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SIXTH ORDER METHODS OF KUSUOKA APPROXIMATION

TAKEHIRO FUJIWARA

Abstract The author presents high-speed (sixth-order) methods to approximate
expectations of diffusion processes, one of the most important values in mathematical
finance, in the spirit of Kusuoka approximation.

1. Introduction

Let (Ω,F , P ) be a probability space and B = (B1, . . . , Bd) be a d-dimensional
Brownian motion. Let B0

t := t, t ∈ [0,∞) and V0, . . . , Vd ∈ C∞
b (RN ;RN). Here

C∞
b (RN ;Rn) denotes the space of Rn-valued smooth functions defined in RN whose

derivatives of any order are bounded. We regard an element in C∞
b (RN ;RN) as a

vector field on RN . Now we consider a Stratonovich stochastic differential equation






dX(t, x) =
d∑

i=0

Vi(X(t, x)) ◦ dBi
t,

X(0, x) = x.

Let L∞(RN) denote the set of bounded measurable functions defined in RN . Let us
define a norm ‖ · ‖∞ on L∞(RN) by

‖f‖∞ := sup
x∈RN

|f(x)|.

Let us define an operator PT for T ≥ 0 on L∞(RN) by

PT g(x) := E[g(X(T, x))], g ∈ L∞(RN), x ∈ RN .

We often need to calculate PT g(x) in mathematical finance problems [11, 12]. Hence
it is important to construct high-speed methods to approximate PT g(x).

Now we introduce a criterion for the speed of methods to approximate PT . Let
{Qn}n∈N be a family of bounded linear operators on L∞(RN) which approximates PT .
If there exists a constant C > 0 and k ∈ N such that

‖(PT − Qn)g‖∞ ≤
C

nk
(1.1)

for any n ∈ N, then the method constructing {Qn}n∈N is called a k-th order methods
to approximate PT . Clearly from (1.1), we can expect faster approximation for higher
order methods. Here we consider the orders of some known approximation methods.
As in the Euler-Maruyama method, the most common approximation method, the
method is first-order when the test function g ∈ C∞

b (RN) or g ∈ L∞(RN) with the
vector fields satisfying the Hörmander condition [2, 5, 6]. Next consider the order of
the Ninomiya-Victoir method, which is one of the methods of Kusuoka approximation.
This is third-order when the test function g ∈ C∞

b (RN) or g ∈ L∞(RN) with the vector
fields satisfying a condition that is weaker than the Hörmander condition [11]. With
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this condition, there are also second-order methods [10, 12]. In this paper, we present
sixth-order methods.

2. Algebraic Calculation

Let R be a noncommutative algebra, d ∈ N and x, y, xi ∈ R for i ∈ {0, . . . , d}.

Then we define
y
∏d

i=0xi,
x
∏d

i=0xi and xd byy
d∏

i=0

xi := x0 · · ·xd,

x
d∏

i=0

xi := xd · · ·x0, xd := x · · ·x
︸ ︷︷ ︸

d

.

Definition 2.1. Let A(d) := {A0, . . . , Ad} be an alphabet, R〈A(d)〉 be the R-algebra
of noncommutative polynomials on A(d) and R〈〈A(d)〉〉 be the R-algebra of noncom-
mutative formal series on A(d). Let M l(d) be the set of all elements of R〈A(d)〉
homogeneous of order l ∈ N. Let jl(d) be the canonical projection from R〈〈A(d)〉〉 to

M l(d). We define M≤l(d) :=

l⊕

k=0

Mk(d). Let j≤l(d) be the canonical projection from

R〈〈A(d)〉〉 to M≤l(d). For x ∈ R〈〈A(d)〉〉, let us define exp(x) by

exp(x) :=

∞∑

k=0

xk

k!
.

For x ∈
∏

k>0

Mk(d), let us define log(1 + x) by

log(1 + x) :=

∞∑

k=1

(−1)k−1

k
xk.

When j≤l(d)(x − y) = 0 for x, y ∈ R〈〈A(d)〉〉, we write x
l
= y.

