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Abstract

The author considers SABR (stochastic-αβρ) model which is a two factor stochastic volatil-
ity model and give an asymptotic expansion formula of implied volatilities for this model. His
approach is based on infinite dimensional analysis on the Malliavin calculus and large devia-
tion. Furthermore, he applies the approach to a foreign exchange model where interest rates
and the FX volatilities are stochastic and gives an asymptotic expansion formula of implied
volatilities of foreign exchange options.

1 Introduction

In financial markets, the Black-Scholes formula [2] has been widely used to price European options.
However, several assumptions are inconsistent with real markets. In the Black-Schloes model, assets
are assumed to follow constant volatility log-normal processes. It is a common practice to quote
option prices in terms of ‘implied volatility’. Given a price, the implied volatility is determined
for each call option as the unique value of the volatility parameter for which the Black-Scholes
formula agrees with that price. In the original Black-Scholes model, the implied volatility must be
constant independent of strike rate. But in real financial markets such as foreign exchange options
and stock index options, observed implied volatilities depend on strike rate. They are the lowest
for at-the-money options and progressively higher as an option moves in the money or out of the
money. These phenomena are called ‘volatility smile’.

There are two well-known models to explain these phenomena. The first class of models are
called local volatility models for which the volatility is assumed to depend on time and the spot
price of the underlying (cf. Dupire [5]). The second class of models are stochastic volatility models
such as Hull-White [9] and Heston [8] studied.

In the present paper, we consider a mixture of them which is called ‘SABR’ (stochastic-αβρ)
model. This model is popular among practitioners because an accurate asymptotic expansion
formula of implied volatilities is known and is well-fit to the volatility smile. This model was first
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address correspondence to: Mitsubishi UFJ Securities Co., Ltd. Research and Development Division, Marunouchi
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introduced by Hagan-Kumar-Lesniewski-Woodward [7]. They gave the formula in [6], [7] using
singular perturbation techniques.

We will give a mathematically rigorous proof for the formula. Our approach is small volatility
asymptotic expansion based on infinite dimensional analysis called the Watanabe-Yoshida theory
on the Malliavin calculus (cf. Watanabe [17], Yoshida [18] and Kunitomo-Takahashi [10]).

Furthermore, we introduce a new model ‘FX hybrid SABR model’ which is a foreign exchange
model where interest rates and FX volatilities are stochastic. We apply our approach to this model
and give an asymptotic expansion formula for implied volatilities of foreign exchange options.

1.1 Dynamic SABR model

Let (Ω,F , P, {Ft}06t6T ) be a complete probability space satisfying the usual hypotheses and T ∈
(0,∞) denotes some fixed time horizon of economy. Let (W1(t),W2(t)), 0 ≤ t ≤ T , be a 2-
dimensional correlated Brownian motion with correlation given by ρ : [0, T ] → [−1, 1] such that

d〈W1,W2〉t = ρ(t)dt, d〈W1〉t = d〈W2〉t = dt,

Let C : R → R+ be a smooth function whose derivatives of any order are bounded. Let σ, ν be
continuous R+-valued functions defined on [0, T ]. We consider the following stochastic differential
equation for X and α;

dXε(t) = εαε(t)σ(t)b(Xε(t))dW1(t),
dαε(t) = εν(t)αε(t)dW2(t),(1.1)
Xε(0) = X0, α

ε(0) = α.

Here X, α and ν are considered an underlying process, ‘volatility-like’ parameter, the volatility of
volatility respectively. This model is known as ‘dynamic SABR model’ to practitioners.

Under this model, we want to calculate forward values of call options. Since no analytic
formula is known, we will calculate the asymptotic expansion, and furthermore we will calculate
the asymptotic expansion of implied volatilities.

First, we define implied normal volatility. We denote by V (T,K) the forward value of a Euro-
pean call option with strike rate K and maturity T , i.e.,

V (T,K) = E[(X(T )−K)+].

Since X is a martingale,

V (T,K) ≥ (X0 −K)+.

Let φ : R → R be given by

φ(x) =
1√
2π
e−x2/2, x ∈ R.

We define G : R → R+ by

G(x) =
∫ ∞

x

(y − x)φ(y)dy, x ∈ R.

When we consider the following normal model

dX̃(t) = σdW̃ (t), X̃(0) = X0,

the forward value of a call option is given by

VN (T,K, σ) = σ
√
TG

(K −X0

σ
√
T

)
.
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Since VN is strictly increasing in σ and

lim
σ↓0

VN (T,K, σ) = (X0 −K)+,

lim
σ↑∞

VN (T,K, σ) = +∞,

there is an unique σN (K) > 0 satisfying

V (T,K) = VN (T,K, σN (K)),

which is called implied normal volatility.
In the same way, under the following log-normal model

dX̃(t)
X̃(t)

= σdW̃ (t), X̃(0) = X0,

the forward value of a call option is given by the famous Black-Scholes formula

VBS(T,K, σL) = X0Φ(d1)−KΦ(d2)

where Φ is the normal distribution function and

d1,2 =
log(X0/K)± 1

2σ
2T

σ
√
T

.

Since VBS is also strictly increasing in σ and

lim
σ↓0

VBS(T,K, σ) = (X0 −K)+,

lim
σ↑∞

VBS(T,K, σ) = +∞,

there is an unique σBS(T,K) > 0 satisfying

V (T,K) = VBS(T,K, σBS(T,K)),

which is called implied volatility.
The asymptotic expansion of the implied volatilities for dynamic SABR model is the following.

Theorem 1.1. For each y ∈ R, let Kε = Kε(y) = X0 + εΣny = X0(1 + εΣly), ε ∈ (0, 1]. For
any r ∈ [0,∞), there is a constant R > 0 such that

∣∣∣σN (T,Kε)
ε

− Σn√
T

{
1 + ε

(γ1

2
+ C1

)
Σny + ε2

(2γ2 − γ2
1

12
+ C2

)
(Σny)2(1)

+ε2
(2γ2 − γ2

1

24
+
γ1

2
C1 + C3

)
Σ2

n

}∣∣∣ ≤ ε3R, ε ∈ (0, 1], y ∈ [−r, r].

∣∣∣σBS(T,Kε)
ε

− Σl√
T

{
1 + ε

( γ̃1

2
+ C̃1

)
Σly + ε2

(2γ̃2 − γ̃2
1 − γ̃1

12
− C̃1

2
+ C̃2

)
(Σly)2(2)

+ε2
(2γ̃2 − γ̃2

1 + 2γ̃1

24
+

1 + γ̃1

2
C̃1 + C̃3

)
Σ2

l

}∣∣∣ ≤ ε3R, ε ∈ (0, 1], y ∈ [−r, r].
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Here,

ξ =
(∫ T

0

σ2(t)dt
)1/2

, C(x) = b(x)/x, Σn = b(X0)αξ, Σl = C(X0)αξ,

γ1 =
b′(X0)
b(X0)

, γ2 =
b′′(X0)
b(X0)

, γ̃1 =
C ′(X0)X0

C(X0)
, γ̃2 =

C ′′(X0)X0

C(X0)
,

η1 =
2
ξ4

∫ T

0

(∫ t

0

σ(s)ν(s)ρ(s)ds
)
σ2(t)dt =

2
ξ4

∫ T

0

(∫ T

t

σ2(s)ds
)
σ(t)ν(t)ρ(t)dt,(1.2)

