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abstruct. In this paper, we discuss the generalization of Hecke’s integration
formula for the Epstein zeta functions. We treat the Epstein zeta function as the
Eisenstein series come from the degenerate principal series. For a real quadratic
field, Siegel considered the Hecke’s formula as the constant term of a certain
Fourier expansion of the Epstein zeta function and obtained the other Fourier
coefficients as the Dedekind zeta functions with Grössencharacters of the real
quadratic field. We apply this to our Eisenstein series. Then We obtain the
Dedekind zeta functions with Grössencharacters for arbitrary number fields.

Introduction.

In the classical paper [3], E. Hecke wrote the zeta function of general number
field F as the pull-back integration of the Epstein zeta function of degree [F : Q].
In [9], Siegel introduced more general Epstein zeta functions with harmonic
polynomials. The purpose of this paper is to discuss the pull-back integrations
of them.

Firstly we give the overview of the Hecke’s integration formula (see also [5,
Section 1], [12, Vol I, Section 1.4]). For a number field F , we have the natural
embedding of the algebraic torus TF = ResF/QGm to GL(n) where ResF/Q is
the restriction of scalars of Weil.

In the down to earth way, this is defined as follows. Let r1 and r2 be
the numbers of real and complex places of F . Then these real and complex
conjugations give a natural mapping

σ : F ∋ α 7→ (α(1), · · · , α(r1), α(r1+1), · · · , α(r1+r2)) ∈ Rr1 × Cr2 .

This σ can be extended to the isomorphism FR = F ⊗Q R ∼= Rr1 × Cr2 . Next,

∗E-mail:kazuki@ms.u-tokyo.ac.jp
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we embed (a1, · · · , ar1 , b1, · · · , br2) ∈ Rr1 × Cr2 into M(n, R) as

a1

. . .
ar1

α1 −β1

β1 α1

. . .
αr2 −βr2

βr2 αr2


where bi = αi +

√
−1βi for i = 1, · · · , r2. Then we have the group homomor-

phism
i : TF (R) = (F ⊗Q R)× ↪→ GL(n, R).

On the other hand, let us take an integral ideal b of F and fix an Z-basis of
b:

b = Z ω1 + · · · + Z ωn.

This is also a basis of F over Q, hence we have another identification ω : FR
∼−→

Rn by this basis. We can find a transformation matrix Wb ∈ GL(n, R) from the
coordinate of FR given by ω to the one given by σ as R-vector space. Then ω
gives another embedding

j : TF (R) ∋ x 7−→ Wb · i(x) · W−1
b ∈ GL(n, R).

By using these embeddings, we pull the Epstein zeta function back to the
number field F in the following way. The Epstein zeta function is defined for a
positive definite symmetric matrix Y by

Z(s, Y ) =
∑

m∈Zn\{0}

(mY tm)−s (s ∈ C).

We denote the space of such matrices which have determinant 1 by P1. We also
restrict TF (R) to the norm 1 part T

(1)
F (R) such that

T
(1)
F (R) = {x ∈ TF (R) | N(x) = 1},

where the norm is defined by N(x) = det i(x) for x ∈ TF (R). Take the point
Yb = W ′

b
tW ′

b in P1 where W ′
b = (det Wb)−

1
n Wb. We restrict Z(s, Y ) to the

T
(1)
F (R)-orbit QF,b of Yb where x ∈ T

(1)
F (R) acts on Y ∈ P1 by j(x)Y tj(x).

Then the function Z(s, Y ) (Y ∈ QF,b) is periodic with respect to norm 1 part
of the integer ring OF , say O(1)

F , and define a function on the compact double
coset:

O(1)
F \T (1)

F (R)/(T (1)
F (R) ∩ SO(Yb))

where SO(Yb) is the stabilizer of Yb in SL(n, R) which is isomorphic to SO(n).
Now we can consider the Fourier expansion of the pull-back Z(s, ∗)|QF,b

:

Z(s, Y ) =
∑

ψ∈ ̂O(1)
F \T

(1)
F (R)

aψ(s)ψ(Y ).
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Choose a fundamental domain D(Yb) in T
(1)
F (R)/(T (1)

F (R) ∩ SO(Yb)) with
respect to O(1)

F . On these settings, Hecke’s result corresponds to the constant
term of this Fourier series

a0 =
∫

D(Yb)

Z(s, Y ) dv(Y ).

Theorem 0.1 (Hecke’s integration formula). We have the following equation,∫
D(Yb)

Z(
ns

2
, Y ) dv(Y ) = ωF

2−r2sΓ(s/2)r1Γ(s)r2

2r1−1nRΓ(ns/2)
ζF (s,A),

where R is the regulator of F , ωF the number of roots of unity in F and A is
the ideal class of b−1.

Meanwhile Siegel obtained all the Fourier coefficients aψ for a real quadratic
field F in [9]. In his result, zeta functions with Grössencharacters appear .
Combining with the functional equation of the Epstein zeta function, this gives
functional equations and analytic continuation for these zeta functions by the
properties of Epstein zeta functions.

Our goal of this paper is to give all Fourier coefficients explicitly in more
general settings, i.e., for the generalized Epstein zeta function with a harmonic
polynomial in the sense of Siegel [9]. This zeta function can be interpreted
as a maximal parabolic Eisenstein series of G = SL(n, R) with a non-trivial
K-type where K = SO(n) is a maximal compact subgroup of G. This is an
automorphic form on SL(n, Z)\SL(n, R). For n = 3, Oda and Ishii discussed
the Fourier expansion of this Eisenstein series in [4]. For the general case with
a trivial K-type, the Fourier expansion was determined by Terras [12]. We will
show the analog of Hecke and Siegel’s result for this Eisenstein series. Then our
result is the following. Let χm,γ be a character of the group of all fractional
ideals of F , write I,

χm,γ : I → C1, m ∈ Zr, γ = (δ1, · · · , δr1 , l1, · · · , lr2) ∈ {0, 1}r1 × Zr2

which satisfies

χm,γ((α)) =
r∏

i=1

(|α(i)|−1|N(α)| 1
n )−2π

√
−1mtri

r1∏
j=1

(α(j))δj

r2∏
k=1

(α(k))lk

for a principal ideal (α) where r = r1+r2−1 is the rank of O×
F and ri comes from

the regulator of F (the precise definition is in Section 3). We take a harmonic
polynomial fγ such that

fγ(x) =
r1∏

i=1

xδi
i

r2∏
j=1

clj (xr1+2j−1, xr1+2j)

where

cl(x, y) =

{
(x −

√
−1y)l if l ≥ 0

(x +
√
−1y)|l| if l ≤ 0

.

