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�� Introduction

Arithmetic quotients of hermitian symmetric domains are important objects to inves�
tigate� For example� the moduli spaces of abelian varieties with certain endomorphisms
and polarization types� and the moduli spaces of K� surfaces are realized as such� To
understand the cohomology groups and the cycle geometry of these quotients is very
interesting arithmetic problem� There is a history to investigate this theme around the
time of establishment of the Matsushima isomorphism� The construction method of cycles
by means of equivariant embeddings of locally symmetric spaces are called �generalized
modular symbols �� �cf� ���	
�
If both the embedded and the ambient spaces are of hermitian type� there is an extensive

study by Satake ���	 for possible embeddings� Sometimes they have been called modular
embeddings� The Hirzeburch�Zagier cycles are typical examples ����	� ��	
� Let

j � �nH�H �K � �nG�K
be a modular embedding with G a semisimple Lie group� K a maximal compact subgroup
of G� H a symmetric subgroup such that H � K is maximally compact in H and �� �
are compatible arithmetic subgroups of G� H respectively� Then j yields the restriction
map of cohomology

j�� � H
�
���nG�K� C 
 � H����nH�H �K� C 
�

where � � fempty� c� �g is a support condition of cohomology theories� Then we have the
Poincar�e dual map

�j�
� � H
�m�q
� ��nH�H �K� C 
 � H�n�q

� ��nG�K� C 


with � the support condition dual to �� We propose here a
Problem� Construct the Poincar�e dual map �j�
� explicitly�
This problem seems to be quite di�cult to answer generally� But at least for special

case� we have a tractable method� to use Poincar�e series and derived Green currents�
In a previous paper ���	� we discuss the case when the complex codimension of �nH�H�

K in �nG�K is one� We can extend the similar construction for higher codimensional
case associated with the symmetric pair U�p� q
� U�p � �� q
 � U��
 in this article� We
note that its dual symmetic pair U�p� q � �� �
� U�p� �� �
� U�q
� which yields a class
of higher codimensional cycles in a discrete quotient of a complex hyperball� is already
treated in ���	 by a similar method� This paper is a continuation of our previous works
���	 and ���	� which we follow technically and logically�

�



Let us explain the organization of this paper brie�y� The aim of this paper is twofold�
one is local investigation of the secondary spherical function �xx���
� and the other is
global investigation of the associated Poincar�e series �xx��
� Our spherical functions
are left H�invariant smooth functions on G which have special right K�type and are
eigenfunctions under the Casimir operator� The secondary spherical functions have similar
property� but they are distributions on G with singularities along HK� This kind of
functions play a crucial role in our construction of Poincar�e series and Green currents�
Here is more detailed explanation of each section� The second section is prelimi�

nary� where we �x basic notations and assemble relevant facts about our symmetric pair
�G�H
 � �U�p� q
�U�p � �� q
 � U��

� and also �x a normalization of Haar measures�
In x�� we study a certain invarinat tensor associated with the submanifold H�H �K by
means of representation theory of compact groups� The x� is an analytical preliminary�
where we give a concrete expression of the Hodge Laplacian and the operator � �� on the
symmetric space G�K in terms of the �polar coordinates� on HnG� The secondary spher�
ical function is studied in x�� In Theorem �� we de�ne the secondary spherical function

�
�d�
s for each � � d � q as a family of H�invariant �d� d
�forms on G�K with singularities
along the submanifold H�H �K which holomorphically depends on a complex parameter
s and satis�es the �ve characterizing conditions �i
��v
� We explicitly construct such
a family by using the Gaussian hypergeometric series� The characterizing conditions in
Theorem � are e�ectively used to prove the equation in Theorem ��� which is important
to show the Green�s equation ����
 in x� Theorem ���
The remaining sections are occupied by the investigation of global currents� We study

a modular cycle C�
H � � � HnH�H � K � �nG�K de�ned by a uniform lattice � of

G such that � � HnH is also compact� In order to obtain the Poincar�e dual of C�
H �

in x�� we de�ne a �q� q
�current ��
H�s
 �  

�q�
s�� and the related �d� d
�currents  

�d�
s�r on

�nG�K as the Poincar�e series using the secondary spherical function �
�d�
s as the seeds of

�geometric current � constructed in the last part of the paper� After establishment of its
L��convergence in the range Re�s
 � p� q��� in Proposition ��� we show the generalized
Poisson equation for  

�d�
s�r �

Although the form ��
H�s
 is not square�integrable itself� we can establish the square�

integrability for the auxiliary currents  
�d�
s�r with su�ciently large r by a similar way

to ���	� We obtain the spectral decomposition of the square�integrable form  
�d�
s�r as a

Fourier series of the eigenfunction of the Hodge Laplacian� which eventually yields the
meromorphic continuation of ��

H�s
 from the original convergence region Re�s
 � p�q��
to the whole complex plane�
In x�� we establish Green�s equation ����
 in Theorem ��� which� together with the gen�

eralized Poisson equation� is used in Theorem �� to show the current ��
H �

p�q��
�
Ress�p�q����

H�s

is harmonic and is cohomologus to the fundamental class of C�

H � We also show that the

constant term of  
�q���
s�� at s � p � q � � yields a Green current of C�

H in the sense of
Gillet�Soul�e ��	� though the condition at singularities are di�erent�
In x� we study some representation theoretical aspects of our global construction ��

H �
We collect miscellaneuos remarks and perspectives related to the theme of this paper in
x!�

�



In x��� we amend the introduction of ���	� recollecting the advise of Professor Hirze�
burch�

Notations�
The number � is included in the set of natural numbers� N � f�� �� �� � � �g�
For any matrix B � �bij
 with coe�cients in C � B� � ��bji
 denotes its conjugate�

transpose matrix�
We follow the usual convention that the Lie algebra of a real Lie group G is denoted

by the corresponding german letter g�

�� Preliminaries

���� Unitary group and its symmetric space� Let G � fg � GLp�q�C 
j g�Ip�qg �
Ip�qg be the unitary group of the Hermitian form Ip�q � diag��p���q
 with signature
�p�� q�
� We assume p � q � � from now on�
The inner automorphism � � g �� Ip�q g Ip�q is a Cartan involution of G and its �xed

point set
K � fdiag�k�� k�
j k� � U�p
� k� � U�q
g

yields a maximal compact subgroup of G� The ���
�eigenspace of d� � g� g denoted by
p is identi�ed with the tangent space of the G�homogenous manifold G�K at its origin
o � K� The adjoint action J � Ad�zo
jp by the element zo � diag�

p�� �p� �q
 in the
center of K yields a K�invariant complex structure on p �� To�G�K
� which propagates
a G�invariant complex structure on G�K� The complexi�cation pC is decomposed to its
holomorphic and anti�holomorphic subspaces� pC � p�	 p� with p� � fX � pC j J�X
 �

p��Xg� If we identify gC � glp�q�C 
 naturally� we have

p� � fp��x�
 � � � x�
� � 	 � glp�q�C 
j x� � Mp�q�C 
g�

p� � fp��x��
 � � � �
x�� � 	 � glp�q�C 
j x� � � Mp�q�C 
g�

Let X �� �X be the complex conjugate in glp�q�C 
 with respect to its real form g� Then
�X � �Ip�qX�Ip�q ��X � gC 
 and p��x
 � p��x�
 ��x � Mp�q�C 

�
The non�degenerate R�bilinear form Bg�X� Y 
 � ���tr�XY 
 on g entails a positive

de�nite K�invariant inner product Bp on p� which propagates a G�invariant metric on
G�K� The mertic on G�K is K"ahlerian and the associated ��form form is given by

�p�X� Y 
 � Bp�X� JY 
� X� Y � p����


on p �� To�G�K
�
Let Bp�

C
be the complex bilinear extension of the inner product Bp� on p� dual to

Bp� Then p�
C
is equipped with the hermitian inner product ��j��
 � Bp�

C
��� ���
� which is

extended to the exterior algebra
V
p�
C
canonically� Note the natural decomposition ofV

p�
C
to its bidegree �a� b
 part

a�b�
p�
C
�

a�
p�� �

b�
p��

is orthogonal� It is sometimes convenient to note that the inner product of typical elements
� � p��x
 � p�� �x � Mp�q�C 
� 	 � 

 and 
 � p���y
 � p��� �y � Mp�q�C 
� 	

� � 

 is
computed as ��j

 � �

�
�����tr�xy

�
�
�



The Hodge star operator  is de�ned to be the C �linear endomorphism of
V
p�
C
such

that �� � � and such that ��j
volp � ���� Here volp � �
�pq��

�pqp is the K"ahler volume

form� For � � V p�
C
� let us de�ne e��
 �

V
p�
C
� V

p�
C
by e��
 � � � � The operator

L � e��p
 is commonly called the Lefshetz operator� The adjoint of e��
 with respect
to the hermitian inner product of

V
p�
C
is denoted by e���
� In particular� the operator

e���p
� the adjoint of the Lefshetz operator� is denoted by # �cf� ��� Chap�II� x�	

���� A symmetric subgroup� Let us consider the involution � of G de�ned by

��g
 � diag��p������ �q
 g diag��p������ �q
�

Let H � G� be the ���xed point subgroup of G� Since � is commutative with �� the
restriction �jH provides H with a Cartan involution� The ���xed points

H� � H �K � fdiag�h�� u� h�
j h� � U�p� �
� u � U��
� h� � U�q
g

is a maximal compact subgroup of H� The Cartan decomposition of the Lie algebra h of
H is h � �k � h
 	 �p � h
� Since the element zo de�ning the complex structure J of p
belongs to the center of H �K� J yields an H �K�invariant complex structure of the real
vector space h � p �� To�H�H �K
� which propagates an H�invariant complex structure
of H�homogenous manifold H�H�K� We put H�H�K the H�invariant metric comming
from the restriction of Bp to h� p� The metric is K"ahlerian and the associated ��form on
p � h �� To�H�H �K
 is �p�h � �pj�p � h
� �p � h
�
As a consequence of the constructions so far� the inclusion H�H � K �� G�K is a

holomorphic map between K"ahler manifolds and codimC �G�K$H�H �K
 � q�
In the following subsection� we recall the standard set up to investigate the a�ne

symmetric pair �G�H
 �cf� Rossmann ���	� Oshima�Sekiguchi ���	� Schlichtkrull ���	
�

���� Root vectors� For � � i� j � p � q� let Eij � ��i��j�
 denotes the matrix unit
in Mp�q�C 
� The matrices Ei�j comprise a C �basis of the complexi�ed Lie algebra gC �
glp�q�C 
�
Let q be the ���
�eigenspace of d� � g � g� Since � and � are mutually commutative

involutions� g is decomposed to their joint eigenspaces� g � �k�h
	�p�q
	�p�h
	�k�q
�
The pair �g� h
 is a symmetric pair of split rank one� and a � RY� with Y� � Ep�p���Ep���p

is a maximal abelian subspace of p�q� The set of a�roots in g is %�a
 � f
��
��g� Here
� � a� is the unique simple root such that ��Y�
 � �� The multiplicity ����	
 of each root

is computed as
�
m���� m�����

m���� m�����

�
�
�

��q��� �
��p��� �

�
�

Set M � ZH�K�a
� Then

M � fdiag�x�� u� u� x�
j x� � U�p� �
� u � U��
� x� � U�q � �
g

coincides with ZK�a
�
�



For � � i � p� � and � � j � q � �� set

Xq
� � Ep�p��� �Xq

� � Ep���p� Zh
� �

p���Ep�p � Ep���p��
�

Xq
j � Ep�p�j��� �Xq

j � Ep�j���p�

Zh
j � �Ep���p�j��� �Z

h
j � Ep�j���p���

Xh
i � Ei�p��� �Xh

i � Ep���i�

Zq
i � Ei�p� �Zq

i � �Ep�i�

Xh
ij � Ei�p�j��� �Xh

ij � Ep�j���i�

This notation is consistent with the complex conjugation� and

p� � qC � hXq
j �� � j � q � �
iC �

p� � qC � h �Xq
j �� � j � q � �
iC �

p� � hC � hXh
i �� � i � p� �
iC 	 hXh

ij �� � i � p� �� � � j � q � �
iC �
p� � hC � h �Xh

i �� � i � p� �
iC 	 h �Xh
ij �� � i � p� �� � � j � q � �
iC �

�k � h
C � hZh
� � Z

h
j �
�Zh
j � � � j � q � �
iC 	 mC �

�k � q
C � hZq
i �
�Zq
i �� � i � p� �
iC �

Here is a list of useful bracket relations� which is checked by a direct computation� For
� � i � p� � and � � j � q � ��

�Zh
� � X

q
� 	 � �

p��Xq
� � �Z

h
� � �X

q
� 	 � ��p�� �Xq

� � �X
q
� � �X

q
� 	 � �p��Zh

� �

�Zh
� � Z

h
j 	 � �p��Zh

j � �
�Xq
� � Z

h
j 	 � �� �Xq

� � Z
h
j 	 � �Xq

j �

�Zh
� � X

q
j 	 �

p��Xq
j � � �Xq

� � X
q
j 	 � �p��Zh

j � �Xq
� � X

q
j 	 � ��

�Zh
� � Z

q
i 	 � �p��Zq

i � �
�Xq
� � Z

q
i 	 � �� �Xq

� � Z
q
i 	 � �Xh

i �

�Zh
� � X

h
i 	 �

p��Xh
i � � �Xq

� � X
h
i 	 � �Zq

i � �Xq
� � X

h
i 	 � ��

�Zh
� � X

h
ij	 � �� � �Xq

� � X
h
ij	 � �� �Xq

� � X
h
ij	 � ��

Consider the one parameter subgroup

at � exp�tY�
 � diag ��p��� � cosht sinht
sinht cosht 	 � �q��
 � �t � R


ofG� Then by general theory� the groupG is a disjoint union of double cosetsHatK �t � �

and the Lie algebra g � Ad�at


��h� a� k if t � �� By direct computation� we have

Xq
� �

�
�
Y� � �

�

p��
sinh��t�

Ad�at

��Zh

� �
p��
�

cosh��t�
sinh��t�

Zh
� � ������


Xq
j �

�
sinht

Ad�at

��Zh

j � cosht
sinht

Zh
j � �� � j � q � �
�

Xh
i �

�
cosht

Ad�at

��Xh

i � cosht
sinht

Zq
i � �� � i � p� �
�

�



Lemma �� For � � i� � � p � � and � � j�  � q � � and t � �� the following hold in
U�gC 
 modulo �Ad�at


��hC 
U�gC 
�

Xq
�
�Xq
� � �

	
Y �
� �

�
	
�tanht � cotht
Y� �

�
�

�tanht� cotht
��Zh

� 

� �

p��
�
Zh
� �

Xq
�
�Xh
i � � tanht

�
Y� �Z

q
i �

p��
	
�� � tanh�t
Zh

�
�Zq
i � �Zq

i �

Xh
i
�Xq
� � � tanht

�
Y�Z

q
i �

p��
	
�� � tanh�t
Zh

�Z
q
i �

Xq
�
�Xq
j � � cotht

�
Y� �Z

h
j �

p��
	
�� � coth�t
Zh

�
�Zh
j � �Zh

j �

Xq
j
�Xq
� � � cotht

�
Y�Z

h
j �

p��
	
�� � coth�t
Zh

�Z
h
j �

Xh
i
�Xh
� � �i�

tanht
�
Y� � tanh

�t �Zq
�Z

q
i �

p��
	
�� � tanh�t
�i�Z

h
� �

Xq
j
�Xq
� � �j�

cotht
�
Y� � coth

�t �Zh
�Z

h
j �

p��
	
�� � coth�t
�j�Z

h
� �

Xq
j
�Xh
i � �Zq

i Z
h
j �

Xh
i
�Xq
j � �Zh

jZ
q
i �

Proof� By using the formulas ���
� we prove this lemma in a similar way to ���� Lemma
�����	�

The de�nitions and formulas of this section are used in x��

���� Invarinat measures� Let dk and dk� be the Haar measures of the compact groups
K and H �K with total volume � respectively� Then we can take a unique Haar measure
dg �resp� dh
 of G �resp� H
 such that the quotient measure dg

dk
�resp� dh

dk�

 coincides

with the invariant measure on the symmetric space G�K �resp� H�KH
 determined by
the K"ahler volume form�

Lemma �� For any integrable function f on G� we haveZ
G

f�g
 dg �

Z
H

dh

Z
K

dk

Z ��

�

f�hatk
 ��t
 dt����


with dt the Lebesgue measure of R and

��t
 � ��q

��q�
�sinht
�q���cosht
�p�������


Proof� Similar to ���� Lemma ���	�

�� Certain invariant tensors

For a C��manifold U � let A�U
 denote the space of C��di�erential forms on U and
Ac�U
 the subspace of those forms with compact support$ when neccessary we topologize
these spaces in the ususal way� When U has a complex structure� Aa�b�U
 denotes the
space of C��di�erentail forms of bidegree �a� b
�
In this section� for U � G�K we de�ne some element dual to Ac�U
 by the H�orbit in

U � Somce of the contents of this section may be not found in the literature�
�



���� Current de�ned by the symmetric subgroup� Let j � H�H � K �� G�K be
the natural inclusion� Then a �q� q
�current �H�H�K on G�K is de�ned by the integration

h�H�H�K � �i �
Z
H�H�K

j��� � � Ac�G�K
�

Lemma �� For � � Ac�G�K
� we have

h�H�H�K � ��i �
Z
H

�#q�d�volp�h
j��h

 dh�

Here

volp�h � �
�q�p���� ��

q�p���
p�h �

�p���q��p���q�
p�
C

is the K �H�invarinat tensor corresponding to the K�ahler volume form of H�H �K�

Proof� We may assume the bidegree of � is �q� q
� Let vH�H�K be the K"ahler volume
form of H�H � K and H the Hodge star operator of H�H � K� Then the ��form
fHj��#q�d  ��
g�vH�H�K on H�H �K corresponds to the function �#q�d����h

jvolp�h

on H� By this remark� we compute

h#q�d�H�H�K � ��i � h�H�H�K �#q�d���
i
�

Z
H�H�K

�#q�d����h

jvolp�h
 dh

�

Z
H�H�K

�volp�hj#q�d���h


 dh

�

Z
H�H�K

�#q�d�volp�h
j��h

 dh�

���� K�spectrum of certain cyclic K�module� For our purpose� it is important to un�
derstand the nature of the tensor #q�d�volp�h
 in some detail� The aim of this subsection
is to obtain an &k�eigendecomposition of the tensor #

q�d�volp�h
� Here &k is the Casimir
element of K corresponding to the invariant form Bg� Because for the construction of the
secondary spherical function in x�� we need the decomposition of #q�d�volp�h
 given in
Proposition ���
The coadjoint representation of K on p�

C
is naturally extended to a unitary represen�

tartion � � K � GL�
V
p�
C

 in such a way that ��k
�� � 
 � ��k
� � ��k
 holds for

��  � V p�
C
and k � K� For �a� b
 � N� � �a�b denotes the subrepresentation of � on

Va�b
p�
C
�

For � � i � p� � � j � q� let us de�ne �ij � p�
C
by �ij�E��p��
 � �i��j� �� � � � p� � �

 � q
� �ijjp� � �� Then �ij�s and their complex conjugates ��ij comprise a C �basis of p�C
dual to the basis of matrix units in pC �

Lemma �� ��
 The family �����ij � ��ij
� ���
p�����ij � �ij
� �� � i � p� � � j � q
 is

an orthonormal basis of p� with respect to Bp� and is dual to the orthonormal basis
Ei�p�j � Ep�j�i�

p���Ei�p�j � Ep�j�i
 of p�
��
 We have ��ijj���
 � ���ijj����
 � ��i��j� and ��ijj����
 � ��

�



��
 The action of the matrix units in kC on �ij �� � i � p� � � j � q
 is given by

�E	��
�ij � ��i	��j� ��E	��
��ij � �i���	j� �� � �� � � p
�

��Ep�
�p��
�ij � �j��i
� ��Ep�
�p��
��ij � ��j
 ��i�� �� � ��  � q
�

Proof� Direct computation�

For � � �� � � p� set

�	� �
p��
�

qX
j��

�	j � ���j �
����

p�
C
�

We have a concise expression of K"ahler forms in terms of �	��

Lemma �� We have

�p �

pX
	��

�		� �p�h � �p � �pp�

The tensor �pp is H �K�invariant�

Proof� Direct consequence of de�nitions�

The action of kC on the tensors �	� is given as follows�

Lemma 	� For � � i� �� � � p� �� we have

��Zq
i 
�pp � �pi� �� �Zq

i 
�pp � �ip�

��Zq
i 
��p � ��i��pp � ��i� �� �Zq

i 
�p� � �����pp � �i��

��Zq
i 
�p� � �� �� �Zq

i 
��p � ��

��Zq
i 
��	 � ��i��p	� �� �Zq

i 
��	 � ��i	��p�
For � � j�  � q � �� � � �� � � p� we have

��Zh
j 
�	� � �� �Zh

j 
�	� � ��

��Ep�j���p����
�	� � ��Ep���p��
�	� � ��

For � � i� � � p� � � �� � � p� we have

��Ei��
�	� � ��i	��� � ����	i�

Proof� This follows from Lemma � readily�

Lemma 
� For � � d � q�

#q�d�volp�h
 � �q�d��
d�

�dpp�

Proof� For any subset M of f�i� j
j� � i � p� � � j � qg� set wM �
Q

�i�j�	M �ij � ��ij�
Then from ���� p����p���	� we have

wM �
�

�p��

��
�M��pq
wM �����


#�wM
 �
�p��
X
		M

wM�f	g����


�



with ��M
 the cardinality of M � and M � the complement of M �
If su�ces to show

volp�h � �
q�
�qpp�����


#��dpp
 � d�q � d� �
 �d��pp � �� � d � q
�����


Since

volp�h �
�p��

�

�pq�q p��Y
i��

qY
j��

�ij � ��ij� �qpp � q�

qY
j��

�pj � ��pj�

by ����
� we compute

volp�h �
�p��

�

�pq�q

�
p��Y
i��

qY
j��

�ij � ��ij
�
�
�p��

�

�q qY
j��

�pj � ��pj � �
q�
�qpp�

This completes the proof of ����
� Let Sd be the set of all M � f�p� j
j � � j � qg with
��M
 � d� Since �dpp �

�p��
�

�d
d�
P

M	Sd wM � by ����
� we compute

#��dpp
 �
�p��

�

�d
d�
X
M	Sd

�p��
X
		M

wM�f	g

�
�p��

�

�d��
d� �q � d� �


X
N	Sd��

wN � d�q � d� �
�d��pp

to have ����
�

For � � V���
p�
C
� the r�fold wedge product � � � � � � � � � is denoted by �r� In order to

have a decomposition of �dpp into eigenvectors of the Casimir operator &k� we �rst analyze

the K�spectrum of U�kC 
�
d
pp� the cyclic U�kC 
�submodule of

Vd�d
p�
C
generated by �dpp�

Since kC �� glp�C 
 	 glq�C 
� the highest weight of an irreducible representation of k is
supposed to take the form

� � �l�� l�� � � � � lp		 �m�� m�� � � � � mq	����


with li� mj � Z such that l� � l� � � � � � lp� m� � m� � � � �mq�

Lemma �� Let � � d � q and V an irreducible K�submodule of U�kC 
�
d
pp� Then the

highest weight of V is of the form ��� �� � � � � ����		 ��� � � � � �	 with an integer � � � � d�

Proof� Let us �x a K�invariant inner product on U�kC 
�
d
pp and take the orthogonal com�

plement V 
 of V in U�kC 
�
d
pp� Since the projector pr � U�kC 
�

d
pp � V associated with

the decomposition U�kC 
�
d
pp � V 	 V 
 is a surjective K�homomorphism and since �dpp is

H�K�invariant� the vector v � pr��dpp
 � V yields an H�K�invariant U�kC 
�cyclic vector
of V � In particular� v �� � and V H�K �� f�g� Let � be the highest weight of V � which is
supposed to have the form ����
� Since kC � hC � �glp���C 
 	 C 
 	 glq�C 
� the condition
V H�K �� f�g yields that the irreducible glp�C 
�module of highest weight �l�� � � � � lp	 con�
tains the trivial representation of glp���C 
 and that the irreducible glq�C 
�module with

�



highest weight �m�� � � � � mq	 is trivial� Hence

li � � ��i � f�� � � � � p� �g
� mj � � ��j � f�� � � � � qg
����


by the glp�� � glp branching law ���� Theorem ���� �p����
	
� The center of K acts on
V trivially because a central element of K �xes the tensor �dpp� Hence the sum l�� � � �� lp
should be zero� This� combined with the condition ����
� forces that � � ��� � � � � ���	 	
��� � � � � �	 with some � � N � It remains to show � � � � d� For that� we examine the
T �weights occuring in V � where T � fdiag�t�� � � � � tp�q
j ti � U��
g� For � � i � p � q�
let 	i � T � U��
 be the character de�ned by 	i�diag�t�� � � � � tp�q

 � ti� From Lemma ��
the T �weight of the element �	� �� � �� � � p
 equals 	� � 		� Lemma � also shows that
U�kC 
�

d
pp is contained in C ��	

�d� � the subspace of
V
p�
C
spanned by the products of d of p�

tensors �	� �� � �� � � p
� In particular the highest weight � � ��	� � 	p
 of V is one of
T �weights occuring in C ��	�d� � It is obvious that a T �weight of C ��	�d� � especially ��	��	p
�
is a sum of d weights of the form 		 � 	� �� � �� � � p
� This implies � � � � d�

For � � � � d� let V
�d�
� be the ��� �� � � � � ����	 	 ��� � � � � �	�isotypic part of U�kC 
�

d
pp�

Then Lemma  implies

U�kC 
�
d
pp �

dM
���

V �d�
� �����


Note that V
�d�
� is a trivial representation of K�

Lemma �� For � � d � q� the K�module V
�d�
d is irreducible�

Proof� We have �� �Zq
�
�

d
pp � d� �d�p by a short computation using formulas in Lemma ��

Hence the tensor �d�p belongs to U�kC 
�
d
pp� Let u be the nilpotent subalgebra of glp�q�C 


formed by all the lower trianglular nilpotent matrices� Then by the formulas in Lemma ��
it is easy to see that �d�p is annihilated by all the matrix units E�� � kC � u� This proves

that �d�p is an extremal vector of kC lying in U�kC 
�
d
pp� which generates an irreducible

K�module of lowest weight �d�	� � 	p
� Therefore V
�d�
d �� f�g� It is easy to show that

the d�	p � 	�
�weight space of C ��	
�d� coincides with the one dimensional space C �d�p �

This implies d�	p � 	�
�weight space of V
�d�
d also coincides with C �d�p � Hence V

�d�
d is

irreducible�

Corollary �� Let � � d � q� Then the operator
Qd

��������&k�����p��

 annihilates
the tensor �dpp�

dY
���

�����&k � ���� p� �

 �dpp � ��

Proof� Write the element �dpp as the sum

�dpp �

dX
���

v�� v� � V �d�
����


along the decomposition ����
� Since the eigenvalue of &k on an irreducible K�module of
highest weight ��� �� � � � � ����		 ��� � � � � �	 is ���� � p� �
� the element v� is annihilated

�	



by ����&k�����p��
� a factor of
Qd

��������&k�����p��

� The conclusion follows
from this remark and the decomposition ���
�

For � � d � q� � � � � d� set

��d�� �
�q � d
�

d�

Y
����d
� ���

����&k � ���� p� �

��� �
�� � �� p� �
 �

d
pp �

d�d�
p�
C
����!