η2
2 =

12
ξ8

∫ T

0

(∫ t

0

(∫ t

s

σ(u)ν(u)ρ(u)du
)2

σ2(s)ds
)
σ2(t)dt,(1.3)

v2
1 =

3
ξ6

∫ T

0

(∫ T

t

σ2(s)ds
)2

ν2(t)dt =
6
ξ6

∫ T

0

(∫ t

0

(∫ s

0

ν2(u)du
)
σ2(s)ds

)
σ2(t)dt,(1.4)

v2
2 =

6
ξ6

∫ T

0

(∫ T

t

σ2(s)ds
)(∫ t

0

σ2(s)ds
)
ν2(t)dt,(1.5)

C1 =
η1

2b(X0)α
, C2 =

4v2
1 + 3(η2

2 − 3η2
1)

24b(X0)2α2
, C3 =

2v2
2 − 3η2

2

24b(X0)2α2
,

C̃1 = C1X0, C̃2 = C2X
2
0 , C̃3 = C3X

2
0 ,

In the case σ(t) ≡ 1, ρ(t) ≡ ρ, ν(t) ≡ ν, these parameters are η1 = η2 = νρ, v1 = v2 = ν, and

C1 =
ρ

2

( ν

b(X0)α

)
, C2 =

2− 3ρ2

12

( ν

b(X0)α

)2

, C3 =
2− 3ρ2

24

( ν

b(X0)α

)2

.

In the case ν ≡ 0, i.e. deterministic volatility case, this formula is almost the same as ‘Equivalent
Black volatilities’ given in Hagan-Woodward [6].

Furthermore we obtain an another asymptotic expansion using large deviation approach. Berestycki-
Busca-Florent [3] has also investigated this problem in more general settings.

Theorem 1.2. For any K0 > X0, the implied normal volatility for SABR model satisfies

lim
ε↓0

sup
X0≤K≤K0

∣∣∣σN (T,K)
ε

− α(K −X0)∫ K

X0

dx
b(x)

· ζ

x̂(ζ)

∣∣∣ = 0,

and the implied volatility for SABR model satisfies

lim
ε↓0

sup
X0≤K≤K0

∣∣∣σBS(T,K)
ε

− α log(K/X0)∫ K

X0

dx
b(x)

· ζ

x̂(ζ)

∣∣∣ = 0,

where

ζ = − ν
α

∫ K

X0

dz

b(z)
, x̂(ζ) = log

(√
1− 2ρζ + ζ2 − ρ+ ζ

1− ρ

)
.

In the case K < X0, we can apply our approach to the put option and obtain the same formula.

In Remark 3.2, we will show the relation with Hagan et al. [7].

1.2 FX Hybrid SABR model

We introduce a new model ‘FX hybrid SABR model’. We apply our approach to foreign exchange
model where interest rates and volatilities are stochastic. Let (Ω,F , P̃ , {Ft}06t6T ) be a complete
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probability space satisfying the usual hypotheses. Let ρij : [0, T ] → [−1, 1] (0 ≤ i, j ≤ 3) be con-
tinuous functions such that ρii = 1 and the matirix (ρij)0≤i,j≤3 is non-negative definite symmetric
matrix. We assume ρ13 = ρ23 = 0. Let W̃i(t), 0 ≤ t ≤ T, 0 ≤ i ≤ 3, be a 4-dimensional correlated
Brownian motion with correlation such that

d〈W̃i, W̃j〉t = ρij(t)dt, d〈W̃i〉t = dt.

Let C : R → R+ be a smooth function whose derivatives of any order are bounded. Let κi and
θi, i = 1, 2, be continuous R-valued functions defined on [0, T ]. Let σi, i = 1, 2, σ, ν and L be
continuous R+-valued functions defined on [0, T ]. We consider the following stochastic differential
equation for S, r, q and α;

dSε,δ(t)
Sε,δ(t)

= (rδ(t)− qδ(t))dt+ εαε(t)σ(t)C(Sε,δ(t)/L(t))dW̃0(t),

drδ(t) = (θδ
1(t)− κ1(t)rδ(t))dt+ δσ1(t)dW̃1(t),

dqδ(t) = (θδ
2(t)− κ2(t)qδ(t))dt+ δσ2(t)dW̃2(t),

dαε(t) = εν(t)α(t)dW̃3(t).

We consider P̃ a risk neutral measure, S = Sε,δ a foreign exchange rate process, r = rδ and q = qδ

processes for short rate of domestic and foreign economy respectively, and α = αε a stochastic
volatility process of foreign exchange. L is a time-dependent scaling constant. We assume L(t) as
a forward foreign exchange rate at time t as explained below. Piterbarg [15] considered the case
ν ≡ 0, i.e. deterministic volatility case. In real financial markets, volatilities of short rate processes
are much smaller than that of foreign exchange rates, and so it is reasonable to assume δ = ε2.

Let Pi(t, T ), i = 1, 2, be the price at time t of zero-coupon bonds maturing at time T of
domestic and foreign currency respectively. These are given by

P1(t, T ) = EP̃
[
exp

(
−

∫ T

t

r(s)ds
)∣∣Ft

]
,

and

P2(t, T ) = EP̃ [
S(T )
S(t)

exp
(
−

∫ T

t

r(s)ds
)∣∣Ft

]
,

respectively. The drifts of short rate θδ
1, θ

δ
2 are chosen so that

P δ
1 (0, t) = EP̃

[
exp

(
−

∫ t

0

rδ(s)ds
)]
, 0 ≤ t ≤ T,

and

P ε,δ
2 (0, t) = EP̃

[Sε,δ(t)
S0

exp
(
−

∫ t

0

rδ(s)
)]
, 0 ≤ t ≤ T,

are coincides the discount factors calculated from the initial yield curve. In particular,

P 0
1 (t, T ) = exp(−

∫ T

t

r0(s)ds), P 0,0
2 (t, T ) = exp(−

∫ T

t

q0(s)ds), S0,0(t) = F (0, t).

We denote by P the measure associated with the numeraire P1(t, T ), 0 ≤ t ≤ T , and by E the
corresponding expectation. This measure P is called T -forward measure. To calculate the value of
a European call option with maturity T , it is useful to calculate under T -forward measure P . By
Girsanov’s theorem, a 4-dimensional P -Brownian motion Wi(t), 0 ≤ t ≤ T, 0 ≤ i ≤ 3, is given by

dW0(t) = dW̃0(t) + ερ1(t)αε(t)σ(t)C(Sε,δ(t)/L(t))dt,

dW1(t) = dW̃1(t) + δσ1(t, T )dt,

dW2(t) = dW̃2(t) + δσ2(t, T )ρ12(t)dt− εαε(t)σ(t)C(Sε,δ(t)/L(t))ρ2(t)dt,

dW3(t) = dW̃3(t),
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with correlation such that
d〈Wi,Wj〉t = ρij(t)dt, d〈Wi〉t = dt.

The foreign exchange rate S and zero-coupon bonds of each currency Pi(t, T ), 0 ≤ t ≤ T, i = 1, 2
satisfies the following stochastic differential equation;

dSε,δ(t)
Sε,δ(t)

= µε,δ(t)dt+ εαε(t)σ(t)C(Sε,δ(t)/L(t))dW0(t),

dP δ
1 (t, T )

P δ
1 (t, T )

= (rδ(t) + δ2σ1(t, T )2)dt+ δσ1(t, T )dW1(t),

dP ε,δ
2 (t, T )

P ε,δ
2 (t, T )

=
(
qδ(t)− εδρ02(t)αε(t)σ(t)C(Sε,δ(t)/L(t))σ2(t, T ) + δ2ρ12(t)σ1(t, T )σ2(t, T )

)
dt

+ δσ2(t, T )dW2(t),

where

µε,δ(t) = rδ(t)− qδ(t) + εδρ01(t)αε(t)σ(t)C(Sε,δ(t)/L(t))σ1(t, T ),

ϕi(t) = exp(
∫ t

0

κi(s)ds), ψi(t) =
∫ t

0

ϕi(s)−1ds,

σi(t, T ) = −σi(t)ϕi(t){ψi(T )− ψi(t)}, i = 1, 2.