Definition 2.2. For t ∈ R, θ ∈ N, we define the following elements of R〈〈A(d)〉〉:

P̂t(d) := exp

(

t

d∑

i=0

Ai

)

,

Q̂
(i)
t := exp (tAi) , i ∈ {0, . . . , d},

Q̄
[θ]
(t)(d) :=






y
d∏

i=0

Q̂
(i)
t/θ






θ

,

Q̌
[θ]
(t)(d) :=






x
d∏

i=0

Q̂
(i)
t/θ






θ

,

Q̂
[θ]
(t)(d) :=

1

2

(

Q̄
[θ]
(t)(d) + Q̌

[θ]
(t)(d)

)

.
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We shall occasionally omit the d from the notation. When t = 1, we shall further-
more omit the subscript t. For U, V ∈

∏

k>0 Mk and l ∈ N, we define Hl(U, V ) :=
jl(log(exp(U) exp(V ))). Here τi,d, which we shall occasionally abbreviate as τi, denotes
ji(d)(log(Q̄[1](d))).

Lemma 2.1. We have

log
(
Q̌[1](d)

)
=

∞∑

i=1

(−1)i+1τi,d.

Proof. Proof by induction on d. We prove the case d = 2 by using Lemma 2.15.3 in [14]
and induction on i. Suppose d > 2. It is sufficient then that we prove jl(log

(
Q̌[1](d))

)
=

(−1)l+1τl,d for l ∈ N. Let p ∈ N, and {ri}i∈{1,... ,p}, {si}i∈{1,... ,p} ⊂ N. Let us define a
map H : R〈〈A〉〉 ×R〈〈A〉〉 → R〈〈A〉〉 by

H(U, V ) := U r1V s1 · · ·U rpV sp.

We have

jl

(

H

(

Ad,
l∑

i=1

(−1)i+1τi,d−1

))

= (−1)
Pp

i=1
si+l−

Pp

i=1
rijl

(

H

(

Ad,
l∑

i=1

τi,d−1

))

.

By the inductive hypothesis we also have

log
(
Q̌[1](d − 1)

)
=

∞∑

i=1

(−1)i+1τi,d−1.

Then

jl

(
log
(
Q̌[1](d)

))
= jl

(
log
(
exp(Ad) exp

(
log
(
Q̌[1](d − 1)

))))

=
l∑

m=1

jl

(

Hm

(

Ad,
l∑

i=1

(−1)i+1τi,d−1

))

=

l∑

m=1

(−1)m+ljl

(

Hm

(

Ad,

l∑

i=1

τi,d−1

))

= (−1)l+1

l∑

m=1

jl

(

Hm

(
l∑

i=1

τi,d−1, Ad

))

= (−1)l+1τl,d. �
Proposition 2.2. For i, d ∈ N, there exists ci,d ∈

∞∏

k=2i+1

Mk(d) such that for all

θ ∈ N,

Q̂[θ](d) = P̂ (d) +

∞∑

i=1

ci,d

θ2i
.

Proof. We have

log Q̄[θ](d) = log
(

Q̄
[1]
1/θ(d)

)θ

=

∞∑

i=1

1

θi−1
τi,d.
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Moreover by Lemma 2.1,

log Q̌[θ](d) =

∞∑

i=1

1

(−θ)i−1
τi,d.

Then we have

Q̂[θ](d) =
1

2





∞∑

k=0

1

k!

(
∞∑

i=1

1

θi−1
τi,d

)k

+
∞∑

k=0

1

k!

(
∞∑

i=1

1

(−θ)i−1
τi,d

)k


 ,

giving the assertion, since τ1,d =
∑d

i=0 Ai.
�

The following corollary is straightforward.

Corollary 2.3. We have

P̂
2
= Q̂[θ], θ ∈ N,(2.1)

Q̂[2] −
1

4
Q̂[1] +

3

4
P̂

4
= 0,(2.2)

Q̂[3] −
1

9
Q̂[1] +

8

9
P̂

4
= 0,(2.3)

P̂
6
=

81

40
Q̂[3] −

16

15
Q̂[2] +

1

24
Q̂[1].(2.4)

3. Approximations of operators

Definition 3.1. (1) Let us define a semi-norm ‖ · ‖k for k ∈ N on C∞
b (Rd) by

‖g‖k := sup
i≤k

‖∇ig‖∞.