Proposition ��� Let � � d � q�

��
 For each � � � � d� the tensor �
�d�
� is a nonzero eigenvector of &k with the eigenvalue

����� p� �
� i�e��
&k�

�d�
� � ����� p� �
��d�� � ��d�� �� ��

The tensor ��d�� is H �K�invariant and is a U�kC 
�cyclic vector of V �d�
� �

��
 We have

#q�d�volp�h
 �
dX

���

��d�� ������


Moreover� the tensors �
�d�
d �� � d � q
 are primitive� i�e�� #�

�d�
d � �� we have

#�
�d�
� � �

�d���
� �� � � � d
�

Proof� Let T be an indeterminate and consider the polynomial Fd�T 
 �
Qd

����T � ����
p � �

� The d � � integers �� � ���� � p � �
 �� � � � d
 are mutually distinct and

coincides with the set of roots of Fd�T 
� Hence the formula
�

Fd�T �
�
Pd

���
�

F �

d
�����T���� � or

equivalently

� �
dX

���

F �
d���


��Fd���T 
�����


holds� where Fd�T 
 � �T � ��
Fd���T 
� A computation shows

��d�� � F �
d���


��Fd�������&k

�q�d��
d�

�dpp������


The substitution T � ����&k in the identity �����
 yields yet another identity of operators
on
V
p�
C
$ apply this to the element #q�d�volp�h
� Then we obtain the identity �����
 by

�����
 and Lemma ��
Since �T � ��� � p� �

Fd���T 
 � Fd�T 
� we compute

f����&k � ���� p� �
g��d�� � F �
d���


��Fd�����&k

�q�d��
d�

�dpp � �

using Corollary �� to prove the second equality� This shows the second statement of ��
�
Since �dpp is H � K�invariant �Lemma �
� the de�ning formula �����
 shows the H � K�

invariance of �
�d�
� �

Lemma � implies

#� �q�d��
d�

�dpp
 �
�q�d����
�d���� �

d��
pp �

��



Let � � � � d� Then F �
d���
 � ���� d�d� p� �

F �

d�����
 and Fd���T 
 � �T � d�d� p�
�

Fd�����T 
� Using these formulas and noting # is commutative with &k� we compute

#���d�� 
 � F �
d���


��Fd�������&k
 #�
�q�d��
d�

�dpp


�����


� F �
d���


��Fd�������&k

�q�d����
�d���� �

d��
pp

�����


� f�� � d�d� p� �
g��F �
d�����


��Fd���������&k
 f����&k � d�d� p� �
g �q�d����
�d���� �

d��
pp

� f�� � d�d� p� �
g��f����&k � d�d� p� �
g ��d����

� ��d���� �

Note we use &k�
�d���
� � ���� � p � �
��d���� to obtain the last equality� This proves the

last statement of ��
� In the computation above� the �rst two equalities �����
 and �����

are true even for � � d� Since Fd�d�T 
 � Fd���T 
� the right�hand side of �����
 equals
zero by Corollary ��� This proves #��

�d�
d 
 � ��

The element v� in the decomposition ���
 has to be a U�kC 
�cyclic vector of V
�d�
� � Both

���
 and �����
 give &k�eigenvector decomposition of �
d
pp$ comparing them we obtain

�
�d�
� � �q�d��

d�
v� because the relevant eigenvalues ���� of &k are di�erent for di�erent ��

Consequently �
�d�
� yields a U�kC 
�cyclic vector of V

�d�
� � Since V

�d�
d �� f�g �Lemma !
�

�
�d�
d �� �� When � � d� the formula #d�����d�� 
 � �

���
� �� � shows ��d�� �� ��

Remark� The k�module V �d�
� with � � � � d is not neccessarily irreducible� For example�

when p � q � �� V
���
� � C 	 C is two dimensional and contains a non trivial K�invariant

tensor orthogonal to ��
p�

Example� Consider the case of the rank � unitary group G � U�p� �
 �p � �
 as an

example� We can make the invariant tensors �
���
� de�ned by ���!
 more explicit�

�
���
� � �

�p�p���
�A� �B � C � E
�

�
���
� � �

p�p���
fA� �p� �
B � �p� �
C � pD � Eg�

�
���
� � �

��p����p���
fA� �pB � �p� � p� �
C � ��p� �
D � Eg�

where

A � �
p��X
i��

p��X
���

�i� � ��i� B � �
p��X
i��

�ip � �pi� C � ��pp�

D � �p � �pp� E � ��
p�

�� Polar decomposition of several differential operators

In this subsection we have an expression of several di�erential operators acting on the
space of H�invarinat forms A��G�HK
�K
H�

��



���� Di�erential forms� For a right K�stable open subset S of G and a unitary repre�
sentation ���W 
 of K� let C��S�K$ �
 denotes the space of C��function � � S � W such
that

��gk
 � ��k
����g
� ��g � S� �k � K
�

For g � G� let Lg � xK �� gxK be the left translation on G�K by g� Its tangent
map To�Lg
 at the origin o � K is regarded as a linear map p � TgK�G�K
� Given
� � A�S�K
� a function '� � C��S�K$ �
 is de�ned by the formula

h'��g
� �i � h��gK
� f�To�Lg
g �i� ��g � S� �� �
�

p
�

The map � �� '� yields a linear bijecion from the space of forms Aa�b�S�K
 onto the space
of functions C��S�K$ �a�b
$ we identify these two spaces by this isomorphism�
Since G � HK is left H�stable and right K�stable open subset of G� both Aa�b��G �

HK
�K
 and C���G�HK
�K$ �a�b
 have natural left actions by H� and the isomorphism
Aa�b��G�HK
�K
 �� C���G�HK
�K$ �a�b
 preserves the H�actions�

Lemma ��� Let � � C���G � HK
�K$ �
H� Then for each t � �� the value ��at

belongs to theM�invariant part �

V
p�
C

M � Conversely� given a C��function � � �����
�

�
V
p�
C

M � there exists a unique function � � C���G � HK
�K$ �
 such that ��at
 �

��t
 ��t � �
�

Proof� Let t � �� Since M is pointwisely commutative with at and since M � H �K� we
have ��at
 � ��matm

��
 � ��m
��at
 ��m � M
� which implies ��t
 � �V p�
C

M � Let us

show the converse� Given a C��function � � �����
 � �
V
p�
C

M � we de�ne a function

'� � H � �����
�K � V
p�
C
by '��h� t� k
 � ��k
����t
� Obviously� '� is a C��function

and is constant on an M �orbit in H � �����
 � K with the M �action m � �h� t� k
 �
�hm��� t�mk
� Since �h� t� k
 �� hatk induces a di�eomorphism �H � �����
�K
�M ��
G�HK ����� Theorem !���	
� '� yields a function � � C���G�HK
�K$ �
H such that
��at
 � ��t
 ��t � �
�

Lemma ��� We have � d�d�Zh
� 
� � � ��� � �

Vd�d
p�
C

M
 for all d � N �

Proof� The operator ��W�
 with W� �
p��diag��p���q
 � k acts on p� by the scalar


�p��$ hence � d�d�W�
 � �� Since the di�erence Zh
� �W� �

p��diag���p��� �� �� �q��

belongs to m� ��Zh

� �W�
 is zero on �
Vd�d

p�
C

M � From these� the conclusion follows�

��



���� Laplacian� Let &m� &k� &h�k and &g be Casimir elements of M � K� H � K and G
respectively� corresponding to the invariant form Bg� Then

&k�h � &m � �Zh
� 


� � �
q��X
j��

�Zh
j
�Zh
j �

�Zh
jZ

h
j 
�

&k � &m � �Zh
� 


� � �
q��X
j��

�Zh
j
�Zh
j �

�Zh
jZ

h
j 
� �

p��X
i��

�Zq
i
�Zq
i �

�Zq
i Z

q
i 
�

����


&g � &k � �

q��X
j��

�Xq
j
�Xq
j �

�Xq
jX

q
j 
 � �

p��X
i��

�Xh
i
�Xh
i �

�Xh
iX

h
i 
 � �

p��X
i��

q��X
j��

�Xh
ij
�Xh
ij �

�Xh
ijX

h
ij
�

����


Let us introduce the operators

Sk�q � �
�

p��X
i��

��Zq
i
�Zq
i � �Zq

i Z
q
i 
 �

��
	
f��&k
� ��&k�h
g�����


Sk�h � �
�

q��X
j��

��Zh
j
�Zh
j � �Zh

jZ
h
j 
 �

��
	
f��&k�h
� ��&m
 � ��Zh

� 

�g����


acting on
V
p�
C
� Let � be the Hodge Laplacian acting on A��G�HK
�K
�

Proposition ��� Let � � C���G � HK
�K$ �
H and set ��t
 � ��at
 �t � �
� Then
���
�at
 � �Dt��t
 �t � �
 with Dt the �

V
p�
C

M �valued di�erential operator

Dt �
d�

dt�
� ���p� �
tanht � ��q � �
cotht
 d

dt

�
	Sk�h
sinh�t

�
�	Sk�q
cosh�t

� �
	
�cotht� tanht
���Zh

� 

� � ��&m
�

Proof� By Kuga�s lemma ���� Chap�II� Theorem ���	
� the action of Laplacian � on
Ac�G�K
 �� C�

c �G�K$ �
 is given by the action of the Casimir R�g
� Hence the formula

follows from ����
� ����
 and Lemma � by a direct computation�

The next lemma� which is obtained by integration�by�part� will play a key role in this
paper �cf� Propositions �� and ��
�

Lemma ��� Let ��  � C�������
$ �V p�
C

M
 and � � 	 � R� The formulaZ R

�

���t
jDt�t

 ��t
dt � R��� $R
�R��� $ 	
 �

Z R

�

�Dt��t
j�t

 ��t
dt

holds� where

R��� $ t
 � ��t
 f����t
j�t

� ���t
j ��t

g �

Proof� Fix � � 	 � R� In the following computation we use the relation d�

dt�
� ���p �

�
tanht���q��
cotht
 d
dt
� ��t
�� d

dt
��t
 d

dt
and the fact that the operaters Sk�h� Sk�q� ��Z�

��



and ��&m
 are self�adjoint� Then by the integration�by�part twice� we haveZ R

�

���t
jDt�t

 ��t
dt

�

Z R

�

���t
j d
dt
��t
 d

dt
�t

 dt

�

Z R

�

���t
jf 	Sk�h
sinh�t

�
�	Sk�q
cosh�t

� �cotht�tanht��
	

��Zh
� 


� � ��&m
g�t

 ��t
dt

� ����	
j��	
 ��	

 � ���R
j��R
 ��R

� Z R

�

�
d
dt
��t
j��t
 d

dt
�t


�
dt

�

Z R

�

�f 	Sk�h
sinh�t

�
�	Sk�q
cosh�t

� �cotht�tanht��
	

��Zh
� 


� � ��&m
g��t
j�t

�
��t
dt

� ����	
j��	
 ��	

 � ���R
j��R
 ��R

� ���R
���R
j�R

 � ���	
���	
j�	



�

Z R

�

�
d
dt
��t
 d

dt
��t
j�t
�dt

�

Z R

�

�f 	Sk�h
sinh�t

�
�	Sk�q
cosh�t

� �cotht�tanht��
	

��Zh
� 


� � ��&m
g��t
j�t

�
��t
dt

� R��� $ 	
�R��� $R
 �

Z R

�

�Dt��t
j�t

 ��t
dt�

���� � ���operator� Since �G�HK
�K is an open subset of the complex manifold G�K�
we have the usual operators �� �� and their formal adjoints ��� ��� acting on A��G �
HK
�K
 �� C���G�HK
�K$ �
�

� �

pX
i��

qX
j��

e��ij
REi�p�j �
�� �

pX
i��

qX
j��

e���ij
REp�j�i�

�� � �
pX
i��

qX
j��

e���ij
REp�j�i�
��� � �

pX
i��

qX
j��

e����ij
REi�p�j �

The aim here is to obtain an expression of the composite operator � �� and ����� on the
H�invariant forms�
Let us introduce operators acting on

