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Abstract

We consider the singular limit of the Allen–Cahn type equation with
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1. Introduction

We consider the singular limit of the Allen–Cahn type equation of the form

uε
t − ∆uε +

1

ε2
(− sinuε − εa(1 + cosuε)) = 0 in R

N × (0, T ), (1.1)

where a is a given constant. A formal asymptotic analysis says that the internal
transition layer of a solution of (1.1) approximates the evolving interface {Γt}t≥0

under the mean curvature flow with a driving force of the form

V = −H +A on Γt, (1.2)

where V is the normal velocity, H is the mean curvature of Γt in the direction of
the minus of the normal vector field, and A is a constant determined completely
by the nonlinear term − sinu − εa(1 + cosu). If the initial data uε(x, 0) =
u0(x) ∈ BUC(RN ) satisfies

sup
RN

|u0| ≤ (2K0 + 1)π

for some K0 ∈ N, the internal transition layers stay like as an annual ring. We
shall see that all the internal transition layers approximates the motion of the
interfaces moving by (1.2).

The Allen–Cahn equation

uε
t − ∆uε +

1

ε2
(W ′(uε) − εa) = 0, (1.3)

where W (t) = (t2 − 1)2/2 is the double-well potential and a is a given constant,
was introduced by Allen and Cahn in 1979. It is the L2-gradient flow of the
energy functional

E(u) =

∫
(

1

2
|∇u|2 +

1

ε2
(W (u) − εau)

)

. (1.4)
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The convergence of solutions of the Allen–Cahn equation to the mean curvature
flow (1.2) has been proved in various setting, for example, by Chen(1992), Evans,
Soner and Souganidis(1992). Let Γt be a solution of (1.2) and Ot be a region
enclosed by Γt. If the initial data uε(x, 0) of a solution of (1.3) is positive in O0

and negative in R
N \ (Γ0 ∪ O0), then one expects that

uε(x, t) →
{

1 for Ot,
−1 for R

N \ (Γt ∪ Ot)
(1.5)

locally uniformly as ε → 0. Chen proved (1.5) if Γt is a solution of (1.2) in
the classical sense. By using a level set formulation (see e.g. Giga, Y.(2006))
of the motion of Γt proposed by Chen, Giga and Goto(1991) or Evans and
Spruck(1991), Evans, Soner and Souganidis proved (1.5) globally-in-time by in-
terpreting Γt as the generalized solution of (1.2). The results on above are proved
by the comparison principle and constructing a supersolution and a subsolution
for the estimate of the convergence. Katsoulakis, Kossioris and Reitich(1995)
extended this convergence result to the Neumann boundary condition in a con-
vex domain. A new set theoretic approach to prove (1.5) is proposed by Barles
and Souganidis(1998). Barles and Da Lio(2003) extended the set theoretic ap-
proach to the Neumann boundary problem without the convexity assumption of
a domain. For an anisotropic version of the Allen–Cahn equation and the mean
curvature flow equation, the convergence is studied by, for example, Elliott and
Schätzle(1996, 1997), Elliott, Paolini and Schätzle(1996), Giga, Ohtsuka and
Schätzle(to appear).

The equation (1.1) is the L2-gradient flow of the energy functional of the
form

Fε(u) =

∫
(

1

2
|∇u|2 +

1

ε2
(cosu− εa(u+ sinu))

)

.

We have the similar problem for the equation (1.1). The nonlinear term

fε(u) := − sinu− εa(1 + cosu)

of (1.1) has a exactly three zeros ±π and some point αε ∈ (−π, π) in [−π, π],
which play the same role as the zero points of the nonlinear term of (1.3). Since
fε is periodic, one expects that a solution of the equation (1.1) has several
internal transition layers where a solution of (1.1) changes its value from (2k −
1)π to (2k + 1)π. The aim of this paper is to prove for the solution uε of (1.1)
and the generalized solution u of a level set equation of (1.2) with initial data
uε(x, 0) = u(x, 0) = u0(x) ∈ BUC(RN ), we have

uε(x, t) → (2k + 1)π

for (x, t) ∈ {(y, s) ∈ R
N × (0, T ); u(y, s) ∈ (2πk, 2π(k + 1))} locally uniformly

as ε→ 0.
We will discuss the existence and uniqueness of a solution for (1.1), the

equation for the traveling wave solution of (1.1) and the level set equation of
(1.2) in Section 2. In Section 3, we verify that the internal transition layer is
generated in a very short time by using the strategy of §3 in Chen(1992). In
Section 4, we shall give a uniform estimate of solutions of the traveling wave
equation. By using this, we shall determine the constant A in (1.2) from the
traveling wave equation. In Section 5, we construct a supersolution of (1.1)
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for the estimate of solutions uε by using a signed distance function from the
generalized solution of (1.2). In Evans, Soner and Souganidis(1992), one can find
a way to construct a supersolution which has a layer around an interface moving
by (1.2). However, their method provides a way to construct a supersolution
with single-height layer so that the value of it is, for example, π in a domain
enclosed by some interface and −π outside of the interfaces. For our problem,
we need to construct a supersolution with the multiple-height layer. This is the
one of characteristic difficulties. In Section 6, we shall prove a main result by
using a properties proved in previous sections.

In Jerrard, R. L.(1997), the singular limit for the equation (1.1) with a
nonlinear term ε−1−αfε(ε

−1+αuε) for α ∈ [0, 1) instead of our nonlinear term
is considered. He shows that a solution of this equation converges to a function
which solves a level set equation of a some interface evolution equation.

Acknowledgment. The author is grateful to Professors Yoshikazu Giga, Sigeaki
Koike, Okihiro Sawada and Kazufumi Shimano for valuable discussions and ad-
vices. The work of the author was partly supported by the Grant-in-Aid for
Scientific Research, No. 17740091, the Japan Society for the Promotion of Sci-
ence and the 21 century COE program at Graduate School of Mathematical
Sciences, the University of Tokyo.

2. Preliminaries and main result

2.1. Allen–Cahn equations with multiple-well potentials

We consider the Allen–Cahn equation with the multiple-well potential of the
form

uε
t − ∆uε +

1

ε2
fε(u

ε) = 0 in R
N × (0, T ) (2.1)

with the initial data
uε(·, 0) = u0(·) ∈ BUC(RN ) (2.2)

where fε is of the form

fε(u) = − sinu− εa(1 + cosu), (2.3)

a is a constant, and ε ∈ (0, 1) is a small parameter satisfying ε� 1.
By straightforward calculation we obtain

fε(u) = −
√

1 + ε2a2 sin(u+ βε) − εa,

where βε ∈ (0, π/2) satisfies

cosβε =
1√

1 + ε2a2
, sinβε =

εa√
1 + ε2a2

.

The function fε is periodic with fε(u+ 2π) = fε(u) and has exactly three zeros
u = −π, u = −2βε =: αε and u = π in [−π, π]. Moreover we obtain from
straightforward calculation,

f ′
ε(±π) = 1, f ′

ε(αε) = −1.

The three zeros ±π and αε play the role of three zeros ±1 and 0 in the case of
Allen–Cahn equation, i.e., fε(u) = 2u(u2 − 1).
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Remark 2.1. In this paper we give the explicit form of nonlinear term fε by
(2.3). However, we note that the argument in this paper is valid for the periodic
nonlinear term of the form

fε(u) = f0(u) + εf1(u),

where f0 and f1 are smooth functions satisfying

(i) f0 and f1 are periodic with same period, for examples,

f0(u+ 2) = f0(u), f1(u+ 2) = f1(u),

(ii) f0(±1) = f0(0) = 0, f1(±1) = 0 f0 > 0 in (−1, 0) and f0 < 0 in (0, 1),

(iii) f ′
0(±1) > 0 and f ′

0(0) < 0,

(iv)
∫ 1

−1 f0(u)du = 0.

We also remark that it is important that the periods of f0 and f1 are same. If
the periods are different, then the driving force term of the interface evolution
equation for each internal transition layers are various. We also need more
complicated assumptions for f0 and f1 for such a situation.

In this paper we use the following notation

λj = sup
ε∈(0,1)

sup
R

∣

∣

∣

∣

djfε

duj

∣

∣

∣

∣

for j = 0, 1, 2. (2.4)

Here we are interested in the case that u0 ∈ BUC(RN ). Let K0 ∈ N be a
constant satisfying

sup
RN

|u0| ≤ (2K0 + 1)π. (2.5)

We remark that we are interested in a situation such that several internal tran-
sition layers appear in a domain. If we would assume that sup

RN |u0| ≤ π, then
only one internal transition layer which change the value of a solution of (2.1)
from −π to π appears so that it is essentially same as the Allen–Cahn equation
case.

We here and hereafter consider viscosity solutions of (2.1) defined by Cran-
dall, Ishii and Lions(1992). The comparison principle holds for viscosity solu-
tions of (2.1).

Theorem 2.2. Let u and v respectively be an upper and a lower semicontinuous
sub- and supersolution of (2.1) in R

N × (0, T ). Moreover we assume that there
exists a positive constant M satisfying u ≤M and v ≥ −M . If u(x, 0) ≤ v(x, 0)
for x ∈ R, then u(x, t) ≤ v(x, t) for (x, t) ∈ R

N × (0, T ).

We shall mention an idea of the proof in a few words. Set λε = ε−2λ1, where
λ1 is a constant defined by (2.4). We have that the map r 7→ λε + ε−2fε(r)
is monotone nondecreasing. We consider a function ũ(x, t) := e−λεtu(x, t) and
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ṽ(x, t) := e−λεtv(x, t). Then we have that ũ and ṽ are a viscosity sub- and
super-solutions of the equation of the form

ũt − ∆ũ+ e−λεt

(

λεe
λεtũ+

1

ε2
fε(e

λεtũ)

)

= 0 in R
N × (0, T ), (2.6)

respectively. By applying the arguments as in Theorem 4.1 of Chen, Giga and
Goto(1992) or §8 with the idea as in §5.D of Crandall, Ishii and Lions(1991),
we have the conclusion of Theorem 2.2.

We also have the existence and uniqueness of a viscosity solution of (2.1).