For this fγ and ν ∈ C, we denote the maximal parabolic Eisenstein series by
E(ν, g; fγ), g ∈ G.
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Theorem 0.2 (=Theorem3.5). Set 2s = ν
n−1 + n

2 . Then we have the following
equation.

π−sΓ
(

s +
d

2

)∫
[0,1]r

Ê(ν,Wbi(u(t)); fγ) exp (−2π
√
−1mtt) dt

=
1

2rn
ωF |dF |

s
n R−1

F χm,γ(b)ζ∞(
2s

n
, χm,γ)ζF (

2s

n
, A, χm,γ).

Here ωF , dF and RF are the number of roots of unity, the discriminant and the
regulator of F respectively. Also ζF (s,A, χ) is the partial zeta function of the
ideal class A of b−1 with a character χ, i.e., ζF (s,A, χ) =

∑
a̸=(0)∈A
a:integral

χ(a)NF (a)−s

where NF is the ideal norm of F .

For the other notations used in the above theorem, see Section 3.
Now we review the contents of this paper. In Section 1, we give the defini-

tion of the Epstein zeta function with a spherical function and some properties
of this function. In Section 2, we define the maximal parabolic Eisenstein series
of G. This series comes from a degenerate principal series of G with respect to
the maximal parabolic subgroup whose K-types are described as spherical har-
monics on Sn−1. We show this Eisenstein series is identified with our Epstein
zeta function. Also the algebraic sum of the spaces of these Eisenstein series
has a natural (g,K)-module structure induced from the degenerate principal
series representation (Proposition 2.4). In Section 3, we show that combin-
ing with the embedding F× ↪→ GL(n, R), the action of the maximal compact
subgroup of TF (R) on the space of the harmonic polynomials Hd of degree d
gives Grössencharacters of F which have only rotation-part. Finally we give the
Fourier coefficients as zeta functions with Grössencharacters (Theorem 3.5). As
Siegel’s result, our result gives another proof of the functional equation for zeta
function with a Grössencharacter of a number field, which is different from the
well-known proof of E. Hecke, that is normally refereed through the doctoral
thesis of J. Tate.

Acknowledgment.

The authours would like to thank Takashi Taniguchi who read the manuscript
carefully and gave many useful comments.

1 Siegel’s Epstein zeta functions with harmonic
polynomials.

In this section, we review Siegel’s definition of the generalized Epstein zeta
function and some its properties.

Let Q(x1, x2, · · · , xn) = Q(x) be a positive definite quadratic form over Rn

and Q its associated real symmetric matrix.

Definition 1.1. We call h(x) a harmonic polynomial of degree d with respect
to Q, if h(x) be a homogeneous polynomial of degree d and it satisfies

∆Q−1h(x) = 0.
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Here ∆Q−1 is the Laplacian defined by

(
∂

∂x1
· · · ∂

∂xn

)
· Q−1 ·


∂

∂x1
...
∂

∂xn

 .

For a positive definite quadratic form Q(x) and a harmonic polynomial h(x)
of degree d, Siegel introduced the generalized Epstein zeta function with a har-
monic polynomial

Z(s,Q, h) =
∑

x∈Zn−{0}

h(x)

Q(x)s+ d
2
.

This zeta function converge absolutely for Re s > n
2 .

Definition 1.2. Let Q(x) be a positive definite quadratic form over Rn. Let
Hd(Q) is the space of harmonic polynomials of degree d with respect to Q. Then
we define the space of Epstein zeta functions with harmonic polynomials of de-
gree d as Z(d) = {Z(s,Q, h) |h ∈ Hd(Q)}.

Theorem 1.3 (Siegel [9]). The function Z(s,Q, h) has an analytic continuation
to the whole s-plane, which is an entire function of s if d > 0. If d = 0,
Z(s,Q, h) is holomorphic in the s-plane except for a simple pole at s = n

2 . In
both cases, Z(s,Q, h) satisfies the functional equation

π−sΓ(s +
d

2
)Z(s,Q, h)

= (
√
−1)−d det Q− 1

2 π−( n
2 −s)Γ(

n

2
− s +

g

2
)Z(

n

2
− s,Q−1, h∗)

where h∗(x) = h(Q−1x) for h(x) ∈ Hd(Q).

2 Degenerate principal series representations of
SL(n, R) with respect to Pn−1,1.

The generalized Epstein zeta function defined in the previous section can be
seen as an automorphic form on SL(n, Z)\SL(n, R) like the well-known ordinary
Epstein zeta function. This is the Eisenstein series induced from a degenerate
principal series of G. The definition of the Eisenstein series which we will explain
here can be extended for more general semisimple or reductive Lie groups (see
[2], [6] and for the adelic setting [7]).

Let G = SL(n, R), K = SO(n) the maximal compact subgroup of G and
Pn−1,1 the maximal parabolic subgroup of the form


∗

∗
...
∗

0 · · · 0 ∗


↑
n − 1

↓
↕ 1

∈ G

 .
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To define the degenerate principal series representation with respect to Pn−1,1,
we firstly specify a Langlands decomposition Pn−1,1 = MAN of Pn−1,1 by

M =




0

h
...
0

0 · · · 0 det h−1

 ∈ G

∣∣∣∣∣ h ∈ GL(n − 1, R), det h ∈ {±1}


∼= SL(n − 1, R) × {±1},

A = {diag(r, · · · , r, r−(n−1)) ∈ G | r ∈ R>0},

N =

n(x1, · · · , xn−1) =


x1

In−1

...
xn−1

0 · · · 0 1

 ∈ G

 .

Let σ ∈ M̂ be a unitary character of M , and ν ∈ HomR(a, C) = a∗ ⊗R C
a linear form on a = Lie(A) which is identified with a complex number by
evaluation at the element H = diag(1, · · · , 1,−(n − 1)) ∈ a, i.e., ν 7→ ν(H) ∈ C.
Set ρ = 1

2 tr(ad(X)|n). We have ad(H)n(x1, · · · , xn−1) = n(nx1 · · · , nxn−1),
hence ρ = 1

2n(n − 1). Thus for ar = diag(r, · · · , r, r−(n−1)) ∈ A, we have
e(ν+ρ)(log ar) = aν+ρ

r = rν+ 1
2 n(n−1).

