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Abstract

In this paper, we obtain a refinement of the Young theorem. The Young theorem tells
us that the Fourier transform F sends the Lp functions to the Lp′ functions, if 1 ≤ p ≤ 2.
This theorem has a refinement. For example, F : L1 → B0

∞1, where Bs
pq is the Besov

space. In this present paper we shall consider the more refined version of this theorem by
using the amalgams and the Besov spaces.
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1 Introduction

The aim of this paper is to refine the Young theorem. The Young theorem, as is well-known,
asserts that the range of the Lp space by the Fourier transform is the Lp′ space, whenever
1 ≤ p ≤ 2.

F : Lp → Lp′ .

Here and below, for definiteness, we define the Fourier transform of f ∈ L1 ∩ Lp to be

Ff(ξ) :=
∫

Rn

f(x) e−iξ·x dx.

The above well-known theorem has a following refinement.

F : Lp → B0
p′p,

* The authors are supported by Research Fellowships of the Japan Society for the Promotion of Science for
Young Scientists.
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where Bs
pq is the Besov space whose definition will be recalled later. It is known that B0

∞1 is a
function space contained in L∞. For some related facts we refer to [1, p164]. Let C denote the
space of all bounded continuous functions. Since B0

∞1 ⊂ C, the Besov space B0
∞1 describes the

situation more precisely than the Lebesgue space L∞. However, once the Besov spaces comes
into the play, we hit upon a natural question. How can we make use of the information of q in
the Besov spaces Bs

pq ?

In this present paper we give a more refined version of this theorem and show the sharpness
of our result. In Section 2 we give the definition of function spaces to formulate our theorem.
The proof of the theorem is contained in Section 3. Finally in Section 4 we exhibit examples
showing the sharpness of our result.

2 Function spaces

In this section we present the definition of function spaces we work on.

Besov space Following [4, 5], we give a definition of Besov spaces. The definition is somehow
different from those in [4, 5]. However the resulting norms will be equivalent. We use N0 to
denote {0, 1, 2, . . .}.

First, given a complex sequence {aj}j∈N0 , we set ‖aj : lq‖ :=


 ∑

j∈N0

|aj |q



1
q

, 0 < q ≤ ∞.

We also define ‖az : lq‖ :=

( ∑

z∈Zn

|az|q
) 1

q

, 0 < q ≤ ∞ for {az}z∈Zn . If possible confusion can

occur, we write
‖{aj}j : lq‖, ‖{az}z : lq‖

instead of ‖aj : lq‖, ‖az : lq‖. Similarly, the notation ‖{aj,z}j,z : lq‖ means the lq-norm of
{aj,z}j∈N0,z∈Zn . Next, for a sequence of complex valued measurable functions {fj}j∈N0 , we
set

‖fj : lq(Lp)‖ := ‖ ‖fj : Lp‖ : lq‖, 0 < p, q ≤ ∞.

If p = ∞ and / or q = ∞, we make a natural modification in the above formulae.

Definition 2.1. Let φ0, φ1 ∈ S be even functions satisfying the following conditions.

χ[−2,2]n ≤ φ0 ≤ χ[−4,4]n , χ[−4,4]n\[−2,2]n ≤ φ1 ≤ χ[−8,8]n\[−1,1]n .

We set φj(x) := φ1(2−j+1x) for j ≥ 2. For f ∈ S ′, we denote φj(D)f := F−1(φj · Ff).

What counts about this definition is to adopt cubes instead of balls. We prefer to use cubes
because we will consider the amalgam spaces. With this preparation in mind, we shall define
the Besov norms.

Definition 2.2. Let 0 < p, q ≤ ∞ and s ∈ R. Under the notations in Definition 2.1, we define
Bs

pq to be the set of the Schwartz distributions f ∈ S ′ for which the quasi-norm

‖f : Bs
pq‖ := ‖2jsφj(D)f : lq(Lp)‖ (1)

is finite.
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It can be easily shown that the definition of the Besov space Bs
pq is independent of the

choice of φ0, φ1 by virtue of [4, Theorem 1.6.3].