Theorem 2.3. For a given u0 ∈ BUC(RN ), there exists a viscosity solution
uε ∈ C([0,∞);BUC(RN )) of (2.1) with initial data uε(x, 0) = u0(x).

We shall point out the idea of the proof of Theorem 2.3. The existence is estab-
lished by the Perron’s method due to H. Ishii. See Chen, Giga and Goto(1992)
for the Perron’s method and a construction of a solution. For the uniform con-
tinuity of uε, apply the method as in §5.D of Crandall, Ishii and Lions(1992) to
(2.6).

It is convenient for our problem to consider the traveling wave solution of
the form uε = q(ε−1x · e− ε−2ct) where q : R → R. We have that q satisfies

−q′′ − cq′ + fε(q) = 0 in R (2.7)

by straightforward calculation from (2.1). The constant c denotes the traveling
speed of the internal transition layer of the solution of (2.1). Aronson and
Weinberger(1978) show that there exists a unique pair (q, c) of a solution and a
constant of (2.7) with boundary condition

q(±∞) = ±π.

In Section 4, we shall give an estimate of such a q, and the existence of the limit
limε→0 ε

−1c.

2.2. Level set equations for interfaces

A formal asymptotic analysis says that the internal transition layer of a solution
of (2.1) approximates the motion of an interface {Γt}t≥0 which moves by

V = −H +A on Γt, (2.8)

where V is the normal velocity of Γt, H is the mean curvature of Γt in the
direction of the minus of the normal vector field, and A is a constant determined
by A = − limε→0 ε

−1c of which the existence will be proved in Section 4.
We shall mention the relation of (2.1) and (2.8) globally-in-time whenever

the interface Γt still appears. Therefore we introduce the level set formulation
of (2.8) as in Chen, Giga and Goto(1991) or Evans and Spruck(1991). Let Γt

be given by
Γt = {y ∈ R

N ; u(y, t) = z}
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for some z ∈ R. We obtain the level set equation of the form

ut − |∇u|
{

div
∇u
|∇u| +A

}

= 0 in R
N × (0, T ). (2.9)

The comparison principle for viscosity solutions still holds for (2.9).
A general interface evolution equation including (2.9) is well studied, for

example, by Chen, Giga and Goto(1991), Evans and Spruck(1991). Some result
are obtained when a domain is bounded. However, we have the comparison
principle, the invariance of under change of dependent variables, the existence
and uniqueness of viscosity solutions for the uniform continuous and bounded
initial data in a some domain which includes an unbounded case. See Giga(2006)
more precise properties for (2.9).

2.3. Convergence result

We are now in the position to state our main result.

Theorem 2.4. Let uε be a solution of (2.1) with uε(x, 0) = u0(x) ∈ BUC(RN ).
Let u be a solution of (2.9) with u(x, 0) = u0(x). Assume that u0 satisfies (2.5).
Then we have the followings for any k ∈ [−K0,K0] ∩ Z:

(i) Assume that there exists m0 > 0 such that {y ∈ R
N ; u(y, t) = 2πk−m} 6=

∅ for t ∈ [0, T ) provided that m ∈ [0,m0). Then, for any compact subset
K ⊂ {(y, s) ∈ R

N × (0, T ); u(x, t) < 2πk}, we have

lim
ε→0

sup
(x,t)∈K

uε(x, t) ≤ (2k − 1)π.

(ii) Assume that there exists m0 > 0 such that {y ∈ R
N ; u(y, t) = 2πk+m} 6=

∅ for t ∈ [0, T ) provided that m ∈ [0,m0). Then, for any compact subset
K ⊂ {(y, s) ∈ R

N × (0, T ); u(x, t) > 2πk}, we have

lim
ε→0

inf
(x,t)∈K

uε(x, t) ≥ (2k + 1)π.

It is easy to see the following from Theorem 2.4;

Corollary 2.5. Let uε be a solution of (2.1) with uε(x, 0) = u0(x) ∈ BUC(RN ).
Let u be a solution of (2.9) with u(x, 0) = u0(x). Assume that u0 satisfies (2.5).
Assume that Γk

t 6= ∅ and Γk+1
t 6= ∅ for t ∈ [0, T ). Then we have

uε → (2k + 1) in {(y, s) ∈ R
N × (0, T ); u(y, s) ∈ (2πk, 2π(k + 1))}

locally uniformly as ε→ 0.

The proof is given in Section 6.
The strategy of the proof is made up by 2 steps. The first step of the proof

is to know a very short time behavior of the solution of (2.1) by using an idea
of §3 as in Chen(1992), which is presented in Section 3. The second step is
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to construct a supersolution with multiple-height layer by using the traveling
wave solution. However, the traveling wave solution provides single-height layer
solution and there is no solution of (2.7) with a boundary condition which yields
a multiple-height layer. To overcome this difficulty, we shall pile up several
single-layer solution so that we construct a supersolution with a multiple-height
layer. That is presented in Section 5. In this construction, we need a uniform
estimate of the traveling wave solution with respect to ε, which is presented in
Section 4.

3. Generation of interfaces

In this section we see a very short time behavior of the solution uε for (2.1).
The aim of this section is to show that;

Theorem 3.1. Let uε be a solution of (2.1) with uε(x, 0) = u0(x). Assume that
u0 satisfies (2.5). Then, for any b > 0 and m > 0, there exist positive constants
ε̄ = ε̄(b,m) and τ0 = τ0(b) such that, for any k ∈ Z ∩ [−K0,K0],

uε(x, τ0ε
2| log ε|) ≥ (2k + 1)π − bε for x ∈ {y; u0(y) ≥ 2πk +m},

uε(x, τ0ε
2| log ε|) ≤ (2k − 1)π + bε for x ∈ {y; u0(y) ≤ 2πk −m},

provided that ε ∈ (0, ε̄).

In the following arguments, we shall mention only on the estimate from below.
For the estimate from above, we consider the equation for ūε := −uε of the form

ūε
t − ∆ūε +

1

ε2
gε(ū

ε) = 0 in R
N × (0, T ) (3.1)

with gε(u) = −fε(−u) and ūε(x, 0) = −u0. The estimate of vε from below
implies the estimate of uε from above.

We adjust the method as in §3 of Chen(1992) to our problem. Let ζ : R → R

be a smooth cut-off function satisfying

ζ(u) = 0 for u ∈ (−∞, αε − ε/λ1] ∪ [αε + 3ε| log ε|,+∞), (3.2)

ζ(u) = 1 for u ∈ [αε, αε + 2ε| log ε|], (3.3)

0 ≤ ζ ′(u) ≤ 2λ1/ε for u ∈ (−∞, αε] (3.4)

−2(ε| log ε|)−1 ≤ ζ ′(u) ≤ 0 for u ∈ [αε,+∞), (3.5)

where λ1 is the constant defined by (2.4). For k ∈ Z, we define

f̄ε(s) = (1 − ζ(s− 2πk))fε(s) + ζ(s− 2πk)
αε + 2πk + ε| log ε| − s

| log ε|
for s ∈ [(2k − 1)π, (2k + 1)π].

(3.6)

By the definition of f̄ε we have

f̄ε = fε in
⋃

k∈Z

[αε + 2πk + 3ε| log ε|, αε + 2π(k + 1) − ε/λ1]. (3.7)
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Moreover we have that there exists ε0 > 0 satisfying

f̄ε(u) ≥ fε(u) for u ∈ R provided that ε ∈ (0, ε0). (3.8)

In fact, for u ∈ [−π, π], we have

f̄ε(u) =(1 − ζ(u))fε(u) + ζ(u)
αε + ε| log ε| − u

| log ε|

=fε(u) + ζ(u)

{

ε+ (αε − u)

(

1

| log ε| +
fε(αε) − fε(u)

αε − u

)}

.

(3.9)

Let ε0 � 1 enough small so that we have















f ′
ε(u) ≥

1

2
f ′

ε(0) for u ∈ [αε − ε/λ1, αε + 3ε| log ε|],

and − 1

| log ε| ≥
1

2
f ′

ε(0) provided that ε ∈ (0, ε0).
(3.10)

For u ∈ [αε − ε/λ1, αε], we have

(αε − u)

(

1

| log ε| +
fε(αε) − fε(u)

αε − u

)

≥ (αε − u)
fε(αε) − fε(u)

αε − u
≥ −ε.

By combining this and (3.9) we obtain f̄ε ≥ fε. For u ∈ [αε, αε + 3ε| log ε|], we
have

αε + ε| log ε| − u

| log ε| ≥ fε(u).

In fact, we have for u ∈ [αε, αε + 3ε| log ε|], there exists θ ∈ [αε, u] satisfying
fε(u) = fε(αε) + f ′

ε(θ)(u− αε). Therefore we have for u ∈ [αε, αε + 3ε| log ε|],

fε(u) = fε(αε) + f ′
ε(θ)(u− αε) ≤

1

2
f ′

ε(0)(u− αε) <
αε + ε| log ε| − u

| log ε| .

by (3.10). This yields

f̄ε(u) ≥ (1 − ζ(u))fε(u) + ζ(u)fε(u) = fε(u)

for u ∈ [αε, αε + 3ε| log ε|]. We thus obtain f̄ε ≥ fε in [−π, π]. This implies
f̄ε ≥ fε in R since f̄ε is periodic whose length is 2π.

We here recall the comparison principle of ordinary differential equations,
which is important tool in this section.

Lemma 3.2. Let D ⊂ R be an interval. Let F : D → R be a Lipschitz contin-
uous function. Let J ⊂ R be an open interval, and u, v : J → D be functions
satisfying

u(s0) ≤ v(s0) for some s0 ∈ J,

u′ ≤ F (u), v′ ≥ G(v) in J.

Then
u(s) ≤ v(s) for s ∈ J ∩ [s0,∞).
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Proof. See (16,4) Lemma of Amann(1990). 2

We prove the revised version of Lemma 3.1 as in Chen(1992) for our problem.

Lemma 3.3. Assume that ε ∈ (0, ε0), where ε0 is a positive constant satisfying
(3.10). Let ω̄ = ω̄(ξ, τ) be a solution of

ω̄τ + f̄ε(ω̄) = 0, (3.11)

ω̄(ξ, 0) = ξ. (3.12)

Then the followings hold.