Definition 2.1. Put

π(σ, ν) = IndG
Pn−1,1

(σ ⊗ eν+ρ ⊗ 1N ).

Then the representation space of π(σ, ν) is given by the completion of a dense
subspace

Hσ,ν = {f : G → C, continuous | f(manx) = σ(m)aν+ρf(x)
for (x, m, a, n) ∈ G × M × A × N},

with respect to the norm

∥f∥2 =
∫

K

|f(k)|2 dk.

Here g ∈ G acts on this space by the right regular representation, i.e., π(σ, ν)(g)f(x) =
f(xg) for f ∈ Hσ,ν . We call this the degenerate principal series representation
with respect to Pn−1,1.

The representation space of π(σ, ν) is isomorphic to

L2
σ(K) = {f ∈ L2(K) | f(mk) = σ(m)f(k) for all m ∈ M ∩ K, k ∈ K}

as a K-module. For m =
(

h 0
0 deth−1

)
∈ M , we define the character

detM of M by
detM (m) = det h.

We note that M̂ = {1M ,detM}.
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We show that Lσ(K) is written as the space of the spherical harmonics on
the unit sphere Sn−1. We fix the unit vector en = (0, · · · , 0, 1). Then the map

g ∈ SO(n) 7−→ en · g ∈ Sn−1

is a surjective map from the special orthogonal group SO(n) of degree n to the
(n− 1)-dimensional unit sphere Sn−1. The stabilizer of en in SO(n) is given by{(

h
1

) ∣∣∣∣ h ∈ SO(n − 1)
}

and Sn−1 is naturally identified with the quotient space

SO(n − 1)\SO(n)

as an SO(n)-set. If we notice M ∩ K ∼= SO(n − 1) × {±1}, we have the
isomorphism L2

σ(K) to

L2
even(Sn−1) = {f ∈ L2(Sn−1) | f(−x) = f(x), x ∈ Sn−1} if σ = 1M ,

L2
odd(Sn−1) = {f ∈ L2(Sn−1) | f(−x) = −f(x), x ∈ Sn−1} if σ = detM

as a K-module. Here the action of SO(n) on L2(Sn−1) is given by the right
quasi-regular action,

g ∈ SO(n) 7−→
{
f(x) 7→ f(xg) (x ∈ Sn−1)

}
.

Let Hd be the space of harmonic polynomials of degree d on Rn, i.e., the
homogeneous functions of degree d which are annihilated by the Laplace oper-
ator ∆ =

∑n
i=1

∂2

∂x2
i

of Rn. By the inclusion map ι : Sn−1 ↪→ Rn, we have the
restriction map ι∗ : C∞(Rn) → C∞(Sn−1). Then harmonic polynomials can be
treated as functions on the unit sphere Sn−1. We call these functions spherical
harmonics and denote the space of spherical harmonics by Hd = ι∗Hd.

It is well-known that both Hd and Hd are irreducible SO(n)-modules of high-
est weight (d, 0, · · · , 0), and Hd is an SO(n)-invariant subspace of L2(Sn−1). By
the theory of spherical functions (cf.[11]), we have the unique spectral decom-
position as Hilbert space direct sum

L2(Sn−1) =
∞̂⊕

d=0

Hd

of a unitary SO(n)-module. Thus we also have the spectral decompositions

L2
even(Sn−1) =

∞̂⊕
d:even

Hd,

L2
odd(Sn−1) =

∞̂⊕
d:odd

Hd.

Now we can define the Eisenstein series of π(σ, ν) with a spherical harmonic
h ∈ Hd,

E(ν, g; h) =
∑

γ∈Γ∞\SL(n,Z)

σ(m(γg))a(γg)ν+ρh(enk(γg)), for g ∈ G.
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Here Γ∞ = Pn−1,1 ∩ SL(n, Z), and each m(g), a(g) and k(g) is M -part, A-part
and K-part of the decomposition g ∈ G = MANK. Note that the degree of
the spherical harmonic d is even (resp. odd) if σ is 1M (resp. detM ). For the
latter use, we normalize this Eisenstein series as follows

Ê(ν, g; h) = ζ

(
ν

n − 1
+

n

2

)
E(ν, g;h).

Here ζ(s) is the Riemann zeta function.

Proposition 2.2. For g ∈ G, the matrix Q = gtg is a positive definite sym-
metric matrix. Let h ∈ Hd be a spherical harmonic. Then, for the harmonic
polynomial h̄(x) = h(xg) of degree d with respect to Q we have the following
equation

Ê(ν, g; h) = Z

(
ν

2(n − 1)
+

n

4
, Q, h̄

)
.

Proof. Even case. Let σ = 1M . Then we have

E(ν, g; h) =
∑

γ∈Γ∞\SL(n,Z)

a(γg)ν+ρh(enk(γg))

=
∑

γ∈Γ∞\SL(n,Z)

|en · γg|−
1

n−1 (ν+
n(n−1)

2 )h(enk(γg)) for g ∈ G.

We consider the decomposition of g = mank ∈ G = MANK,

m =
(

h
deth−1

)
∈ M,

n =
(

In−1
tn
1

)
∈ N for n ∈ Rn−1,

a = diag(r, · · · , r, r−(n−1)) ∈ A,

k =


k11 k12 · · · k1n

k21 k22 · · · k2n

...
...

...
kn1 kn2 · · · knn

 ∈ K.

Then we have

g =
(

r · h tn′

r−(n−1) det h−1

)
k11 k12 · · · k1n

k21 k22 · · · k2n

...
...

...
kn1 kn2 · · · knn


for n′ ∈ Rn−1, where r · h means the scalar multiple of h ∈ GL(n − 1, R) by
r ∈ R>0. This implies

en · g
r−(n−1) det h−1

= (kn1, kn2, · · · , knn) = en · k.

