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THE DIMENSION OF THE SPACE OF SIEGEL EISENSTEIN SERIES OF
WEIGHT ONE

KEIICHI GUNJI

Abstract. In general, it is difficult to determine the dimension of the space of Siegel modular forms
of low weights. In particular, the dimension of the space of cusp forms are known in only a few cases.
In this paper, we calculate the dimension of the space of Siegel Eisenstein series of weight 1, which is
a certain subspace of a complement of the space of cusp forms.

1. Introduction

Let p be an odd prime number. In this paper, we determine the dimension of the space of Siegel
Eisenstein series of weight 1 associated with the principal congruence subgroup Γ g(p) of level p, degree
g. More precisely, let M1(Γ g(p)) be the space of holomorphic Siegel modular forms of weight 1, degree
g ≥ 2, and let E0

1(Γ g(p)) be a complement of the space of all functions which vanish at all 0-dimensional
cusps.

Theorem (Theorem 3.1). For g ≥ 2, we have

dim E0
1(Γ g(p)) =





1
2
(pg + 1) p ≡ 3 mod 4

0 p ≡ 1 mod 4.

In other words, we may take as E0
1(Γ g(p)) the space of theta functions of quadratic forms of level p.

The representation theory of the finite group Sp(g,Fp) is crucial in our proof. The representation of
Sp(g,Fp) on E0

k(Γ g(p)) is isomorphic to a sub-representation of the induced representation of a certain
character of the subgroup P 0, which is the image of the Siegel parabolic subgroup P0 of Sp(g,Z)
(Lemma 3.2). Moreover, each irreducible component of the induced representation is generated by the
elements of Ek(Γ g

0 (p), ψ) for some Dirichlet character ψ. Thus Theorem 3.1 is reduced to computing
the dimension of E1(Γ

g
0 (p), ψ).

Proposition (Proposition 3.4).

dim E0
1(Γ g

0 (p), ψ) =

{
1 ψ2 ≡ 1, ψ(−1) = −1;
0 otherwise.

The structure of the boundary of the Satake compactification of Γ g
0 (p)\H2 is very simple: there are

g− 1 one-dimensional cusps and g zero-dimensional cusps. We prove Proposition 3.4 by using this fact
and properties of elliptic modular forms of weight 1, which we consider in §2.

We remark that if g ≥ 3, J.-S. Li already determined the dimension of M1(Γ g(pr)) ([L]). Moreover,
by the theory of singular series, studied by Resnikoff ([R]) and Freitag ([F1], [F2]), we know that
M1(Γ

g
0 (p), ψ) is generated by theta functions of quadratic forms, if g ≥ 3. Thus the essential part of

our result is the case of g = 2. We also remark that Weissauer asserts that the space S1(Γ 2
0 (N), ψ) of

cusp forms of weight 1, degree 2 is generated by theta series ([W, Theorem 4]).
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Promotion of Science Research Fellowships for Young Scientists.
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Notations: Let Hg = {Z ∈ Mg(C) | tZ = Z, Im Z > 0} be the Siegel upper half space. We put

Γ g = Sp(g,Z) := {γ ∈ SL(2g,Z) | tγJgγ = Jg} for Jg =
(

0 1g

−1g 0

)
. The congruence subgroups

Γ g(N) and Γ g
0 (N) are given by

Γ g(N) := {γ ∈ Γ g | γ ≡ 12g mod N}, Γ g
0 (N) :=

{
γ =

(
A B
C D

) ∣∣∣∣ C ≡ 0 mod N

}
.

For a function f on Hg and γ ∈ Γ g, we put (f |kγ)(Z) = j(γ, z)−kf(γ〈Z〉), here j(γ, Z) = det(CZ +D)

and γ〈Z〉 = (AZ + B)(CZ + D)−1 for γ =
(

A B
C D

)
. For a congruence subgroup Γ ′ ⊂ Γ g we define

the space of Siegel modular forms of weight k as:

Mk(Γ ′) =
{

f : a holomorphic function on Hg

∣∣∣∣
f |kγ = f for all γ ∈ Γ ′,
f is holomorphic at each cusp if g = 1

}
.

We define the Siegel Φ-operators for 0 ≤ r ≤ g − 1 by

Φr(f)(zr) := lim
λ→∞

f

(
zr 0
0 iλ1g−r

)
, zr ∈ Hr,

and define the space of cusp forms Sk(Γ ′) := {f ∈ Mk(Γ ′) | Φg−1(f |kγ) = 0 for all γ ∈ Γ g}.

2. elliptic modular forms

First, we recall the classical theory of elliptic modular forms. Some of the facts in this section are
first proved by Hecke (cf. [H]). We mainly refer to the book of Schoeneberg [Sc, Chapter VII].