Let F (t, T ) = F ε,δ(t, T ) be the forward exchange rate at time t for maturity T ;

F (t, T ) =
S(t)P2(t, T )
P1(t, T )

.

Then the forward exchange rate F ε,δ(t, T ), 0 ≤ t ≤ T , is a martingale and satisfies the following
stochastic differential equation;

dF ε,δ(t, T )
F ε,δ(t, T )

= εαε(t)σ(t)C(Sε,δ(t)/L(t))dW0(t)− δσ1(t, T )dW1(t) + δσ2(t, T )dW2(t).

In the present paper, we assume L(t) = F (0, t). In this model, we are interested in the forward
value of a foreign exchange call option;

V (T,K) = E[(S(T )−K)+] = E[(F (T, T )−K)+].

The basic hybrid model is the case C ≡ 1 and α ≡ 1 (cf. Dempster-Hutton [4]). In this case, the
implied volatility of the call option is given by

σBS(T,K) =
( 1
T

∫ T

0

(δ2a(t, T ) + 2εδb(t, T )σ(t) + ε2σ2(t))dt
)1/2

,

where

a(t, T ) = σ2
1(t, T ) + σ2

2(t, T )− 2ρ12(t)σ1(t, T )σ2(t, T ),
b(t, T ) = ρ02(t)σ2(t, T )σ(t)− ρ01(t)σ1(t, T )σ(t).

In general case, we give the asymptotic expansion formula of the implied volatility as follows.

Theorem 1.3. For each y ∈ R, let Kε = Kε(y) = F (0, T )(1 + εΣly), ε ∈ (0, 1]. For any
r ∈ [0,∞) there is a constant R > 0 such that∣∣∣σBS(T,Kε)

ε
− Σl√

T

{Σfwd

Σl
+ ε

( γ̃1

2
+ C1 + ε

(
D1γ̃1 +D2

))
Σly + ε2

(2γ̃2 − γ̃2
1 − γ̃1

12
− C1

2
+ C2

)
(Σly)2

+ε2
(2γ̃2 − γ̃2

1 + 2γ̃1

24
+

1 + γ̃1

2
C1 + C3

)
Σ2

l

}∣∣∣ ≤ ε3R, ε ∈ (0, 1], y ∈ [−r, r].
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Here, η1, η2, v1, v2, are (1.2), (1.3), (1.4), (1.5) respectively and

Σfwd =
(∫ T

0

(σ2(t) + 2εb(t, T )σ(t) + ε2a(t, T ))dt
)1/2

,

ξ =
(∫ T

0

σ2(t)dt
)1/2

, Σl = C(1)αξ, γ̃1 =
C ′(1)
C(1)

, γ̃2 =
C ′′(1)
C(1)

,

C1 =
η1

2C(1)α
, C2 =

4v2
1 + 3(η2

2 − 3η2
1)

24C(1)2α2
, C3 =

2v2
2 − 3η2

2

24C(1)2α2
,

D1 = − 1
2ξ2

∫ T

0

b(t, T )dt− 1
ξ4

∫ T

0

(∫ t

0

b(s, t)ds
)
σ2(t)dt,

D2 =
1
ξ4

∫ T

0

Σσν(t)b(t, T )dt−
( 3
ξ6

∫ T

0

Σσν(t)σ2(t)dt
)(∫ T

0

b(t, T )dt
)
.

2 Dynamic SABR model

In this section, we will prove Theorem 1.1. Since the stochastic differential equation for X can be
written as

dX(t) =
(α(t)
α

)(
αb(X0)σ(t)

)( b(Xt)
b(X0)

)
dW1(t),

it is enough to prove in the case, α = 1 and b(X0) = 1. Then Σn = ξ. First we calculate the
asymptotic expansion of the forward value of call option.

Proposition 2.1. For each y ∈ R, let Kε = Kε(y) = X0 + εξy, ε ∈ (0, 1]. For any r ∈ [0,∞),
there is a constant R > 0 such that

sup
y∈[−r,r]

∣∣∣V (T,Kε)− εξ
[
G(y) + εc1yφ(y) + ε2

(
c2(y2 − 1) + c3

)
φ(y)

+
ε2

2

(
c21(y

4 − 6y2 + 3) + c4(y2 − 1) + c5

)
φ(y)

]∣∣∣ ≤ ε4R.

Here, we define Σσ : [0, T ] → R, Σν : [0, T ] → R and Σσν : [0, T ] → R by

Σσ(t) =
∫ t

0

σ2(s)ds, Σν(t) =
∫ t

0

ν2(s)ds, Σσν(t) =
∫ t

0

ρ(s)σ(s)ν(s)ds, t ∈ [0, T ],

and

c1 =
γ1ξ

2
+

1
ξ3

∫ T

0

Σσν(t)σ2(t)dt,

c2 =
(γ2 + γ2

1)ξ2

6
+
γ1

ξ2

∫ T

0

Σσν(t)σ2(t)dt+
1

2ξ4

∫ T

0

Σ2
σν(t)σ2(t)dt,

c3 =
γ2ξ

2

4
+
γ1

ξ2

∫ T

0

Σσν(t)σ2(t)dt,

c4 = γ2
1ξ

2 +
4γ1

ξ2

∫ T

0

Σσν(t)σ2(t)dt+
2
ξ4

∫ T

0

(∫ t

0

Σν(s)σ2(s)ds
)
σ2(t)dt+

2
ξ4

∫ T

0

Σ2
σν(t)σ2(t)dt,

c5 =
γ2
1ξ

2

2
+

2γ1

ξ2

∫ T

0

Σσν(t)σ2(t)dt+
1
ξ2

∫ T

0

Σν(t)σ2(t)dt.

Proof. Let H ≡ L2([0, T ],R2) be the Cameron-Martin space. Let Dk,p (k, p > 1) be the Sobolev
spaces of k-times Malliavin differentiable random variables which norms are defined by;

‖F‖k,p ≡
[
E|F |p +

k∑
j=1

E[‖DjF‖p
H⊗j ]

]1/p
.
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We define

D∞ =
⋂
k>0

⋂
1<p<∞

Dk,p, D−∞ =
⋃
k>0

⋃
1<p<∞

Dk,−p.