Recalling that r−(n−1) = |en · g|, we have

en · k =
en · g

deth−1|en · g|
.
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Noting that degree of h is even, this equation gives

Ê(ν, g;h) = ζ

(
ν

n − 1
+

n

2

) ∑
γ∈Γ∞\SL(n,Z)

|en · γg|−( ν
(n−1)+

n
2 +d) · h(en · γg)

= ζ

(
ν

n − 1
+

n

2

) ∑
x∈Zn−{0}
x:coprime

|xg|−( ν
(n−1)+

n
2 +d) · h(xg)

=
∑

x∈Zn−{0}

h̄(x)

Q(x)
1
2 ( ν

(n−1)+
n
2 +d)

.

Here we use the same symbol for the harmonic polynomial of Rn as the asso-
ciated spherical harmonic h ∈ Hd. We can easily check that h̄ is the harmonic
polynomial with respect to Q defined in Section 1. Thus we have the identity

Ê(ν, g; h) = Z

(
ν

2(n − 1)
+

n

4
, Q, h̄

)
.

Odd case. In this case the Eisenstein series can be written as follows,

E(ν, g; h) =
∑

γ∈Γ∞\SL(n,Z)

detM (m(γg)) · a(γg)ν+ρ · h(k(γg)−1en).

Since the degree of h is odd, we have

Ê(ν, g; h)

= ζ

(
ν

n − 1
+

n

2

) ∑
γ∈Γ∞\SL(n,Z)

detM (m(γg))|en · γg|−( ν
(n−1)+

n
2 +d) · h(en · γg)

= ζ

(
ν

n − 1
+

n

2

) ∑
x∈Zn−{0}
x:coprime

|xg|−( ν
(n−1)+

n
2 +d) · h(xg)

=
∑

x∈Zn−{0}

h̄(x)

Q(x)
1
2 ( ν

(n−1)+
n
2 +d)

.

Thus we have the identity.

As Definition 1.2, we consider the space of the Eisenstein series with spherical
harmonics E(d) = {Ê(ν, g; h) |h ∈ Hd} of degree d.

Definition 2.3. We define the spaces of Eisenstein series with spherical har-
monics of even and odd degree respectively by

E(even) =
⊕

d∈Z≥0
d:even

E(d) ⊂ C∞(SL(n, Z)\SL(n, R)),

E(odd) =
⊕

d∈Z≥0
d:odd

E(d) ⊂ C∞(SL(n, Z)\SL(n, R)).

Proposition 2.4. Assume Re ν > n(n−1)
2 . Denote g = Lie (G) the Lie algebra

of G .
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1. The space of Eisenstein series E(even) is a (g,K)-module which is canon-
ically isomorphic to the (g,K)-module of the degenerate principal series
π(ν, 1M ).

2. The space of Eisenstein series E(odd) is a (g,K)-module which is canon-
ically isomorphic to the (g,K)-module of the degenerate principal series
π(ν, detM ).

Proof. We denote simply E for E(even) or E(odd) according with σ is 1M or detM .
Let HK

σ,ν be the set of K-finite vectors of the representation space Hσ,ν of π(σ, ν).
It becomes a (g,K)-module by the admissibility of π(σ, ν). For f ∈ HK

σ,ν , we
consider the series∑

γ∈Γ∞\SL(n,Z)

f(γg) =
∑

γ∈Γ∞\SL(n,Z)

σ(m(γg))a(γg)ν+ρf(k(γg)).

By the Peter-Weyl theorem, we have a K-module isomorphism

HK
ν,σ

∼=



⊕
d∈Z≥0
d:even

Hd if σ = 1M ,

⊕
d∈Z≥0
d:odd

Hd if σ = detM .

Then it follows that the series is the element of E . By the assumption, this
series converges absolutely and uniformly for g ∈ G. Therefore if we define the
map ϕ : HK

σ,ν → E such that

ϕ(f) = ζ(
ν

n − 1
+

n

2
)

∑
γ∈Γ∞\SL(n,Z)

f(γg),

it is well defined K-module isomorphism. We see this is also g-module isomor-
phism. For X ∈ g, we have

X ·
∑

γ∈Γ∞\SL(n,Z)

f(γg)

=
d

dt

∑
γ∈Γ∞\SL(n,Z)

f(γg exp(tX))
∣∣∣
t=0

=
∑

γ∈Γ∞\SL(n,Z)

d

dt
f(γg exp(tX))

∣∣∣
t=0

=
∑

γ∈Γ∞\SL(n,Z)

πν,σ(X)f(γg) ∈ E .

Thus ϕ is also g-module isomorphism. To show that E is a (g,K)-module, we
only need to see the compatibility of the g-action and the K-action. By the
compatibility condition of HK

ν,σ, we have

k · (X · (
∑

γ∈Γ∞\SL(n,Z)

f(γg))) =
∑

γ∈Γ∞\SL(n,Z)

π(k)π(X)f(γg)

=
∑

γ∈Γ∞\SL(n,Z)

π(Ad(k)X)f(γg) = Ad(k)X · (
∑

γ∈Γ∞\SL(n,Z)

f(γg)).

10



Hence we have that the map ϕ : HK
ν,σ → E is a (g,K)-module isomorphism.

3 The pull-back formula

3.1 Embeddings of F× into GL(n, R)

Let F be an algebraic extension of degree n over Q and r1 (resp. r2) denote the
number of real (resp. complex) places. Denote

σi : F −→ C for i = 1, · · · , n

real embeddings for i = 1, · · · , r1 and complex embeddings for i = r1+1, · · · , r1+
2r2 so that σj = σ̄j+r2 for j = r1 + 1, · · · , r1 + r2. We use the notation
a(i) = σi(a) (i = 1, · · · , n) for a ∈ F . Then we have the product mapping

σ : F −→ Rr1 × Cr2

given by
σ(α) = (α(1), · · · , α(r1), α(r1+1), · · · , α(r1+r2))

for α ∈ F . This is naturally extended to the isomorphism of FR = F ⊗Q R to
Rr1 × Cr2 . We also have the embedding i : Rr1 × Cr2 ↪→ M(n, R),

i((a1, · · · , ar1 , b1, · · · , br2)) =

a1

. . .
ar1

α1 −β1

β1 α1

. . .
αr2 −βr2

βr2 αr2


,

where (a1, · · · , ar1 , b1, · · · , br2) ∈ Rr1 × Cr2 and bi = αi +
√
−1βi for i =

1, · · · , r2. Combining these maps, we obtain an embedding λ = i ◦ σ : FR ↪→
M(n, R). Here we note that N(α) = det λ(α) is equals to the norm of F/Q for
α ∈ F×.

