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Abstract. We consider the Cauchy problem for quasilinear parabolic equations

ut = ∆φ(u) + f(u) with the bounded nonnegative initial data u0(x) ( 6≡ 0), where
f(ξ) is a positive function in ξ > 0 satisfying a blow-up condition

∫

∞

1
1/f(ξ) dξ <

∞. We study blow-up nonnegative solutions with the least blow-up time, i.e., the
time coinciding with the blow-up time of a solution of the corresponding ordinary

differential equation dv/dt = f(v) with the initial data ‖u0‖L∞(RN ) > 0. Such a

blow-up solution blows up at space infinity in some direction (directional blow-up)

and this direction is called a blow-up direction. We give a sufficient condition on u0

for directional blow-up. Moreover, we completely characterize blow-up directions

by the profile of the initial data, which gives a sufficient and necessary condition

on u0 for blow-up with the least blow-up time, provided that f(ξ) grows up more

rapidly than φ(ξ).
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1. Introduction

In this paper we shall consider the Cauchy problem for quasilinear parabolic

equations

ut = ∆φ(u) + f(u) in (x, t) ∈ RN × (0, T ),(1.1)

u(x, 0) = u0(x) in x ∈ RN ,(1.2)

where ut = ∂u/∂t, ∆ is the N -dimensional Laplacian, φ(ξ), f(ξ) with ξ ≥ 0 and

u0(x) with x ∈ RN are nonnegative functions. We shall only consider nonnegative

solutions u = u(x, t).

Throughout this paper we assume the following conditions:

(A1) u0(x) ≥ 0, ∈ BC(RN) (bounded continuous functions in RN).

(A2) φ(ξ), f(ξ) ∈ C1(R̄+) ∩ C∞(R+) where R+ = (0,∞) and R̄+ = [0,∞);

φ(ξ) > 0, φ′(ξ) > 0, φ′′(ξ) ≥ 0 and f(ξ) > 0 for ξ > 0; φ(0) = 0.

Under these conditions, it is well known that a unique bounded nonnegative weak

solution of (1.1)(1.2) exists locally in time (see [16, 14, 5, 2]). The definition of a

weak solution of (1.1)(1.2) is given in §2.
Moreover, we assume the following blow-up condition which is also a “necessary”

condition to raise blow-up.

(A3)
∫ ∞

1

dξ

f(ξ)
<∞.

Remark 1.1. The typical example of (1.1) which satisfies (A2) and (A3) is equation

(1.3) ut = ∆um + up in RN × (0, T )

where m ≥ 1 and p > 1.

Under the assumption (A3), the solution u of (1.1)(1.2) blows up in finite time

for some initial data. Namely, if we put

tb(u0) = sup{T > 0 ; the solution u of (1.1)(1.2) is bounded in RN × (0, T )},

then tb(u0) <∞ and

(1.4) lim
t↑tb(u0)

‖u(·, t)‖L∞(RN ) =∞.

We say that the time tb(u0) is the blow-up time of u.
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For example, if u0(x) ≡M (> 0) then the solution u blows up in finite time, that

is,

tb(M) =

∫ ∞

M

dξ

f(ξ)
<∞.

We note that this solution u coincides with a blow-up solution vM of the correspond-

ing ordinary differential equation

(1.5)

{

dv/dt = f(v), t > 0,

v(0) =M,

with the blow-up time tb(M) <∞. We also note that vM(t) is expressed exactly as

follows :

vM(t) = G−1(G(M)− t),

where v = G−1(η) is the inverse function of η = G(v) and

G(v) =

∫ ∞

v

dξ

f(ξ)
.

Let M = ‖u0‖L∞(RN ) > 0 and let vM be a solution to the problem (1.5). Then,

all solutions u of (1.1)(1.2) satisfy

(1.6) u(x, t) ≤ vM(t) in (x, t) ∈ RN × (0, tb(M))

and

(1.7) tb(u0) ≥ tb(M).

Among all solutions u, we are interested in solutions of (1.1)(1.2) whose blow-up

times tb(u0) coincide with tb(M). When tb(u0) = tb(M) < ∞, we call the time

tb(u0) the least blow-up time and the solution a blow-up solution with the least blow-

up time. The purpose of the present paper is to study blow-up solutions with the

least blow-up time.

Throughout this paper, for M > 0 we define TM as

TM ≡ tb(M) =

∫ ∞

M

dξ

f(ξ)

and vM a solution to the problem (1.5). We also use notations ‖ · ‖∞ = ‖ · ‖L∞(RN ),

BR(x0) = {x ∈ RN ; |x− x0| < R} with x0 ∈ RN and BR = BR(0).