(i) If ξ ∈ (αε + 2πk + ε| log ε|, (2k + 1)π), then ω̄(ξ, τ) ∈ (ξ, (2k + 1)π). If
ξ ∈ ((2k − 1)π, αε + 2πk + ε| log ε|), then ω̄(ξ, τ) ∈ ((2k − 1)π, ξ).

(ii) There exists ε̄ ∈ (0, ε0) such that, for b > 0, there exists τ0 = τ0(b)
satisfying

ω̄(ξ, τ) ≥ 2π − bε for ξ ≥ αε + 3ε| log ε|, τ ≥ τ0| log ε|

provided that ε ∈ (0, ε̄).

(iii) ω ∈ C2,1(R × [0,∞)) and

ω̄ξ(ξ, τ) > 0 for τ ∈ [0,∞).

(iv) For κ > 0, there exists L = L(κ) > 0 satisfying

∣

∣

∣

∣

ω̄ξξ(ξ, τ)

ω̄ξ(ξ, τ)

∣

∣

∣

∣

≤ L

ε
for τ ≤ κ| log ε|

provided that ε ∈ (0, ε̄), where ε̄ is as in (i).

We will give a detailed proof of Lemma 3.3 because it is necessary to clarify the
dependence of ε for each constants since fε depends ε.

Proof. In the following arguments, we shall prove Lemma 3.3 only when ξ ∈
[−π, π] since ω̄(ξ, τ)+2πk = ω̄(ξ+2πk, τ). By the theory of ordinary differential
equations we have ω̄ ∈ C2,1(R × [0,∞)).

(i) We only prove the case that ξ ∈ (αε + ε| log ε|, π) since a proof for the case
ξ ∈ (−π, αε + ε| log ε|) is similar.

Assume that there exists τ1 > 0 satisfying

ω̄(ξ, τ1) ≥ π.

Set τ2 = inf{τ ∈ (0, τ1]; ω̄(ξ, τ) ≥ π}. Since ω̄(ξ, 0) = ξ < π, we observe that
τ2 > 0 and

ω̄(ξ, τ) < π for τ < τ2, (3.13)

ω̄(ξ, τ2) = π. (3.14)
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We have that ω̄(ξ, τ) ≡ π is a solution of (3.11) in some neighborhood J of τ2
with initial data (3.14). By the uniqueness of a solution of (3.11) with initial
data (3.14), we obtain

ω̄(ξ, τ) ≡ π in J,

which contradicts (3.13). We thereby obtain ω̄(ξ, τ) < π. By similar arguments
we obtain ω̄(ξ, τ) > αε + ε| log ε|. We obtain

ω̄(ξ, τ) ∈ (αε + ε| log ε|, π) for ξ ∈ (αε + ε| log ε|, π) and τ > 0. (3.15)

We next assume that there exists τ1 > 0 and ξ̃ ∈ (αε + ε| log ε|, ξ] satisfying
ω̄(ξ, τ1) = ξ̃ and lead a contradiction. By (3.15) we obtain

f̄ε(ω̄(ξ, τ)) < 0 for τ ∈ (0, τ1).

Therefore we obtain

ξ ≥ ω̄(ξ, τ1) = ω̄(ξ, 0) −
∫ τ1

0

f̄ε(ω̄(ξ, σ))dσ > ξ,

which is the contradiction.

(ii) We first remark that there exists σ0, which is independent of ε, satisfying

gε(u) := fε(u) − σ0(u− αε)(u− π) < 0 for u ∈ (αε, π). (3.16)

In fact, we obtain that, for example, σ0 = (2π)−1 is a desired constants by
straightforward calculation.

Let ξ ∈ (αε + 3ε| log ε|, π) and ω̃ = ω̃(ξ, τ) be a function satisfying

{

ω̃τ + σ0(ω̃ − αε)(ω̃ − π) = 0 for τ > 0,

ω̃(ξ, 0) = ξ.
(3.17)

By similar argument as in (i) we obtain ω̃(ξ, τ) ∈ (ξ, π) for ξ ∈ (αε, π). By (i)
we also have that ω̄(ξ, τ) ∈ (αε + 3ε| log ε|, π). This and Lemma 3.2 yields that

ω̃(ξ, τ) ≤ ω̄(ξ, τ) for τ ≥ 0 and ξ ∈ (αε + 3ε| log ε|, π).

Since ω̃(ξ, τ) is monotone increasing and ω̃(ξ, τ) ≥ ω̃(αε+3ε| log ε|, τ), it suffices
to obtain the estimate of τ̂ satisfying ω̃(αε + 3ε| log ε|, τ̂ ) = π − bε from above.

By solving (3.17) we obtain that ω̃ satisfies

−σ0τ + C̃ε = − 1

π − αε

log
ω̃ − αε

π − ω̃
, (3.18)

where

C̃ε = − 1

π − αε

log
3ε| log ε|

π − αε − 3ε| log ε| .

Let τ̂ be a constant satisfying ω̃(αε + 3ε| log ε|, τ̂) = π − bε. We obtain from a
straightforward calculation

τ̂ =
1

σ0

(

C̃ε +
1

π − αε

log
π − bε− αε

bε

)

.
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Here we fix ε̄ < ε0 satisfying
ε̄ < e−1.

There exist numerical constants C̃1 > 0 and C̃2 > 0 satisfying

C̃ε ≤ C̃1| log ε|,
1

π − αε

log
π − bε− αε

bε
≤ C̃2(1 + | log b|)| log ε|,

provided that ε ∈ (0, ε̄). Therefore we obtain

τ̂ ≤ 1

σ0
(C̃1 + C̃2(1 + | log b|))| log ε|,

so τ0(b) = (C̃1 + C̃2(1 + | log b|))/σ0 is a desired constant.

(iii) By following the method of the proof of Lemma 3.1(ii) as in Chen(1992)
we obtain

ω̄ξ = exp

(

−
∫ τ

0

f̄ ′
ε(ω̄(ξ, σ))dσ

)

> 0 for τ ≥ 0. (3.19)

(iv) For ξ 6= ±π, αε, we obtain

ω̄ξ(ξ, τ) = exp

(
∫ τ

0

f̄ ′
ε(ω̄(ξ, σ))

f̄ε(ω̄(ξ, σ))
ω̄τ (ξ, σ)dσ

)

= exp

(
∫ τ

0

d

dσ
(log f̄ε(ω̄(ξ, σ)))dσ

)

=
f̄ε(ω̄(ξ, τ))

f̄ε(ξ)
.

Therefore we obtain from above,

ω̄ξξ(ξ, τ)

ω̄ξ(ξ, τ)
=
f̄ ′

ε(ω̄(ξ, τ)) − f̄ ′
ε(ξ)

f̄ε(ξ)
for ξ 6= ±π, αε. (3.20)

We remark that there exists a positive constant C̃3 satisfying

∣

∣

∣

∣

ω̄ξξ(±π, τ)
ω̄ξ(±π, τ)

∣

∣

∣

∣

≤ C̃3 for τ ≤ κ| log ε|.

In fact we obtain

ω̄ξξ(±π, τ)
ω̄ξ(±π, τ)

= lim
ξ→±π

ω̄ξξ(ξ, τ)

ω̄ξ(ξ, τ)
=
f̄ ′′

ε (ω̄(±π, τ))(ω̄ξ(±π, τ) − 1)

f̄ ′′
ε (±π)

.

We have
f̄ ′′

ε (ω̄(±π, τ)) = f̄ ′′
ε (±π) = f ′′

ε (±π) = −εa.
From (3.19) we obtain

ω̄ξ(±π, τ) = exp(−τ) ∈ (0, 1].
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Therefore we obtain
∣

∣

∣

∣

ω̄ξξ(±π, τ)
ω̄ξ(±π, τ)

∣

∣

∣

∣

≤ 2.

Moreover we remark that there exists r0 > 0, which is independent of ε,
satisfying

αε ≤ ω̄(ξ, τ) ≤ αε + 2ε| log ε|
for ξ ∈ (αε + ε| log ε| − r0ε, αε + ε| log ε| + r0ε), τ ≤ κ| log ε|. (3.21)

Here we only prove the second inequality because the proofs are symmetric. We
may assume that r0 < | log ε0|, which implies that r0 < | log ε| since ε < ε0 < 1.
Let ω = ω(τ) be a solution of

ωτ +
αε + ε| log ε| − ω

| log ε| = 0,

ω(0) = αε + ε| log ε| + r0ε,

where r0 > 0 is a constant determined later. We obtain

ω(τ) = αε + ε| log ε| + r0ε exp

(

τ

| log ε|

)

.

Fix r0 = exp(−κ), which is determined so that r0 satisfies r0 ≤ | log ε| exp(−κ).
We have that ω(τ) ≤ αε +2ε| log ε| for τ ≤ κ| log ε| and ε ∈ (0, ε0). This implies
that ω satisfies

ωτ + f̄ε(ω) = 0 for τ ∈ (0, κ| log ε|).
By Lemma 3.2 we obtain ω̄(τ, ξ) ≤ ω(τ) for ξ ∈ (αε +ε| log ε|, αε +ε| log ε|+r0ε)
and τ ∈ (0, κ| log ε|), which implies the desired conclusion.

We finish the proof of (iv). We observe that there exists r1 > 0 satisfying

∣

∣

∣

∣

ω̄ξξ(±π, τ)
ω̄ξ(±π, τ)

∣

∣

∣

∣

≤ C̃3 + 1 for τ ≤ κ| log ε|, ξ ∈ (±π − r1ε,±π + r1ε), (3.22)

and r̄ = min(r0, r1). By definition of f̄ε there exists c̄ > 0 such that ξ ∈
[−π,−π+ r̄ε)∪ (αε + ε| log ε| − r̄ε, αε + ε| log ε|+ r̄ε)∪ (π− r̄ε, π] if f̄ε(ξ) < c̄ε.
We divide a situation into 2 cases.