On the other hand, we can also construct the other embedding of F into
M(n, R). Let us take an integral ideal b of F , and ω1, · · · , ωn be a system of Z-
basis of b. Then we have a mapping ω : F → Rn such that ω(α) = (a1, · · · , an)
for α = a1ω1 + · · · anωn ∈ F . This map gives another identification FR ∼= Rn

. For an element a ∈ FR, the multiplication a · x for x ∈ FR ∼= Rn is a linear
transform of Rn. This gives another embedding FR into M(n, R). For these two

11



embeddings, the transformation matrix as an R-vector space is given by

Wb =
ω

(1)
1 · · · ω

(r1)
1 Re ω

(r1+1)
1 Im ω

(r1+1)
1 · · · Re ω

(r1+r2)
1 Im ω

(r1+r2)
1

...
...

...
...

...
...

ω
(1)
n · · · ω

(r1)
n Re ω

(r1+1)
n Im ω

(r1+1)
n · · · Re ω

(r1+r2)
n Im ω

(r1+r2)
n


∈ GL(n, R).

Consequently, we obtain the following commutative diagram

FR
σ−−−−→ Rr1 × Cr2

i−−−−→ M(n, R)∥∥∥ Wb

x ad(Wb)

x
FR

ω−−−−→ Rn j−−−−→ M(n, R)

.

Take the norm 1 part F
(1)
R = {α ∈ F×

R | N(α) = 1} where N(x) = det λ(x).
By using these embeddings, we restrict the Eisenstein series to the F

(1)
R -orbit of

W ′
b,

E(ν,W ′
bλ(α);h) for α ∈ F

(1)
R .

Here we choose the basis ω1, · · · , ωn so that detWb > 0 and W ′
b = (det Wb)−

1
n Wb ∈

SL(n, R). For the simplicity, we use the notation EF,b(ν, α;h) = E(ν,W ′
bλ(α);h)

for α ∈ F
(1)
R .

Proposition 3.1. Take ν ∈ C and h ∈ Hd. The Eisenstein series EF,b(ν, α; h)
is invariant under the action of O(1)

F = {ε ∈ O×
F | N(ε) = 1}, i.e.,

EF,b(ν, εα;h) = EF,b(ν, α; h)

for ε ∈ O(1)
F and α ∈ F

(1)
R .

Proof. Because we have (ε)b = b there exist integers ci
j for 1 ≤ i, j ≤ n which

satisfy εωi = ci
1ω1 + · · · + ci

nωn for 1 ≤ i, j ≤ n. This impliesc1
1 · · · c1

n
...

...
c1
n · · · cn

n

 Wb = Wbλ(ε),

and

C =

c1
1 · · · c1

n
...

...
c1
n · · · cn

n

 ∈ SL(n, Z).

Then we have

E(ν,W ′
bλ(εα)) =E(ν, CW ′

bλ(α))
=E(ν,W ′

bλ(α))

by the modularity of the Eisenstein series.

This proposition tells us that EF,b(ν, α; h) is a function on O(1)
F \F (1)

R .
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3.2 Grössencharacters and harmonic polynomials

Now we consider the action of F× on Hd. We will see here that this action
gives a character of F× which appears in Theorem 3.5 as a Grössencharacter of
F . Let TF = λ(F×

R ) ⊂ GL(n, R). Then TF has a maximal compact subgroup
CF ⊂ O(n) of the form



η1

. . .
ηr1

r(θ1)
. . .

r(θr2)


∣∣∣∣∣

ηi ∈ {±1}, i = 1, · · · , r1,

r(θj) =
(

cos θj − sin θj

sin θj cos θj

)
,

j = 1, · · · , r2


⊂ O(n).

The space of harmonic polynomials Hd has a natural action of TF ⊂ GL(n, R)
via

ρ(g)f(x) = f(xg)

for g ∈ TF and f(x) ∈ Hd. Then we decompose Hd as the irreducible repre-
sentation of CF . Because CF is a compact abelian group, the irreducible rep-
resentation of CF is 1-dimensional, i.e., all irreducible representation of CF are
written as characters. It is easily checked that for any character χ : CF → C1,
there exits γ = (δ1, · · · , δr1 , l1, · · · , lr2) ∈ {0, 1}r1 × Zr2 and χ = χγ ,

χγ(diag(η1, · · · , ηr1 , r(θ1), · · · , r(θr2))) =
r1∏

i=1

ηδi
i

r2∏
j=1

e
√
−1ljθj .

Hence we have a decomposition Hd =
⊕

γ Vγ , where Vγ = {f ∈ Hd | f(xt) =
χγ(t)f(x), t ∈ CF }.

We want to know the explicit descriptions of the weight vectors fγ ∈ Vγ . If
γ = (δ1, · · · , δr1 , l1, · · · , lr2) ∈ {0, 1}r1 × Zr2 satisfies

∑r1
i=1 δi +

∑r2
j=1 |lj | = d,

we can choose the nice element fγ in Vγ such that

fγ(x) =
r1∏

i=1

xδi
i

r2∏
j=1

clj (xr1+2j−1, xr1+2j),

where

cl(x, y) =

{
(x −

√
−1y)l if l ≥ 0

(x +
√
−1y)|l| if l ≤ 0

.
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If we consider the decomposition

λ(α) = 

|α(1)|
. . .

|α(r1)|
|α(r1+1)|I2

. . .
|α(r1+r2)|I2



×



sgn(α(1))
. . .

sgn(α(r1))
r(arg(α(r1+1)))

. . .
r(arg(α(r1+r2)))


,

the action of α ∈ F× on fγ is written as

fγ(xλ(α)) = χ̂γ(α)fγ(xi(|α|))

where |α| = (|α(1)|, · · · , |α(r1+r2)|) ∈ Rr1 × Cr2 . Here the character χ̂γ : F× →
C1 is defined by

χ̂γ(α) =
r1∏

i=1

sgn (α(i))δi

r2∏
j=1

exp(
√
−1ljarg α(j))

for α ∈ F×.
Because O×

F is the product of a finite group and a finitely generated free
Z-module we can find γ ∈ {0, 1}r1 × Zr2 which satisfies χ̂γ(ε) = 1 for ε ∈ O×

F .
In the remaining of the section, we fix such γ ∈ {0, 1}r1 × Zr2 and fγ ∈ Hd

constructed for d =
∑r1

i=1 ηi +
∑r2

j=1 |lj | as above.