V
p�
C
�

P� �

p��X
i��

e���i�
�� �Z
q
i 
� P� �

p��X
i��

e��i�
��Z
q
i 
� e�
h
 �

p��X
i��

e��i� � ��i�
�

R� �

q��X
j��

e���p�j��
�� �Z
h
j 
� R� �

q��X
j��

e��p�j��
��Z
h
j 
� e�
q
 �

q��X
j��

e��p�j�� � ��p�j��
�

��



and

A � e�
h
 �
�
�
e��� � ���
� e����
P� � e���
P������


B � e�
q
 �
�
�
e��� � ���
� e����
R� � e���
R������


C � e���
�P� �R�
 � P�R� �R�P������


Here we set �� � �p���

Proposition �	� Let � � C���G � HK
�K$ �
H ad set ��t
 � ��at
 �t � �
� Then
�� ���
�at
 � Et��t
 �t � �
 with Et the �

V
p�
C

M �valued di�erential operator

Et �
�
	
e��� � ���


d�

dt�
� �

�
�tanhtA� cothtB
 d

dt

� tanh�tP�P� � coth
�tR�R� � C

�
p��
	
�� � tanh�t


�
�p��e�
h
� e����
P� � e���
P�

�
��Zh

� 


�
p��
	
�� � coth�t


�
�p��e�
q
� e����
R� � e���
R�

�
��Zh

� 


�
p��
�
e��� � ���
��Z

h
� 
 �

�
�

�tanht � cotht
���Zh

� 

��

We have �������
�at
 � E�t��t
 ��t � �
 with E�t the formal adjoint of Et de�ned byZ ��

�

�Et��t
j�t

 ��t
dt �
Z ��

�

���t
jE�t�t

 ��t
dt�

����  � C�
c ������

$ �

�
p�C 


M
�

Proof� Using the expression of � and �� above and also the formulas in Lemma �� we prove
the formula �� ���
�at
 � Et��t
 by a direct computation�

Lemma �
� Let ��  � C�������

$ �V p�
C

M
 and � � 	 � R� The formulaZ R

�

�Et�t
j��t

 ��t
dt � S�R
�S�	
 �

Z R

�

��t
jE�t��t

 ��t
dt
holds� where

S�t
 � ��t�
	

�
�e��� � ���


��t
j��t

� �e��� � ���
�t
j���t


� tanht ���A� ��p� �
e��� � ���

�t
j��t

 � cotht ���B � ��q � �
e��� � ���

�t
j��t



�
�

Proof� Similar to the proof of Lemma ���

�� The secondary spherical functions

Set �� � p� q � �� In this section� we �x an integer � � d � q and set

D�d� � C � f�� � ��q � d� n
jn � Ng�
Here is the main theorem of this section�

Theorem ��� ��
 There exists a unique family �
�d�
s �s � D�d�
 of functions with the

properties�

�i
 For s � D�d�� �
�d�
s � C���G�HK
�K$ � d�d
H�

�ii
 For each g � G�HK� the value �
�d�
s �g
 depends on s � D�d� holomorphically�
��



�iii
 For each s � D�d��

&g�
�d�
s �g
 � �s

� � ���
�
�d�
s �g
� �g � G�HK
�

�iv
 It has the �small�time behavior	

lim
t����

t��q�����d�
s �at
 � #

q�d�volp�h
�
�v
 It has the �large�time behavior	

��d�
s �at
 � O�e��Re�s����t
� �t� ��
�

��
 The radial value �
�d�
s �at
 is given by the explicit formula

��d�
s �at
 �

dX
���

F��s$ t
 �
�d�
� � �t � �
�����


Here for each � � N � s � C and t � �� we set

F��s$ t
 �
�� s��

�
� �
�� s��

�
� q � �


��s� �
��q � �

� �cosht
��s��� �F�

�
s��
�
� �� s��

�
� q � �$ s� �$ �

cosh�t

�
�

The next corollary says that only the function �
�q�
s is essential� from which others �

�d�
s

with smaller bidegree �d� d
 are obtained by successive application of #�

Corollary ��� We have #�
�d�
s � �

�d���
s whenever � � d � q� s � D�d��

Proof� This follows immediately from the explicit formula ����
 and the last statement of

Proposition �� ��
� Another proof is �rst to check that #�
�d�
s has the same properties �i


to �v
 as �
�d���
s � which is easy� and then to use the uniquness of �

�d���
s �

���� Some properties of the secondary spherical functions� In this subsection� we

�x a family of functions �
�d�
s �s � D�d�
 satisfying the conditions �i
� �ii
� �iii
� �iv
 and �v


in Theorem �� Starting with these �ve properties� we deduce several substantial results
which will be used not only to prove Theorem � but also to study Poincar�e series in the
next section �
First of all� to study the local behavior of �

�d�
s �at
 near the boundary points t � �� ���

we introduce the local coordinate z � tanh�t around t � � and the one � � �
cosh�t

around
t � ���
Proposition �� ��
 There exist � � 	 � � and a �

Vd�d
p�
C

M �valued holomorphic func�

tion R�s� �
 on D�d� � fj�j � 	g such that

��d�
s �at
 � ��s����� R�s� �
� �s � D�d�� � � ��� 	

�����


��
 There exist N � N � � � � � � and �
Vd�d

p�
C

M �valued holomorphic functions Ph�s� z
 �� �

h � N
 on D�d� � fjzj � �g such that P��s� �
 � #
q�d�volp�h
 and

��d�
s �at
 � z��q���

�
P��s� z
 �

NX
h��

z�log z
h Ph�s� z

�
� �s � D�d�� z � ��� �

�����


��



Proof� Set V � �
V
p�
C

M � From the condition �iii
� ��t
 � �

�d�
s �at
 satis�es the di�erential

equation Dt��t
 � �s� � ���
��t
 on t � �� Here Dt is the di�erential operator given in
Proposition ��� By the change of variable z � tanh�t� which yields a di�eomorphism from
t � � to � � z � �� the equation Dt��t
 � �s

� � ���
��t
 becomesn
d�

dz�
�
�
q
z
� ���

��z
�

d
dt
� Q�s$ z


o
��z
 � �� �� � z � �
����


with

Q�s$ z
 �
�Sk�q
z���z� �

Sk�h
z����z� �

s����
	z���z�� �V �� End�V 

�

This implies that the function  �z
 �
h

��z�
z���z�

i
�� V �
 is a solution of the �rst order

di�erential equation

d�
dz
�z
 � A�s$ z
 �z
� A�s$ z
 �

	
�

�
z
�V

�zQ�sz�
�
��q
z

�
���
��z

�
�V



�����


Since z � � is a simple pole of A�s$ z
� z � � is a regular singular point of the equation
����
 ���� Theorem ���p����
	
� The integer ��q � �
 is one of its characteristic roots at
z � �� which are the eigenvalues of the operator

Resz��A�s$ z
 � A� �
h

� �V
�Sk�h ���q��V

i
�����


By Lemma �� below� the characteristic roots are integers$ hence by ��� Theorem ����p����
	

the solution  �z
 has to be of the form  �z
 � z��
PN

h���log z

h'Fh�s� z
 with �� the

smallest characteristic root� Here 'Fh�s� z
�s are V ��valued holomorphic functions on
D�s� � fjzj � �g with small � � �� Let 'Ph�s� z
 be the �rst projection of 'Fh�s� z
 to V �
Then we obtain this local expression of ��z
�

��z
 � z��
NX
h��

�log z
h'Ph�s� z
� �� � z � �
�

By the condition �iv
� the function zq����z
 has the limit #q�d�volp�h
 as z � ��� with

z � R� This implies that P��s� z
 � z���q��'P��s� z
 should be holomorphic at z � � with

constant term #q�d�volp�h
 and that z���q��'Ph�s� z
 should be of the form zPh�s� z
 with
Ph�s� z
 holomorphic at z � �� This completes the proof of ����
� The proof of ����
 is
similar�

Lemma ��� The eigenvalues of the linear operator A� coincides with the set of numbers
� � C such that det�Sk�h � ���� q � �

 � �� which consists of integers�

Proof� For a given w � �v�� v�
 � V �� the equation A�w � �w is equavalent to the system
of equations v� � �v�� fSk�h � ��� � q � �
gv� � �� This shows the �rst assertion of our
lemma�
Let

V
p�
C
�
L

i	I Wi be a K � H�irreducible decomposition� Taking M ��xed part�
we have the decomposition V �

L
i	I W

M
i � by which the Casimir operator &k�h is di�

agonalized� Since Sk�h � ��
	
��&k�h
 on V by ����
� the eigenvalues of Sk�h on V are

computable from this decomposition� Identify kC � hC � glp���C 
 	 C 	 glq�C 
 and
��



mC � glp���C 
 	 C 	 glq���C 
 naturally$ then by glq�� � glq�branching rule ���� The�
orem �����p����
	
� the highest weight of Wi such that WM

i �� f�g is of the form
�a� �� � � � � ���a		 ��		 ��� � � � � �	 with a � N � The eigenvalue of &k�h on this Wi is easily
calculated as �a�a� q� �
� Hence Sk�hjWM

i � �a�a� p� �
� The argument so far shows
an eigenvalue of Sk�h on V belongs to f�a�a � q � �
j a � Ng�
If � satis�es det�Sk�h � ��� � q � �

 � �� then ��� � q � �
 � a�a � q � �
 with some

a � N � Hence � � a� �� q � a� in particular � � Z�

Since HK is a zero set of G with respect to the Haar measure� the form �
�d�
s is regarded

as a measurable form on G�K�

Lemma ��� The measurable form �
�d�
s on G�K is locally integrable�

Proof� Let fUngn	N be an open covering of H by relatively compact subsets� The sets
G��n � Un exp���� 		Y�
K� �	 � �� n � N
 form an open covering of G by relatively compact
sets� Fix 	 � � and n � N � From the property �iv
� there exists a constant C� � � such

that k��d�
s �at
k � C�t

���q��� ��t � ��� 		
� Using this estimation and Lemma ���� we haveZ
G��n

k��d�
s �g
k dg � vol�Un


Z �

�

k��d��at
k��t
 dt � C�vol�Un


Z �

�

t���q�����t
 dt�

Since t���q�����t
 � O�t
� �jtj � 	
 by ����
� the last integral is convergent�

Proposition ��� Assume Re�s
 � ��� Then the �d� d
�current �
�d�
s on G�K satis�es the

di�erential equation�

��� s� � ���
�
�d�
s � �	�q

��q���#
q�d�H�H�K �

Proof� Let f � Ac�G�K
� Then

h��� s� � ���
�
�d�
s �  �fi � h��d�

s � ��� s� � ���
  �fi����


�

Z ��

�

�
��d�
s �at
j

Z
H

��� �s� � ���
f�hat
 dh
�
��t
 dt�

Since f is of compact support� the integral fH�g
 �
R
H
f�hg
 dh �g � G
 converges abso�

lutely and de�nes an H�invarinat function fH � C��G�K$ �
H � Moreover� f �� fH is a
Z�gC 
�homomorphism from Ac�G�K
 to C

��G�K$ �
H � Here Z�gC 
 is the center of the
universal enveloping algebra of gC � By this remark and Proposition �� � we haveZ

H

��� �s� � ���
f�hg
 dh � ��� �s� � ���
f
H�at


� ��Dt � �s
� � ���
f

H�at


for t � �� Use this formula to obtain the expression of the paring ����
 in terms of fH

h��� s� � ���
�
�d�
s �  �fi �

Z ��

�

�
��d�
s �at
j��Dt � �s

� � ���
f
H�at


�
��t
 dt����


��



Fix � � 	 � R and apply Lemma �� with ��t
 � �
�d�
s �at
 and �t
 � fH�at
� ThenZ R

�

�
��d�
s �at
j��Dt � �s

� � ���
f
H�at


�
��t
 dt � R�	
�R�R
���!


since ��Dt � s� � ���
�
�d�
s �at
 � � ��t � �
 by the property �i
 and Proposition ��� Here

R�t
 � ���t
���d�
s �at
j ddtfH�at

 � ��t
� d

dt
��d�
s �at
jfH�at

g������


Let us compute the limit of R�	
 as 	� ��� By di�erentiation of ����
� we have

d
dt
��d�
s �at
 � ��q � �
z�q dz

dt
fP��s� z
 �

NX
h��

z�log z
hPh�s� z
g

� z�q��
�
�P�
�z
�s� z
 �

NX
h��

�log z � h
�log z
h��Ph�s� z
 �
NX
h��

z�log z
h dz
dt

�Ph
�z
�s� z


�
Since P��s� z
 � #q�d�volp�h
 � O�z
� Ph�s� z
 � O��
� �Ph

�z
�s� z
 � O��
 and dz

dt
�

�z
�
� ��� z
� we have the estimation

d
dt
��d�
s �at
 � ���q � �
z �

�
�q�� �O�z



�
#q�d�volp�h
 �O�z
 �

NX
h��

O�z�log z
h

�

� z��q
�
O��
 �

NX
h��

O��log z
h
 �
NX
h��

O�z
�
� �log z
h


�
� ���q � �
z �

�
�q#q�d�volp�h
 �O�z��q�log z
N 


� ���q � �
t��q��#q�d�volp�h
 �O�t���q�log t
N 


for small t � �� Since d
dt
fH�at
 is continuous at t � � and �

�d�
s �at
 � O�t��q��
� ��t
 �

��q

��q�
t�q�����O�t

 for small t� the �rst term of �����
 is majorized by O���t
t��q��
 � O�t
�

Hence

lim
�����

R�	
 � lim
����

��t
� d
dt
��d�
s �at
jfH�at

�����


� �	�q
��q����#

q�d�volp�h
jfH�e

�
Let us compute the limit of R�R
 as R � ��� Since f is of compact support in
G and H exp���� R
Y�
K� �R � �
 is an open covering of G� there exists an R� � �
such that supp�f
 � H exp���� R�	Y�
K� Hence fH�at
 � � ��t � R�
� This yields
R�R
 � � ��R � R�
� especially

lim
R���

R�R
 � �������


By ���
� ���!
� �����
� �����
 and Lemma �� we obtain

h��� s� � ���
�
�d�
s �  �fi � �	�q

��q���

Z
H

�#q�d�volp�h
jf�h

 dh

� �	�q
��q���h#q�d�H�H�K �  �fi�

�	



���� Proof of Theorem ���

������ Construction of a solution� By Proposition �� and Lemma ��� �nding a function