The next theorem is easily seen from the definition of a blow-up solution with the

least blow-up time.
3



Theorem 1.2. Assume (A1)-(A3). Let u0 6≡ ‖u0‖∞. Put M = ‖u0‖∞ and let u be

a blow-up weak solution of (1.1)(1.2) with the least blow-up time TM . Then, u has

the following properties:

(i)

(1.8) u(x, t) < vM(t) in (x, t) ∈ RN × (0, TM).

(ii)

(1.9) ‖u(·, t)‖∞ = lim
R→∞

sup
|x|≥R

u(x, t) = vM(t) in t ∈ [0, TM ).

Hence, the initial data u0 should satisfy

(1.10) lim
R→∞

sup
|x|≥R

u0(x) = ‖u0‖∞.

(iii) The solution u blows up at space infinity, that is, there exists a sequence

{(xn, tn)} ⊂ RN × (0, TM) such that |xn| → ∞, tn ↑ TM and u(xn, tn) → ∞ as

n→∞.

Conversely, if (ii) or (iii) holds, then the solution u blows up at the least blow-

up time. We note that (1.10) is not a sufficient condition for blow-up with the

least blow-up time. We will give a sufficient and necessary condition on u0 for such

blow-up, when f(ξ) grows up more rapidly than φ(ξ) (see Theorem 1.11).

By this theorem, we can see that the blow-up solution with the least blow-up

time blows up at space infinity in some direction (see Corollary 1.3). We call such

a blow-up phenomenon directional blow-up and the direction in which directional

blow-up occurs a blow-up direction. More precisely, a direction ψ ∈ SN−1, where

SN−1 is the (N − 1)-dimensional unit sphere, is called a blow-up direction if there

exists a sequence {(xn, tn)} ⊂ RN × (0, TM ) such that |xn| → ∞, tn ↑ TM and

u(xn, tn)→∞ as n→∞ and

(1.11)
xn
|xn|

→ ψ as n→∞.

When a direction ψ ∈ SN−1 is not a blow-up direction, we call the direction ψ a

non-blow-up direction and the phenomenon directional non-blow-up in the direction

ψ. Some of these notations were introduced in [12]. We get the next corollary.

Corollary 1.3. Assume (A1)-(A3). Let u0 6≡ ‖u0‖∞ and let u be a blow-up weak

solution of (1.1)(1.2) with the least blow-up time. Then u has at least one blow-up

direction.
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So, our interests are focussed on characterizing blow-up directions of a blow-up

solution with the least blow-up time by the profile of the initial data as well as

finding a condition on u0 for a solution to blow up at the least blow-up time.

These problems have recently been discussed in Giga-Umeda [11, 12] for equation

(1.1) with semilinearity

(1.12) ut = ∆u+ f(u) in (x, t) ∈ RN × (0, T ),

where

(1.13) f ′(ξ) ≥ 0 for ξ ∈ R

and for some M > 0, p > 1, δ0 ∈ (0, 1) and ξ0 > 0,

(1.14) f(M) > 0 and f(δξ) ≤ δpf(ξ) for δ ∈ (δ0, 1) and ξ ≥ ξ0.

The interesting results concerning with blow-up directions have been obtained there.

Giga and Umeda treat in [11] the case where f(u) = up and consider in [12] a sign-

changing solution (so that the solution may blow up to both ∞ and −∞). But, we

mention their results only for nonnegative solutions.

It was shown in [11] that if lim|x|→∞ u0(x) = ‖u0‖∞ ≡ M > 0, then the solution

u blows up at the least blow-up time TM and satisfies that lim|x|→∞ u(x, t) = vM(t)

uniformly on compact subsets of {0 ≤ t < TM}. Namely, all directions ψ ∈ SN−1

are blow-up directions. It was also shown that when u0(x) 6≡ M , the solution u

never blows up in RN at the blow-up time TM , that is, the solution blows up only

at space infinity. To state this result exactly, we introduce the set

S = {x ∈ RN ; there exists a sequence {(xn, tn)} ⊂ RN × (0, TM)

such that xn → x, tn ↑ TM and u(xn, tn)→∞ as n→∞}.

S is called the blow-up set of u and each x of S a blow-up point of u. Then, it was

shown in [11] that S = ∅ (see [12] for general f(u)).

