figure 4

(Step 1) Let σ1 : R0 → R1 be the blow-down of the 9 disjoint (−1)-curves α(0)
i , where

i = 1, 3, 5, 7, 8, 11, 12, 13, 14. Set α(1)
j := σ1(α

(0)
j ) for j = 0, 2, 4, 6, 9, 10 and C(1) :=

σ1(C(0)). By (12.1) and Figure 4, the configuration of these curves is given as in
Figure 5. By Figure 4 and (12.1), we get Exc(R1) = {α(1)

0 , α(1)
2 , α(1)

4 , α(1)
6 , α(1)

9 }.

❅
❅

❅

α9(−3)

°
°

°
°

°
°

°
°

°
°

°
°

α6

C

❅
❅

❅

α4(−2)

°
°

°

α2

(−2)

❅
❅

❅

α0
(−2)

α10 (0)

C C C

Figure 5

(Step 2) Let σ2 : R1 → R2 be the blow-down of the (−1)-curve α(1)
6 . Set α(2)

j :=
σ2(α

(1)
j ) for j = 0, 2, 4, 9, 10 and C(2) := σ2(C(1)). By (12.1) and Figure 5, the

configuration of these curves is given as in Figure 6, where C(2) passes through the
point α(2)

9 ∩ α(2)
4 . By Figure 5 and (12.1), we get Exc(R2) = {α(2)

0 , α(2)
2 , α(2)

4 , α(2)
9 }.

°
°

°

α9
(−2)

❅
❅

❅

❅
❅

❅

α4

°
°

°

α2
(−2)

❅
❅

❅

α0

(−2)

α10 (0)

C C C

C

Figure 6

(Step 3) Let σ3 : R2 → R3 be the blow-down of the (−1)-curve α(2)
4 . Set α(3)

j :=
σ3(α

(2)
j ) for j = 0, 2, 9, 10 and C(3) := σ3(C(2)). By (12.1) and Figure 6, the con-

figuration of these curves is given as in Figure 7, where C(3) is tangent to α(3)
9 of

order 2 at α(3)
9 ∩ α(3)

2 . By Figure 6 and (12.1), we get Exc(R3) = {α(3)
0 , α(3)

2 , α(3)
4 }.

(Step 4) Let σ4 : R3 → R4 be the blow-down of the (−1)-curve α(3)
2 . Set α(4)

j :=
σ4(α

(3)
j ) for j = 0, 9, 10 and C(4) := σ4(C(3)). By (12.1) and Figure 7, the configu-

ration of these curves is given as in Figure 8, where C(4) is tangent to α(4)
9 of order
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❅
❅

❅

❅
❅

❅

α9

°
°

°

°
°

°

α2

❅
❅

❅
α0
(−2)

α10 (0)

C C CC

Figure 7

3 at α(4)
9 ∩ α(4)

0 . By Figure 7 and (12.1), we get Exc(R4) = {α(4)
0 }.

❅
❅

❅

α9
(0)

°
°

°

°
°

°

α0

α10 (0)

C C CC

Figure 8

(Step 5) Let σ5 : R4 → R5 be the blow-down of the (−1)-curve α(4)
0 . Set α(5)

i :=
σ5(α

(4)
i ) for i = 9, 10 and C(5) := σ5(C(4)). By (12.1) and Figure 8, the configura-

tion of these curves is given as in Figure 9, where C(5) is tangent to α(5)
9 of order

4 at α(5)
9 ∩ α(5)

10 .

α9
(1)

α10 (1)

C C CC

Figure 9

(Step 6) Since Exc(R5) = ∅ by Figure 9, R5 is a rational surface without excep-
tional curves. Hence R5

∼= P2 or R5
∼= P1 × P1. Since R5 contains a curve

with self-intersection number 1, we get R5
∼= P2. In each blow-down σi+1 : Ri →

Ri+1, C(i) intersects transversally the exceptional curves of σi+1, so that σi+1

induces an isomorphism from C(i) to C(i+1) for all i. Since the composition
σ := σ5σ4σ3σ2σ1p : X → R5 induces an isomorphism between C and C(5), C is iso-
morphic to the smooth plane quartic C(5) ⊂ P2. Since the canonical line bundle of
C is very ample by the adjunction formula KC

∼= OP2(1)|C(5) , C is non-hyperelliptic
(cf. [27, Chap. IV, Example 5.2.1]). §
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