�
�d�
s with the properties �i
 and �iii
 is equivalent to �nding the function ��t
 � �

�d�
s �at


on t � � which takes its values in the vector space �
V
p�
C

M and satis�es the ordinary

di�erential equation

Dt��t
 � �s
� � ���
��t
������


We search for a solution of �����
 assuming the form

��t
 �
dX

���

���t
 �
�d�
� �t � �
������


with d� � unknown functions ���t
� By �����
� the condition �iv
 for �����
 is equivalent
to requiring

lim
t����

t��q������t
 � �������


For the function �����
 to meet the condition �v
� we also have to require

���t
 � O�e��Re�s����t
� �t� ��
������


By Lemma �� and H �K�invariance of ��d�� �Lemma �
� the operators ��Zh
� 
� Sk�h� ��&k�h


and ��&m
 are all zero when applied to �
�d�
� � By ����
 and Proposition �� ��
� we have

Sk�q��d�� � ��
	
��&k
�

�d�
� � ���� � p� �
��d�� � Hence the equation �����
 is simpli�ed asn

d�

dt�
�
�
��p� �
tanht� ��q � �
cotht� d

dt
� 	����p���

cosh�t
� ��� � s�

o
���t
 � �������


Lemma ��� Let p� q� A�B� C � C and choose � and  such that

� � �q � �
 � B
	
� ������


�� � 
���  � p� q � �
 � C
	
� ������!


Then the ordinary di�erential equationn
d�

dt�
�
�
��p� �
tanht� ��q � �
cotht� d

dt
�
�

A
cosh�t

� B
sinh�t

� C
�o

f�t
 � �

for a unknown function f�t
 on t � � is transformed to the Gaussian hypergeometric
equation

���� �
F ����
 � fc� �a� b � �
�gF ���
� abF ��
 � ������


with

�a� b� ab� c
 �
����� p� �� �� � �p� �
�� A

	
� ��p � q � �� � � � �
�������


for the unknown function F ��
 � �cosh�t
���sinh�t
��f�t
 on � � � � � by the change of
variable � � �

cosh�t
�

Proof� A direct computation�
��



Let us apply this lemma to our equation �����
 taking A � ���� � p � �
� B � � and
C � ��� � s�� Then  � �� � � ��

�
��� � s
 satis�es ����
 and ����!
� We can easily �nd

�a� b� c
 �
�
s�p�q��

�
� �� s�p�q��

�
� �� s� �

�
�

satis�es �����
� The condition �����
 is equivalent to the condition that F ��
 � �cosht
s�����t

should be bounded as � � � � �� The solution of �����
 given by the hypergeometric
series

F ��
 � �F��a� b$ c$ �
 �
��c�

��a���b�

�X
n��

��a�n���b�n�
��c�n�n�

�n� �j�j � �


meets this requirement� Thus we have shown that the function

���t
 � C� �cosht

��s���

�F�

�
s�p�q��

�
� �� s�p�q��

�
� �$ s� �$ �

cosh�t

�
with constant C� � C satis�es all the conditions we require except �����
� For this function

to satisfy �����
� the constant C� has to be C� �
�� s�p�q��

�
����� s�p�q��

�
���

��s�����q��� by a formula

in ���� p��!	� This completes the proof that the function given by ����
 satis�es all the
conditions in Theorem ��

������ Uniquness� Let us prove the uniqueness of �
�d�
s �s � D�d�
 satisfying the conditions

�i
 to �v
 in Theorem �� For that� take another family �
�d�
s �s � D�d�
 with the same

properties as �
�d�
s � Fix s � C such that Re�s
 � �� and consider the di�erence fs�g
 �

�
�d�
s �g
 � �

�d�
s �g
 ��g � G � HK
� which de�nes a �d� d
�current on G�K by Lemma ��

and satis�es the di�erential equation �fs � ��
�
�� s�
 fs by Proposition ��� Since � is an

elliptic di�erential operator� fs is automatically real analytic on G�K�
Let � � 	 � R� Since Dtfs�at
 � ��

�
��s�
fs�at
 ��t � �
 follows from�fs � ��

�
��s�
 fs

by Proposition ��� Lemma �� yields the identity

�s� � �s�

Z R

�

kfs�at
k� ��t
dt � F�	
� F�R
�����


with

F�t
 � ��t

��
fs�at


�� d
dt
fs�at


�� � d
dt
fs�at


��fs�at
���
Since fs is real analytic on G�K� the function t �� fs�at
 is smooth on R� Noting this�
the limit of F�	
 as 	� � � � is easily computed as

lim
�����

F�	
 � �������


By ����
� the function t �� fs�at
 as well as its derivative
d
dt
fs�at
 is majorized by

O�e��Re�s����t
 for large t� Hence F�R
 � O���t
e��Re�s����t
 � O�e��Re�s����t
� which
implies

lim
R���

F�R
 � �������


By �����
� �����
 and �����
� we obtain

�s� � �s�

Z ��

�

kfs�at
k� ��t
dt � ��
��



This identity yields
R ��
�

kfs�at
k� ��t
dt � � as long as s� �� R� Since the function
kfs�at
k���t
 on t � � is continuous and non�negative� the vanishing of its integral im�
plies the vanishing of the function itself� kfs�at
k���t
 � � ��t � �
� Noting ��t
 �
� ��t � �
� we consequently obtain fs�at
 � � ��t � �
 under the assumption Re�s
 � ���
s� �� R� By the decomposition G � Hfatj t � �gK and by the equivariance fs�hgk
 �
��k
��fs�g
 ���h� k
 � H � K
� the value fs�g
 has to be zero for all g � G and for
all s such that s� �� R� Re�s
 � ��� Using the condition �ii
� we �nally conclude

�
�d�
s �g
 � �

�d�
s �g
 ��g � G�HK
 for all s � D�d� by analytic continuation�

���� A �ner form of small�time asymptotic� By the explicit formula ����
� we obtain
a �ner small�time asymptotic than ����
�

Proposition ��� There exists a unique family c��s
 �� � � � q � �
 of tensors in

�
Vd�d

p�
C

H�K such that the following properties hold�

��
 There exist �
V
p�
C

H�K�valued holomorphic functions P�s� z
 and Q�s� z
 on D�d� �

fjzj � �g such that

��d�
s �at
 �

q��X
���

c��s
z
�q���� � P �s� z
 � log zQ�s� z
� �s � D�d�� z � tanh�t � ��� �

�

�����


��
 We have c��s
 � #
q�d�volp�h
� and c��s
 satis�es the recurrence relation�

���q � �� �
 c��s
 �
���X
���

f��&k
 � ��� �
���� � s�
�����


� ���� � �
�q � �� �
g c��s
� �� � � � q � �
�
��
 For �� r � N such that � � � � inf�r� q � �
����

�s
d
ds

�r
c��s
 � ��

Proof� The formula �����
 follows readily from our explicit formula ����
 combined with
a property of the hypergeometric function ���� p��!	�
The recurrence formula �����
 is obtained �rst by substituting the expansion �����
 to

the equation ����
 and then by equating the coe�cient of z�q���� in the left�hand side
with ��
By ��
� it is obvious that c��s
 �� � � � q � �
 is a polynomial function in s � C such

that c��s
 � c���s
 and deg c��s
 � ��� Hence c��s
 � b�s�
 with some polynomial b�t

of degree �� Using the variable t � s�� we compute

���
�s

d
ds

�r
c��s
 �

�� d
dt

�r
b�t
 � � to

see ��
 is true�

���� A di�erential relation� The functions �s � �
�q���
s � #�

�q�
s and �s � �

�q�
s are of

particular importance in our investigation of the modular cycles arising from H� They
are related by the simple formula�

Theorem �	� Let s � D�q�� Then we have

� ���s�g
 �
�p���s�����

�
�s�g
� g � G�HK�

��



In order to prove this� it su�ces to show that '�s � �
p���s� � ���


��� ���s has the
properties �i
 to �v
 for d � q which characterizes the function �s by Theorem ��

The property �i
 for '�s is obvious by de�nition� The property �ii
 is also obvious by

the explicit formula ����
 and Proposition ��� The property �iii
 for '�s follows from the
corresponding equation for �s because &g is commutative with the operators �� ��� The

large�time asymptotic of '�s�at
 is easy to prove by Proposition ��� because ����
 shows

that any derivative dj

dtj
�s�at
 is majorized by O�e��Re�s����t
 for large t� It remains to

show

lim
t���

t��q���� ���s�at
 �
�p���s�����

�
 volp�h������


The rest of this subsection is devoted to the proof of �����
�
From the equation &g�s�g
 � �s

�����
�s�g
 �g � G�HK
 and Proposition ��� we have

d�

dt�
��t
 � ����p� �
tanht � ��q � �
cotht� d

dt
��t
 �

	Sk�q
cosh�t

��t
 � �s� � ���
��t


with ��t
 � �s�at
� Using this� we can eliminate the second derivative �
���t
 in the formula

Et��t
 in Proposition �� to obtain

� ���s�at
 �
���

	

�
��p� �
tanht� ��q � �
cotht� e��� � ���
 �

�
�
�Atanht � Bcotht
����t


�
n
e��������
cosh�t

Sk�q � P�P�tanh
�t �R�R�coth

�t � C � s����
	

e��� � ���

o
��t
�

By the coordinate z � tanh�t� this becomes

� ���s�at
 � ��� z

���

�
���p� �
z � �q � �
 e��� � ���
 � �Az � B


�
d�
dz
�z


�
n
��� z
 e��� � ���
Sk�q � P�P� z �R�R� z

�� � C � s����
	

e��� � ���

o
��z
�

Using this and �����
� we can compute the �rst two terms of the singular part of � ���s�at

in the z�expansion� which is of the form

� ���s�at
 �

qX
j��

aq�j�s�

zj
� P��s� z
 � �log z
P��s� z
����


with some polynomial functions aj�s
 and some holomorphic functions P��s� z
� P��s� z
�
We are interested in a��s
 and a��s
� A short computation yields

a��s
 �
���q � �
 ���q��

�
e��� � ���
 � B

�
�R�R�

�
c��s
�

a��s
 �

�
��q � �
 ���p��

�
e��� � ���
 �A

�
� �q � �
 ���q��

�
e��� � ���
 � B

�
� e��� � ���
Sk�q � C � s����

	
e��� � ���



c��s


�

���R�R� � �q � �

���q��

�
e��� � ���
 � B

��
c��s
� �q � �
����q��

�
e��� � ���
 � B

�
Q�s� �
� �q � �
�

��



By �����
� we have

�q � �
� c��s
 � �q��pp �
�p��

�

�q��
��p� � ��p� � 
q


q���

�q � �
� �q � �
 c��s
 �
n
s����

	
� �q � �
��� � �


o
�q��pp � Sk�q�q��pp � �q � �
�

Q�s� �
 �
s����

	
�pp � Sk�q�pp� �q � �


with 
q �
Pq��

j�� �p�j�� � ��p�j���
Lemma �
��

�q��
�
e��� � ���
� B� �q��pp �f�q � �
�p� � ��p� � 
qg � �q��pp � ��

Proof� Since �pp is H �K�invariant� R��q��pp � �� Hence we have�
�q��
�
e��� � ���
� B� �q��pp

� f�q � �
�p� � ��p� � 
qg � �q��pp

�
�p��

�

�q��
f�q � �
�p� � ��p� � 
qg � ��p� � ��p� � 
q


q��

�
�p��

�

�q��
f�q � �
�p� � ��p� � 
qg �

�

q��q � �q � �
�p� � ��p� � 
q��q

�
� �

�p��
�

�q��

qq

� ��

Since c��s
 and c��s
 are H � K�invariant �Proposition ��
� R�c��s
 � R�c��s
 � ��
Therefore� by Lemma ��� a��s
 � ��
By ����
� ����
� ����
 and Lemma ��� we have

�q � �
� a��s
 �
n
��q � �
 ���p��

�
e��� � ���
 �A

�
� e��� � ���
Sk�q � C � s����

	
e��� � ���


o
�q��pp

�
���q��

�
e��� � ���
 � B

�Sk�q�q��pp

� �q � �
 f�p� �
e��p� � ��p�
 � e���p�
P� � e��p�
P� � e�
h
g �q��pp

����!