(Weighted) amalgam space Now we will follow [2, 3] for the definitions. Given a measur-
able set A, we set

‖f : Lp(A)‖ := ‖χAf : Lp‖.
Definition 2.3. Let 0 < p, q ≤ ∞ and s ∈ R. Set Qz := z + [0, 1]n for z ∈ Zn, the translation
of the unit cube. For a Lebesgue locally integrable function f we define

‖f : (Lp, lq(〈z〉s))‖ := ‖ 〈z〉s · ‖f : Lp(Qz)‖ : lq‖,
where 〈a〉 :=

√
|a|2 + 1 for a ∈ Rn. (Lp, lq(〈z〉s)) is a set of all locally integrable functions f

for which the quasi-norm ‖f : (Lp, lq(〈z〉s))‖ < ∞. For brevity we write (Lp, lq) := (Lp, lq(1)).

It can be seen that (Lp, lp) = Lp with norm coincidence. By definition of the norm, the
following multiplication operator is an isomorphism.

f ∈ (Lp, lq(〈z〉s)) 7→ 〈·〉t · f ∈ (Lp, lq(〈z〉s−t)). (2)

Note that (Lp, lq(〈z〉s)) ⊂ S ′, if 1 ≤ p ≤ ∞, 0 < q ≤ ∞ and s ∈ R. It can be easily seen that

(Lp1 , lq1(〈z〉s1)) ⊂ (Lp2 , lq2(〈z〉s2))

for p1 ≥ p2, q1 ≤ q2 and s1 ≥ s2.

Main theorem With these definitions in mind, we formulate our main theorem.

Theorem 2.4. 1. Let 1 ≤ p ≤ 2, 0 < q ≤ ∞ and s ∈ R. Then

F : (Lp, lq(〈z〉s)) → B
s−n( 1

p− 1
q )

+
p′q . (3)

2. Let 1 ≤ p ≤ 2, 0 < q ≤ ∞ and s ∈ R. Then

F : Bs
pq →

(
Lp′ , lq(〈z〉s−n

“
1
q− 1

p′
”

+)
)

. (4)

Here and below, for a ∈ R we write a+ := max(a, 0).

Before we come to the proof, we state one more corollary.

Corollary 2.5. Suppose that 2 ≤ p ≤ ∞, 0 < q ≤ ∞ and s ∈ R. Then

F : (Lp, lq(〈z〉s)) → B
s−n( 1

2− 1
q )

+
2q .

In particular,
F : L∞ → B

−n
2

2∞ .

Once we obtain Theorem 2.4, Corollary 2.5 is easy to prove : All we have to note is

(Lp, lq(〈z〉s)) ⊂ (L2, lq(〈z〉s))
for 2 ≤ p ≤ ∞.

The rest of this paper is devoted to the proof of Theorem 2.4 and to investigating the
sharpness of these results.
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3 Proof of Theorem 2.4

First, we recall the boundedness of the lift operator.

(1−∆)
t
2 : Bs

pq → Bs−t
pq . (5)

For the proof of (3), (2) and (5) allow us to assume s = 0.

With this preparation our present task is to estimate
∥∥∥∥2−jn( 1

p− 1
q )

+φj(D)Ff : lq(Lp′)
∥∥∥∥ (6)

for f ∈ (Lp, lq(〈z〉s)). Note that the Young theorem gives

‖φj(D)Ff : Lp′‖ ≤ ‖φj · F(Ff) : Lp‖.
Set Aj := supp (φj) for j ∈ N0. Then (6) can be majorized by

∥∥∥∥2−jn( 1
p− 1

q )
+‖F(Ff) : Lp(Aj)‖ : lq

∥∥∥∥ .