Case 1. Assume that ξ satisfies f̄ε(ξ) ≥ c̄ε. Then we obtain from (3.20),

∣

∣

∣

∣

ω̄ξξ(ξ, τ)

ω̄ξ(ξ, τ)

∣

∣

∣

∣

=

∣

∣

∣

∣

f̄ ′
ε(ω̄(ξ, τ)) − f̄ ′

ε(ξ)

f̄ε(ξ)

∣

∣

∣

∣

≤ 2λ̄1

c̄ε
,

where λ̄1 = supε∈(0,ε̄) sup
R
|f̄ ′

ε|. We remark that

|f̄ ′
ε| ≤ λ1 +

1

| log ε| ≤ λ1 + 1,

where λ1 is a constant defined by (2.4). Therefore we obtain the desired con-
clusion in this case.
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Case 2. Assume that ξ satisfies f̄ε(ξ) < c̄ε. If ξ ∈ [−π,−π+ r̄ε)∪ (π− r̄ε, π], we
obtain the desired conclusion by (3.22). If ξ ∈ (αε + ε| log ε|− r̄ε, αε + ε| log ε|+
r̄ε), then we obtain from (3.21) and (3.20)

ω̄ξξ(ξ, τ)

ω̄ξ(ξ, τ)
= 0 for τ ≤ κ| log ε|,

which includes the desired conclusion. 2

We will give the estimate of solutions of (2.1) with good initial data.

Lemma 3.4. Let ϕ : R
N → R be smooth and satisfy

C̄0 ≥ sup
RN

|∇ϕ|2 + ε sup
RN

|∆ϕ| <∞ (3.23)

for some constant C̄0 independent of ε ∈ (0, 1), Let ε̄ be as in Lemma 3.3. We
have that:

(i) there exists a positive constant M such that

v(x, t) := ω̄

(

ϕ(x) − Mt

ε
,
t

ε2

)

is a subsolution of (2.1) in R
N × (0, τ0ε

2| log ε|) provided that ε ∈ (0, ε̄).

(ii) for any b > 0, there exists a positive constant M0 = M0(b) satisfying

v(x, τ0ε
2| log ε|) ≥ π − bε for x ∈ {y; ϕ(y) ≥ αε +M0ε| log ε|}

provided that ε ∈ (0, ε̄).

Proof. See the proof of Theorem 1 in §3 of Chen(1992). 2

We are now in the position to prove Theorem 3.1.

Proof of Theorem 3.1. We first prove the case k = 0.
Let m > 0 and x0 ∈ {y; u0(y) > m}. By the uniform continuity of u0 there

exists δ > 0 satisfying

sup
|x−y|<δ

|u0(x) − u0(y)| <
m

2
. (3.24)

We remark that u0 > m/2 in Bδ(x0) := {x; |x− x0| < δ}. Here we define

ϕ(x) = −2(2K0 + 1)π +m

2δ2
|x− x0|2 +

m

2
.

We have
ϕ(x) ≤ u0(x) for x ∈ R

N ,

since ϕ(x) ≤ m/2 ≤ u0(x) for x ∈ Bδ(x0) and ϕ(x) ≤ −(2K0 + 1)π ≤ u0(x) for
x ∈ R

N \Bδ(x0). Moreover we have that there exists r > 0 satisfying

ϕ(x) >
m

4
for x ∈ Br(x0). (3.25)
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Let θ : R → R be a smooth function satisfying

θ(σ) =

{

σ σ ≥ −(2K0 + 1)π,
−2(K0 + 1)π σ ≤ −2(K0 + 1)π,

θ′(σ) ≥ 0 for σ ∈ R.

We define
ϕ̄(x) := θ(ϕ(x)).

We then have

ϕ̄(x) ≤ u0(x) for x ∈ R
N , (3.26)

ϕ̄(x) = ϕ(x) for x ∈ Bδ(x0), (3.27)

sup
RN

|∇ϕ̄|2 + ε sup
RN

|∆ϕ̄| ≤ C̄0 < +∞ (3.28)

for some constant C̄0 independent of ε ∈ (0, 1). We now replace ε̄ > 0 smaller
so that we have

αε +M0ε| log ε| ≤ m

4
provided that ε ∈ (0, ε̄). (3.29)

We define

v(x, t) := ω̄

(

ϕ̄(x) − M

ε
t,
t

ε2

)

,

where M is as in Lemma 3.4(ii). By (3.25), (3.27) and Lemma 3.4(ii) we obtain
for b > 0,

v(x, τ0ε
2| log ε|) ≥ π − bε for x ∈ Br(x0) provided that ε ∈ (0, ε̄).

Since v(x, 0) = ϕ̄(x) ≤ u0(x) for x ∈ R
N , we obtain from Theorem 2.2,

uε(x, τ0ε
2| log ε|) ≥ v(x, τ0ε

2| log ε|) ≥ π − bε for x ∈ Br(x0)

provided that ε ∈ (0, ε̄).
For a general k ∈ Z ∩ [−K0,K0], let xk

0 ∈ {x; u0(x) > 2πk +m}. We have
u0(y) ≥ 2πk +m/2 for y ∈ Bδ(x

k
0). Define

ϕk(x) = −2(2K0 + 1)π +m+ 4πk

2δ2
|x− xk

0 |2 +
m

2
+ 2πk,

ϕ̄k(x) = θ(ϕk(x)).

We also obtain (3.26)–(3.28) for ϕ̄k and there exists rk > 0 satisfying

ϕ̄k(x) > 2πk +
m

4
for x ∈ Brk

(xk
0). (3.30)

Here we consider

vk(x, t) = ω̄

(

ϕ̄k(x, t) − M

ε
t,
t

ε2

)

.

Since ω̄(ξ, τ) = ω̄(ξ − 2πk, τ) + 2πk and (3.30) implies that ϕ̄k − 2πk ≥ αε +
M0ε| log ε|, we obtain

vk(x, t) =ω̄

(

ϕ̄k(x, t) − 2πk − M

ε
t,
t

ε2

)

+ 2πk

≥(2k + 1)π − bε for x ∈ Brk
(xk

0).
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Therefore we obtain

u(x, τ0ε
2| log ε|) ≥ vk(x, τ0ε

2| log ε|) ≥ (2k + 1)π − bε for x ∈ Brk
(xk

0).

This yields the conclusion of Theorem 3.1. 2

4. Uniform estimate of traveling waves

In the previous section we have the very short time behavior of a solution of
(2.1). That result says that the solution of (2.1) becomes like as an initial data,
which Evans, Soner and Souganidis(1992) introduced, in a very short time.
Hence it is convenient to consider the traveling wave solution to construct a
supersolution for an estimate as in Evans, Soner and Souganidis(1992). In this
section we shall give an uniform estimate and some properties of the traveling
wave solution.

The traveling wave solution of (2.1) is a solution of the form q(ε−1x·e−ε−2ct),
where e ∈ Sn−1 and c ∈ R. The function q(s) satisfies the ordinary differential
equation

q′′ + cq′ = fε(q) in R. (4.1)

We are interested in a solution of (4.1) satisfying the boundary conditions

q(±∞) = ±π, (4.2)

q(0) = αε. (4.3)

Aronson and Weinberger(1978) proved the existence and uniqueness of a pair
(q, c) satisfying not only (4.1)–(4.2) but also

|q(s)| ≤ π in R (4.4)

q′ > 0 in R, (4.5)

q′(±∞) = 0 (4.6)

for ε > 0. Here and hereafter, we use the notation (qε, cε) to clarify the depen-
dence of ε.

For our problem, we are interested in the uniform bound of qε and the
existence of the limit limε→0 ε

−1cε.

Lemma 4.1. Let qε be a solution of (4.1) with the conditions (4.2)–(4.6). Then
the followings hold.

(i) There exists ε1 > 0 such that, for any R > 0, we have

inf
ε∈(0,ε1)

inf
[−R,R]

q′ε > 0.

(ii) There exists a positive constants, C1 = C1(ε1) and C2 = C2(ε1) satisfying

|qε(s) − π| ≤ C1 exp(−C2s) for s > 0, (4.7)

|qε(s) + π| ≤ C1 exp(C2s) for s < 0, (4.8)

|q′ε(s)|, |q′′ε (s)| ≤ C1 exp(−C2|s|) for s ∈ R (4.9)

provided that ε ∈ (0, ε1), where ε1 is as in (i).
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(iii) There exists the limit A := − limε→0 ε
−1cε.

Barles, Soner and Souganidis(1993) discuss the traveling waves for functions u 7→
f(x, t, u) − εa. However, they assume the existence of the limit limε→0 ε

−1cε,
and propose the example which fulfills their assumption. They proved that the
pair (q, c) from a map u 7→ 2u(u2 − 1) − εa satisfies their assumption by using
an explicit form of q or c. Therefore we need to prove the existence of the
limit limε→0 ε

−1cε. Here we shall prove it without using the explicit form of the
solution qε or cε, which is one of the advantages over that of Barles, Soner and
Souganidis(1993). Therefore it is easy to extend our proof to the case of the
traveling waves for the function as in Remark 2.1.

Proof of Lemma 4.1. Let ε1 satisfy ε1 < 1 and

−π
2
< αε + βε < 0, −π

2
< αε < 0 for ε ∈ (0, ε1).

In the following arguments we shall replace ε1 to smaller one later, at (4.14)
and (4.22).

1. By multiplying q′ε to (4.1) we obtain

q′ε(s)q
′′
ε (s) + cεq

′
ε(s)

2 = fε(qε(s))q
′
ε(s). (4.10)

By (4.2) and (4.6) we have
∫

R

q′ε(σ)q′′ε (σ)dσ = q′ε(∞)2 − q′ε(−∞)2) = 0,

∫

R

fε(qε(σ))dσ =

∫ π

−π

fε(u)du = −2πaε.

Therefore we have from (4.10),

cε

∫

R

q′ε(σ)2dσ = −2πaε. (4.11)

Moreover, by integrating (4.10) in (−∞, s) we obtain

1

2
q′ε(s)

2 + cε

∫ s

−∞

q′ε(σ)2dσ =

∫ qε(s)

−π

fε(u)du. (4.12)

By straightforward calculation we obtain from qε ∈ (−π, π) and ε ∈ (0, ε1) ⊂
(0, 1),

∫ qε(s)

−π

fε(u)du ≤
∫ αε

−π

fε(u)du

=
√

1 + ε2a2(cos(αε + βε) − cos(−π + βε)) − εa(αε + π)

≤2
√

1 + ε21a
2 + 2πε1|a| ≤ 2

√

1 + a2 + 2π|a|.