� fe��p� � ��p�
Sk�q � e��p�
P� �R�P�g �q��pp

� f��q � �
�p� � ��p� � 
qg �
n�

s����
	

� �q � �
��� � �

�
�q��pp � Sk�q�q��pp

o
�

s����
	

e��p� � ��p�
�q��pp

� �q � �
 f�p� �
e��p� � ��p�
 � e���p�
P� � e��p�
P� � e�
h
g �q��pp

� fe��p� � ��p�
Sk�q � e��p�
P� �R�P�g �q��pp

� f��q � �
�p� � ��p� � 
qg � Sk�q�q��pp

�
s����

	
e��p� � ��p�
�q��pp �

using Lemma �� to have the third equality�
��



Lemma ��� Set B �
Pp��

i�� �pi � �ip� Then

e��p� � ��p�
 �q��pp � �
q
p���

q
pp�

P��q��pp � �q � �

p��X
i��

�i� � �pi � �q��pp �

P��
q��
pp � �q � �


p��X
i��

��i� � �ip � �q��pp �

R�P��
q��
pp � �q � �


�
�p��B � �q��pp �

p��X
i��

�p� � ��i� � �ip � �q��pp

�
�

Sk�q�q��pp � �q � �

�
��p� �
�q��pp �

p��X
i��

�ii � �q��pp � �q � �
B � �q��pp

�
�

�
q
Sk�q
qq � ��p� � ��p� � Sk�q�q��pp � �p� �
�qpp �

p��X
i��

�ii � �q��pp � �q � �
B � �q��pp

�
�

p��X
i��

�i� � ��i�
�
� �q��pp � �p� �
�p� � ��p� � �q��pp

� �q � �
��p� �
�

p��X
i��

�i� � �pi

�
� �q��pp � �q � �
�p� �

�
p��X
i��

��i� � �ip

�
� �q��pp �

Proof� A direct computation with the aid of Lemma ��

By this lemma� a direct computation yields the identity

�q � �
 f�p� �
e��p� � ��p�
 � e���p�
P� � e��p�
P� � e�
h
g �q��pp

� fe��p� � ��p�
Sk�q � e��p�
P� �R�P�g �q��pp

� f��q � �
�p� � ��p� � 
qg � Sk�q�q��pp

� q��
q
Sk�q
qq�

which simpli�es ����!
 considerably�

�q � �
� a��s
 � q��
q
Sk�q
qq � s����

	
e��p� � ��p�
 �q��pp

�
s����
�q
p���

q
pp

�
s����
�
p�� �q � �
�  volp�h�

where the second equality follows from 
qq � � combined with the �rst formula in Lemma �
and the third equality follows from Lemma �� Summing up� we obtain

a��s
 � �� a��s
 �
�p���s�����

�
 volp�h�

This� combined with ����
� implies the desired limit �����
� As explained at the begining
of this subsection� this completes the proof of Theorem ���

��



�� Poincar�e series

Let � be a discrete torsion free subgroup of G such that the quotient spaces �nG
and � � HnH have �nite invariant volumes� For simplicity we set �H � � � H and
KH � H � K� Since � is torsion free� the K"ahler manifold structures on the discrete
quotients �HnH�KH and �nG�K are entailed from those on their universal coverings
H�KH and G�K� Moreover� �H is a closed subset ofG and the inclusion ��HnH �� �nG
has the closed image�

���� Currents de�ned by Poincar�e series� Let �
�d�
s �s � D�d�
 be the secondary spheri�

cal function of bidegree �d� d
 constructed in Theorem �� For r � N � we de�ne an auxilialy

function �
�d�
s�r by

��d�
s�r�g
 �

�
r�

���
�s

d
ds

�r
��d�
s �g
� �s � D�d�� g � G�HK
�

Let us consider the Poincar�e series

 �d�
s�r�g
 �

��q���
�q

X
�	�Hn�

��d�
s�r��g
����


for �s� g
 belonging to the set fs � C jRe�s
 � ��g � �G � �HK
� where the series is
L��convergent as the next theorem shows� Note Re�s
 � �� is contained in the domain
D�d��

Proposition ��� Suppose Re�s
 � ��� ThenZ
�nG

X
�	�Hn�

k��d�
s�r�g
k dg � ���

In particular� the measureable function  
�d�
s�r�g
 on �nG�K is integrable�

Proof� By the integration formula ����
� the integral in question equalsZ
�HnG

k��d�
s�r�g
k dg �

Z
�HnH

dh

Z
K

dk

Z ��

�

k��d�
s�r�hatk
k ��t
dt�

Since �
�d�
s�r�hgk
 � ��k
����d�

s �g
 ���h� k
 � H � K
� and since � is unitary� the integral
over �HnH yields the factor vol��HnH
� which is �nite by assumption� and the integral
over K yields the factor �� To complete the proof� it su�ces to show that the convergence

of the integral
R ��
�

k��d�
s�r�at
k��t
 dt�

By applying the di�erential operator ���
�s

�
�s

r to the formula �����
� noting Proposi�

tion �� ��
� we obtain the estimation k��d�
s�r�at
k � O�t��q��r��
 on ��� �	� Hence the

function k��d�
s�r�at
k is majorized by O���t
t��q��r��
 � O�t�r��
 on ��� �	� especially inte�

grable there�

By applying ���
�s

�
�s

r to the formula ����
� we easily see that �

�d�
s�r�at
 is still majorized

by O�e��Re�s����t
 on the interval �����
� Hence k��d�
s �at
k��t
 � O�e��Re�s����t
� which

implies the convergence of the improper integral over �����
 when Re�s
 � ��� This
completes the proof�

��



Therefore the measurable �d� d
�form  
�d�
s�r on �nG�K yields a current� denoted by the

same notation  �d�
s�r � by the integration�

h �d�
s�r � �i �

Z
�nG�K

 �d�
s�r � �� ��� � Ac��nG�K

�

���� Poisson equation� Let C�
H � �HnH�KH � �nG�K be the holomorphic map ob�

tained from the inclusion H�KH �� G�K by passing to the discrete quotients� Then C�
H

is generically one to one and its image is a closed complex analytic subset of �nG�K� The
integration

h�C�
H
� �i �

Z
�HnH�KH

�C�
H


��� � � Ac��nG�K


de�nes a �q� q
�current on �nG�K�
Lemma �� For � � Ac��nG�K
� we have

h#q�d�C�
H
� ��i �

Z
�HnH

�#q�d�volp�h
j��HnH�e

 dh�

where

��HnH�g
 �
Z
�HnH

��h
 dh�

Proof� This is proved by a similar way to Lemma �� See also ���� Proposition ���	�

Sometimes we use the simpler notation C for C�
H � Our currents  

�d�
s�r satisfy the gener�

alized Poisson equation�

Proposition ���

��� s� � ���

r�� �d�

s�r � ��#q�d�C
for Re�s
 � ��� r � N�

Proof� The proof is similar to the local counterpart Proposition ��� For � � Ac��nG�K
�
set Ir��
 � h��� s� � ���


r�� 
�d�
s�r � ��i� Then it su�ces to prove Ir��
 � Ir����
 ��r � �


and I���
 � h��#q�d�C � �i� We have
Ir��
 � h �d�

s�r � ��� s� � ���

r��  ��i

�

Z
�nG�K

� �d�
s�r�g
j��� �s� � ���


r����g

 dg

� ��q���
�q

Z
�nG

X
�	�Hn�

���d�
s�r��g
j��� �s� � ���


r�����g

 dg

� ��q���
�q

Z
�HnG

���d�
s�r�g
j��� �s� � ���


r����g

 dg

� ��q���
�q

Z ��

�

���d�
s�r�at
j

Z
�HnH

��� �s� � ���

r����hat
 dh
 ��t
dt�����


��



Since the support of the function � is compact modulo � and since �HnH is closed in �nG�
the integral ��HnH�g
 converges absolutely and de�nes a function ��HnH � C��G�K$ �
H �
The map � �� ��HnH is a Z�gC 
�homomorphism from Ac��nG�K
 to C��G�K$ �
H � By
this remark and Proposition ��� we have this expression of Ir��
 in terms of the integral
��HnH �

Ir��
 �
��q���
�q

Z ��

�

���d�
s�r�at
jfr���t

 ��t
dt����


with fr�t
 � ��Dt � �s
� � ���


r��HnH�at
� Fix � � 	 � R� Then by Lemma ��� we haveZ R

�

���d�
s�r�at
jfr���t

 ��t
dt����


� R�	
�R�R
 �

Z R

�

���Dt � s� � ���
�
�d�
s�r�at
jfr�t

 ��t
dt

with

R�t
 � ��t

����s�r�at
j ddtfr�t
�� � ddt�s�r�at
jfr�t
���

Let us compute the limit ofR�	
 as 	� ���� As we noticed in the proof of Proposition �!�

we have the estimations ��t
�
�d�
s�r�at
 � O���t
t��q��r��
 � O�t�r��
 and ��t
 d

dt
�
�d�
s�r�at
 �

O�t�r
 for small t � �� Since fr�t
 is continuous� we have fr�t
 � O��
� Hence if r � ��
then R�t
 � O�t
 for small t � �� which implies lim�����R�	
 � �� When r � �� we
compute the limit exactly the same way as in the proof of Proposition ��� Summing up�
we obtain

lim
�����

R�	
 � �	�q
��q����#

q�d�volp�h
jf���

 �r�������


Let us compute the limit of R�R
 as R � ��� As we have seen in the proof of Propo�
sition �!� the estimation ��t
�

�d�
r�s �at
 � O�e��Re�s����t
 holds for large t� Since fr�t
 is

bounded on t � �� we have

lim
R���

R�R
 � ������


By the formula �s�� �
r�
���
�s

d
ds

r	 � �

�r�����
��
�s

d
ds

r��� we have

��Dt � s� � ���
�s�r�at
 �
�
r�

���
�s

d
ds

�r
��Dt � s� � ���
�

�d�
s �at
 � �

�d�
s�r���at
����


� �
�d�
s�r���at


using ��Dt� s�����
�
�d�
s �at
 � � ��t � �
� Hence taking the limit as 	� ���� R� ��

of ����
 and using ����
� ����
 and ����
� from ����
� we obtain

Ir��
 � ���#q�d�volp�h
jf���

 �r�� � ��q���
�q

Z ��

�

���Dt � s� � ���
�
�d�
s�r�at
jfr�t

 ��t
dt

� ���#q�d�volp�h
j��HnH�e

 �r�� �
��q���
�q

Z ��

�

��
�d�
s�r���at
jfr�t

 ��t
dt

� h��#q�d�volp�h
� ��i �r�� � Ir����
�

Note the last equality is by Lemma ���
��



���� Spectral expansion of Poincar�e series� In order to obtain meromorphic contin�

uation of the function s ��  
�d�
s�� beyond the convergence region Re�s
 � ��� we want to

use L��theory� i�e�� spectral decomposition of the Laplace�Beltrami operator acting on the

Hilbert space of square integrable �d� d
�forms� Unfortunately� the form  
�d�
s�� is not square�

integrable� even when �nG is compact� This di�culty is circumvented by considering  
�d�
s�r

with large r� similarly to ��	�

Proposition ��� Let r � q � �� Suppose one of the conditions 
a� and 
b� is satis�ed�

�a
 �nG is compact� and Re�s
 � ���
�b
 G has a Q �structure with respect to which the involution � is Q �rational and � is

arithmetic� and Re�s
 � ����� �p��
�
Then the measurable �d� d
�form  

�d�
s�r on �nG�K is L��� for some 	 � ��

Proof� From Proposition �� ��
� the term
Pq��

��� c��s
z
�q���� in the formula �����
 is an�

nihilated by ���
�s

d
ds

r if r � q��� Hence ��d�

s�r�at
 � Pr�s� tanh
�t
�log�tanh�t
Qr�s� tanh

�t


for small t � � with Pr�s� z
 �
�
r�
���
�s

d
ds

rP�s� z
 and Qr�s� z
 �

�
r�
���
�s

d
ds

rQ�s� z
� For large

t � �� the estimation �
�d�
s�r�at
 � O�e��Re�s����t
 holds as we noticed in Proposition �!�

Using these estimation of �
�d�
s�r�at
� we can argue exactly the same way as ���� Section �	

to have the conclusion�

Remark� Since vol��nG
 � ��� L��� implies L� for a function on �nG by H"older�s
inequality�

Let Ad�d
�����nG�K
 be the completion of the space Ad�d

c ��nG�K
 by the inner product

h�ji �
Z
�nG�K

� � ��

From now on we further assume that � is a uniform lattice� i�e�� the manifold �nG�K is
compact� Then the Hodge Laplacian � with the domain Ad�d��nG�K
 is essentially self�
adjoint operator on the Hilbert space Ad�d

�����nG�K
� The domain of ��� the minimal closed
extension of �� consists of all � � Ad�d

�����nG�K
 such that the distribution �� belongs

to Ad�d
�����nG�K
� There exists an orthonormal basis f�ngn	N of Ad�d

�����nG�K
 consisting
of eigenvectors of ��$ let f�ng be the corresponding system of eigenvalues� ���n � �n�n�
Note �n�s are C

��forms and �n�s are non�negative real numbers because the di�erential
operator � is positive� formally self�adjoint and elliptic�

Theorem ��� Let r � q � � and Re�s
 � ��� Then

 �d�
s�r �

�X
n��

��h#q�d�C � ��ni
��n � s� � ���


r��
�n

is the spectral expansion of  
�d�
s�r � Ad�d

�����nG�K
�
Proof� Since �nG�K is compact by assumption and since  �d�

s�r � A�����nG�K
 by Proposi�
tion ��� we have  

�d�
s�r �

P
nh �d�

s�r j�ni�n in a weak sense� By Theorem ��� we can evaluate

the coe�ceint of �n concretely �h �d�
s�r j�ni � ��h#q�d�C � ��ni�

�	



The spectral expansion immediately yields a meromorphic continuation of  
�d�
s�r if r �

q � �� After a bit more argument� we can remove the restriction on r�
Theorem ��� Let r � N and  � A��nG�K
� The function s �� h �d�

s�r ji has a mero�
morphic continuation to the whole complex plane C � A point s� � C with Re�s�
 � � is

a pole of h �d�
s�r ji if and only if there exists an index n � N such that h#q�d�C � ��ni �� ��

h�nji �� � and s�� � ��� � ��n� The function

h �d�
s�r ji�

X
n	N

�n����s��

�h#q�d�C � ��ni
��n � s� � ���


r��
h�nji

is holomorphic at s � s�� We have the functional equation  
�d�
s�r �  

�d�
�s�r�

Proof� Suppose �rst r � q � � and �x a point s� � C such that Re�s�
 � ��� Given a
reralively compact open set U disjoint from the discrete set S � fs � C j s� � �����n ��n �
N
g� there exists a constant CU � � such that j�n � ��� � s��j � CU j�n � ��� � s�j ��n �
N � �s � U
� Using this and the Parseval equality� we obtainX

n	N
sup
s	U

j	h�q�d�C ����nij�
j�n�s����j��r���

jh�njij � C
��r���
U kk�

X
n	N

j	h�q�d�C ����nij�
j�n�s�����j��r���

� C
��r���
U kk� k �d�

s��r
k� � ���

This shows that the series

h �d�
s�r ji �

X
n

�	h�q�d�C ����i
��n����s��r��

h�nji

converges absolutely and uniformly on arbitrary compact set disjoint from S� providing a

meromorphic analytic continuation of h �d�
s�r ji to the whole C � The remaining assertions

are also obvious from this formula�
We use a downward�induction to establish the theorem for r� assuming it holds for

r � �� Fix  � A��nG�K
� Then there exists a meromorphic function Fr���s
 on C

such that Fr���s
 � h �d�
s�r��ji �Re�s
 � ��
 and Fr���s
 �

P
n	N

�n����s��

	h�q�d�C ����ni
��n�s�����r��

h�nji
is holomorphic at s � s� for each s� � C � This implies the residue of sFr���s
 at its
arbitrary pole is zero� which guarantees that the integral

Fr�s
 � ���r � �

Z
Ls

�Fr����
 d� � h �d�
s��rji���


is independent of the choice of the path Ls connecting s� and s in C�S� Since ��
��r���s

d
ds
h �d�

s�r ji �
Fr���s
 on Re�s
 � ��� the function Fr�s
 de�ned by ���
 establishes a meromorphic an�

alytic continuation of h �d�
s�r ji �Re�s
 � ��
 to the whole C � All the assertions except

the functional eqaution Fr�s
 � Fr��s
 are obvious from ���
� It remains to prove the
functional equation� By induction�assumption� Fr���s
 � Fr����s
 holds� Therefore�

d
ds
�Fr�s
� Fr��s

 � F �

r�s
 � F �
r��s
 � ���r � �
sfFr���s
� Fr����s
g � ��

This implies the di�erence Fr�s
 � Fr��s
 is a constant� which should be zero since
Fr�s
� Fr��s
 is an odd function of s� Hence Fr�s
 � Fr��s
 as desired�

��



�� Automorphic Poincar�e dual form and Green current

Set G�
H�s
 �  

�q���
s�� and ��

H�s
 �  
�q�
s���

Theorem ��� The equations

��� s� � ���
G
�
H�s
 � ��#�C�

H
�

��� s� � ���
�
�
H�s
 � ���C�

H
�

dcdG
�
H�s
 � �s

� � ���
�
�
H�s
 � ��C�

H
����


hold for s outside the poles of G�
H�s
 and �

�
H�s
�

Proof� Since the �rst two equation is already proved in Theorem ��� it su�cies to show
the third equation ����
� Let � � Ac��nG�K
� Then similarly to the computation ����
�

h�
	
dcdG

�
H�s
� ��i � �

�
p��h� �� G�

H�s
� ��i����


�
p��
�
hG�

H�s
�
���  ��i

� �p��
�

hG�
H�s
� ������i

� �p����q���
��q

Z ��

�

��t
 ��s�at
j�������
�HnH�at

 dt

� �p����q���
��q

Z ��

�

��t
 ��s�at
j���������HnH

�at

 dt

� �p����q���
��q

Z ��

�

��t
 ��s�at
jE�t f��HnH�at
g
 dt�

Here we use Lemma �� to obtain the last equality� Fix � � 	 � R� Then by Lemma ���
using Theorem �� and Proposition ��� we haveZ R

�

��s�at
jE�tf�t

 ��t
dt � �S�R
 �S�	
 �
�p���s�����

�

Z R

�

��s�at
jf�t

 ��t
dt�����


with f�t
 � ��HnH�at
 ��t � �
 and

S�t
 � ��t�
	

�
�e��� � ���


d
dt
�s�at
jf�t

� �e��� � ���
�s�at
jf ��t



����


� tanht ���A� ��p� �
e��� � ���

�s�at
jf�t

 � cotht ���B � ��q � �
e��� � ���

�s�at
jf�t


�
�

We have

S�t


� ��t�
	

�
�e��� � ���


d
dt
�s�at
jf�t

 � cotht ���B � ��q � �
e��� � ���

�s�at
jf�t



�
�O�t log t


� �
	
��q

��q�
�f���q � �
e��� � ���
#�volp�h
 � ��B � ��q � �
e��� � ���

#�volp�h
g jf��

 �O�t log t


� ��q
��q��� �e��� � ���
#�volp�h
jf��

 �O�t log t
�

��



since ��B� ��q� �
e��� � ���

#�volp�h
 � � by Lemma �� and Lemma �� Therefore� we
obtain

lim
�����

S�	
 � ��q
��q��� �e��� � ���
#�volp�h
jf��

����


� ��q
��q��� �e��� � ���


�
�q�����

q��
pp jf��



� ��q
��q���

�p��
�
q�
��qppjf��



� ���qp����q����volp�hjf��



by the �rst formula in Lemma � and Lemma �� Since f�t
 is bounded�

lim
R���

S�R
 � �����


is proved similarly to corresponding part in the proof of Proposition ��� From ����
� ����
�
����
 and ����
�

h�
	
dcdG

�
H�s
� ��i � �volp�hjf��

� s����

	
��q���
�q

Z ��

�

��s�at
jf�t

 ��t
dt

� h�C � ��i � s����
	
h��

H�s
� ��i�
Here the last equality follows from Lemma �� and by a similar computation we did to
prove ����
� This completes the proof�

Since G�
H�s
 and �

�
H�s
 are meromorphic on C with at most simple poles at s � ��� we

can consider the constant term and the residue of their Laurent expansion�

G�
H �

�
	
CTs��G

�
H�s
� ��

H �
�
�
Ress���

�
H�s
�

Theorem �	� We have

�G�
H � �#�C�

H
� ���

H � �� dcdG�
H ��

�
H � �C�

H
�

Proof� The �rst equation is obtained by comparing the constant terms of the Laurent
expansion at s � �� in both sides of the �rst equation of Theorem ��� The last equation
is justi�ed by the equation ����
 in the same way� The second equation is proved by taking
the residue at s � �� of the second equation of Theorem ���

Remark�� By the Hodge theory for compact K"ahler manifolds� the fundamental class of
the cycle C�

H has a unique harmonic representative in Aq�q��nG�K
 called the Poincar�e
dual form of C�

H � Our result tells an explicit way how to construct that harmonic form�
Indeed� the second equation in Theorem �� shows the �q� q
�form ��

H is harmonic and
the third one means ��

H is cohomologus to the current �C�
H
� Therefore� ��

H meets the
requirments of the Poincar�e dual form�

Remark�� Theorem �� also tells that �q� �� q� �
�current G�
H is a Green current for the

cycle C�
H in the sense of Gillet�Soul�e ��	� Though there are many Green currents for C�

H �
our construction �xes a choice� whose dependance on � is tractable� Another advantage
of our choice G�

H is that the form ��
H is harmonic�

��



� Some global consequence on cycle geometry

Along the K�module decomposition ����
� the current ��
H�s
 is decomposed as

��
H�s
 �

qX
���

��
H���s
� ��

H���s
 � C���G�HK
�K$V �d�
� 
��

Each component function ��
H���s
 is also meromorphic in s � C and the Poincar�e dual

form ��
H is a sum of forms ��

H�� �
�
�
Ress���

�
H���s
 �� � � � q
� each of which is also

harmonic� Moreover ��
H�q is primitive� i�e�� #�

�
H�q � �� The aim of this section is to study

these forms ��
H�� by using the knowledge on the �gC � K
�module they generates in the

space of L��automorphic forms�

The form ��
H�� is fairly easy to deal with�

Proposition �
� We have

��
H�� �

vol��HnH�KH�
vol��nG�K�

�
�q�
� �

In particular� ��
H�� �� ��

Proof� Since �
�q�
� is a K��xed tensor� it is obvious from the construction that ��

H���s$ g
 �

 �
s�g
 �

�q�
� � where

 �
s�g
 �

��q���
�q

X
�	�Hn�

��
s��g
� Re�s
 � ��

with ��
s � C���G�HK
�K
� a scalar valued function� such that ��

s�at
 � F��s$ t
 ��t �
�
� Set f�g
 � Ress�� 

�
s�g
� Then f � L���nG�K
 and ��

H�� �
�
�
f�g
 �

�q�
� � From

���
H�� � �� the function f�g
 should be a harmonic function of the compact Riemanian

manifold �nG�K� Hence f�g
 has to be a constant� say C� To determine this constant
C� we compute the integral

�
vol��HnH�

Z
�nG

 �
s�g
 dg �

�
vol��HnH�

��q���
�q

Z
�HnG

��
s�g
 dg

� ��q���
�q

Z ��

�

F��s$ t
 ��t
dt

� �
q��

��
s���
�

���
s���
�

�q�

��s�����q���

Z ��

�

�sinht
�q���cosht
��s����p���

� �F�

�
s��
�
� s��

�
� q$ s� �$ �

cosh�t

�
dt

� �
q��

��
s���
�

���
s���
�

�q�

��s�����q���
�
�

Z �

�

��� z
q��z
s�����

� �F�

�
s��
�
� s��

�
� q$ s� �$ z

�
dz

� �
q��

��
s���
�

���
s���
�

�q�

��s�����q���
��s�����

s���
�

���q�

��
s���
�

�q���
s���
�

�����
s���
�

���

�
��

s���
�

���
s���
�

�

��
s���
�

�����
s���
�

���
�

��



Here we use the integration formula ����
 to have the second equality� make a change of
variable z � �

cosh�t
to obtain the fourth equality and use the formula �� ��������p���
	 to

prove the �fth equality when Re�s
 is su�ciently large� Taking the residue at s � ��� we
have

vol��HnH�
vol��nG� C � Ress��

��
s���
�

���
s���
�

�

��
s���
�

�����
s���
�

���
� � ����

������
�

Hence ��
H�� �

�
�
C �

�q�
� � vol��HnH�

vol��nG� �
�q�
� as desired�

To investigate the other components ��
H�� �� � � � q
� we recall basic facts about

cohomological unitary representations �Vogan�Zuckerman ��!	� Wong ���	� Vogan ���	
�
Let T ��� U��
p�q
 be the compact Cartan subgroup of G formed by all the diagonal

matrices in G� For a tC �root  � t�
C
� let gC �t$ 
 � fX � gC j �Z�X	 � �Z
X ��Z �

t
g be the corresponding root space in gC � Note a t�root  is real valued on
p��t�

For H� � p��t� let q�H�
 be the ��stable parabolic subalgebra of g with Levi part
l�H�
 � fX � gC j �H�� X	 � �g� and whose radical u�H�
 is the sum of those root spaces
gC �t$ 
 such that �H�
 � �� The ��stable parabolic subalgebra q � q�H�
 determines a
unitarizable irreducible �gC � K
�module Aq with non trivial cohomology H

��gC � K$Aq
 ��
�$ Aq is characterized as a unique irreducible unitarizable �gC � K
�module with the two
properties� ��
 Aq contains the K�type of highest weight ��q
 � ���u�H�
 � pC 
� the sum
of those T �roots  occuring in u�H�
 � pC $ ��
 &g acts by � ���!� Proposition ���	
�

About the intermediate forms ��
H�� �� � � � q � �
� we have the vanishing theorem�

Proposition ��� For � � � � q� we have ��
H�� � ��

Proof� On the contrary� suppose that ��
H�� �� � with � � � � q� Let V be the closed