The small volatility asymptotic expansion of processes X and α are given by

Xε(t) = X0 + ξ(εg1(t) + ε2g2(t) + ε3g3(t) + ε4r(t, ε)),

αε(t) = 1 + ε

∫ t

0

ν(s)dW2(s) + ε2
∫ t

0

(∫ s

0

ν(u)dW2(u)
)
ν(s)dW2(s) + ε3a(t, ε),

as Watanabe [17], Yoshida [18] and

g1(t) =
1
ξ

∂Xε(t)
∂ε

∣∣∣∣
ε=0

=
1
ξ

∫ t

0

σ(s)dW1(s),(2.1)

g2(t) =
1
2ξ
∂2Xε(t)
∂ε2

∣∣∣∣
ε=0

=
γ1

ξ

∫ t

0

(∫ s

0

σ(u)dW1(u)
)
σ(s)dW1(s) +

1
ξ

∫ t

0

(∫ s

0

ν(u)dW2(u)
)
σ(s)dW1(s),

g3(t) =
1
6ξ
∂3Xε(t)
∂ε3

∣∣∣
ε=0

=
γ2
1

ξ

∫ t

0

(∫ s

0

(∫ u

0

σ(v)dW1(v)
)
σ(u)dW1(u)

)
σ(s)dW1(s)

+
γ2

2ξ

∫ t

0

(∫ s

0

σ(u)dW1(u)
)2

σ(s)dW1(s)

+
γ1

ξ

∫ t

0

(∫ s

0

(∫ u

0

ν(v)dW2(v)
)
σ(u)dW1(u)

)
σ(s)dW1(s)

+
γ1

ξ

∫ t

0

(∫ s

0

σ(u)dW1(u)
)(∫ s

0

ν(u)dW2(u)
)
σ(s)dW1(s)

+
1
ξ

∫ t

0

(∫ s

0

(∫ u

0

ν(v)dW2(v)
)
ν(u)dW2(u)

)
σ(s)dW1(s).

Then, g1 ∼ N(0, 1) and using formulas in Appendix A, the conditional expectations are given as
follows;

E[g2|g1 = x] = c1(x2 − 1),

E[g3|g1 = x] = c2(x3 − 3x) + c3x,

E[g2
2 |g1 = x] = c21(x

4 − 6x2 + 3) + c4(x2 − 1) + c5.

We define

Y ε =
Xε(T )−X0

εξ
= g1 + εg2 + ε2g3 + ε3r(T, ε).

We define a function f : R → R by f(x) = x+. Then the forward value of a call option is given by

V (T,Kε) = E[f(Xε(T )−Kε)]
= εξE[f(Y ε − y)].

For every y ∈ [−r, r], we define Ty ∈ S ′(R) as Ty(x) = f(x − y). Since the non-degeneracy of
Malliavin covariance (See Appendix B), we can apply Theorem 2.3 in Watanabe [17]. So there
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exist s > 0 such that for every y ∈ [−r, r], Ty(Y ε) has the asymptotic expansion in
⋂

1<p<∞D−s
p

and

sup
y∈[−r,r]

∥∥Ty(Y ε)− Φ0(y)− εΦ1(y)− ε2Φ2(y)
∥∥

D−s
p

= O(ε3), 1 < p <∞,(2.2)

where

Φ0(y) = Ty(g1), Φ1(y) =
∂

∂x
Ty(g1)g2,

Φ2(y) =
∂

∂x
Ty(g1)g3 +

1
2!

∂2

∂x2
Ty(g1)g2

2 .

Here, we will remark the uniformness in (2.2). In the proof of Theorem 2.3 in Watanabe [17], we
can find a positive integer m and a bounded function φy(x) on R which is 3-times continuously
differentiable in (x, y) with bounded derivatives up to 3rd order such that Ty = (1 + x2 −∆)mφy.
Then we can prove (2.2) in the same way as the proof of Theorem 2.3 in Watanabe [17].

Therefore there is a constant R > 0 such that

sup
y∈[−r,r]

∣∣E[Ty(Y ε)]− E[Φ0(y)]− εE[Φ1(y)]− ε2E[Φ2(y)]
∣∣≤ ε3R.

Since
∂

∂x
Ty(x) = 1(0,∞)(x− y),

∂2

∂x2
Ty(x) = δ(y),

we can calculate each terms explicitly as follows;

E[Φ0(y)] = G(y),

E[Φ1(y)] =
∫ ∞

y

E[g2|g1 = x]φ(x)dx = c1yφ(y),

E[Φ2(y)] =
∫ ∞

y

E[g3|g1 = x]φ(x)dx+
ε2

2

∫ ∞

−∞
E[g2

2 |g1 = x]δ(x− y)φ(x)dx

=
(
c2(y2 − 1) + c3

)
φ(y) +

ε2

2

(
c21(y

4 − 6y2 + 3) + c4(y2 − 1) + c5

)
φ(y).

We define

J(ε, y) = G(y) + εc1yφ(y) + ε2
(
c2(y2 − 1) + c3

)
φ(y)

+
ε2

2

(
c21(y

4 − 6y2 + 3) + c4(y2 − 1) + c5

)
φ(y).

Then from above asymptotic expansion, we have

sup
y∈[−r,r]

∣∣∣E[f(Y ε − y)]− J(ε, y)
∣∣∣ ≤ ε3R.

Therefore asymptotic expansion of call option price is given as follows;

sup
y∈[−r,r]

∣∣∣V (T,Kε)− εξ
[
G(y) + εc1yφ(y) + ε2

(
c2(y2 − 1) + c3

)
φ(y)

+
ε2

2

(
c21(y

4 − 6y2 + 3) + c4(y2 − 1) + c5

)
φ(y)

]∣∣∣ ≤ ε4R.

Thus we have our assertion.

To calculate the implied normal volatility, we need inverse function of VN .
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Lemma 2.2. Let H(z; y) ≡ zG(y/z), then, there is a smooth function L(x; y) : R+ → R such
that

H(L(x; y); y) = x

and H(z0; y) = x0 then

d

dx
L(x; y)|x=x0 =

1
φ(y/z0)

,

d2

dx2
L(x; y)|x=x0 = −y

2

z3
0

1
φ(y/z0)2

.

Proof. Since d
dzH(z; y) = φ(y/z) > 0, H is strongly increasing in z. Therefore, from implicit

function theorem, H has a smooth inverse function L(x; y) : R → R such that

H(L(x; y); y) = x.

Let L(x0; y) = z0. Then we have

d2

dz2
H(z; y) =

y2

z3
φ(y/z)

We can calculate L′ and L′′ easily.

Finally we will prove Theorem 1.1.

Proof of Theorem 1.1. Since

VN (T,X0 + εξy, σ) = σ
√
T ·G

( εξy

σ
√
T

)
= H(σ

√
T ; εξy) = εξH(

σ
√
T

εξ
; y),

the implied normal volatility can be written using L as follows;

σN (K) =
εξ√
T
L

(V (T ;Kε)
εξ

; y
)
=

εξ√
T
L(J(ε, y); y).

Since J(0, y) = G(y) = H(1; y), we have

L(J(0, y); y) = 1.

Using Proposition 2.1 and Lemma 2.2, the Taylor expansion of L(J(ε, y)) around ε = 0 is given by

L(J(ε, y); y) = 1 + ε
(γ1

2
+ C1

)
ξy + ε2

(2γ2 − γ2
1

12
+ C2

)
ξ2y2 + ε2

(2γ2 − γ2
1

24
+
γ1C1

2
+ C3

)
ξ2,

ε ∈ (0, 1], y ∈ [−r, r],

where

C1 = −γ1

2
+
c1
ξ
,

C2 = −2γ2
2 − γ2

1

12
+

1
ξ2

(
c2 − 3c21 +

c4
2

)
,

C3 = −2γ2 − γ2
1

24
− γ1C1

2
+

1
ξ2

(
−c2 + c3 +

3
2
c21 −

c4
2

+
c5
2

)
.

This implies our assertion (1).
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Next we will prove the asymptotic expansion for implied volatility. Apply the above formula
to the log-normal case i.e. C(x) = x, we obtain

σBS(T,Kε) =
(
1− εξy

2X0
+

1
3
(εξy
X0

)2
)σN (T,Kε)

X0

(
1 +

ε2ξ2

24X2
0

+O(ε3)
)

=
ξ

X0

√
T

{
1 + ε

(γ1

2
+ C1 −

1
2X0

)
ξy + ε2

(2γ2 − γ2
1

12
+ C2 −

γ1 + 2C1

4X0

)
ξ2y2

+ ε2
(2γ2 − γ2

1

24
+
γ1C1

2
+ C3 +

1
24X2

0

)
ξ2 +O(ε3)

}
.