3.3 The Hecke-Siegel pull-back formula of the Epstein zeta
function

Let CF be the maximal compact subgroup of TF as in the section 3.2 and take
the pull-back of CF by λ, denote C̃F = λ−1(CF ) ⊂ F×

R . We consider the Fourier
analysis of EF,b(ν, α; fγ) on the compact double coset O(1)

F \F (1)
R /(F (1)

R ∩ C̃F ).
We define the map | · | : F

(1)
R → Rr1+r2

>0 such that |α| = (|α(1)|, · · · , |α(r1+r2)|)
for α ∈ F

(1)
R . Then we have F

(1)
R /(F (1)

R ∩ C̃F ) ∼= S = {(a1, · · · , ar1+r2) ∈
Rr1+r2

>0 |
∏r1+r2

i=1 ai = 1}. If we define the action of F
(1)
R on S by α · a =

(|α(1)|a1, · · · , |α(r1+r2)|ar1+r2) for α ∈ F
(1)
R and a = (a1, · · · , ar1+r2) ∈ S, This

becomes F
(1)
R -isomorphism. By the Dirichlet unit theorem, we can find the

fundamental domain of S ∼= F
(1)
R /(F (1)

R ∩ C̃F ) by the action of O(1)
F ,

E = {(
r∏

i=1

|ε(1)
i |ti , · · · ,

r∏
i=1

|ε(r1+r2)
i |ti) ∈ S | 0 ≤ ti < 1, i = 1, · · · , r}.
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Here ε1, · · · , εr be a system of fundamental units in F with r = r1 + r2 − 1 the
rank of O×

F . Hence for any u ∈ S, there exits t = (t1, · · · , tr) ∈ Rr such that
u = u(t) = (

∏r
i=1 |ε

(1)
i |ti , · · · ,

∏r
i=1 |ε

(r1+r2)
i |ti).

The Eisenstein series Ê(ν,W ′
bi(u); fγ) as the function of u ∈ S becomes the

function of t ∈ Rr. We denote it by g(ν, t) = Ê(ν,W ′
bi(u(t)); fγ).

Lemma 3.2. The function g(ν, t) is periodic with respect to t ∈ Rr, i.e.,

g(ν, t + a) = g(ν, t),

for a = (a1, · · · , ar) ∈ Zr.

Proof. By the Dirichlet unit theorem, there exists ε ∈ O×
F such that

|ε| = (|ε(1)|, · · · , |ε(r1+r2)|) = (
r∏

i=1

|ε(1)
i |ai , · · · ,

r∏
i=1

|ε(r1+r2)
i |ai)

for a ∈ Zr. Hence we have

g(ν, (t + a)) = Ê(ν,W ′
bi(u(t + a)); fγ)

= Ê(ν,W ′
bi(|ε|u(t)); fγ)

=
∑

x∈Zn−{0}

|xW ′
bi(|ε|u(t))|−( ν

(n−1)+
n
2 +d) · fγ(xW ′

bi(|ε|)i(u(t)))

=
∑

x∈Zn−{0}

|xW ′
bλ(ε)i(u(t)))|−( ν

(n−1)+
n
2 +d) · fγ(xW ′

bλ(ε)i(u(t))).

The last equality comes from the equation fγ(xλ(ε)) = χ̂γ(ε)fγ(xi(|ε|)) =
fγ(xi(|ε|)). It follows from the proof of Proposition 3.2 that there exits h ∈
SL(n, R)± = {g ∈ GL(n, R) | det g ∈ {±1}} and we have

hWb = Wbλ(ϵ).

The modularity of the Epstein zeta function shows that

g(ν, (t + a)) = Ê(ν,W ′
bλ(ε)i(u(t)); fγ)

= Ê(ν, hW ′
bi(u(t)); fγ) = Ê(ν,W ′

bi(u(t)); fγ) = g(ν, t).

This lemma enables us to consider the Fourier series expansion of g(ν, (t)),

g(ν, t) =
∑

m∈Zr

(g, em)em(t),

where em(t) = exp(2π
√
−1mtt) for t ∈ Rr, m ∈ Zr, and

(g, em) =
∫

[0,1]r
g(ν,y)em(y) dy.
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Here we prepare some lemmas before the main theorem. Let R denote the
matrix 

log |ε(1)
1 | · · · log |ε(1)

r |
...

...
log |ε(r)

1 | · · · log |ε(r)
r |

 ,

and ri for i = 1, · · · , r the row vectors of tR−1, i.e., R−1 = (tr1, · · · , trr).
Now we choose a character of the ideal group I of F ,

χm,γ : I → C1

such that

χm,γ((α)) =
r∏

i=1

(|α(i)|−1|N(α)| 1
n )−2π

√
−1mtri χ̂γ((α))

for a principal ideal (α). Here χ̂γ is the character defined in Section 3.2. This
definition makes sense by the following lemma,

Lemma 3.3. For ε ∈ O×
F , the character χm,γ satisfies

χm,γ((ε)) = 1.

Proof. For ε ∈ O×
F , there exits a = (a1, · · · , ar) ∈ Zr such that |ε| = (|ε(1)|, · · · , |ε(r1+r2)|) =

(
∏r

i=1 |ε
(1)
i |ai , · · · ,

∏r
i=1 |ε

(r1+r2)
i |ai). Then we have the equation

log (
r∏

i=1

(|ε(i)|−1)
−2π

√
−1mtri

=
r∑

i=1

2π
√
−1mtri log |ε(i)|

= 2π
√
−1mta ∈ 2π

√
−1Z.

This implies

χm,γ((ε)) = (
r∏

i=1

(|ε(i)|−1))−2π
√
−1mtri

= exp (2π
√
−1mta)

= 1.

Lemma 3.4. For u = (u1, · · · , ur1+r2) ∈ S, there exists t = (t1, · · · , tr) ∈ Zr

such that (u1, · · · , ur1+r2) = (
∏r

i=1 |ε
(1)
i |ti , · · · ,

∏r
i=1 |ε

(r1+r2)
i |ti). Then we have

em(t) =
r∏

i=1

u2π
√
−1mtri

i ,

for m ∈ Zr.