Let p be an odd prime number, and a = (a1, a2) ∈ Z2. For z ∈ H1 and s ∈ C, we define

φ1
a(z, s) :=

∑

m1,m2∈Z
(m1,m2)≡(a1,a2) mod p

(m1z + m2)−1|m1z + m2|−s.

If Re s > 1, the infinite sum of the right hand side converges absolutely for every z ∈ H1.
It is easy to see that

φ1
−a(z, s) = −φ1

a(z, s),

φ1
a(z, s) = φ1

b(z, s) if a ≡ b mod p,(2.1)

j(γ, z)−1φ1
a(γ〈z〉, s) = |j(γ, z)|−sφ1

a′(z, s), with a′ = aγ, γ ∈ SL(2,Z).

Theorem 2.1 (Hecke). The function φ1
a(z, s) is continued meromorphically on the whole s-plane and

it is holomorphic at s = 0. Moreover, φ1
a(z, 0) is holomorphic in z.

We put e1
a(z) = φ1

a(z, 0). From (2.1), we see that e1
a|1γ = e1

a for γ ∈ Γ 1(p). In order to show
e1
a ∈ M1(Γ 1(p)), we write down the Fourier expansion of e1

a explicitly. For this we put

δ

(
a

p

)
=

{
1 if a ≡ 0 mod p,
0 otherwise,

ζ̃(s, α) =
∑

n>−α

(n + α)−s α ∈ R.

The right hand side of ζ̃(s, α) converges absolutely for Re s > 1, and is continued to the whole s-
plane as a meromorphic function, which has a simple pole only at s = 1 with residue 1. Notice that
ζ̃(s, α + 1) = ζ̃(s, α) and, for 0 < α ≤ 1, we write

ζ̃(s, α) = ζ(s, α) :=
∞∑

n=0

(n + α)−s.

This is the usual Hurwitz zeta function.
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The Fourier expansion of e1
a is given as follows ([Sc, (27) §2, Chapter VII]:

e1
a(z) =

∞∑
ν=0

αν(p,a)e2πiνz/p,

where

α0(p,a) =
1
p
δ

(
a1

p

)
lim
s→1

{
ζ̃

(
s,

a2

p

)
− ζ̃

(
s,−a2

p

)}

− πi

p

{
ζ̃

(
0,

a1

p

)
− ζ̃

(
0,−a1

p

)}
,(2.2)

aν(p,a) = −2πi

p

∑

m|ν
ν
m≡a1 mod p

(sgn m)e2πia2m/p for ν ≥ 1.

In particular we have e1
a ∈ M1(Γ 1(p)).

Let ψ be a Dirichlet character modulo p such that ψ(−1) = −1. We put

M1(Γ 1
0 (p), ψ) =

{
f ∈ M1(Γ 1(p))

∣∣∣∣ f |1γ = ψ(d)f, for γ =
(

a b
c d

)
∈ Γ 1

0 (p)
}

.

It is easy to show that

(2.3) M1(Γ 1
1 (p)) =

⊕

ψ(−1)=−1

M1(Γ 1
0 (p), ψ),

where Γ 1
1 (p) =

{(
a b
c d

)
∈ SL(2,Z)

∣∣∣∣ a ≡ d ≡ 1 mod p, c ≡ 0 mod p

}
.

There are two cusps on Γ 1
0 (p)\H corresponding to 12 and J1. For f ∈ M1(Γ 1

0 (p), ψ), the 0-th Fourier
coefficients of f and f |1J1 are called the values of f at the cusps ∞ and 0 respectively.

Now we define

fψ(z) :=
p−1∑
u=1

p−1∑
v=0

ψ(u)e1
(u,v)(z).

Clearly fψ ∈ M1(Γ 1
0 (p), ψ).

Lemma 2.2. For ψ(−1) = −1, fψ takes non-zero values at both cusps ∞ and 0. In particular fψ 6= 0.

Proof. First we consider the cusp ∞. Since δ(u
p ) = 0 for all (u, v), the 0-th Fourier coefficient c0(fψ)

of fψ is

c0(fψ) = −πi

p

∑
u,v

ψ(u)
{

ζ̃

(
0,

u

p

)
− ζ̃

(
0,−u

p

)}

= −πi

p−1∑
u=1

ψ(u)
{

ζ

(
0,

u

p

)
− ζ

(
0,

p− u

p

)}
.

We use the formula
ζ(0, α) = −B1(α) =

1
2
− α,

where B1(x) is the first Bernoulli polynomial. Then

c0(fψ) = −πi

p−1∑
u=1

ψ(u)
(

1− 2u

p

)

=
2πi

p

p−1∑
u=1

ψ(u)u =
2πi

p
B1,ψ.