Thus we have our assertion (2). This completes the proof of Theorem 1.1.

3 Large deviation approach

In this section, we will prove Theorem 1.2. We consider the original SABR model (i.e. ρ and ν
are constant). Let (W (t), Z(t)), 0 ≤ t ≤ T , be a 2-dimensional standard Brownian motion. We
consider the following stochastic differential equation for X and α;

dXε(t) = εαε(t)b(Xε(t))
(√

1− ρ2dW (t) + ρdZ(t)
)
,

dαε(t) = εναε(t)dW (t),
Xε(0) = X0, α

ε(0) = α.

We calculate the asymptotic expansion of density function of X under original SABR model. Since
X ∈ D∞ and non-degeneracy of Malliavin covariance, using Watanabe [17] we can define

pε(t; y) = E[δ(Xε(t)− y)].

We consider the following associated ordinary differential equation;

df(t;h)
dt

= a(t;h)b(f(t;h))(
√

1− ρ2ḣ1(t) + ρḣ2(t)),

da(t;h)
dt

= νa(t;h)ḣ2(t),

f(0, h) = X0, a(0, h) = α.

We define

e(y) = inf{1
2

∫ T

0

|ḣ(s)|2ds; f(T, h) = y}, y ∈ R.

The function e is called ’energy’ and e(0) = 0. Let

aε(y) = (2πε2)1/2pε(T, y) exp
(e(y)
ε2

)
, y ∈ R.

Then from Watanabe [17] and Kusuoka-Stroock [12], there exists a bounded function a : R → R
such that

lim
ε↓0

aε(y) = a(y) > 0.

In particular, we have

e(y) = lim
ε↓0

ε2 log pε(t, y).

In this model, we can calculate the energy term explicitly.
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Theorem 3.1. In SABR model, the energy term is

e(K) =
1

2ν2T
log(

√
1− 2ρζ + ζ2 − ρ+ ζ

1− ρ
)2 =

x̂(ζ(K))2

2ν2T
,

where

ζ(K) = − ν
α

∫ K

X0

dz

b(z)
.

See Appendix C for the proof.
Using this theorem, we can calculate the asymptotic expansion of the implied volatility to the

first order.

Proof of Theorem 1.2. We will calculate the forward value of a call option

V ε(T,K) =
∫ ∞

−∞
(y −K)+pε(T, y)dy

= Ṽ ε(T,K) +Rε(K0),

where

Ṽ ε(T,K) =
∫ 2K0

K

(y −K)pε(T, y)dy =
∫ 2K0

K

(y −K)
( 1
2πε2

)1/2
e−e(y)/ε2

aε(y)dy,

Rε(K0) =
∫ ∞

2K0

(y −K)pε(T, y)dy = E[Xε(T )−K, Xε(T ) > 2K0].

We define g : R → R as

g(x) =
x̂(ζ(x))

ν
,

then g satisfies

e(g(x)) =
x2

2
.

Then

Ṽ ε(T,K) =
∫ g−1(2K0)

g−1(K)

(g(x)−K)+
( 1
2πε2

)1/2
e−x2/2ε2

aε(g(x))g′(x)dx.

Let Aε(x) ≡ aε(g(x))g′(x) and K̃0 = g−1(2K0)− g−1(K). Putting x = z + g−1(K), we have

exp(
g−1(K)2

2ε2
)Ṽ ε(T,K)

=
∫ K̃0

0

(
g(z + g−1(K))−K

)( 1
2πε2

)1/2 exp(− z2

2ε2
− zg−1(K)

2ε2
)Aε(z + g−1(K))dz

≤ g−1(K0)K0

( 1
2πε2

)1/2 sup
z∈[0,g−1(2K0)]

∣∣Aε(z)
∣∣

We will estimate the l.h.s. from below. Since there is a 0 ≤ θ ≤ 1,

inf
z∈[0,K0]

g(z + g−1(K))−K

z
= g′(θ0z + g−1(K)) ≥ inf

z∈[0,g−1(2K0)]
g′(z) ≡ C,
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therefore

exp(
g−1(K)2

2ε2
)Ṽ (T,K)

≥
∫ ε2

0

Cz
( 1
2πε2

)1/2 exp(− z2

2ε2
− zg−1(K)

2ε2
) inf

z∈[0,K̃0]
Aε(z + g−1(K))dz

≥ exp(−1
2
− g−1(K)

2
)
Cε3

2
( 1
2π

)1/2

Since e(K) = g−1(K)2/2 and Aε is bounded, we have∣∣ε2 log Ṽ (T,K) + e(K)
∣∣ ≤ εA, X0 ≤ K ≤ K0.

For any δ > 0

Rε(K0) ≤ E[Xε(T );Xε(T ) > 2K0]

≤ E[Xε(T )1/δ]δP (Xε(T ) > 2K0)1−δ,

and so

lim
ε↓0

ε2 logRε(K0) ≤ lim
ε↓0

ε2(1− δ) logP (Xε(T ) > 2K0) = −(1− δ)e(2K0).

Since e(2K0) > e(K0),
lim
ε↓0

ε2 logRε(K0) < −e(K0).

Therefore

lim
ε↓0

sup
K∈[X0,K0]

∣∣ε2 log V ε(T,K) + e(K)
∣∣ = 0.

On the other hand, the forward value of call option under the normal model is given by

V ε
N (T,K, εσ) = exp

(
− (K −X0)2

2ε2σ2T

) ∫ ∞

0

x√
2πε2σ2T

exp
(
− x2

2ε2σ2T

)
exp

(
− (K −X0)x

ε2σ2T

)
dx.

Therefore, for any 0 < σ0 < σ1 we have

lim
ε↓0

sup
K∈[X0,K0]
σ∈[σ0,σ1]

∣∣ε2 log VN (T,K, εσ) +
(K −X0)2

2σ2T

∣∣ = 0.

In the log-normal model, we can calculate in the same way;

lim
ε↓0

sup
K∈[X0,K0]
σ∈[σ0,σ1]

∣∣ε2 log VBS(T,K, εσ) +
log(K/X0)2

2σ2T

∣∣ = 0.

Since K ∈ [X0,K0], there exist σ0, σ1 ∈ R+ such that σ0 ≤ σN (T,K) ≤ σ1 and σ0 ≤ σBS(T,K) ≤
σ1. Noting

VN (T,K, ε
σε

N (T,K)
ε

) = V ε(T,K),

and

VBS(T,K, ε
σε

BS(T,K)
ε

) = V ε(T,K),

we have

lim
ε↓0

sup
K∈[X0,K0]

∣∣∣e(K)− (K −X0)2

2
(σN (K)

ε

)2
T

∣∣∣ = lim
ε↓0

sup
K∈[X0,K0]

∣∣∣e(K)− log(K/X0)2

2
(σBS(K)

ε

)2
T

∣∣∣ = 0.

This implies our Theorem 1.2.
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Finally, we show the relation with SABR formula in Hagan et al. [7]. We will investigate more
in the forthcoming paper [14].