(2) Let Bk denote the space of bounded linear operators on Ck := (C∞
b (Rd), ‖ · ‖k).

We can regard Bk as a normed space with the operator norm.

The following proposition is well-known [4].

Proposition 3.1. (1)The family {Pt}t∈(0,∞] is a uniform bounded subset of Bk.
(2)We have ‖Ptg‖∞ ≤ ‖g‖∞ for g ∈ C∞

b (Rd).
(3) Let A be the differential operator defined by

A := V0 +
1

2

d∑

j=1

V 2
j .

For g ∈ C∞
b (Rd),

Ptg(x) =
N∑

k=0

tk

k!
Ak +

1

N !

∫ t

0

(t − s)NPsA
N+1g(x)ds.
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For i ∈ {0, . . . , d}, we consider a Stratonovich stochastic differential equation
{

dX i(t, x) = Vi(X
i(t, x)) ◦ dBi

t,

X(0, x) = x.

For s ≥ 0, let us define a operator Q
(i)
s on L∞(RN) by

Q(i)
s (g)(x) := E[g(X i(s, x))], x ∈ RN .

We set

f1 :=
1

24
, f2 := −

16

15
and f3 :=

81

40
.

For θ ∈ {1, 2, 3} and t ≥ 0, let

Q̃
[θ]
(t) :=

1

2












y
d∏

i=0

Q
(i)
t/θ






θ

+






x
d∏

i=0

Q
(i)
t/θ






θ






.

Also, define operators

Q(n) := f3

(

Q̃
[3]
(T/n)

)n

+ f2

(

Q̃
[2]
(T/n)

)n

+ f1

(

Q̃
[1]
(T/n)

)n

and
Q(n,1) := f3Q̃

[3]
(T/n) + f2Q̃

[2]
(T/n) + f1Q̃

[1]
(T/n).

Theorem 3.2. There exists a constant C > 0 such that
∥
∥(PT − Q(n))g

∥
∥
∞

≤
C

n6
‖g‖54(d+1)

for any g ∈ C∞
b (RN) and n ∈ N.

Proof. Let s := T/n. Then

(Q(n) − PT )g(x) =
∑

θ∈{1,2,3}

fθ

((

Q̃
[θ]
(s)

)n

− PT

)

g(x)

=
∑

θ∈{1,2,3}

fθ

n−1∑

k=0

Pks

(

Q̃
[θ]
(s) − Ps

)

P(n−k−1)sg(x)

+
∑

θ∈{1,2,3}

fθ

n−1∑

k=1

k−1∑

l=0

Pls

(

Q̃
[θ]
(s) − Ps

)

P(k−l−1)s

(

Q̃
[θ]
(s) − Ps

)

P(n−k−1)sg(x)

+
∑

θ∈{1,2,3}

fθ

n−1∑

k=1

k−1∑

l=1

l−1∑

m=1

(Q̃
[θ]
(s))

m
(

Q̃
[θ]
(s) − Ps

)

P(l−m−1)s

(

Q̃
[θ]
(s) − Ps

)

× P(k−l−1)s

(

Q̃
[θ]
(s) − Ps

)

P(n−k−1)sg(x).

The first term on the right-hand side of this equality becomes
n−1∑

k=0

Pks

(
Q(n,1) − Ps

)
P(n−k−1)sg(x).
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By (2.4) and Proposition 3.1, there exists a constant C1 > 0 such that
∥
∥
∥
∥
∥

n−1∑

k=0

Pks

(
Q(n,1) − Ps

)
P(n−k−1)sg

∥
∥
∥
∥
∥
∞

≤
C1

n6
‖g‖42(d+1)

for any n ∈ N. Similarly as the third term on the right-hand side, there exists a
constant C2 > 0 such that