The value B1,ψ is called the generalised Bernoulli number and it is well-known that B1,ψ 6= 0 for
ψ(−1) = −1. Thus we have c0(fψ) 6= 0.
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Next we consider the cusp 0. Notice that

fψ = 2

p−1
2∑

u=1

p−1∑
v=0

ψ(u)e1
(u,v)

by (2.1) and ψ(−1) = −1. From (2.1) we have

fψ|1J1 = 2

p−1
2∑

u=1

p−1∑
v=0

ψ(u)e1
(−v,u)

and, by (2.2), the value of fψ at 0 is given by

2
p

p−1
2∑

u=1

lim
s→1

ψ(u)
{

ζ̃

(
s,

u

p

)
− ζ̃

(
s,−u

p

)}
− 2πi

p

p−1
2∑

u=1

p−1∑
v=0

ψ(u)
{

ζ̃

(
0,−v

p

)
− ζ̃

(
0,

v

p

)}
.

The second term is 0, since ζ̃(0, α) = ζ̃(0, α + 1). For the first term, since ψ(−1) = −1, we have

2
p

p−1
2∑

u=1

lim
s→1

{
ψ(u)ζ

(
s,

u

p

)
+ ψ(p− u)ζ

(
s,

p− u

p

)}

=
2
p

lim
s→1

p−1∑
u=1

ψ(u)ζ
(

s,
u

p

)

=2L(1, ψ).

Here L(s, ψ) denotes the Dirichlet L-function and it is well-known that L(1, ψ) 6= 0 for any non-trivial
Dirichlet character ψ. Hence we complete the proof. ¤

We fix a decomposition

(2.4) M1(Γ 1(p)) = S1(Γ 1(p))⊕ E1(Γ 1(p)),

where E1(Γ 1(p)) is a complement space of S1(Γ 1(p)) and we assume that it is closed under the action
of Γ 1. Such a decomposition exists since Γ 1/Γ 1(p) = SL(2,Fp) is a finite group. We write E1(Γ 1

1 (p)) =
M1(Γ 1

1 (p)) ∩ E1(Γ 1(p)) and E1(Γ 1
0 (p), ψ) = M1(Γ 1

0 (p), ψ) ∩ E1(Γ 1(p)). It is known that

dim E1(Γ 1
1 (p)) =

1
2
× {the number of (regular) cusps of Γ 1

1 (p)\H1} =
1
2
(p− 1).

By (2.3), we have the following theorem.

Theorem 2.3. Let ψ be a Dirichlet character modulo p such that ψ(−1) = −1. Then E1(Γ 1
0 (p), ψ) is

one-dimensional, and the basis fψ of E1(Γ 1
0 (p), ψ) takes non-zero values at both cusps ∞ and 0.

3. Siegel modular forms of degree g

Let p be an odd prime number. In this section we always assume g ≥ 2. We put G = Sp(g,Fp) '
Γ g/Γ g(p) and consider the action of G on Mk(Γ g(p)) as follows: for γ ∈ G and f ∈ Mk(Γ g(p)), G acts
on the left on Mk(Γ g(p)) via (γ, f) 7→ f |kγ̃−1, here γ̃ ∈ Γ g is a lift of γ.

The space Mk(Γ g(p)) is decomposed as

Mk(Γ g(p)) = Sk(Γ g(p))⊕ Eg−1
k (Γ g(p))⊕ · · · ⊕ E0

k(Γ g(p)),

where Er
k(Γ g(p)) is the subspace of a complement space of Sk(Γ g(p)) ⊕⊕g−1

i=r−1 Er(Γ g(p)) consisting
of those elements f such that Φr(f) ∈ Sk(Γ r(p)). We assume that all Er

k(Γ g(p)) is closed under the
action of Γ g, or equivalently, under the action of G = Sp(g,Fp). This decomposition exists because of
the complete reducibility of the representations of finite groups.

Our main result is:
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Theorem 3.1. For g ≥ 2,

dim E0
1(Γ g(p)) =





1
2
(pg + 1) p ≡ 3 mod 4,

0 p ≡ 1 mod 4.

Remark . If g ≥ 3, we already know the dimension of M1(Γ g(p)) by the theorem of Li ([L]). His
result is

dim M1(Γ g(p)) =





1
4
(h(p) + 1)(pg + 1), p ≡ 3 mod 4,

0 p ≡ 1 mod 4,

where h(p) is the class number of Q(
√−p). One can show that M1(Γ g(p)) is generated by theta

functions of quadratic forms of level p (see Proposition 3.7). Thus our result follows from the theorem
of Li if g ≥ 3, however the case of g = 2 is the essential part.

In order to prove the theorem, we need some preparations. We define for 0 ≤ r ≤ g − 1,

Pr =





γ =




a1 0 b1 b2

a3 a4 b3 b4

c1 0 d1 d2

0 0 0 d4




l r

l g − r

l r

l g − r

∈ Sp(g,Z)

∣∣∣∣∣
(

a1 b1

c1 d1

)
∈ Sp(r,Z), d4 ∈ GL(g − r,Z)





.