Remark 3.2 (SABR formula). In the case σ(t) ≡ σ and ν(t) ≡ ν, the implied normal
volatility for SABR model is given as follows using Theorem 1.1;

σN (T,K) = b(X0)α
{

1 + ε
(γ1

2
+
ρ

2
( ν

b(X0)α
))

(K −X0)

+ ε2
(2γ2 − γ2

1

12
+

2− 3ρ2

12
( ν

b(X0)α
)2

)
(K −X0)2

+ ε2
(2γ2 − γ2

1

24
b(X0)2α2 +

ρνγ1b(X0)α
4

+
2− 3ρ2

24
ν2

)
T +O(ε3)

}
.

On the other hand, if K−X0 = O(ε), then the Taylor expansion of σN (K) around X0 in Theorem
1.2 coincides the first two terms, i.e.

εα(K −X0)∫ K

X0

dz
b(z)

( ζ

x̂(ζ)

)
∼ b(X0)α

{
1 + ε

(γ1

2
+
ρ

2
( ν

b(X0)α
))

(K −X0)

+ ε2
(2γ2 − γ2

1

12
+

2− 3ρ2

12
( ν

b(X0)α
)2

)
(K −X0)2

}
.

Therefore, as ε ↓ 0, the implied normal volatility for SABR model is given as follows;

σN (T,K) =
εα(K −X0)∫ K

X0

dx
b(x)

(
ζ

x̂(ζ)

)
{

1 +
[
2γ2 − γ2

1

24
α2b2(X0) +

1
4
ρναγ1b(X0) +

2− 3ρ2

24
ν2

]
ε2T +O(ε3)

}
.

Similarly, the implied volatility for SABR model is given as follows;

σBS(T,K) =
εα log(K/X0)∫ K

X0

dx
b(x)

(
ζ

x̂(ζ)

)
{

1 +
[
2γ2 − γ2

1 + 1/X2
0

24
α2b2(X0) +

1
4
ρναγ1b(X0) +

2− 3ρ2

24
ν2

]
ε2T +O(ε3)

}
.

These are the SABR formulas.

4 FX Hybrid SABR Model

In this section, we will prove Theorem 1.3. Since the stochastic differential equation for S can be
written as

dS(t)
S(t)

= µ(t)dt+ ε
(α(t)
α

)(
αC(1)σ(t)

)(C(S(t)/L(t))
C(1)

)
dW0(t),

it is enough to prove in the case, α = 1 and C(1) = 1. Then Σn = ξ. First we calculate the
asymptotic expansion of the forward value of a call option.

Proposition 4.1. For each y ∈ R, let Kε = Kε(y) = F (0, T )(1 + εξy), ε ∈ (0, 1]. For any
r ∈ [0,∞), there is a constant R > 0 such that,∣∣∣V (T,Kε)− εξF (0, T )

{
G(y) + ε(c1y + d1)φ(y) + ε2(c2(y2 − 1) + c3 + d2y)φ(y)

+
ε2

2

(
c21(y

4 − 6y2 + 3) + c4(y2 − 1) + c5

+ d2
1(y

2 − 1) + d3 + 2c1d1(y3 − 3y) + 2d4y
)
φ(y)

}∣∣∣ ≤ ε3R, ε ∈ (0, 1], y ∈ [−r, r],
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where

c1 =
γ1ξ

2
,+

1
ξ3

∫ T

0

Σσν(t)σ2(t)dt,

c2 =
(γ2 + γ2

1)ξ2

6
+
γ1

ξ2

∫ T

0

Σσν(t)σ2(t)dt+
1

2ξ4

∫ T

0

Σ2
σν(t)σ2(t)dt,

c3 =
γ2ξ

2

4
+
γ1

ξ2

∫ T

0

Σσν(t)σ2(t)dt,

c4 = γ2
1ξ

2 +
4γ1

ξ2

∫ T

0

Σσν(t)σ2(t)dt+
2
ξ4

∫ T

0

(∫ t

0

Σν(s)σ2(s)ds
)
σ2(t)dt+

2
ξ4

∫ T

0

Σ2
σν(t)σ2(t)dt,

c5 =
γ2
1ξ

2

2
+

2γ1

ξ2

∫ T

0

Σσν(t)σ2(t)dt+
1
ξ2

∫ T

0

Σν(t)σ2(t)dt,

d1 =
1
ξ2

∫ T

0

b(t, T )dt,

d2 =
1
ξ

∫ T

0

b(t, T )dt− γ1 − 1
ξ3

∫ T

0

(∫ t

0

b(s, t)ds
)
σ2(t)dt,

d3 =
1
ξ2

∫ T

0

a(t, T )dt,

d4 =
γ1

ξ

∫ T

0

b(t, T )dt+
1
ξ3

∫ T

0

Σσν(t)b(t, T )dt,

γ1 = 1 + C ′(1), γ2 = C ′′(1) + 2C ′(1), ξ =
∫ T

0

σ2(t)dt.

Proof. We can calculate the asymptotic expansion in the same way as Theorem 1.1. We define

Xε,δ(t) =
F ε,δ(t, T )
F (0, T )

,

R(t) =
∫ t

0

σ1(s, T )dW1(s)−
∫ t

0

σ2(s, T )dW2(s),

l(t) =
∫ t

0

ϕ1(s)−1
(∫ s

0

ϕ1(u)σ1(u)dW1(u)
)
ds−

∫ t

0

ϕ2(s)−1
(∫ s

0

ϕ2(u)σ2(u)dW2(u)
)
ds.

Since we assume δ = ε2, the small volatility asymptotic expansion of Xε,δ up to O(ε3) is

Xε,δ(t) = 1 + ξ(εg1(t) + ε2g2(t) + ε3g3(t) + δh1(t) + εδh2(t) + r(ε, δ)),

where

g1(t) =
1
ξ

∂Xε,δ(t)
∂ε

∣∣∣∣
ε,δ=0

, g2(t) =
1
2ξ
∂2Xε,δ(t)

∂ε2

∣∣∣∣
ε,δ=0

, g3(t) =
1
6ξ
∂3Xε,δ(t)

∂ε3

∣∣∣
ε,δ=0

,

h1(t) =
1
ξ

∂Xε,δ(t)
∂δ

∣∣∣∣
ε,δ=0

= −1
ξ
R(t),

h2(t) =
1
ξ

∂2Xε,δ(t)
∂ε∂δ

∣∣∣∣
ε,δ=0

= −
∫ t

0

g1(s)dR(s)− 1
ξ

∫ t

0

σ(s)R(s)dW (s) +
γ1 − 1
ξ

∫ t

0

σ(s)l(s)dW (s),

h3(t) =
1
2ξ
∂2Xε,δ(t)

∂δ2

∣∣∣∣
ε,δ=0

=
1
2ξ

∫ t

0

R(s)dR(s).
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Since δ = 0 means deterministic interest rate, g1, g2, g3 is (2.1) replace γ1 by 1 + C ′(1), γ2 by
2C ′(1) + C ′′(1). Then, g1 ∼ N(0, 1) and conditional expectations are

E[g2|g1 = x] = c1(x2 − 1),

E[g3|g1 = x] = c2(x3 − 3x) + c3x,

E[g2
2 |g1 = x] = c21(x

4 − 6x2 + 3) + c4(x2 − 1) + c5.

We need to calculate

E[h1|g1 = x], E[h2|g1 = x], E[h1g2|g1 = x], E[h2
1|g1 = x].

These conditional expectations are given by

E[h1|g1 = x] = d1x,

E[h2|g1 = x] = d2(x2 − 1),

E[h2
1|g1 = x] = d2

1(x
2 − 1) + d3,

E[g2h1|g1 = x] = c1d1(x3 − 3x) + d4x.