Since F(Ff)(x) = c f(−x) and the φj are even, we have

‖F(Ff) : Lp(Aj)‖ = c ‖f : Lp(Aj)‖. (7)

The inequality




N∑

j=1

|aj |



q
p

≤ N
( q

p−1)
+

N∑

j=1

|aj |
q
p gives us

‖f : Lp(Aj)‖q ≤ c 2jqn( 1
p− 1

q )
+

∑

z∈Zn

‖f : Lp(Aj ∩Qz)‖q. (8)

If we put (7) and (8) together, then we have
∥∥∥∥2−jn( 1

p− 1
q )

+φj(D)Ff : lq(Lp′)
∥∥∥∥ ≤ c

∥∥∥ { ‖f : Lp(Aj ∩Qz)‖ }j,z : lq
∥∥∥ . (9)

Given z ∈ Zn, from the definition of the Aj , there are at most three j such that Aj ∩Qz 6= ∅,
and hence, ∑

j∈N0

‖f : Lp(Aj ∩Qz)‖q ≤ 3 ‖f : Lp(Qz)‖q. (10)

Combining (9) and (10), we obtain
∥∥∥∥2−jn( 1

p− 1
q )

+φj(D)Ff : lq(Lp′)
∥∥∥∥ ≤ c ‖ ‖f : Lp(Qz)‖ : lq‖ = ‖f : (Lp, lq)‖.

This is the desired result.

Next, we prove (4). As before, we assume s = 0. Let |z|∞ denote max(|z1|, |z2|, . . . , |zn|).
First, we observe by the definition of the norm,

∥∥∥∥Ff :
(

Lp′ , lq
(
〈z〉−n

“
1
q− 1

p′
”

+

))∥∥∥∥ ∼

∥∥∥∥∥∥∥∥∥





2
−jn

“
1
q− 1

p′
”

+
∑

z∈Zn

[2j−1]≤|z|∞<2j

‖Ff : Lp′(Qz)‖





j

: lq

∥∥∥∥∥∥∥∥∥
,
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where [·] denotes the Gauss sign.

The inequality
N∑

j=1

|aj |
q
p′ ≤ N

“
1− q

p′
”

+




N∑

j=1

|aj |



q
p′

and Young’s theorem yield

∥∥∥∥Ff :
(

Lp′ , lq
(
〈z〉−n

“
1
q− 1

p′
”

+

))∥∥∥∥ ≤ c

∥∥∥∥∥∥∥∥∥








∑

z∈Zn

[2j−1]≤|z|∞<2j

‖Ff : Lp′(Qz)‖p′




1
p′





j

: lq

∥∥∥∥∥∥∥∥∥

∼
∥∥∥φj · Ff : lq(Lp′)

∥∥∥ = c
∥∥∥Fφj(D)f : lq(Lp′)

∥∥∥ ≤ c ‖φj(D)f : lq(Lp)‖ = c ‖f : B0
pq‖.

This proves (4).

4 Sharpness of Theorem 2.4

In this section we deduce some necessary conditions. We consider the following problem :

Problem 4.1. Let 1 ≤ p1 ≤ ∞, 0 < p2 ≤ ∞, 0 < q1, q2 ≤ ∞ and s1, s2 ∈ R. Under what
condition does the Fourier transform F send (Lp1 , lq1(〈z〉s1)) continuously to Bs2

p2q2
? That is,

when is the estimate
‖Ff : Bs2

p2q2
‖ ≤ c ‖f : (Lp1 , lq1(〈z〉s1))‖ (11)

is true ? Find necessary conditions of (11).

First, we prove that the smoothness parameter s cannot be improved.

Proposition 4.2. If (11) is true, then s2 ≤ s1.

Proof. Let τ ∈ S be an even function with χB(1/4) ≤ τ ≤ χB(1/2), where B(r) denotes the open
ball centered at the origin of radius r > 0. We set e1 = (1, 0, 0, . . . , 0), the elementary vector
in Rn, and define τj(x) := τ(x− 2je1). Then we obtain

‖τj : (Lp1 , lq1(〈z〉s1))‖ ∼ 2js1 , ‖Fτj : Bs2
p2q2

‖ ∼ ‖2js2Fτj : Lp2‖ ∼ ‖2js2Fτ : Lp2‖ ∼ 2js2 .

Since by assumption we have ‖Ff : Bs2
p2q2

‖ ≤ c ‖f : (Lp1 , lq1(〈z〉s1))‖ for all f ∈ (Lp1 , lq1(〈z〉s1)),
it follows that s2 ≤ s1.

Next, we discuss how the integrability parameter changes by the Fourier transform.

Proposition 4.3. If (11) is true, then p2 ≥ p′1.