Let ur : Pr → {±1} be the character of Pr defined by γ 7→ det(d4). We define homomorphisms
πr : Pr → Sp(r,Z) and ιr : Sp(r,Z) → Pr by

πr :




a1 0 b1 b2

a3 a4 b3 b4

c1 0 d1 d2

0 0 0 d4


 7−→

(
a1 b1

c1 d1

)
, ιr :

(
a b
c d

)
7−→




a 0 b 0
0 1g−r 0 0
c 0 d 0
0 0 0 1g−r


 .

We decompose Γ g into double cosets by Γ g(p) and Pr:

Γ g =
∐
µ

Γ g(p)Mr
µPr

(assume that 12g ∈ {Mr
µ}µ). Each representative element Mr

µ corresponds to an r-dimensional cusp of
Γ g(p)\Hg. We fix the above decomposition and we write Φr

µ(f) = Φr(f |kMr
µ) for f ∈ Mk(Γ r(p)). It is

easy to see

(3.1) Φr(f |kγ) = ur(γ)kΦr(f)|kπr(γ) for γ ∈ Pr.

Lemma 3.2. The representation of G on E0
k(Γ g(p)) is isomorphic to a sub-representation of IndG

P 0
(uk

0),
where P 0 is the image of P0 under the natural map Γ g → G.

Proof. The proof is given in [G, Proposition 5.2], but we recall the proof here. First we assume that
there exists f ∈ E0

k(Γ g(p)) such that Φ0(f) = 1 and Φ0
µ(f) = 0 for M0

µ 6= 12g. We put fµ = f |k(M0
µ)−1,

then fµ ∈ E0
k(Γ g(p)) and

Φ0
µ(fµ0) =

{
1 µ = µ0,

0 µ 6= µ0.

By definition, {fµ}µ form a basis of E0
k(Γ g(p)).

Now since {M0
µ}µ is a representative system of Γ g(p)\Γ g/P0, {(M0

µ)−1}µ is a representative system
of Γ g(p)P0\Γ g. Fix γ ∈ Γ g, then for each µ there exists µ′ such that

(1) (M0
µ)−1γ = xpµ(M0

µ′)
−1 x ∈ Γ g(p), pµ ∈ P0

and, when µ runs through the representative system, µ′ also runs through the system. We have
fµ|kγ = f |k(M0

µ)−1γ = f |kpµ(M0
µ′)

−1. Since {pµM0
µ}µ is a representative system of Γ g(p)\Γ g/P0,

Φµ(f |kpµ) = Φ(f |k(pµM0
µ)) =

{
Φ(f |kpµ) = u0(p0)k if M0

µ = 14;
0 otherwise.
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Thus f |kpµ = u0(pµ)kf |k and we have

(2) fµ|kγ = u0(pµ)kfµ′ .

This shows that the representation of G is isomorphic to IndG
P 0

(uk
0) in this case.

In general, we consider the C-vector space V spanned by the free basis {fµ} and induce the action
of Γ g by (1) and (2). We define a morphism ϕ : E0

k(Γ g(p)) → V as follows: for f ∈ E0
k(Γ g(p)) such

that Φ0
µ(f) = aµ, put ϕ(f) =

∑
µ aµfµ. Then ϕ is injective by the definition of E0

k(Γ g(p)) and, by the
construction of ϕ, ϕ is a homomorphism of G-modules. Hence the representation of G on E0

k(Γ g(p)) is
isomorphic to the sub-representation of IndG

P 0
(uk

0). ¤

Let

H =
{

γ =
(

A B
0 D

)
∈ G

}

be a subgroup of G. For a Dirichlet character ψ modulo p, we put ψ̃(γ) = ψ(det D) for γ ∈ H.

Lemma 3.3. We have a decomposition of the representation of G:

IndG
P 0

(uk
0) =

⊕

ψ(−1)=(−1)k

IndG
H(ψ̃).

Proof. The condition ψ(−1) = (−1)k means that ψ̃|P 0
= uk

0 . Thus we have a non-zero H-homomorphism
ψ̃ → IndH

P 0
(uk

0), by the Frobenius reciprocity law. However [H : P 0] = (p − 1)/2 and the number of
Dirichlet characters ψ such that ψ(−1) = (−1)k is just (p− 1)/2 for a fixed k. Hence we have

IndH
P 0

(uk
0) =

⊕

ψ(−1)=(−1)k

ψ̃

by comparing the dimensions of both sides. Now our lemma follows from the associativity of induced
representations.

¤

Now we put
Mk(Γ g

0 (p), ψ) = {f ∈ Mk(Γ g(p)) | f |k(γ) = ψ̃(γ)f, γ ∈ Γ g
0 (p)},

and Er
k(Γ g

0 (p), ψ) = Mk(Γ g
0 (p), ψ)∩Er

k(Γ g(p)). Notice that H is the image of Γ g
0 (p) under the canonical

map Γ g → G. Thus by the Frobenius reciprocity law we have

(3.2) E0
k(Γ g

0 (p), ψ) ' HomH(E0
k(Γ g(p)), ψ̃) ' HomG(E0

k(Γ g(p)), IndG
H(ψ̃)).