Therefore we obtain

1

2
q′ε(s)

2 ≤ |cε|
∫

R

q′ε(σ)dσ +

∫ αε

−π

fε(u)du ≤ 4π|a| + 2
√

1 + a2,
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which implies that there exists L1 depending only on a satisfying

q′ε(s) ≤ L1 for s ∈ R provided that ε ∈ (0, ε1). (4.13)

By integrating (4.10) in (−∞, 0) again we obtain

1

2
q′ε(0)2 = − cε

∫ 0

−∞

q′ε(σ)2dσ +

∫ αε

−π

fε(u)du

≥− |cε|
∫ ∞

−∞

q′ε(σ)2dσ +

∫ αε

−π

fε(u)du

= − 2π|a|ε+
√

1 + ε2a2(cos(αε + βε) − cos(−π + βε)) − εa(αε + π).

Since αε, βε → 0 as ε→ 0, we replace ε1 to smaller one so that we have

−2π|a|ε+
√

1 + ε2a2(cos(αε + βε) − cos(−π + βε)) − εa(αε + π) ≥ 1

2
provided that ε ∈ (0, ε1).

(4.14)

We obtain
q′ε(0) ≥ 1 provided that ε ∈ (0, ε1).

2. We verify (i) and that there exists σ0 > 0 satisfying

∫

R

q′ε(σ)2dσ ≥ σ0 > 0 provided that ε ∈ (0, ε1). (4.15)

By Proposition 4.2 as in Aronson and Weinberger(1978) we have that |cε| ≤
sup

R
|f ′

ε| ≤ λ1. Let pε = q′ε. We have from (4.1), (4.5) and (4.6)

p′′ε + cεp
′
ε = f ′

ε(qε)pε in R, (4.16)

pε(0) ≥ 1, pε(+∞) = 0, (4.17)

pε > 0 in R. (4.18)

We give an estimate of q′ε = pε in (0,+∞) from below.
We first verify that there exists σ1 > 0, which is independent of ε ∈ (0, ε1),

such that r1(s) := exp(−σ1s) satisfies

−r′′1 − cεr
′
1 + (1 + λ1)r1 ≤ 0 in (0,∞). (4.19)

In fact, we have

−r′′1 − cεr
′
1 + (1 + λ1)r1 ≤ (−σ2 + λ1σ1 + 1 + λ1) exp(−s

√

2 + λ1),

which yields the existence of σ1 > 0 satisfying (4.19).
We demonstrate that pε ≥ r1 on [0,∞). If not, there exists s0 > 0 satisfying

pε(s0) − r1(s0) < 0, p′ε(s0) − r′1(s0) = 0, and p′′ε (s0) − r′′1 (s0) ≥ 0 since pε(0) ≥
1 = r1(0) and pε(∞) = 0 = r1(∞). We obtain from (4.16), (4.19) and r1 > 0,

0 ≥p′′ε (s0) − r′′1 (s0) + cε(p
′
ε(s0) − r′1(s0)) − f ′

ε(qε(s0))pε(s0) + (1 + λ1)r1(s0)

≥(λ1 − f ′
ε(qε(s0)))pε(s0) + r1(s0) > 0
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which is the contradiction. By similar argument with r̄1 := exp(σ0s) we obtain
pε ≥ r̄1 on (−∞, 0]. Consequently we obtain (i).

It is easy to get (4.15). We calculate that
∫

R

q′ε(σ)2dσ ≥ 2

∫ ∞

0

exp(−2σ1σ)dσ =
1

σ1
=: σ0.

Moreover, this yields that cε → 0 as ε→ 0 by (4.11).

3. We verify that, for any µ > 0, there exists R0 = R0(µ) satisfying

q(s) > αε + µ for s ≥ R0, (4.20)

q(s) < αε − µ for s ≤ −R0 (4.21)

provided that ε ∈ (0, ε1).
Since q′ε(s) ≥ exp(−σ1|s|), we obtain for s ∈ R,

|qε(s) − qε(0)| =

∣

∣

∣

∣

∫ s

0

q′ε(σ)dσ

∣

∣

∣

∣

≥
∫ |s|

0

exp(−σ1σ)dσ =
1

σ1
(1 − exp(−σ1|s|)),

which yields the existence of R0 satisfying (4.20).

4. We are now in the position to show (4.7) and (4.8). We prove only (4.7)
since the proofs are symmetric. By (4.4) it suffices to obtain the estimate of qε

from below for t ≥ 0.
Fix enough small µ > 0. We replace ε1 to smaller one so that we have

|αε| <
µ

2
, |αε + βε| <

π

2
− µ,

fε

(µ

2

)

< −1

2
sin

µ

2
, fε

(

−µ
2

)

>
1

2
sin

µ

2
,

(4.22)

provided that ε ∈ (0, ε1). Then there exists ν > 0 satisfying

f(u) < ν(u− π) for u ∈
(µ

2
, π

)

(4.23)

f(u) > ν(u− π) for u ∈
(

−π,−µ
2

)

. (4.24)

In fact,

ν =
1

2

(

π − µ

2

)−1

sin
µ

2

is the desired one by (4.22).
We now set r2 = π − 2π exp(−σ2(s − R0)), where R0 > 0 is taken as in

(4.20). We verify that there exists σ2 > 0, which is independent of ε, satisfying

−r′′2 − cεr
′
2 + ν(r2 − π) ≤ 0 in (R0,∞). (4.25)

By straightforward calculation we obtain

−r′′2 − cεr
′
2 + ν(r2 − π) = 2π(σ2

2 − cεσ2 − ν) exp(−σ2(s−R0)).

By (4.11) and (4.15) we have

σ2
2 − cεσ2 − ν ≤ σ2

2 +
2π|a|
σ0

σ2 − ν.
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By solving σ2
2 + (2π|a|/σ0)σ2 − ν < 0, we observe the existence of a constant

σ2 > 0 satisfying (4.25).
By definition of r2, we obtain

r2(R0) = −π ≤ qε(R0), r2(∞) = π = qε(∞).

Moreover we obtain from (4.23),

−q′′ε − cεq
′
ε + ν(qε − π) ≥ 0 in (R0,∞),

which and (4.25) yield
qε ≥ r2 on [R0,∞).

By (4.4) we also obtain

qε ≥ −π ≥ r2 on [0, R0],

which implies (4.7).
We also obtain (4.8) by similar arguments with r̄2(s) := −π+2π exp(σ2(s+

R0)).

5. We obtain (4.9).
We first give the estimate of q′ε Since q′ε > 0, it suffices to give an estimate

of q′ε from above. By properties of fε, there exists R1 > 0 satisfying

f ′
ε(qε(s)) ≥

f ′
ε(π)

2
=
f ′

ε(−π)

2
if |s| ≥ R1.

For s ≥ 0, we set r3(s) := L1 exp(−σ3(s−R1)), where σ3 is a positive constant
satisfying

−r′′3 − cεr
′
3 +

f ′
ε(π)

2
r3 ≥ 0 in (R1,∞). (4.26)

We now verify the existence of such σ3. By straightforward calculation we obtain

−r′′3 − cεr
′
3 +

f ′
ε(π)

2
r3 ≥ L1

(

−σ2
3 − 2π|a|

σ0
σ3 +

f ′
ε(π)

2

)

exp(−σ3(s−R1)).

By solving −σ2
3 − (2π|a|/σ0)σ3 + f ′

ε(π)/2 > 0, we observe the existence of
a constant σ3 > 0 satisfying (4.26), since f ′

ε(π) > 0 and is independent of
ε ∈ (0, ε1).

By the definition of r3 we obtain

r3(R1) = L1 ≤ q′ε(0), r3(∞) = 0 = q′ε(∞)

and pε = q′ε satisfies

−p′′ε − cεp
′
ε +

f ′
ε(π)

2
pε ≤ 0 in (R1,∞),

we obtain q′ε ≤ r3 on [R1,∞). Moreover we obtain

q′ε ≤ L1 ≤ r3 on [0, R1],

which implies q′ε ≤ r3 on [0,∞).
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It is easy to obtain the estimate of q′′ε since

|q′′ε (s)| ≤ |cε||q′ε(s)| + |fε(qε(s))|

and |fε(qε(s))| ≤ λ1|qε(s) + π| for s ≤ 0 or |fε(qε(s))| ≤ λ1|qε(s) − π| for s ≥ 0.

6. Finally, we verify the second property of (iii). By (4.11) it suffices to see
that there exists limε→0

∫

R
q′ε(σ)2dσ. Let q0 : R → R be a function satisfying

−q′′0 (s) − sin q0(s) = 0 for s ∈ R, (4.27)

q0(±∞) = ±π, (4.28)

q0(0) = 0, (4.29)

i.e., the solution of (4.1) and boundary conditions (4.2)–(4.3) with ε = 0. By
similar arguments as in §4 of Aronson and Weinberger(1978) and on above, such
a function q0 exists, is unique, and all of properties on above hold for q0.

We verify that |qε(s)− q0(s)| + |q′ε(s) − q′0(s)| → 0 as ε→ 0. By integrating
(4.1) and (4.27) on [0, s] for s > 0 we obtain

q′ε(s) − q′0(s) = q′ε(0) − q′0(0) − cε

∫ s

0

q′ε(σ)dσ +

∫ s

0

(fε(qε(σ)) − f0(q0(σ)))dσ,

where f0(u) = − sinu. Therefore we obtain

|q′ε(s)−q′0(s)| ≤ |q′ε(0)−q′0(0)|+ |cε|
∫

R

|q′ε(σ)|dσ+

∫ s

0

|fε(qε(σ))−f0(q0(σ))|dσ.
(4.30)

We give an estimate the first term of (4.30). By (4.12) and a similar calcu-
lation for (4.27) we obtain

q′ε(0)2 = − 2cε

∫ 0

−∞

q′ε(σ)2dσ + 2

∫ αε

−π

fε(u)du

= − 2cε

∫ 0

−∞

q′ε(σ)2dσ + 4 − 2εa(αε + π),

q′0(0)2 =2

∫ 0

−π

f0(u)du = 4.