∥
∥
∥
∥
∥

∑

θ∈{1,2,3}

fθ

n−1∑

k=1

k−1∑

l=1

l−1∑

m=1

(Q̃
[θ]
(s))

m
(

Q̃
[θ]
(s) − Ps

)

P(l−m−1)s

(

Q̃
[θ]
(s) − Ps

)

× P(k−l−1)s

(

Q̃
[θ]
(s) − Ps

)

P(n−k−1)sg

∥
∥
∥
∥
∥
∞

≤
C2

n6
‖g‖54(d+1)

by (2.1) and Proposition 3.1. Finally we consider the second term on the right-hand
side. By (2.1), (2.2) and Proposition 3.1, there exists a constant C3 > 0 such that

∥
∥
∥
∥
∥

n−1∑

k=1

k−1∑

l=0

Pls

(

Q̃
[2]
(s) − Ps

)

P(k−l−1)s

(

Q̃
[2]
(s) − Ps

)

P(n−k−1)sg

−
1

16

n−1∑

k=1

k−1∑

l=0

Pls

(

Q̃
[1]
(s) − Ps

)

P(k−l−1)s

(

Q̃
[1]
(s) − Ps

)

P(n−k−1)sg

∥
∥
∥
∥
∥
∞

=

∥
∥
∥
∥
∥

n−1∑

k=1

k−1∑

l=0

Pls

(

Q̃
[2]
(s) −

1

4
Q̃

[1]
(s) +

3

4
Ps

)

P(k−l−1)s

(

Q̃
[2]
(s) − Ps

)

P(n−k−1)sg

+
n−1∑

k=1

k−1∑

l=0

Pls

(

Q̃
[1]
(s) − Ps

)

P(k−l−1)s

(

Q̃
[2]
(s) −

1

4
Q̃

[1]
(s) +

3

4
Ps

)

P(n−k−1)sg

∥
∥
∥
∥
∥
∞

≤
C3

n6
‖g‖32(d+1).

Similarly by (2.1), (2.3) and Proposition 3.1, there exists a constant C4 > 0 such that
∥
∥
∥
∥
∥

n−1∑

k=1

k−1∑

l=0

Pls

(

Q̃
[3]
(s) − Ps

)

P(k−l−1)s

(

Q̃
[3]
(s) − Ps

)

P(n−k−1)sg

−
1

81

n−1∑

k=1

k−1∑

l=0

Pls

(

Q̃
[1]
(s) − Ps

)

P(k−l−1)s

(

Q̃
[1]
(s) − Ps

)

P(n−k−1)sg

∥
∥
∥
∥
∥
∞

≤
C4

n6
‖g‖48(d+1).

Hence there exists a constant C5 > 0 such that
∥
∥
∥
∥
∥

∑

θ∈{1,2,3}

fθ

n−1∑

k=1

k−1∑

l=0

Pls

(

Q̃
[θ]
(s) − Ps

)

P(k−l−1)s

(

Q̃
[θ]
(s) − Ps

)

P(n−k−1)sg

∥
∥
∥
∥
∥
∞

≤
C5

n6
‖g‖48(d+1).

Then we have our assertion.
�
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4. Implementation of the approximation operators

We regard a vector space C∞
b (RN ;RN) as a noncommutative algebra with multipli-

cation given by conposition and follow the notation of Section 2.
For a vector field W ∈ C∞

b (RN ;RN), let y(t, x) be the solution of the ordinary
differential equation







d

dt
y(t, x) = W (y(t, x)),

y(0, x) = x.
(4.1)

We define Exp(W )(x) := y(1, x).
Let s := T/n and θ ∈ {1, 2, 3}. Let {Λk}k∈{1,... ,n} and {Zk}k∈{1,... ,θn} be independent

random variables, where each Λk is Bernoulli random variable and Zk = (Z i
k)i∈{1,... ,d}

is a standard d-dimensional normal random variable. Let x0 ∈ RN , Z̃0,n
k,θ := s/θ and

Z̃ i,n
k,θ :=

√

s/θZi
k for i ∈ {1, . . . , d}. Then we inductively define {X

[θ],n
k }k∈{0,... ,n} by

X
[θ],n
0 := x0,

X
[θ],n
k+1 :=












y
d∏

i=0

Exp
(

Z̃ i,n
k,θVi

)






θ

(

X
[θ],n
k

)

if Λk = +1,






x
d∏

i=0

Exp
(

Z̃ i,n
k,θVi

)






θ

(

X
[θ],n
k

)

if Λk = −1.