Proof. We have
(log u1, · · · , log ur) = Rtt.

Then
mR−1(log u1, · · · , log ur) = mtt.

Taking exponentials on both sides, we have the equation as required.
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Theorem 3.5. We use the same notation as above with 2s = ν
n−1 + n

2 . Then
we have the following equation.

π−sΓ
(

s +
d

2

)
(g, em)

=
1

2rn
ωF |dF |

s
n R−1

F χm,γ(b)ζ∞(
2s

n
, χm,γ)ζF (

2s

n
, A, χm,γ).

Here ωF , dF and RF are the number of roots of unity, the discriminant and the
regulator of F respectively. Also ζF (s,A, χ) is the partial zeta function of the
ideal class A of b−1 with a character χ, i.e., ζF (s,A, χ) =

∑
a̸=(0)∈A
a:integral

χ(a)NF (a)−s

where NF is the ideal norm of F . The function ζ∞(s, χm,γ) is the gamma factor
given by

ζ∞(s, χm,γ)

= π−ns
2

r1∏
i=1

Γ

s

2
+

δi

2
−

√
−1π(mtri −

1
n

r∑
j=1

mtrj)


×

r2∏
j=1

Γ

s +
|lj |
2

−
√
−1π(mtri −

1
n

r∑
j=1

mtrj)

 .

Remark 3.6. Our choice of the ideal character χm,γ is not unique. But we
only consider the partial zeta function here. Hence the R.H.S. of the equation
of the theorem is independent of the choice of the character χm,γ .

Proof. For x = (x1, · · · , xn) ∈ Zn, we have β ∈ b such that β =
∑n

i=1 xiωi.
This implies

xWb = (β(1), · · · , β(r1),Re β(r1+1), Im β(r1+1), · · · ,Re β(r1+r2), Im β(r1+r2)).

Then

(g, em)

=
∫

[0,1]r
g(ν, t)em(t) dt =

∫
[0,1]r

Ê(ν,W ′
bi(u(t)); fγ)em(t) dt

=
∫

[0,1]r

∑
x∈Zn−{0}

|xW ′
bi(u(t))|−(2s+d) · fγ(xW ′

bi(u(t)))em(t) dt

= (detWb)
2s
n

∫
[0,1]r

∑
β∈b
β ̸=0

r1+r2∑
i=1

(|β(i)|ui)−(2s+d)

×
r1∏

j=1

|βj |δj (sgnβ(j))δj uδi
j

r2∏
k=1

|β(r1+k)||lk| exp(
√
−1lk arg β(r1+k))u|lk|

k em(t) dt,
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where ui (i = 1, · · · , r1 +r2) denote i-th component of u(t) ∈ S. By Lemma 3.4

(g, em) = (det Wb)
2s
n

∫
[0,1]r

∑
β∈b
β ̸=0

r1+r2∑
i=1

(|β(i)|ui)−(2s+d)

×
r1∏

j=1

|βj |δj (sgnβ(j))δj uδ
j

r2∏
k=1

|β(r1+k)||lk| exp(
√
−1lk arg β(r1+k))u|lk|

k

×
r∏

i=1

u−2π
√
−1mtri

i dt

Now we change the variables as yi = |β(i)||NF (β)| 1
n ui (i = 1, · · · , r1 + r2).

Note that we have
∏r1

i=1 yi

∏r2
j=1 y2

r1+j =
∏r1

i1
ui

∏r2
j=1 u2

j=1. Then

(g, em) = (det Wb)
2s
n R−1

F ×
∫

D

∑
β∈b
β ̸=0

|NF (β)|− 2s
n

×
r1∏

i=1

(sgnβ(i))δi

r2∏
j=1

exp(
√
−1lk arg β(r1+k))

r∏
l=1

(|β(l)|−1N(β)
1
n )−2π

√
−1mtri

× (
r1+r2∑
k=1

y2
k)−s− d

2

r1∏
i=1

yδi
i

r2∏
j=1

y
|lj |
j ×

r∏
l=1

y−2π
√
−1mtrl

l

r∏
m=1

dym

ym
,

where the domain D is {(y1, · · · , yr1+r2) | (u1, · · · , ur1+r2) ∈ E} for the fun-
damental domain E of S. By the Dirichlet unit theorem, the integral equals
to

ωF (detWb)
2s
n R−1

F

∑
(β)⊂b

(β) ̸=(0)

|NF ((β))|− 2s
n χm,γ((β))

×
∫

(R>0)r

(
r1+r2∑
k=1

y2
k)−s− d

2

r1∏
i=1

yδi
i

r2∏
j=1

y
|lj |
j ×

r∏
l=1

y−2π
√
−1mtrl

l

r∏
m=1

dym

ym
.

To complete the calculation, we consider the following integral

Γ
(

s +
d

2

) ∫
(R>0)r

(
r1+r2∑
k=1

y2
k)−s− d

2

r1∏
i=1

yδi
i

r2∏
j=1

y
|lj |
j

r∏
l=1

y−2π
√
−1mtrl

l

r∏
m=1

dym

ym
.

By the Mellin transform formula for the gamma function, the integral is equals
to ∫

(R>0)

exp (−t)ts+
d
2

dt

t

×
∫

(R>0)r

(
r1+r2∑
k=1

y2
k)−s− d

2

r1∏
i=1

yδi
i

r2∏
j=1

y
|lj |
j

r∏
l=1

y−2π
√
−1mtrl

l

r∏
m=1

dym

ym

=
∫ r+1

(R>0)

exp

(
−t

r1+r2∑
k=1

y2
k

)
ts+

d
2

r1∏
i=1

yδi
i

r2∏
j=1

y
|lj |
j

r∏
l=1

y−2π
√
−1mtrl

l

dt

t

r∏
m=1

dym

ym
.
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If we set pi = ty2
i (i = 1, · · · , r1 + r2), then we have

∏r1
i=1 pi

∏r2
j=1 p2

r1+j = tn

and dt
t

∏r
i=1

dyi

yi
= 2−r 1

n

∏r1+r2
j=1

dpj

pj
. Then we have

1
2rn

∫
(R>0)r+1

exp

(
−

r1+r2∑
i=1

pi

)
r1∏

j=1

p
s
n +

δj
2 −

√
−1π(mtrj− 1

n

Pr
l=1 mtrl)

j

×
r2∏

k=1

p
2s
n +

|lk|
2 −

√
−1π(mtrk− 1

n

Pr
l=1 mtrl)

k

r1+r2∏
m=1

dpm

pm

=
1

2rn

r1∏
i=1

Γ

(
s

n
+

δi

2
−
√
−1π(mtri −

1
n

r∑
k=1

mtrk)

)

×
r2∏

j=1

Γ

(
2s

n
+

|lj |
2

−
√
−1π(mtrj −

1
n

r∑
k=1

mtrk)

)
.