These yield that limε→0 q
′
ε(0) exists and

lim
ε→0

q′ε(0) = 2 = q′0(0).

We next give an estimate the third term of (4.30). We obtain

|fε(qε(s)) − f0(q0(s))| =|f0(qε(s)) − f0(q0(s)) + εf1(qε(s))|
≤|f0(qε(s)) − f0(q0(s))| + ε|f1(qε(s))|,

where f1(u) = −a(1 + cosu). Since |f ′
0(u)| = | − cosu| ≤ 1, we obtain

|f0(qε(s)) − f0(q0(s))| ≤ |qε(s) − q0(s)|.

Since |f ′
1(u)| = |a sinu| ≤ |a| and f ′

1(π) = 0, we obtain

|f1(qε(s))| = |f1(qε(s)) − f1(π)| ≤ |a||qε(s) − π|.
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By (4.7) we obtain
∫ s

0

|f1(qε(σ))|dσ ≤ |a|
∫ s

0

|qε(σ) − π|dσ ≤ |a|
∫ ∞

0

C1 exp(−C2σ)dσ =: Λ1.

We thus obtain
∫ s

0

|fε(qε(σ)) − f0(q0(σ))|dσ ≤
∫ s

0

|qε(σ) − q0(σ)|dσ + εΛ1. (4.31)

By combining (4.30) and (4.31) we obtain

|qε(s) − q0(s)| + |q′ε(s) − q′0(s)| ≤ Λε +

∫ s

0

(|qε(σ) − q0(σ)| + |q′ε(σ) − q′0(σ)|)dσ,

where Λε = |q′ε(0)− q′0(0)|+ |cε|
∫

R
|q′ε(σ)|dσ + εΛ1. We remark that Λε → 0 as

ε→ 0. By Gronwall’s inequality we obtain

|qε(s) − q0(s)| + |q′ε(s) − q′0(s)| ≤ Λε + Λε

∫ s

0

exp(s− σ)dσ for s > 0,

which implies

lim
ε→0

(|qε(s) − q0(s)| + |q′ε(s) − q′0(s)|) = 0 for s > 0.

By similar argument we also obtain qε(s) → q0(s) as ε→ 0 for s < 0.
Finally, we conclude (iii). Since limε→0 q

′
ε(s) = q′0(s) and (4.9) we obtain

lim
ε→0

∫

R

q′ε(σ)2dσ =

∫

R

q′0(σ)2dσ > 0.

Therefore we obtain

lim
ε→0

cε
ε

= − 2πa
∫

R
q′0(σ)2dσ

=: −A. 2

Remark 4.2. Heuristically, one attempts to consider the traveling wave solu-
tion with multiple-heights, i.e., a solution of (4.1) with boundary conditions

qε(−∞) = −π , qε(∞) = 3π, (4.32)

to construct a supersolution for the estimate as in Theorem 2.4. Generally,
however, there is no such a solution.

Let a = 0 and assume there exists a solution satisfying (4.1) with the bound-
ary condition (4.32). We then have cε = 0 and so that q = qε satisfies

−q′′ − sin q = 0 in R.

The boundary condition (4.32) yields that there exists s0 ∈ R satisfying q(s0) =
π. By integrating (4.10) in (s0, s) for s > s0 we obtain

1

2
(q′(s)2 − q(s0)

2) =

∫ q(s)

π

(− sinu)du.

We remark that q′(s0)
2 > 0 since, if not, then we have q ≡ π in R from the

uniqueness of a solution of (4.1), which contradicts (4.32). This yields that

q′(s)2 ≥ q′(s0)
2 > 0

for s > s0, since
∫ q(s)

π
(− sinu)du ≥ 0 for s > s0. This is the contradiction to

(4.32).

21



5. Supersolutions with multiple-height layer

In this section we construct a supersolution with multiple-height layers.
We introduce a signed distance function from an interface. Let z ∈ R. Here

and hereafter in this section, we assume that

Γt := {x; u(x, t) = z} 6= ∅ provided that t ∈ [0, T ), (5.1)

where u is a viscosity solution of (2.9), whose driving force term A is determined
by Lemma 4.1 (iii), with initial data u(x, 0) = u0. We define the signed distance
function from Γt with same sign as u− z by

d(x, t) =

{

inf{|x− y|; u(y, t) = z} if (x, t) satisfies u(x, t) ≥ z,

− inf{|x− y|; u(y, t) = z} otherwise.
(5.2)

The following lemma lists some properties of the signed distance function as in
Proposition 2.1 or Theorem 2.3 of Evans, Soner and Souganidis(1992).

Lemma 5.1. Let u be a solution of (2.9), whose driving force term A is defined
by Lemma 4.1 (iii). For z ∈ R, assume that (5.1) holds. Let d(x, t) be a signed
distance function from Γt defined by (5.2). Then we obtain;

(i) d is left continuous with respect to t, i.e.,

lim
x→x0,t↗t0

d(x, t) = d(x0, t0).

(ii) d is lower semicontinuous in {(x, t); d(x, t) > 0} and satisfies

dt − ∆d−A|∇d| ≥ 0,

|∇d| ≥ 1, −|∇d| ≥ −1

}

in {(x, t); d(x, t) > 0}

in the viscosity supersolution sense.

(iii) d is upper semicontinuous in {(x, t); d(x, t) < 0} and satisfies

dt − ∆d−A|∇d| ≤ 0,

|∇d| ≤ 1, −|∇d| ≤ −1

}

in {(x, t); d(x, t) < 0}

in the viscosity subsolution sense.

Proof. Apply the proof of Proposition 2.1 and Theorem 2.2 in Evans, Soner
and Souganidis(1992) to prove (i), the first inequalities in (ii) and (iii). Here we
shall prove only an estimate of |∇d|.

Let (x̂, t̂) ∈ R
N × (0, T ) and φ ∈ C2(RN × (0, T )). Assume that

d(x, t) − φ(x, t) ≥ d(x̂, t̂) − φ(x̂, t̂) = 0 for (x, t) ∈ R
N × (0, T ).

We now mention only the case d(x̂, t̂) > 0 because the proofs are symmetric.
Let ŷ ∈ {x; d(x, t̂) = 0} satisfy d(x̂, t̂) = |x̂− ŷ| =: r̂. We demonstrate for (x̂, t̂)
satisfying d(x̂, t̂) > 0,

∇φ(x̂, t̂) =
x̂− ŷ

|x̂− ŷ| . (5.3)
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Let p̂ = (x̂− ŷ)/|x̂− ŷ| and Φ(s) = φ(ŷ + sp̂, t̂). We obtain for h ∈ R,

Φ(r̂ + h) − Φ(r̂) ≤ d(ŷ + (r̂ + h)p̂, t̂) − d(ŷ + r̂p̂, t̂) ≤ r̂ + h− r̂ = h.

Therefore we obtain
Φ′(r̂) = 〈∇φ(x̂, t̂), p̂〉 = 1, (5.4)

in particular |∇ϕ(x̂, t̂)| 6= 0. Moreover we obtain

φ(x, t̂) − φ(x̂, t̂) ≤ d(x, t̂) − d(x̂, t̂) ≤ |x− x̂|.
By taking x− x̂ = h∇φ(x̂, t̂)/|∇φ(x̂, t̂)| and sending h→ 0 we obtain

|∇ϕ(x̂, t̂)| ≤ 1.

This and (5.4) imply (5.3). 2

We next recall the truncating function η as in Evans, Soner and Sougani-
dis(1992). Let η : R → R be a smooth function satisfying

η(σ) =

{

σ − δ σ ≥ δ/2,
−δ σ ≤ δ/4,

(5.5)

0 ≤ η′(σ) ≤ Cη, |η′′(σ)| ≤ Cη

δ
for σ ∈ R (5.6)

for some Cη . We remark that this function is convenience to construct a super-
solution for estimate of uε from above. For the estimate from below, we have
two ways. The first one is to apply the way to obtain an estimate of uε from
above to the equations which ūε = −uε or ū = −u satisfy, i.e., (3.1) or

ūt − |∇ū|
{

div
∇ū
|∇ū| −A

}

= 0 in R
N × (0, T ) (5.7)

with ūε(x, 0) = ū(x, 0) = −u0. The second one is to construct a subsolution
directly by using an another truncating function η̄ satisfying

η̄(σ) =

{

σ + δ σ ≤ −δ/2,
δ σ ≥ −δ/4,

0 ≤ η̄′(σ) ≤ Cη , |η̄′′(σ)| ≤ Cη

δ
for σ ∈ R.

Since the equations are isotropic, we obtain the estimate from below symmet-
rically. In this paper we shall construct only a supersolution. We next list the
properties that the truncated distance function η(d) satisfies.

Lemma 5.2. Assume that (5.1) holds. Let w = η(d). Then there exists a
positive constant C satisfying

wt − ∆w −A|∇w| ≥ −C
δ
,

−|∇w| ≥ −C







in R
N × (0, T ),

in the viscosity supersolution sense. Moreover we obtain

wt − ∆w −A|∇w| ≥ 0,

|∇w| ≥ 1,−|∇w| ≥ −1

}

in

{

(x, t); d(x, t) >
δ

2

}

in the viscosity supersolution sense.
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Proof. See the proof of Lemma 3.1 of Evans, Soner and Souganidis(1992). For
more precise calculations to prove the estimate of |∇w|, see Lemma 3.4 of Giga,
Ohtsuka and Schätzle(to appear), with γ(p) = |p| and Λγ = 1, which are the
notations of them. 2

Here we construct a supersolution by the signed distance function and the
traveling wave. Let δ > 0 and w(x, t) = η(d(x, t)). For b > 0 and ε > 0, we
define

ψε,b(x, t) = qε

(

w(x, t) + γ1t+ k1b

ε

)

+ ε(γ2 + k2b), (5.8)

where qε is a solution of the ordinary differential equation (4.1)–(4.3) and γ1,
γ2 > 0 are constants.