Putting δ = ε2, we define

Y ε =
Xε,ε2

(T )− 1
εξ

= g1 + ε(g2 + h1) + ε2(g3 + h2) + ε3r(T, ε),

and y = k−1
εξ . Then the forward value of the call option is given by

V (T,Kε) = εF (0, T )ξE[f(Y ε − y)].

Then as in (2.2), there exists R > 0 such that

sup
y∈[−r,r]

∣∣E[Ty(Y ε)]− E[Φ0(y)]− εE[Φ1(y)]− ε2E[Φ2(y)]
∣∣ ≤ ε3R,

where

Φ0(y) = Ty(g1), Φ1(y) =
∂

∂x
Ty(g1)(g2 + h1),

Φ2(y) =
∂

∂x
Ty(g1)(g3 + h2) +

1
2!

∂2

∂x2
Ty(g1)(g2 + h1)2.

We can calculate each term explicitly as follows;

E[Φ0(y)] = G(y),

E[Φ1(y)] =
∫ ∞

y

E[g2 + h1|g1 = x]φ(x)dx = (c1y + d1)φ(y),

E[Φ2(y)] =
∫ ∞

y

E[g3 + h2|g1 = x]φ(x)dx+
ε2

2

∫ ∞

−∞
E[(g2 + h1)2|g1 = x]δ(x− y)φ(x)dx

=
(
c2(y2 − 1) + c3 + d2y

)
φ(y) +

ε2

2

(
c21(y

4 − 6y2 + 3) + c4(y2 − 1) + c5

+ d2
1(y

2 − 1) + d3 + 2c1d1(y3 − 3y) + 2d4y
)
φ(y).

This implies our assertion.
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Proof of Theorem 1.3. As in the proof of Theorem 1.1, the implied normal volatility is given by

σN (T,Kε) =
εξF (0, T )√

T
L

( V (T ;Kε)
εξF (0, T )

; y
)
.

From Proposition 4.1, there is a constant R′ > 0 such that∣∣∣σN (T,Kε)
ε

− F (0, T )ξ√
T

L(J(ε; y); y)
∣∣∣ ≤ ε3R′.

Using the Taylor expansion given in Lemma 1.2, the implied normal volatility satisfies∣∣∣σN (T,Kε)
ε

− F (0, T )ξ√
T

{(
1 + εd1 −

ε2d2
1

2
+
ε2d3

2

)
+ ε

(γ1

2
+ C1 + ε

d2 − 3c1d1 + d4

ξ

)
ξy

+ ε2
(2γ2 − γ2

1

12
+ C2

)
ξ2y2 + ε2

(2γ2 − γ2
1

24
+
γ1C1

2
+ C3

)
ξ2

}∣∣∣ ≤ ε3R′.

Therefore, there is a constant R > 0 such that the implied volatility satisfies∣∣∣σBS(T,Kε)
ε

− ξ√
T

{(
1 + εd1 −

ε2d2
1

2
+
ε2d3

2

)
+ ε

(γ1 − 1
2

+ C1

)
ξy + ε2(D1(γ1 − 1) +D2)ξy

+ ε2
(2γ2 − γ2

1 − 3γ1 + 4
12

− C1

2
+ C2

)
ξ2y2 + ε2

(2γ2 − γ2
1 + 1

24
+
γ1C1

2
+ C3

)
ξ2

}∣∣∣ ≤ ε3R,

where

D1 = − 1
2ξ2

∫ T

0

b(t, T )dt− 1
ξ4

∫ T

0

(∫ t

0

b(s, t)ds
)
σ2(t)dt,

D2 =
1
ξ4

∫ T

0

Σσν(t)b(t, T )dt−
( 3
ξ6

∫ T

0

Σσν(t)σ2(t)dt
) ∫ T

0

b(t, T )dt.

Since Σfwd is given by

Σfwd =
ξ√
T

(
1 + εd1 −

ε2d2
1

2
+
ε2d3

2
+O(ε3)

)
,

and γ1 = 1 + γ̃1, γ2 = γ̃2 + 2γ̃1, we have∣∣∣σBS(T,Kε)
ε

− ξ√
T

{Σfwd

ξ
+ ε

( γ̃1

2
+ C1

)
ξy + ε2

(
D1γ̃1 +D2

)
ξy

+ ε2
(2γ̃2 − γ̃2

1 − γ̃1

12
− C1

2
+ C2

)
ξ2y2 + ε2

(2γ̃2 − γ̃2
1 + 2γ̃1

24
+

(1 + γ̃1)C1

2
+ C3

)
ξ2

}∣∣∣ ≤ ε3R.

This completes the proof of Theorem 1.3.
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A Conditional expectations of Wiener chaos

Lemma A.1. Let {(W0,W1,W2,W3), 0 ≤ t ≤ T} be a 4-dimensional correlated Brownian mo-
tion with correlation given by ρij : [0, T ] → [−1, 1] such that

d〈Wi,Wj〉t = ρij(t)dt, d〈Wi〉t = dt.

Let q, q1, q2 and q3 : [0, T ] → R be deterministic functions and we assume∫ T

0

q2(t)dt = 1.

Then conditional expectations of Wiener chaos are

E

[∫ t

0

(∫ s

0

q2(u)dW2(u)
)
q1(s)dW1(s)

∣∣∣∫ t

0

q(s)dW0(s) = x

]
= c1(x2 − 1),

E

[(∫ t

0

q1(s)dW1(s)
)(∫ t

0

q2(s)dW2(s)
)∣∣∣∣∫ t

0

q(s)dW0(s) = x

]
= c2(x2 − 1) + c3,

E

[(∫ t

0

(∫ s

0

q2(u)dW2(u)
)
q1(s)dW1(s)

)(∫ t

0

q3(s)dW3(s)
)∣∣∣∣∫ t

0

q(s)dW0(s) = x

]
= d1(x3 − 3x) + d2x,

E

[(∫ t

0

(∫ s

0

q2(u)dW2(u)
)
q1(s)dW1(s)

)2
∣∣∣∣∫ t

0

q(s)dW0(s) = x

]
= d3(x4 − 6x2 + 3) + d4(x2 − 1) + d5,

where

c1 =
∫ t

0

(∫ s

0

q2(u)q(u)ρ02(u)du
)
q1(s)q(s)ρ01(s)ds,

c2 =
(∫ t

0

q1(s)q(s)ρ01(s)ds
)(∫ t

0

q2(s)q(s)ρ02(s)ds
)
,

c3 =
∫ t

0

q1(s)q2(s)ρ12(s)ds,

d1 =
(∫ t

0

(∫ s

0

q2(u)q(u)ρ02(u)du
)
q1(s)q(s)ρ01(s)ds

)(∫ t

0

q3(s)q(s)ρ03(s)ds
)
,

d2 =
∫ t

0

(∫ s

0

q2(u)q(u)ρ02(u)du
)
q1(s)q3(s)ρ13(s)ds+

∫ t

0

(∫ s

0

q2(u)q3(u)ρ23(u)du
)
q1(s)q(s)ρ01(s)ds,

d3 =
(∫ t

0

(∫ s

0

q2(u)q(u)ρ02(u)du
)
q1(s)q(s)ρ01(s)ds

)2

,

d4 = 2
∫ t

0

(∫ s

0

(∫ u

0

q2(v)2dv
)
q1(u)q(u)ρ01(u)du

)
q1(s)q(s)ρ01(s)ds

+ 2
∫ t

0

(∫ s

0

(∫ u

0

q2(v)q(v)ρ02(v)dv
)
q1(u)q2(u)ρ12(u)du

)
q1(s)q(s)ρ01(s)ds

+ 2
∫ t

0

(∫ s

0

(∫ u

0

q2(v)q(v)ρ02(v)dv
)
q2(u)q(u)ρ02(u)du

)
q1(s)2ds,

d5 =
∫ t

0

(∫ s

0

q2(u)2
)
q1(s)2ds.