By Lemma 3.3, our problem is reduced to considering the space E0
1(Γ g

0 (p), ψ).

Proposition 3.4. Let ψ be a Dirichlet character modulo p such that ψ(−1) = −1. Then:

dim E0
1(Γ g

0 (p), ψ) =

{
1 ψ2 ≡ 1,

0 otherwise.

To prove the proposition, we investigate the structure of the boundary of Satake compactifica-
tion of Γ g

0 (p)\Hg. We use the following notations: Ir = Ig
r = diag(1, . . . , 1︸ ︷︷ ︸

r

, 0, . . . , 0︸ ︷︷ ︸
g−r

), Er = Eg
r =

diag(0, . . . , 0︸ ︷︷ ︸
r

, 1, . . . , 1︸ ︷︷ ︸
g−r

), and Mr = Mg
r =

(
Er Ir

−Ir Er

)
. Notice that Mg

0 = 12g, Mg
g = Jg and

Mr ∈
⋃

k≥r Pk.

Lemma 3.5. (1) A representative system of the double coset Γ g
0 (p)\Γ g/P0 is given by {Mr},

0 ≤ r ≤ g.
(2) A representative system of the double coset Γ g

0 (p)\Γ g/P1 is given by {Mr}, 1 ≤ r ≤ g.
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Proof. In both cases, it suffices to consier H\G/P 0 or H\G/P 1. For simplicity, we shall write Aγ (resp.
Cγ) for the left-upper (resp. the left-lower) g × g-block of γ ∈ G.

First we consider (1). For γ =
(

A B
C D

)
∈ G, x ∈ H and p ∈ P 0, Cxγp is of the form UCV with

U, V ∈ GL(g,Fp), det V = ±1. Thus we can take suitable x and p such that Cxγp = −Ir for some

0 ≤ r ≤ g. If r = 0, then xγp ∈ H. We assume r ≥ 1. Then Axγp is of the form A′ =
(

a1 0
a3 a4

)
,

a1 = ta1 ∈ Mr(Fp). If we put

y =
(

1g T
0 1g

)
∈ H with T =

(
a1

ta3

a3 0

)
,

then Ayxγp = Er. Finally we can take a suitable q =
(

1g S
0 1g

)
∈ P 0 such that yxγpq = Mr. Hence,

we have a decomposition G =
⋃

0≤r≤g HMrP 0. Since Cγ and Cxγp have the same rank for any γ ∈ G,
x ∈ H and p ∈ P 0, the above decomposition is a disjoint union. This proves (1).

Next we prove (2). For γ ∈ G we put r = rank Cγ . If r = 0 then γ ∈ H; if r = g, it is easy to see
that γ ∈ HMgP 1. We assume that 1 ≤ r ≤ g − 1. By considering xγ for suitable x ∈ H, we may

assume that Cγ is of the form
(

0 0
u C ′

)
for u ∈ Mg−1,1(Fp) and C ′ ∈ Mg−1(Fp). Next we consider yγp

for y ∈ H and p ∈ P 1 such that

Dy =
(

1 0
0 U

)
, Ap =

(
1 0
0 V

)
, U, V ∈ GL(g − 1,Fp), det V = ±1,

then we may assume that Cg is of the form



0 0 0
c −1r 0
0 0 0



l 1

l r

l g − r − 1

The left-lower (g− r− 1)× 1 block is zero, since rankCγ = r. Moreover we consider γq for q ∈ P 1 such
that

q =
(

A 0
0 tA−1

)
, A =




1 0 0
−c −1r 0
0 0 1g−r−1



l 1

l r

l g − r − 1

we may assume that

(∗) Cγ =




0 0 0
0 1r 0
0 0 0



l 1

l r

l g − r − 1

Then the lower-right g × g block Dγ of γ is of the form



d1 0 d3

d4 d5 d6

d7 0 d9



l 1

l r

l g − r − 1

, d5 = td5.

We remark that it does not happen d1 = 0 and d7 = 0; indeed if d7 = 0 then γ ∈ Pr+1(Fp), thus



∗ ∗
0 0
0 −1r

d1 0
d4 d5



l r + 1

l 1

l r

∈ Sp(r + 1,Fp),

this shows d1 6= 0. Hence we may assume d1 6= 0 by exchanging low vectors of Cγ and Dγ , again Cγ is
of the form (∗). We take p ∈ P 1 such that

p =
(

1g 0
T 1g

)
, T =

(
d−1
1 0
0 0

)
,



8 KEIICHI GUNJI

then

Cγp =




1 0 0
∗ −1r 0
0 0 0


 .