Then by a routine computation we obtain:

Proposition 4.1. For g ∈ C∞
b (RN) and θ ∈ {1, 2, 3},

(

Q̃
[θ]
(T/n)

)n

g(x0) = E
[
g
(
X [θ],n

n

)]
.

Remark 4.1. To calculate E
[

g
(

X
[θ],n
n

)]

numerically using Proposition 4.1, we need to

approximate an integral over a finite-dimensional space. Such numerical integrations
are rapidly performed using the quasi-Monte-Carlo method [13]. From Proposition 4.1,
it appears we need a 3(d+1)n-dimensional uniform random variable. However, we can
calculate Qng(x) by 3dn + 1-dimensional integrations if we implement n-dimensional
Bernoulli random variables by a one-dimensional uniform random variable.
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Remark 4.2. Let Q̆
(0)
t , Q̆

(d+1)
t := Q

(0)
t/2 and Q̆

(i)
t := Q

(i)
t for i ∈ {1, . . . , d}. Now define

Q̆
[1]
(t) :=

1

2






y
d+1∏

i=0

Q̆
(i)
t +

x
d+1∏

i=0

Q̆
(i)
t






=
1

2
Q

(0)
t/2






y
d∏

i=1

Q
(i)
t +

x
d∏

i=1

Q
(i)
t




Q

(0)
t/2,

Q̆
[2]
(t) :=

1

2












y
d+1∏

i=0

Q̆
(i)
t/2






2

+






x
d+1∏

i=0

Q̆
(i)
t/2






2






=
1

2
Q

(0)
t/4






y
d∏

i=1

Q
(i)
t/2

y
d∏

i=0

Q
(i)
t/2 +

x
d∏

i=0

Q
(i)
t/2

x
d∏

i=1

Q
(i)
t/2




Q

(0)
t/4,

Q̆
[3]
(t) :=

1

2












y
d+1∏

i=0

Q̆
(i)
t/3






3

+






x
d+1∏

i=0

Q̆
(i)
t/3






3






=
1

2
Q

(0)
t/6






y
d∏

i=1

Q
(i)
t/3

y
d∏

i=0

Q
(i)
t/3

y
d∏

i=0

Q
(i)
t/3 +

x
d∏

i=0

Q
(i)
t/3

x
d∏

i=0

Q
(i)
t/3

x
d∏

i=1

Q
(i)
t/3




Q

(0)
t/6,

Q̆(n) := f3

(

Q̆
[3]
(T/n)

)n

+ f2

(

Q̆
[2]
(T/n)

)n

+ f1

(

Q̆
[1]
(T/n)

)n

,

Q̆′
(n) :=

4

3

(

Q̆
[2]
(T/n)

)n

−
1

3

(

Q̆
[1]
(T/n)

)n

.

Then similarly as before
∥
∥
∥(Q̆(n) − PT )g

∥
∥
∥
∞

≤
C

n6
‖g‖54(d+1)+18

and
∥
∥
∥(Q̆′

(n) − PT )g
∥
∥
∥
∞

≤
C

n4
‖g‖24(d+1)+12.

Using {Q̆(n)}n∈N or {Q̆′
(n)}n∈N instead of {Q(n)}n∈N in order to approximate PT may

be better from a practical point of view.

Remark 4.3. For the purpose of constructing the approximate operators, a good ap-
proximate solution to the ODE (4.1) will suffice. For example, we could use a 13-th
order Runge-Kutta scheme [1].

Remark 4.4. One could also show the convergence of the algorithm when g ∈ L∞(RN)
and the vector fields of the SDEs satisfy a condition that is weaker than the Hörmander
condition [7, 8, 9].
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Remark 4.5. We also showed the convergence of the algorithms when the SDEs are
jump-type in [3].
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