G�submodule of L���nG
 generated by the coe�cient functions ��
H���v$ g
 � ���

H���g
jv

with v � V

�q�
� $ by assumption V �� f�g� Since �nG is compact� the unitary representation

L���nG
 is discretely decomposable� a fortiori its closed submodule V is� In particular�

V has an irreducible closed subspace H �� f�g� By de�nition of V� there exists a v � V
�q�
�

such that the orthogonal projection of ��
H���v
 to H is nonzero� Let �� be the irreducible

K�module with the highest weight ��	� � 	p
� Then �� occurs not only in
Vq�q

p�
C
by

Proposition �� but also in the K�module H� Moreover� since ���
H�� � �� the Casimir

element &g annihilates the spaceH� Hence H
q�q�gC � K$H
 � HomK�

Vq�q
pC �H
 �� f�g ����

Proposition ����p���
	
� Then by ��!� Theorem ���	� there exists an element H� �
p��t

such that the �g� KC 
�module HK is isomorphic to Aq with q � q�H�
� Set u � u�H�

for simplicity� Since T �weight ��q
 is the highest weight of the unique K�type shared
by
V
p�
C
��� V pC 
 and Aq ����� Cororally ���� Theorem ���	
� and since �� occurs both inVq�q

p�
C
and in HK

�� Aq� we must have ��q
 � ��	� � 	p
�
Let X be the set of eigenvalues of ��H�
 acting on

V
p�
C
� Since both ��q
 and q�	�� 	p


are T �weights of
V
p�
C
� the numbers h��q
� H�i and hq�	� � 	p
� H�i belong to the set X�

If the space u � pC were zero� then H
��gC � K$Aq
 �� �� which yields Aq

�� C � a con�
tradiction� This shows u � pC �� f�g� which in turn implies h��q
� H�i � �� because the
number h��q
� H�i is the maximal element of the set X ����� Proposition ���	
� We have

��



the inequality

� � h��q
� H�i � � h	� � 	p� H�i � q h	� � 	p� H�i�
which contradicts the maximality of the number h��q
� H�i in X mentioned above�

The remaining is the primitive form ��
H�q� which can be regarded as the essential in�

gradedient of the Poincar�e dual form�

Lemma ��� The secondary spherical function �s � �
�q�
s has a simple pole at s � �� with

�H � Ress���s such that

�H�at
 � �
����q�

��������q��� �cosht

��� ��q�q � ��t � �
����


The �q� q
�current �H is a harmonic form belonging to the space Aq�q�G�K
H� The co�

ecient functions g �� ��H�g
jv
 �v � V
�q�
q 
 belong to L��HnG
 and together with their

right U�gC 
 translates span a �gC � K
�submodule �q of L
��HnG
 isomorphic to Aq�p with

q�p � q�q�	� � 	p

�

Proof� The formula ���
 follows directly from ����
 by taking the residue� The formula
���
 shows �rst that the singularity of �s along HK vanishes in the level of the residue
�H � second that the K�type of �H is q�	� � 	p
 �see Proposition ��
� Moreover� from
the equation in Proposition ��� �H � Aq�q�G�K
H is harmonic� i�e�� ��H � �� By a
direct computation using the integration formula ����
� we can easily con�rm that �H is
square�integrable on HnG� From these properties� by the characterization of Aq�p recalled
above� we conclude that �q is Aq�p�isotypic� Irreducibility of �q follows from ��� Lemma

���	 since the K�module V
�q�
q is irreducible�

Proposition �� Our global construction ��
H�q� if non�zero� yields an automorphic real�

ization of Aq�p in the sapce of L��automorphic forms L���nG
�
Proof� The U�gC 
 translates of the coe�cient functions of �

�
H�q spans a �gC � K
�submodule

( of L���nG
$ ( contains theK�type �q and is annihilated by &g� Use the characterization
of Aq�p and ��� Lemma ���	 to conclude (

�� Aq�p�

It is a subtle and di�cult arithmetic problem to �nd whether the primitive form ��
H�q

is zero or not�
For analogous non�vanishing statement of the Poincar�e series constructed from an ordi�

nary spherical function with regular spectral parameter �for small �
 is found in Oshima
���	 and Tong�Wang ��	�

!� Remarks and further observations

� Let us discuss the case when G � U��� �
� K � U��
�U��
 andH � U��� �
�U��
 in
some detail� Since the complex dimension of the associated symmetric space G�K is
�� the fundamental class of the cycle C�

H is in the cohomology group H
	��nG�K$ C 
 of

middle degree �� It is known that a non�trivial �gC � K
�modules contributing degree
� cohomology group is a member of the discrete series representations with the same

��



in�nitesimal character as C � By the classi�cation� there exist � such representaions
��#
� labeled by the Harish�Chandra parameters # � #j �j � f�� �� �� �� �� �g
�
#� �

�
�
�
� �
�
� ��

�
� ��

�

�
� #� �

�
�
�
� ��

�
� �
�
� �
�

�
� #� �

�
�
�
� ��

�
� �
�
� ��

�

�
�

#	 �
�
�
�
� ��

�
� �
�
� ��

�

�
� #� �

�
�
�
� ��

�
� �
�
� �
�

�
� #
 �

���
�
� ��

�
� �
�
� �
�

�
�

The highest weight of the minimal K�type of the representaiotn ��#
 is given by
��� � ���� �� � ���		 ��� � ���� �	 � ���	 if # � ���� ��� ��� �	
� The representation
Aq�� de�ned in the last section is ��#�
� which is one of two �middle discrete series
representations � ��#�
 and ��#	
 contributing the ��� �
 Hodge component of the
cohomology group�
The K�type decomposition of ��

H in this case is

��
H �

vol��HnH�KH�
vol��nG�K�

��
��
��p � ���� � ���� � ���� � ���
 � �

�
H���

If the primitive form ��
H�� is nonzero� it generates a middle discrete series ��#�
 in

L���nG
� In order to investigate this form� the detailed knowledge about various
spherical functions on U��� �
 ���	� ���	
 should be basic�

� Though our global results after Proposition �� in this paper are stated under the
assumption that �nG is compact� the same statements �except a proper modi�cation

of the functional equation of  
�d�
s�r
 should be true for arithmetic non�uniform lattices

�� But the situation is technically more sophisticated�
� Finally� we should say a few words about existing works related to the theme of this
article�
When the complex codimension of H�H�K in G�K is one� the modular construc�

tion of Green current of C�
H is obtained in ���	 by the same way as explained here�

If G�K and H�H � K are type IV symmetric domains and if � is a discriminant
group of some rational quadratic form� Bruiner ��	 constructed a Green function for a
�Heegner divisor� �which is a member of the divisor class group of �nG�K expressed
as a linear combination of C�

Hi
for various Hi�s de�ned over Q
 by a �regularized

theta lifting�� It turnes out the Green function in ��	 is built from the one in ���	
according to the formation of the relevant Heegner divisor�
Based on a work of Oshima�Matsuki� Tong�Wang ��	 provides a fairly general

and simple method to construct an automorphic realization of a discrete series of
a symmetric space� which yields a modular construction of the Poincar�e dual form
associated with a cohomology class de�ned by the symmetric subgroup in a coho�
mology group with coe�cients in a local system� For analytical reasons� they need to
assume that the coe�cient system should be su�ciently regular� This requirment is
related to the L��condition of the discrete series� which is indispensable to guarantee
the convergence of the Poincar�e series they use� This is a serious technical limitation
to obtain the Poincar�e dual forms in the cohomology with constant coecient�
To be more concrete� let us pick the representaion Aq�p de�ned above as an exam�

ple� It is easy to see that Aq�p is not integrable$ so one can not expect the convergence
of the Poincar�e series �

P
�	�Hn� �H��g
� used in ��	� Though the secondary spheri�

cal function �s has a singularity� it is good enough to assure the convergence of the
Poincar�e series �s�g
 �

P
�	�Hn� �s��g
 for large Re�s
� We can recover the object

��



�
P

�	�Hn� �H��g
� properly by taking the residue at s � p � q � � after the mero�
morphic continuation of the series �s� This regularization procedure reminds us of
the �Hecke�s trick� which is used to obtain an Eisenstein series with low weight in
the classical theory of elliptic modular forms ����	
� In this analogy� the construction
of the automorphic Green current G�

H can be regarded as a kind of the second limit
formula of Kronecker ����	
�

��� Retrospect for the introduction of an old paper ���	

Three decades ago Professor Hirzebruch gave a good advice to the senior author of this
paper to write the introduction of ���	 more carefully in a less sophisticated terminology�
though the thoughtless youth did not follow it� Now he wants to amend this silly mistake
by adding some lines to the introduction in question� because his claim that he proved the
Hirzebruch�Zagier conjecture for the Hirzebruch�Zagier kernel as a special application of
���	 did not seem to be understood by the readers� Also since ���	 has been a prototype
of the subsequent studies of the senior author including both the former paper ���	 and
the present one in the same series� this extra section may be justi�ed to exist�
In ���	 we start with an integral quadratic form Q on a lattice L in R��q with signature

���� q�
� Let G be the identity component of the real orthogonal group SO�Q$R
 of Q
over R with a �xed maximal compact subgroup K� Then X � G�K� which is isomorphic
to the symmetric space SO���� q
�SO��
 � SO�q
� is a hermitian symmetric domain of
BD type with complex dimension q� Let N be the level of Q in the sense of Hecke and let
�� be the unit group of Q which is a discrete arithmetic subgroup of G� that acts on X
properly discontinuously� We can de�ne the canonical automorphy factor associated with
the standard characters of the center SO��
 of K � SO��
� SO�q
� Thus we can de�ne
the space Sk�X$ ��
 of holomorphic cusp forms of weight k � Z on X with respect to ���
For simplicity we assume that q is even from now on� Let Sk��q���������N��
 be the

space of elliptic cusp forms of weight k��q��
�� and of levelN with a quadratic character
� associated with the discriminant of Q� Then the main construction of ���	 is a pair of
linear maps between the spaces of cusp forms

Sk��q���������N
� �

j
�
P
Sk�X$ ��
�

Here the point is the two maps j and P de�ned by the theta series � of Q with spherical
functions as integral kernels� which are sometimes called theta correspondence etc�� are
mutually adjoint with repect to the Petersson inner metrics on the two spaces of cusp
forms� This means we have the adjointness formula

�j�f
� F 
X � �f� P �F 

h �f � Sk��q������N��
� F � Sk�X$ ��

�

Here �� 
X and �� 
h are the Petersson inner metrics �h the complex upper half plane
�
Moreover the map P has a geometric meaning�
Let v � L with positive length Q�v
 � �� then the stabilizer Hv

�� SO����� q�
 of v in
G � SO��Q$R
 � SO����� q�
 de�nes an a�ne symmetric pair �G�Hv
 and we have the
associated chain map

Cv � �HvnHv�K �Hv � ��nG�K
��



which is a special case of modular symbols �later investigated in Kobayashi�Oda ���	 from
a di�erent viewpoint
�
The map Cv is totally real �and totally geodesic
� i�e�� having opposite character to

holomorphic embeddings in general� But for small q � �� there is an exception� because
the group SO���� ��
 is not simple�
When q � �� The spinor covering of the groupG � SO���� �
 is isomorphic to SL���R
�

SL���R
� and X � G�K is isomorphic to the product h � h�� Here h� is the complex
lower half plane� Change the compex structure of X by mapping the second factor to h
by z � h� �� �z � h� Then we have another hermitian domain X�� and the space of cusp
forms Sk�X$ ��
 is mapped to a space of non�holomorphic cusp forms Sk�X

����
� When
k � � this is a space of cusp forms harmonic of ��� �
�type� which are holomorphic in the
�rst variable and ani�holomorphic in the second variable� Let Q be the direct sum of the

norm form of a real quadratic �eld and the hypebolic quadratic form

�
� �
� �

�
� Then ��

is commensurable to a Hilbert modular group�
Let k � � here� then we have a correpondence of cusp forms�

S�����N
� �

j
�
P
S��X

�$ ��
�

Set Cm �
P

v	L� Q�v��m modulo �Q
Cv� Then for F

� � S��X
�$ ��
 the m�th Fourier coef�

�cient of P �F �
 �the adojoint map of Doi�Naganuma lift
 is given asZ
Cm

�F � � �Pm� P �F
�

h�

Here Pm is the Poincar�e�Eisenstein series of degree m generating the m�th Fourier co�
e�cient am�f
 as the Peterson inner product �Pm� f
h for any elliptic modular form
f � S���o�N
� �
� By the adjointness formula this is equal to

�j�Pm
� F 
X� � ��m� F
�
h �

Z
��nX

�m � �F �

Comparing the �st term and the last term in this series of equalities� we can tell that the
m�th Fourier coe�cient �m � j�Pm
 of Hirzebruch�Zagier kernel is the Poincar�e dual of
Cm� which was essentially the content of their conjecture�
Remark � This result has another interpretation� We can deduce a period relation
between the period of the primitive form f � S�����N
� �
 and that of the lifted form
j�f
 �cf� Chapter IV� x�� of ��	
�
Remark � For a general even q� on G�K there is the other invariant closed �q��� q��
�
form 
 orthognal to �q���� the q���fold wedge product of the invaraint K"ahler form ��
We can show that the series

�X
m��

�Z
Cm





exp���imz
 �z � h


is an Eistenstein series of weight q
�
�� by applying the Eisenstein�Siegel formula �cf� ��!	
�

��
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