Take a suitable q ∈ P 1, then we have Cγpq = Ir+1. Finally by the same process as (1), we can change
γ of the form Mr+1 by multiplying suitable x ∈ H, p ∈ P 1. This shows that Γ g =

⋃g
r=1 HMrP 1.

We show that this is a disjoint union. Assume that hMr1 = Mr2p for h ∈ H, p ∈ P 1. By comparing
left-lower g × g block, we have −V Ir1 = −Ir2Ap + Er2Cp = −Ir2Ap for V ∈ GL(g,Fp), hence r1 ≤ r2;
since h−1Mr2 = Mr1p

−1, also we have r2 ≤ r1, thus r1 = r2. This complete the proof. ¤

We put Nr = Mr for 1 ≤ r ≤ g; 0-dimensional cusps are represented by M′s, and 1-dimensional
cusps are represented by N ′s. Then the structure of the boundary of Γ g

0 (p)\Hg around 0 and 1-
dimensional cusps is described as in the figure.

r©©©©©©©©rHHHHHHHHr©©©© · · · HHHHr©©©©©©©©r

M0

M1

M2 Mg−1

Mg

N1 N2 Ng

We explain the figure more precisely. The lines Nr (1 ≤ r ≤ g) are modular curves Γ 1,0(p)\H1, with

Γ g,0(p) = J−1
g Γ g

0 (p)Jg =
{

γ =
(

A B
C D

)
∈ Sp(g,Z)

∣∣∣∣ B ≡ 0 mod p

}
.

The points Mr (0 ≤ r ≤ g) are 0-dimensional cusps of Γ g
0 (p)\Hg. Also Mr−1 and Mr are cusps of Nr

corresponding to J1 and 12 respectively for 1 ≤ r ≤ g.
We fix a decomposition Mk(Γ 1(p)) = Sk(Γ 1(p))⊕Ek(Γ 1(p)) as in (2.4), and we write Ek(Γ 1,0(p), ψ) =

Mk(Γ 1,0(p), ψ) ∩ Ek(Γ 1(p)). We consider the map:

Ψ: E0
k(Γ g

0 (p), ψ) −→
g∏

r=1

Ek(Γ 1,0(p), ψ−1), f 7−→
g∏

r=1

q(Φ1
r(f)),

where Φ1
r(f) = Φ1(f |kNr), and q : Mk(Γ 1,0(p), ψ) → Ek(Γ 1,0(p), ψ) is the projector. Then Ψ is injective

by the definition of E0
k, and the image of Ψ is contained in ∂Mk where ∂Mk is the subspace consisting

of those elements (hr)1≤r≤g which satisfy the following condition: if we write ι1(12)Nr = xMrp1 and
ι1(J1)Nr+1 = yMrp2 with x, y ∈ Γ g

0 (p), p1, p2 ∈ P0, then

(3.3) ψ̃(x)−1u0(p1)−1Φ0(hr) = ψ̃(y)−1u0(p2)−1Φ0(hr+1).

This value is called the value of (hr)r at cusp Mr. For Ψ(f) ∈ ∂Mk, the value of (3.3) coincides with
Φ0

r(f).

Lemma 3.6. Assume that ψ2 6≡ 1. Then any element of Mk(Γ g
0 (p), ψ) takes value 0 at the 0-

dimensional cusp Mg
r for 1 ≤ r ≤ g − 1.

Proof. We assume that xMg
rp = Mg

r for some x ∈ Γ g
0 (p) and p ∈ P0. Then Φ0

r(f) = Φ0(f |kMr) =
ψ(x)u0(p)kΦ0

r(f). Hence for the character ψ̃r(y) = ψ̃(Mry(Mr)−1) on (Mr)−1Γ g
0 (p)Mr, if ψ̃−1

r uk
0 6≡ 1

on P0 ∩ (Mr)−1Γ g
0 (p)Mr, then Φ0

r(f) = 0 for any f ∈ Mk(Γ g
0 (p), ψ). We see that

(Mr)−1P0Mr =





γ =




a1 a2 b1 b2

a3 a4 b3 b4

c1 c2 d1 d2

c3 c4 d3 d4




l r

l g − r

l r

l g − r

∣∣∣∣∣
(

b1 a2

d3 c4

)
≡ 0 ∈ Mg(Z) mod p





,

and

ψ̃r(γ) = ψ

(
det

(
a1 −b2

−c3 d4

))
.
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Thus for γ ∈ P0 ∩ (Mr)−1Γ g
0 (p)Mr, ψ̃−1(γ)u0(γ)k = ψ(det(a1) det(d4))−1u0(γ)k. Since ψ(−1) =

(−1)k and {±1} 3 u0(γ) ≡ det(d1) det(d4) mod p, we have u0(γ)k = ψ(det(d1) det(d4)). Therefore