Proposition 5.3. Assume that (5.1) holds. Assume that k1 ∈ Z ∩ [0,K1] k2 ∈
Z ∩ [0,K2], for some K1, K2 ∈ N, respectively. For δ > 0, there exist b0 =
b0(δ,K1,K2) γ1 = γ1(δ) and γ2 = γ2(δ) such that, for b ∈ (0, b0), there exists
ε̂ = ε̂(δ, b) such that ψ = ψε,b satisfies

ψt − ∆ψ +
1

ε2
fε(ψ) ≥ K̃

ε
+O(1) in R

N × (0, T ) (5.9)

as ε → 0 in the viscosity supersolution sense provided that ε ∈ (0, ε̂), where K̃
is a numerical constant.

It is necessary to clarify the dependence of the parameters ε, b, k1 or k2 for the
estimate of ψ. Therefore we give a detailed proof.

Proof. Let (x̂, t̂) ∈ R
N × (0, T ) and ϕ ∈ C2(RN × (0, T )) satisfy

ψ(x, t) − ϕ(x, t) ≥ ψ(x̂, t̂) − ϕ(x̂, t̂) = 0 for (x, t) ∈ R
N × (0, T ).

We take ε̂ satisfying ε̂ < ε1, which is as in Lemma 4.1, so that all of the estimates
in Lemma 4.1 hold. In the following argument we shall replace ε̂ to smaller one
later, at (5.10), (5.14), and (5.15).

Since q′ε > 0 for ε > 0, there exists q−1
ε ∈ C∞(R). Here we define

ϕ̃(x, t) = εq−1
ε (ϕ(x, t) − ε(γ2 + k2b)) − γ1t− k1b.

Then we observe that ϕ̃ ∈ C2(RN × (0, T )) and satisfies










w(x, t) − ϕ̃(x, t) ≥ w(x̂, t̂) − ϕ̃(x̂, t̂) = 0 for (x, t) ∈ R
N × (0, T ),

ϕ(x, t) = qε

(

ϕ̃(x, t) + γ1t+ k1b

ε

)

+ ε(γ2 + k2b).

By a straightforward calculation we obtain

ϕt =
q′ε(h)

ε
(ϕ̃t + γ1),

∇ϕ =
q′ε(h)

ε
∇ϕ̃,

∇2ϕ =
q′′ε (h)

ε2
∇ϕ̃⊗∇ϕ̃+

q′ε(h)

ε
∇2ϕ̃,
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where h = h(x, t) = ε−1(ϕ̃(x, t) + γ1t+ k1b). Moreover we obtain

fε(ψ(x̂, t̂)) = fε(ϕ(x̂, t̂)) ≥ fε(qε(ĥ)) + ε(γ2 + k2b)f
′
ε(q

′
ε(ĥ)) − ε2(γ2 + k2b)

2λ2,

where ĥ = h(x̂, t̂), and λ2 is a constant defined by (2.4). Therefore we obtain

ϕt − ∆ϕ+
1

ε2
fε(ψ) ≥ ε−2I0 + ε−1I1 − (γ2 + k2b)

2λ2 at (x̂, t̂),

where

I0 = q′ε(ĥ)(|∇ϕ̃|2 − 1),

I1 = q′ε(ĥ)(γ1 + ϕ̃t − ∆ϕ̃−A|∇ϕ̃| +A|∇ϕ̃| + ε−1cε) + (γ2 + k2b)f
′
ε(qε(ĥ)).

We divide a situation into 2 cases.

Case 1. Assume that (x̂, t̂) ∈ {(x, t); d(x, t) > δ/2}. By Lemma 5.2 we obtain

ϕ̃t − ∆ϕ̃−A|∇ϕ̃| ≥ 0,
|∇ϕ̃| = 1

}

at (x̂, t̂),

which implies

I0 =0,

I1 ≥q′ε(ĥ)(γ1 +A+ ε−1cε) + (γ2 + k2b)f
′
ε(qε(ĥ)).

We set

γ1 =
δ

4T
.

The reason why we set such a γ1 will be clarify in Case 2, below. We replace ε̂
to smaller one so that we have

|A+ ε−1cε| ≤
γ1

2
=

δ

8T
provided that ε ∈ (0, ε̂). (5.10)

This yields

I1 ≥ q′ε(ĥ)γ1

2
+ (γ2 + k2b)f

′
ε(qε(ĥ)).

By a straightforward calculation we have f ′((2j + 1)π) = 1 > 0 for j ∈ Z, in
particular, the value is independent of ε. Therefore there exist r0 ∈ (0, 2π),
which are independent of ε, satisfying

f ′
ε((2j + 1)π + r) ≥ 1

2
f ′

ε((2j + 1)π) =: ν0 > 0 for j ∈ Z and r ∈ (−r0, r0).

We remark that ν0 is independent of j ∈ Z. To apply Lemma 4.1 there exist
R = R(r0, ε̂) > 0 and ν1 = ν1(ε̂, R) > 0 satisfying

qε(s) < −π + r0 for s < −R,
qε(s) > π − r0 for s > R,

q′ε(s) ≥ ν1 > 0 for |s| ≤ R











provided that ε ∈ (0, ε̂).

Take b0 small so that

k2b <
ν1γ1

8λ1
provided that k2 ∈ [0,K2] and b ∈ (0, b0), (5.11)

25



where λ1 is the constant defined by (2.4). We shall replace b0 to smaller one
later, at (5.13). We set

γ2 =
ν1γ1

8λ1
=

ν1δ

32λ1T
.

There exists K̄ > 0 satisfying

ε−2I0 + ε−1I1 ≥ K̄

ε
. (5.12)

We verify it. If (x̂, t̂) satisfies ĥ > R, then we obtain from f ′
ε(qε(ĥ)) > ν0 and

q′ε > 0,
I1 ≥ γ2ν0.

If (x̂, t̂) satisfies ĥ ≤ R, then we obtain from k2b < ν1γ1/(8λ1) = γ2,

I1 ≥ ν1γ1

2
− 2γ2λ1 =

ν1γ1

2
− 2ν1λ1γ1

8λ1
=
ν1γ1

4
.

Therefore we obtain (5.12) by setting K̄ = min(γ2ν0, ν1γ1/4), which implies

ϕt − ∆ϕ+
1

ε2
fε(ψ) ≥ K̄

ε
− 4γ2

2λ
2
2 at (x̂, t̂).

Case 2. Assume that (x̂, t̂) ∈ {(x, t); d(x, t) ≤ δ/2}. Set γ1 and γ2 as above,
i.e.,

γ1 =
δ

4T
, γ2 =

ν1γ1

8λ1
.

We replace b0 to smaller one so that we have

k1b ≤
δ

8T
provided that k1 ∈ [0,K1] and b ∈ (0, b0). (5.13)

This implies that

ĥ ≤ 1

ε

(

−δ
2

+
δt

4T
+ k1b

)

≤ − δ

8ε
< 0.

We replace ε̂ > 0 to smaller one so that we have

δ

8ε
< −R provided that ε ∈ (0, ε̂), (5.14)

which implies that ĥ < −R provided that ε ∈ (0, ε̂). By Lemma 5.2 we have

ϕ̃t − ∆ϕ̃−A|∇ϕ̃| ≥ −C
δ
,

|∇ϕ̃| ≤ C







at (x̂, t̂).

This implies for ε < ε̂,

I0 ≥− |q′′ε (ĥ)|(C2 + 1),

I1 ≥q′ε(ĥ)
(

γ1

2
− C

δ
−A(C + 1)

)

+ (γ2 + k2b)ν0

≥γ2ν0 − q′ε(ĥ)

(

C

δ
+A(C + 1)

)

.
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Therefore we obtain by Lemma 4.1

ε−2I0 + ε−1I1 ≥
[

− (C2 + 1)

ε2
− 1

ε

(

C

δ
+A(C + 1)

)]

C1 exp

(

−δC2

8ε

)

+
γ2ν0
ε

=
1

ε

[

− Ĉ
ε

exp

(

−δC2

8ε

)

+ γ2ν0

]

,

where Ĉ is a positive numerical constant. Here we replace ε̂ > 0 to smaller one
to satisfy

− Ĉ
ε

exp

(

−C2δ

8ε

)

≥ −γ2ν0
2

for ε ∈ (0, ε̂). (5.15)

Therefore we obtain

ϕ̃t − ∆ϕ̃+
1

ε2
fε(ψ) ≥ γ2ν0

2ε
− 4γ2

2λ
2
2 at (x̂, t̂).

Let K̃ = min(K̄, γ2ν0/2). Then we obtain (5.9). 2

We shall construct a supersolution with a multiple-height layer around the
interface. Let b0 and ε̂ be a constant determined from Proposition 5.3 with
K1 = K2 = 2K0 + 1. For ε ∈ (0, ε̂), b ∈ (0, b0) and j = 0, 1, . . ., 2K0, we define

ψε,b
j (x, t) := qε

(

w(x, t) + γ1t+ (j + 1)b

ε

)

+2π(K0−j)+ε(γ2+(j+1)ε). (5.16)

We remark that ψε,b
j is a viscosity supersolution of (2.1) since q(s) := qε(s) +

2π(K0−j) is still a solution of (4.1) with boundary condition q(±∞) = (2(K0−
j) ± 1)π.

We construct a supersolution, which has twice height of a layer of ψε,b
j , from

ψε,b
j and ψε,b

j+1. Let ε̂ > 0 satisfy

qε

(

b

4ε

)

≥ π − bε

4
, qε

(

− b

4ε

)

≤ −π +
bε

4
for ε ∈ (0, ε̂) (5.17)

in addition to the condition as in Proposition 5.3. We define

ψ̃ε,b
j (x, t) :=

{

ψε,b
j (x, t) for (x, t) ∈ Uj

min{ψε,b
j (x, t), ψε,b

j+1(x, t)} for (x, t) ∈ (Rn × [0, T )) \ Uj ,

(5.18)
where

Uj := {(x, t) ∈ R
N × [0, T ); w(x, t) + γ1t > −(j + 3/2)b}.