Finally let us recall that |detWb| = NF (b)
√
|dF |. Then we have:

(detWb)
2s
n ωF

∑
(β)⊂b

(β) ̸=(0)

χm,γ((β))|NF ((β))|− 2s
n

= ωF |dF |
s
n

∑
(β)⊂b

(β)̸=(0)

χm,γ(b)χm,γ((β)b−1)NF ((β)b−1)−
2s
n

= ωF R−1
F |dF |

s
n χm,γ(b)

∑
a∈A

a integral,a̸=(0)

χm,γ(a)NF (a)−
2s
n ,

Combining these equations, we obtain the equation as required.

Corollary 3.7. We use the same notation as the theorem. Then the function

ζ̂F (s,A, χm,γ) = |dF |
s
2 ζ∞(s, χm,γ)ζ(s, A, χm,γ)

satisfies the functional equation

ζ̂F (s, A, χm,γ) = (
√
−1)−dχm,γ(d)ζ̂F (1 − s,A∗, χm,γ)

where d is the different of F/Q and A∗ is the ideal class which satisfies AA∗ = [d]
the ideal class of d.

Proof. By Theorem 1.3, we have the functional equation for the Eisenstein series

π−sΓ(s +
d

s
)Ê(ν, g; fγ) = (

√
−1)−dπ

n
2 −sΓ(

n

2
− s +

d

2
)Ê(−ν, tg−1; fγ).

We apply the proof of the theorem for g′(−ν, t) = Ê(−ν, tW ′−1
b i(u(t))−1; fγ).

For x,y ∈ Zn, We have

Tr (i(xWb) · ti(ytW−1
b )) ∈ Z.
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This also says that
Tr (λ(β) · ti(ytW−1

b )) ∈ Z

for β ∈ b. Then this leads that for y ∈ Zn there exists α ∈ (bd)−1 such that
i(ytW−1

b ) = λ(α) (cf. [8, Chapter VII §5 Lemma 5.7.] ), i.e.,

xtW−1
b =

(α(1), · · · , α(r1), Re α(r1+1),− Im α(r1+1), · · · , Re α(r1+r2),− Im α(r1+r2)).

Noting this fact, we can obtain that

π
n
2 −sΓ(

n

2
− s +

d

2
)(g′, em) =

1
2rn

ωF R−1
F χm,γ((bd)−1)ζ̂F (1 − 2s

n
,A∗, χm,γ)

as well as Theorem 3.5. Combining this formula and the above functional equa-
tion of the Eisenstein series, we have the corollary.

4 Postscript

Here are some supplementary remarks.

Scholium 4.1. The crucial reason of the validity of our pull-back formula is
the following. Let SL(n, AQ) be the adelization of SL(n) over Q, and let T

(1)
F be

the norm 1 subgroup of TF = Res Gm and TF (AQ) be the associated adelization.
Let π be the automorphic representation of SL(n, AQ) generated by the Epstein
zeta function. Then the meaning of our result is that the representation of
π to T

(1)
F (AQ) ∼= A(1)

F is multiplicity-free, i.e., the representation of A(1)
F are

interpreted as Grössencharacter χ, and the pull-back of π, i∗(π),

i∗(π) =
∫ ⊕

X(A(1)
F )

m(χ) · χdc(χ)

is a direct integral of Grössencharacters χ with some multiplicities m(χ). Then
for our π, this direct integral is reduced to a discrete sum with the multiplicities
m(χ) of each χ is at most one. This is caused because our representation π is
quite small. In fact at the real place, its R-component πR has Gelfand-Kirillov
dimension n − 1 as SL(n, R)-module, and we may expect their p-adic number
part πp of π should also be quite small.

Remark 4.2. In this paper, we consider everything over the integer ring OF

of F . However similarly as Barner [1], we can replace OF by an arbitrary
order O in F , and can consider Grössencharacters for ring class groups. But
to handle general ray class groups, one has to start from Epstein zeta functions
belonging to congruence subgroups of SL(n, R). This amounts to discuss the
ramified primes p dividing the levels of congruence subgroups and it is another
job.

Remark 4.3. By using Epstein zeta functions with harmonic polynomials, one
might replace the complicated argument of R. Sczech [10] utilizing conditional
convergence by a similar argument to use only absolute convergence.
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Remark 4.4. In [4], at least for n = 3 it is checked that the validity of local
multiplicity one theorem for our degenerate principal series. Compare with a
computational result in Terras [12]
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[3] Hecke, E.: Über die Kroneckersche Grenzformel für reelle quadratsche
Körper und die Klassenzahl relativ-Abelscher Körper. Verhandl. der Natur-
rforschenden Gesell. i. basel 28 (1917), 363-372; ”Mathematische Werke”,
10, pp. 198-207. Vandenhoeck & Ruprecht. Göttingen 1959, 2. Auflage,
1970.

[4] Ishii, T., Oda, T.: Generalized Whittaker functions of the degenerate prin-
cipal series representations of SL(3, R). Comment. Math. Univ. St. Pauli
54 (2005), no. 2, 187–209.

[5] Ishii, T., Oda, T.: A short history on investigation of the special values of
zeta and L-functions of totally real number fields. Automorphic forms and
zeta functions, 198–233, World Sci. Publ., Hackensack, NJ, 2006.

[6] Langlands, R.: On the functional equations satisfied by Eisenstein series.
Lecture Notes in Mathematics, Vol. 544. Springer-Verlag, Berlin-New York,
1976. v+337 pp.

[7] Mœglin, C., Waldspurger, J-L.: Décomposition spectrale et séries
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