ψ̃(γ)−1u0(γ)k = ψ(det(a1)−1 det(d1)) = ψ(det(d1))2, since γ is of the form
(

V T
0 tV −1

)
. This proves

the lemma. ¤
Proof of Proposition 3.4. By Theorem 2.3 and (3.3), we see that dim ∂M1 ≤ 1 from the structure of
the boundary of Γ g

0 (p)\Hg. If ψ2 6≡ 1 then dim ∂M1 = 0 by Lemma 3.6, thus dim E0
1(Γ g

0 (p), ψ) = 0. If
ψ2 ≡ 1 then p ≡ 3 mod 4 and ψ(x) = (x

p ) with Legendre symbol ( ·p ). Now we define

θQ(Z) =
∑

N∈M2,g(Z)
expπi Tr(tNQNZ), Q =

(
2 1
1 (p + 1)/2

)

then θQ(Z) ∈ M1(Γ
g
0 (p), ψ) and Φ0(θQ(Z)) = 1. Hence we have dim E0

1(Γ g
0 (p), ψ) = 1 for ψ2 ≡ 1. ¤

In order to prove Theorem 3.1, we review the theory of theta functions of quadratic forms.

Proposition 3.7. Let Q ∈ Mm(Z) be a symmetric positive definite matrix with even diagonal entries,
and let q be a level of Q, that is, the minimum positive integer such that qQ−1 is integral with even
diagonal entries. We put T g(Q) = {T ∈ Mm,g(Z) | QT ≡ 0 mod q}. We define for Z ∈ Hg and
T ∈ T g(Q),

θT
Q(Z) =

∑

N∈Mm,g(Z)
exp πi Tr

(
t(N +

1
q
T )Q(N +

1
q
T )Z

)
.

Then θT
Q(Z) ∈ Mm/2(Γ g(q)). Moreover the following properties hold.

θT
Q(

(
V 0
0 tV −1

) 〈Z〉) = θTV
Q (Z) for V ∈ GLg(Z).

θT
Q(( 1 S

0 1 ) 〈Z〉) = exp πi Tr
(

1
q2

tTQTS

)
θT

Q(Z).

θT
Q(

(
0 1
−1 0

) 〈Z〉)

= (det Q)−g/2(det(−iZ))m/2
∑

T ′∈T g(Q)
mod q

exp 2πi Tr
(

1
q2

tTQT ′
)

θT ′
Q (Z).

For the proof, see [A, Proposition 1.3.14, Exercise 2.2.3].

For p ≡ 3 mod 4, we put Q0 =
(

2 1
1 (p + 1)/2

)
. Then the level of Q0 is p, and

T g(Q0) =
{(

a1 a2 · · · ag

−2a1 −2a2 · · · −2ag

) ∣∣∣∣ ai ∈ Z
}

.

Let V be the vector space spanned by {θT
Q0
} for T ∈ T g(Q0). Obviously V , is closed under the action

of Γ g. Since θT
Q0

= θ−T
Q0

, we have dim V ≤ (pg + 1)/2. We write T1, . . . , T(pg+1)/2 for the representative
elements of {T g(Q0) mod p}/{±1}.

We put

U =
{

γ(S) =
(

1g S
0 1g

)
∈ Γ g

∣∣∣∣ tS = S

}
.

Then V is decomposed into the eigen space by the action of U . Actually,

θT
Q0
|kγ(S)(Z) = exp

2πi

p
Tr

( g∑

i,j=1

aiajsij

)
θT

Q0
(Z), for T =

(
a1 · · · ag

−2a1 · · · −2ag

)
, S = (sij).

Thus θTi

Q0
and θ

Tj

Q0
are contained in relatively distinct eigenspaces for i 6= j. In particular dim V =

(pg + 1)/2.

Lemma 3.8. The representation of G = Sp(g,Fp) on V is irreducible.
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Proof. First notice that for a character ξ of U , the projector of V to each eigenspace Vξ of U is contained
in C[U ]. Indeed we write ξ1, . . . , ξn for all the characters of U . If we take elements ui of U such that
ξ1(ui) 6= ξi(ui) for 2 ≤ i ≤ n, then

∏n
i=2(ui − ξi(ui)) ∈ C[U ] maps elements of Vξi

to 0 for 2 ≤ i ≤ n,
and acts on Vξ1 by non-zero scalar multiple.

Now take 0 6= v ∈ V . Let W be the subspace of V generated by v as G-module. We shall show that
V = W . By the above remark, at least one non-zero element, say vξ1 ∈ Vξ1 is contained in W . Then
by Proposition 3.7, for all ξ such that Vξ 6= 0, the Vξ components of vξ1 |Jg are not zero. Thus again by
the above remark, we see that all Vξ ⊂ W , hence V = W . ¤

Proof of Theorem 3.1. By Lemma 3.3, (3.2) and Proposition 3.4, E0
k(Γ g(p)) = 0 if p ≡ 1 mod 4, and

contains only one irreducible representation corresponding to E0
k(Γ g

0 (p), ψ) if p ≡ 3 mod 4. However
by Lemma 3.8, this representation is isomorphic to V , thus dim E0

k(Γ g(p)) = (pg + 1)/2. ¤

For the rest of this paper we remark for some results. First the following lemma follows from the
proof of Theorem 3.1.