Proof. We use τ in the proof in Proposition 4.2 again. Consider f(x) := |x|−ατ(x). Set δ = 1−τ
and g(x) := |x|−αδ(x). It is well-known that

Ff(ξ) + Fg(ξ) = c |ξ|α−n.

Since |ξ|2NFg(ξ) = F [(−∆)Ng](ξ) and (−∆)Ng ∈ L1 for N À 1, it follows that |Fg(ξ)| ≤
c |ξ|−2N . From this we deduce

|Ff(ξ)| ∼ |ξ|α−n as ξ →∞.
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f ∈ (Lp1 , lq1(〈z〉s1)) if and only if p1α < n. Meanwhile, from the definition of the norm,
Ff ∈ Bs2

p2q2
forces p2(n − α) > n. Thus it is necessary that α < n/p1 implies α < n − n/p2.

From this it follows that n/p1 ≤ n− n/p2, which is equivalent to p2 ≥ p′1.

The restrictions appearing in Propositions 4.2 and 4.3 are natural, if we take into account
F : Lp(〈z〉s) → W s

p′ , where W s
p′ denotes the Sobolev space. It is well-known that

Bs+ε
pq ⊂ Bs

pq′ , 0 < p, q, q′ ≤ ∞, ε > 0

and
Bs1

p1q ⊂ Bs2
p2q, 0 < p1, p2, q ≤ ∞, s1 > s2, s1 − n

p1
= s2 − n

p2
. (12)

Thus, if s1 > s2 or p′1 < p2, then the situation can be considered degenerate. Next, we explain
the decay of the parameter s in Theorem 2.4 when p < q.

Proposition 4.4. If (11) is true, then s2 ≤ s1 − n

p′2
+

n

q1
.

From this proposition, the restriction s2 ≤ s1 − n

p′2
+

n

q1
in Theorem 2.4 is essential.

Proof. Let φj be the function in Definition 2.2.

‖φj : (Lp1 , lq1(〈z〉s1))‖ ∼ 2j
“

s1+
n
q1

”
and ‖Fφj : Bs2

p2q2
‖ ∼ ‖2js2Fφj : Lp2‖ ∼ 2

j

„
s2+

n
p′2

«

.

As a result the desired inequality follows.

We tackle a subtler problem : Can we improve q2 in (11) ? The case when s2 < min(s1, s1−
n/p′2 + n/q) can be regarded as degenerate and we concentrate on the limit case.

Proposition 4.5. Assume s2 = min
(

s1, s1 − n

p′2
+

n

q1

)
. If (11) is true, then q2 ≥ q1.

Proof. We consider two cases separately : s2 = s1 − n

p′2
+

n

q1
and s2 = s1. By using the lift

operators, we may assume s1 = 0.

First, we tackle the case s2 = s1 − n

p′2
+

n

q1
. Let {aj}j∈N be a complex sequence as before

such that aj = 0 if 3 does not divide j. Let f :=
∑

j∈N0

ajφj , where the φj are from Definition

2.2. Then by the same reasoning as before we obtain

‖f : (Lp1 , lq1)‖ ∼ ‖2 jn
q1 aj : lq1‖ and ‖Ff : Bs2

p2q2
‖ ∼ ‖2 jn

q1 aj : lq2‖.
From this we deduce q2 ≥ q1.

Now we turn to the case when s2 = s1 = 0. Then we use the τj in Proposition 4.2. Let
f :=

∑

j∈N0

ajτj , where {aj}j∈N0 is a complex sequence as before. Then we have

‖f : (Lp1 , lq1)‖ ∼ ‖aj : lq1‖ and ‖Ff : B0
p2q2

‖ ∼ ‖aj : lq2‖.

Thus, we obtain q2 ≥ q1.
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Finally we show

Proposition 4.6. Let 0 < q < 2. Then the mapping F : (L2, lq) → B0
2q is not a surjection.

Proof. By interpolation, we may assume that 1 ≤ q < 2. Assume that F : (L2, lq) → B0
2q is

surjective. Then by duality we would have F : B0
2q′ → (L2, lq

′
) is bijective. This would imply

F : (L2, lq
′
) → B0

2q′ is also bijective. This contradicts to Proposition 4.4.
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