Especially, in [12], they obtained a sufficient and necessary condition on u0 for

directional blow-up in a direction with the least blow-up time (see condition (A8)ψ

below), and this was done for general f(u) by using the mean value of the initial

data over a ball centered at x0 ∈ RN :

(1.15) ÃR(x0;u0) =

∫

BR(x0)

u0(x) dx/|BR(x0)| for R > 0,
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where |BR(x0)| is the Lebesgue measure of BR(x0). In other words, a blow-up direc-

tion of the blow-up solution with the least blow-up time is completely characterized

by the profile of the initial data.

The main purpose of the present paper is to extend these results of [11, 12] to the

quasilinear case φ(u) for nonnegative solutions. However, we can not apply their

methods to the quasilinear case φ(u), since their methods strongly depend on the

semilinearity of the equation (φ(u) = u) and use heavily the expression of a solution

by the heat kernel.

We note that in the one-dimensional case, similar results were obtained in Lacey

[13] for the initial boundary value problem in a half line










ut = uxx + f(u) for x > 0, t > 0,

u(0, t) = 1 for t > 0,

u(x, 0) = u0(x) ≥ 1 for x > 0.

To characterize blow-up directions, we introduce the next mean value of the initial

data u0 with the weight function e−|x| and with the center at x0 ∈ RN , which is

different from that of [12]:

(1.16) Aρ(x0;u0) =

∫

RN

ρ(x− x0)u0(x) dx,

where

(1.17) ρ(x) =
e−|x|

∫

RN e−|x| dx
in x ∈ RN ,

(

that is,

∫

RN

ρ(x) dx = 1

)

.

Of course, our sufficient and necessary condition for a direction ψ ∈ SN−1 to be a

blow-up direction, which is given below by using (1.16) (see (A5)ψ), is equivalent to

that of Giga-Umeda [12] (see Remark 1.9).

Furthermore, we need the next condition on f(ξ) which expresses that f(ξ) grows

up more rapidly than φ(ξ):

(A4) There exist a function Ψ(η) and constants c > 0 and η1 > 0 such that

Ψ(η) > 0, Ψ′(η) ≥ 0 and Ψ′′(η) ≥ 0 for η > η1;
∫ ∞

η1+1

dη

Ψ(η)
<∞;

{f(φ−1(η))}′Ψ(η)− f(φ−1(η))Ψ′(η) ≥ cΨ(η)Ψ′(η) for η > η1,

where ξ = φ−1(η) is the inverse function of η = φ(ξ).
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Condition (A4) leads to condition (A3). The original condition of (A4) was in-

troduced by Friedman-Mcload [7] to obtain single point blow-up when φ(ξ) = ξ

and was re-formulated into weaker version (A4) with φ(ξ) = ξ by Fujita-Chen [8]

and Chen [4] (see also [15] for general φ(ξ)). We note that the condition (A4) is

weaker than the condition (1.14) which is assumed in [12] for the semilinear case

(see Remark 1.10).

Remark 1.4. If p > m then equation (1.3) satisfies (A4).

The main results are summarized by the next two theorems. Theorem 1.5 gives

a sufficient condition on u0 for directional blow-up with the least blow-up time (see

condition (A5)ψ below) only under the assumption (A3). Theorem 1.8 shows that

such a sufficient condition on u0 is also a necessary condition for directional blow-

up, when f(ξ) grows up more rapidly than φ(ξ) (see condition (A4)). Namely,

in Theorem 1.8, we can completely characterize blow-up directions of a blow-up

solution with the least blow-up time by using the profile of the initial data. We note

here that partial results were obtained by Seki [18] for the special equation (1.3)

with the restricted case p > m ≥ 1. He extended the results of [12] to this case

and gave some sufficient (not necessary) condition on u0 for directional blow-up (or

directional non-blow-up) with the least blow-up time.

Let us introduce the condition on u0 for a direction ψ ∈ SN−1 to be a blow-up

direction:

(A5)ψ There exists a sequence {xn} ⊂ RN satisfying limn→∞ |xn| =∞
and limn→∞ xn/|xn| = ψ such that

(1.18) lim
n→∞

Aρ(xn;u0) = ‖u0‖∞,

where Aρ(x;u0) is defined by (1.16).