Lemma 3.9. Let Q ∈ M2(Z) be a symmetric even matrix of detQ = p. Let VQ be the subspace of
M1(Γ g(p)) spanned by θT

Q. Then the the representation of G on VQ is irreducible and the equivalence
class is independent on the choice of Q.

Lemma 3.10. Let ψ be a Dirichlet character modulo p. If ψ2 6≡ 1 then IndG
H(ψ̃) is a irreducible

representation of G.

To prove the lemma, we use the following Mackey’s criterion.

Theorem 3.11 (Mackey). Let H ⊂ G be finite groups. For a representation ρ of H, IndG
H(ρ) is

irreducible if and only if the following two conditions hold;
(1) ρ is irreducible.
(2) For s ∈ G r H we put Hs = sHs−1 ∩ H, and ρs is the representation of Hs defined by

ρ(x) = ρ(s−1xs). Then, HomHs(ρ|Hs , ρ
s) = 0.

Proof of Lemma 3.10. In our case, condition (1) is obvious. For the condition (2), it suffices to consider
s in H\G/H. By Lemma 3.5, we put s = Mr for 1 ≤ r ≤ g. By a direct computation we have

Hs =





γ =




td−1
1 0 0 b2

a3
td−1

4 b3 b4

0 0 d1 d2

0 0 0 d4




l r

l g − r

l r

l g − r





,

and ψ̃(γ) = ψ(det(d1) det(d4)), ψ̃s(γ) = ψ̃(det(d1)−1 det(d4)). Thus ψ̃ = ψ̃s if and only if ψ2 ≡ 1. ¤

For k ≥ g + 2, we define

Ek,ψ
Mr

(Z) =
∑

γ∈P0∩M−1
r Γ g

0 (p)Mr\M−1
r Γ g

0 (p)Mr

ψ̃r(γ)−1j(γ, Z)−k,

with ψ̃r(x) = ψ̃(MrxM−1
r ). This summation is well-defined if ψ2 ≡ 1 or r = 0, g. In theses cases, the

infinite sum converges absolutely and uniformly on V (d) for any d > 0, where

V (d) = {Z = X + iY ∈ Hg | X = (xij), |xij | < d, Y > d−11g}.
Then Er = Ek,ψ

Mr
|k(Mr)−1 ∈ Mk(Γ g

0 (p), ψ). Moreover, since

lim
λ→∞

|j(γ, iλ1g)|−k = 0 if γ /∈ P0,

one sees that Er takes value 1 at 0-dimensional cusp Mr and takes value 0 at the other 0-dimensional
cusps.

By the above discussion and (3.2) shows the following lemma.

Lemma 3.12. If ψ2 ≡ 1 then IndG
H(ψ̃) contains g + 1 irreducible representations with multiplicity.
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In the case of g = 2, all the irreducible characters of the group Sp(2,Fp) were determined by
Srinivasan ([Sr]). Using this result, we can decompose the representations explicitly.

Lemma 3.13. (1) The representation of Sp(2,Fp) on E0
k(Γ 2(p)) is the sub-representation of

IndG
P 0

(uk
0) =





θ3︸︷︷︸
(p2+1)/2

⊕ θ4︸︷︷︸
(p2+1)/2

⊕ Φ9︸︷︷︸
p(p2+1)

⊕
⊕

1≤l≤(p−3)/2
l:odd

2 χ8(l)︸ ︷︷ ︸
(p+1)(p2+1)

if k is odd, p ≡ 3 mod 4;

⊕

1≤l≤(p−3)/2
l:odd

2χ8(l) if k is odd, p ≡ 1 mod 4;

1G ⊕ θ9︸︷︷︸
p(p+1)2/2

⊕ θ11︸︷︷︸
p(p2+1)/2

⊕
⊕

1≤l≤(p−3)/2
l:even

2χ8(l) if k is even, p ≡ 3 mod 4;

1G ⊕ θ9 ⊕ θ11 ⊕ θ3 ⊕ θ4 ⊕ Φ9 ⊕
⊕

1≤l≤(p−3)/2
l:even

2χ8(l) if k is even, p ≡ 1 mod 4.

(2) We fix a generator ξ of the cyclic group F×p , and define a Dirichlet character ψl modulo p by
ψl(ξa) = e2πial/(p−1). Then

IndG
H(ψ̃l) =





1G ⊕ θ9 ⊕ θ11 l = 0;
θ3 ⊕ θ4 ⊕ Φ9 l = (p− 1)/2;
χ8(|l|) −(p− 3)/2 ≤ l ≤ (p− 3)/2, l 6= 0.
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