See Nualart-Ustunel-Zakai [13] for the proof.
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B Non degeneracy of Malliavin covariance

In this section, we will show the non-degeneracy ofX in the sense of Malliavin. Let {(W̃1(t), W̃2(t)), 0 ≤
t ≤ T} be a 2-dimensional standard Brownian motion. Let C : R → R+ be a smooth function
whose derivatives of any order are bounded. Let σ, ν1 and ν2 be R+-valued continuous functions
defined on [0, T ]. We consider the following stochastic differential equation for X1 and X2;

dX1(t) = X2(t)σ(t)C(X1(t))dW̃1(t),

dX2(t) = ν1(t)X2(t)dW1(t) + ν2(t)X2(t)dW̃2(t),
X1(0) = x1 > 0, X2(0) = x2 > 0.

When we assume ν1(t) = ρ(t)ν(t), ν2(t) =
√

1− ρ(t)2ν(t), the distribution of (X1(T ), X2(T )) is
same as (X(T ), α(T )). We will calculate the Malliavin covariance γij

t = 〈DXi(t, x), DXj(t, x)〉.
We define Vi : [0, T ]× R2 → R2 (i = 1, 2) as follows

V1(t, x) =
(
x2C(x1)σ(t)
x2ν1(t)

)
, V2(t, x) =

(
0

x2ν2(t)

)
.

Then, V1(0, X0) and V2(0, X0) are linearly independent. Let Y (t) be defined by Yij(t, x) =
(∂Xi/∂xj)(t, x). Then the Malliavin covariance Γt = (γij

t ) is given by

γij
t =

2∑
r=1

∫ t

0

(YtY
−1
s Vr(Xs))i(YtY

−1
s Vr(Xs))jds.

We denote by λ(t) the minimum eigenvalue of Γt. Then, from Kusuoka-Stroock [11] and Shigekawa [16]
Theorem 6.7, λ(t) satisfies

E[λ(t)−p] <∞, p > 0.

Since

γ11
t ≥

t(1
0

)
Γt

(
1
0

)
≥ λ(t),

we have
E[(γ11

t )−p] <∞.

Then we can show that X1(T ) is non-degenerate in the sense of Malliavin.
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C Solution of Hamilton equation

We use the relations between Euler-Lagrange equation and Hamilton equation, please see Abraham-
Marsden [1] for the details. We define B : R → R as

B(x) =
∫ x

X0

dz

b(z)
.

And define

q1(t) = B(f(t;h)), q2(t) = a(t;h), k = B(K).

Then q1, q2 satisfies the following ordinary differential equation;

dq1(t)
dt

= q2(t)(
√

1− ρ2ḣ1(t) + ρḣ2(t)),

dq2(t)
dt

= νq2(t)ḣ2(t).

q1(0) = 0, q1(T ) = k, q2(0) = α.

We define Riemanian metric on R2 as

ds2 =
2∑

i,j=1

gij(q)dqidqj ,

where (gij) is inverse matrix of (gij) and(
g11(q) g12(q)
g21(q) g22(q)

)
=

(
q22 ρνq22
ρνq22 ν2q22

)
.

Then, We can interpret E(y) as the square of minimum geodesic distance between the point
{(q1, q2) = (0, α)} and the line {q1 = k}. We define an action functional S as

S(q, q̇) =
∫ T

0

L(q(t), q̇(t))dt,

where L is a Lagrangian given by

L(q(t), q̇(t)) =
1
2

2∑
i,j=1

gij(q(t))q̇i(t)q̇j(t).

The first variation of S to the direction ξ is given by

∇ξS =
∫ T

0

∇qL(q, q̇)ξt +∇q̇L(q, q̇)ξ̇tdt.

Then function q minimizing S(q, q̇) satisfies the following Euler-Lagrange equation;

∇qL(q, q̇)− d

dt
∇q̇L(q, q̇) = 0,

∇q̇L(q, q̇)ξ1 = 0.

Let p(t) = ∇q̇L(q(t), q̇(t)). Since ξ11 = 0, we have p2(T ) = 0. Let us consider the following
Hamiltonian

H(p, q) =
1
2

∑
gij(q)pipj =

1
2
q2(t)2(p1(t)2 + 2νρp1(t)p2(t) + ν2p2(t)2),
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and the associated Hamilton equation

dq1(t)
dt

= q2(t)2(p1(t) + νρp2(t)),

dq2(t)
dt

= q2(t)2(νρp1(t) + ν2p2(t)),

dp1(t)
dt

= 0,

dp2(t)
dt

= −q2(t)(p1(t)2 + 2νρp1(t)p2(t) + ν2p2(t)2),

with boundary conditions

(C.1) q1(0) = 0, q1(T ) = k, q2(0) = α, p2(T ) = 0.

We can easily check that H, p1 and p1q1 + p2q2 are the first integrals of this Hamiltonian system
i.e.

d

dt
H(p(t), q(t)) = 0,

d

dt
p1(t) = 0,

d

dt
(p1(t)q1(t) + p2(t)q2(t)) = 0.

We denote H0 = H(p(t), q(t)), P1 = p1(t) and I = p1q1 + p2q2. First, we solve p2 and calculate
p2(0).

dp2(t)
dt

= −(p1(t)2 + 2νρp1(t)p2(t) + ν2p2(t)2)1/2(2H0)1/2,(C.2)

p2(T ) = 0.

Using the following indefinite integral∫
dx√

ax2 + bx+ c
=

1√
a

log |2ax+ b+ 2
√
a(ax2 + bx+ c)|,

we can solve (C.2) as follows;

(C.3) ν2p2(t) + νρP1 + ν
√
P 2

1 + 2νρP1p2(t) + ν2p2(t)2 =
C

2
e−

√
2H0νt,

where C is an integral constant. By Equation C.1, we have

e−
√

2HνT =

{
2(1−ρ)P1ν

C if P1
C ≥ 0

− 2(1+ρ)P1ν
C if P1

C < 0
.

From (C.3), we can calculate p2(0) as

p2(0) =
C

4ν2
− ρP1

ν
− (1− ρ2)P 2

1

C
.(C.4)

On the other hand, since I ≡ p1(t)q1(t) + p2(t)q2(t), we have

I = p2(0)α = P1k.(C.5)

Let X = P1/C. Then from (C.4) and (C.5), we have the following quadratic equation,

(C.6) (1− ρ2)X2 + (
ρ

ν
+
k

α
)X − 1

4ν2
= 0.

Put ζ = −νk/α. Then we have the solutions of (C.6)

X =
−ρ+ ζ ±

√
1− 2ρζ + ζ2

1− ρ

1
2(1 + ρ)ν

.
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Therefore

e−
√

2H0νT =

√
1− 2ρζ + ζ2 ± ρ∓ ζ

1∓ ρ
.

Since e−
√

2H0νT < 1,

e−
√

2H0νT =

√
1− 2ρζ + ζ2 + ρ− ζ

1− ρ
.

We see that

H0 =
1

2ν2T 2

{
log(

√
1− 2ρζ + ζ2 − ρ+ ζ

1− ρ
)
}2

.

Finally the action functional S is given by

S(q, q̇) =
∫ T

0

H0dt =
1

2ν2T

{
log(

√
1− 2ρζ + ζ2 − ρ+ ζ

1− ρ
)
}2

.

This completes the proof of Theorem 3.1.
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