We observe that ψ̃ε,b
j is a viscosity supersolution of (2.1). In fact, it is easy to

see that ψ̃ε,b
j is a viscosity supersolution of (2.1) in R

N ×(0, T )\{(x, t); w(x, t)+
γ1t = −(j + 3/2)b}. If (x, t) ∈ Jj := {(x, t); w(x, t) + γ1t ∈ (−(j + 7/4)b,−(j+
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5/4)b)}, we obtain

ψε,b
j (x, t) ≤qε

(

− b

4ε

)

+ 2π(K0 − j) + ε(γ2 + (j + 1)b)

≤(2(K0 − j) − 1)π + ε

(

γ2 +

(

j +
5

4

)

b

)

,

ψε,b
j+1(x, t) ≥qε

(

b

4ε

)

+ 2π(K0 − (j + 1)) + ε(γ2 + (j + 2)b)

≥(2(K0 − j) − 1)π + ε

(

γ2 +

(

j +
7

4

)

b

)

,

which implies ψε,b
j ≤ ψε,b

j+1 in Jj . Therefore we obtain ψ̃ε,b
j ≡ ψε,b

j in Jj so that ψ̃j

is a viscosity supersolution of (2.1) in a domain including {(x, t); w(x, t)+γ1t =
−(j + 3/2)b}. Here we summarize the more properties which ψ̃j satisfies:

Corollary 5.4. Assume that (5.1) holds. Let ψ̃ε,b
j be a function defined by

(5.18). Then the followings hold.

(i) We have that ψ̃ε,b
j is a viscosity supersolution of (2.1).

(ii) We have

ψ̃ε,b
j (x, t) = ψε,b

j (x, t) ≥ (2(K0 − j) + 1)π + ε(γ2 + (j + 3/4)b)

for (x, t) ∈ Dj , where

Dj := {(x, t) ∈ R
N × [0, T ); w(x, t) + γ1t ≥ −(j + 3/4)b}.

(iii) We have

ψ̃ε,b
j (x, t) = ψε,b

j+1(x, t) ≤ (2(K0 − j − 1) − 1)π + ε(γ2 + (j + 7/4)b)

for (x, t) ∈ Oj+1, where

Oj := {(x, t) ∈ R
N × [0, T ); w(x, t) + γ1t ≤ −(j + 5/4)b}.

Finally, we construct a supersolution which has multiple-height layers. For
k = 0, 1, . . ., 2K0, We define

vk(x, t) :=







ψ̃0(x, t) for (x, t) ∈ U1,

ψ̃j(x, t) for (x, t) ∈ Uj+1 \ Uj , j = 1, 2, . . . , k − 2,

ψ̃k−1(x, t) for (x, t) ∈ (RN × [0, T )) \ Uk−1.
(5.19)

It is easy to see that vk is a viscosity supersolution of (2.1). We list the properties
of vk.

Corollary 5.5. Assume that (5.1) holds. Let vk be a function defined on above.
Then the followings hold.

(i) We have vk is a viscosity supersolution of (2.1).
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(ii) We have

vk(x, t) ≥ (2K0 + 1)π + ε(γ2 + 3b/4) for (x, t) ∈ D0.

(iii) We have

vk(x, t) ≤ (2(K0 − k) − 1)π + ε(γ2 + (k + 5/4)b) for (x, t) ∈ Ok.

6. Approximation of the motion of interfaces

In this section we shall prove Theorem 2.4. We first prove the following.

Theorem 6.1. Let uε be a solution of (2.1) with uε(x, 0) = u0(x) ∈ BUC(RN ).
Let u be a solution of (2.9) with uε(x, 0) = u0(x). Assume that there exists
m0 > 0 such that

{x; u(x, t) = 2πk − µ} 6= ∅
for t ∈ [0, T ) provided that |µ| ≤ m0. Then the followings hold.

(i) For m ∈ [0,m0/2] and k ∈ [−K0,K0] ∩ Z, we have

lim
ε→0

uε(x, t) ≤ (2k − 1)π

for (x, t) ∈ {(y, s) ∈ R
N × (0, T ); u(x, t) ≤ 2πk −m}.

(ii) For m ∈ [0,m0/2] and k ∈ [−K0,K0] ∩ Z, we have

lim
ε→0

uε(x, t) ≥ (2k + 1)π

for (x, t) ∈ {(y, s) ∈ R
N × (0, T ); u(x, t) ≥ 2πk +m}.

Proof. We now prove only (i) since the proofs are symmetric.
Let m ∈ (0,m0/2) and set

Dm
t = {x ∈ R

N ; u(x, t) ≤ 2πk −m}.

For b ∈ (0, b0), there exists ε̄ > 0 and τ0 > 0 satisfying

uε(x, τ0ε
2| log ε|) ≤ (2k − 1)((2k − 1)π + bε)χDm

0
+ (2K0 + 1)πχRN\Dm

0

by Theorem 3.1. Set

Γm
t = {x ∈ R

N ; u(x, t) = 2πk −m},

and define

dm(x, t) =

{

− inf{|x− y|; y ∈ Γm
t } if (x, t) satisfies x ∈ Dm

t ,
inf{|x− y|; y ∈ Γm

t } if (x, t) satisfies x ∈ R
N \Dm

t .

Let δ > 0 be a constant satisfying

sup
|x−y|<δ

|u0(x) − u0(y)| <
m

2
.
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Take b0 > 0 enough small so that b0 satisfies not only the condition as in
Proposition 5.3 but also satisfies

2(K0 + 1)b0 ≤ 3δ

4
. (6.1)

Let η = ηδ be a function satisfying (5.5)–(5.6). Set w(x, t) = η(d2m(x, t)). For
b ∈ (0, b0), we set ε̃ = min(ε̄, ε̂), where ε̄ is a constant as in Theorem 3.1 and
ε̂ is a constant satisfying all of the conditions as in Proposition 5.3 and (5.17).

For b ∈ (0, b0) and ε ∈ (0, ε̃), we define ψε,b
j and ψ̃ε,b

j by (5.16) and (5.18),
respectively. We consider a supersolution vK0−k of (2.1), which is defined by
(5.19).

We first demonstrate

vK0−k(x, 0) ≥ ((2k − 1)π + bε)χDm

0
(x) + (2K0 + 1)πχRN\Dm

0
(x), (6.2)

where χU : R
N → {0, 1} is the characteristic function of U ⊂ R

N . Since

vK0−k(x, 0) ≥ (2k − 1)π + ε(γ2 + (j + 1)b) > (2k − 1)π + bε,

it suffices to see that

vK0−k(x, 0) ≥ (2K0 + 1)π for x ∈ R
N \Dm

0 .

To see this property, we first verify that

{y ∈ R
N ; d2m(y, 0) < 2δ} ⊂ {y ∈ R

N ; u0(y) < 2πk −m}. (6.3)

Let x ∈ {y ∈ R
N ; d2m(y, 0) < 2δ}. For µ > 0, there exists y ∈ D2m

0 such that

d2m(x, 0) + µ ≥ |x− y|,
u0(y) ≤ 2πk − 2m.

Since d2m(x, 0) < 2δ, we may assume that y ∈ D2m
0 satisfies

|x− y| < 2δ

by taking enough small µ > 0. Let z := (x + y)/2. Then we obtain |x − z| =
|x− y|/2 < δ and |y − z| = |y − x|/2 < δ, so that we obtain

|u0(x) − u0(y)| ≤ |u0(x) − u0(z)| + |u0(z) − u0(y)| <
m

2
+
m

2
= m.

Since y ∈ D2m
0 , we obtain

u0(x) < 2πk − 2m+m = 2πk −m,

which yields (6.3).
The property (6.3) yields

{y ∈ R
N ; d2m(y, 0) ≥ 2δ} ⊃ {y ∈ R

N ; u0(y) ≥ 2πk −m},

which implies for x ∈ {y ∈ R
N ; u0(y) ≥ 2πk −m},

w(x, 0) + b > δ ≥ 8

3
(K0 + 1)b0 >

b

4
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by (6.1). Therefore we obtain vK0−k(x, 0) = ψε,b
0 (x, 0) and

vK0−k(x, 0) ≥ qε

(

b

4ε

)

+ 2πK0 + ε(γ2 + b) > (2K0 + 1)π

for x ∈ {y ∈ R
N ; u0(y) ≥ −m} by definition of ε̃. We thus obtain (6.2).

We give an estimate of uε by using vK0−k. By (2.2) we obtain

uε(x, t+ τ0ε
2| log ε|) ≤ vK0−k(x, t) for (x, t) ∈ R

N × [0, T ).

By Corollary 5.5 we obtain

uε(x, t+ τ0ε
2| log ε|) ≤ (2k − 1)π + ε(γ2 + (K0 − k + 5/4)b) for (x, t) ∈ Ok

provided that ε ∈ (0, ε̃), where Ok is defined in Corollary 5.5(iii).
We now lead the conclusion. Let (x0, t0) ∈ {(y, s) ∈ R

N × (0, T ); u(y, s) ≤
2πk − m}. There exists b0 = b0(m) such that, for b ∈ (0, b0), there exists
ε̃ = ε̃(b) > 0, which are smaller than those we take on above, such that t0 >
τ0ε

2| log ε| and (x0, t0−τ0ε2| log ε|) ∈ Ok provided that b ∈ (0, b0) and ε ∈ (0, ε̃).
This implies

uε(x0, t0) ≤ (2k − 1)π + ε(γ2 + (K0 − k + 5/4)b).

Since the choice of (x0, t0) ∈ {(y, s) ∈ R
N × (0, T ); u(y, s) ≤ 2πk − m} is

arbitrary, we obtain

lim
ε→0

uε(x, t) ≤ (2k − 1)π for (x, t) ∈ {(y, s); u(y, s) ≤ 2πk −m}. 2

Here we remark that the choice of ε > 0 for the estimate of limε→0 u
ε(x, t)

is independent of (x, t) if there exists τ̃ > 0 satisfying t ≥ τ̃ .

Proof of Theorem 2.4. Let Ω be a compact subset satisfying

Ω ⊂ {(y, s) ∈ R
N × (0, T );u(x, t) < 2πk}.

Then there exists ν > 0 and m > 0 satisfying

t ≥ ν > 0,

u(x, t) ≤ 2πk −m on Ω.

Therefore we obtain the conclusion. 2
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