Theorem 1.5. Assume (A1)-(A3). Suppose that u0 satisfies condition (A5)ψ for

some ψ ∈ SN−1. Then the solution u of (1.1)(1.2) blows up at the least blow-up time

TM with M = ‖u0‖∞ and ψ is a blow-up direction of u. Furthermore, u satisfies

that for each R > 0,

(1.19) lim
n→∞

sup
x∈BR(xn)

|u(x, t)− vM(t)| = 0

uniformly on compact subsets of {0 < t < TM}, where the sequence {xn} is as in

condition (A5)ψ.
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Remark 1.6. Even if the initial data u0 satisfies condition (A5)ψ without the con-

ditions limn→∞ |xn| = ∞ and limn→∞ xn/|xn| = ψ, the solution u in Theorem 1.5

satisfies (1.19) and hence it blows up at the least blow-up time.

Remark 1.7. Using Theorem 1.5 (see also Remark 1.6), we can easily see the next

result which was obtained in [11] (for the case where φ(u) = u and f(u) = up with

p > 1) and in [18] (for the case where φ(u) = um and f(u) = up with p ≥ m > 1):

If lim|x|→∞ u0(x) = ‖u0‖∞ ≡M , then the solution u satisfies that lim|x|→∞ u(x, t) =

vM(t) uniformly on compact subsets of {0 < t < TM}. In fact, assume contrary that

u(x, t) does not converge to vM(t) uniformly on some compact setK of {0 < t < TM}
as |x| → ∞. Then, there exist a constant ε0 > 0 and a sequence {(xn, tn)} ⊂ RN×K
satisfying limn→∞ |xn| =∞ such that u(xn, tn)− vM(tn) ≤ −ε0. On the other hand,

since u0 satisfies limn→∞Aρ(xn;u0) = ‖u0‖∞, we see (1.19) by Remark 1.6. This is

a contradiction and so we get the assertion.

Theorem 1.8. Assume (A1)(A2)(A4). Let u0 6≡ ‖u0‖∞ and let u be a blow-up weak

solution of (1.1)(1.2) with the least blow-up time TM where M = ‖u0‖∞. Then, the
following hold:

(i) u blows up only at space infinity, that is, the blow-up set S is empty: S = ∅.
(ii) A direction ψ ∈ SN−1 is a blow-up direction if and only if u0 satisfies condition

(A5)ψ for ψ. Furthermore, the solution u satisfies (1.19) for each R > 0, where the

sequence {xn} is as in the condition (A5)ψ.

Remark 1.9. Let ψ ∈ SN−1. Let {Rn} (Rn > 1) be a sequence of numbers diverging

to ∞ as n→∞. Then, condition (A5)ψ is equivalent to each of the following three

conditions:

(A6)ψ There exists a sequence {xn} ⊂ RN satisfying limn→∞ |xn| =∞
and limn→∞ xn/|xn| = ψ such that

(1.20) u0(x+ xn)→ ‖u0‖∞ as n→∞ a. e. in RN .

(A7)ψ There exists a sequence {xn} ⊂ RN satisfying limn→∞ |xn| =∞
and limn→∞ xn/|xn| = ψ such that for any R > 1,

(1.21) lim
n→∞

ÃR(xn;u0) = ‖u0‖∞.

(A8)ψ There exists a sequence {xn} ⊂ RN satisfying limn→∞ |xn| =∞
and limn→∞ xn/|xn| = ψ such that

(1.22) lim
n→∞

inf
r∈[1,Rn]

Ãr(xn;u0) = ‖u0‖∞.

Here, Ãr(x0;u0) is defined by (1.15).

Condition (A8)ψ appears in Theorem 3 (i) of [12] as a sufficient and necessary

condition for directional blow-up. This equivalence will be shown in Appendix B
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(see Proposition 7.1). So, in Theorem 1.5, Remark 1.6 and (ii) of Theorem 1.8,

condition (A5)ψ can be replaced by each of these conditions.

Remark 1.10. As above-mentioned, a similar result to Theorem 1.8 was obtained

in [12] in the semilinear case φ(ξ) = ξ. However, under the assumption (A2) with

φ(ξ) = ξ, we can treat in Theorem 1.8, a wider class of functions f(ξ) than Giga

and Umeda treat in [12], for example, f(ξ) = (ξ + 1){log(ξ + 1)}b (b > 2), since

condition (A4) is weaker than condition (1.14). In fact, the condition (1.14) implies

that f(ξ)/ξp is nondecreasing in ξ > ξ0 and hence

f ′(ξ) ≥ pf(ξ)

ξ
for ξ > ξ0.

So, if (1.14) holds, then f satisfies (A4) by taking Ψ(ξ) = ξp
′

(1 < p′ < p). Unfor-

tunately, we have no results in Theorem 1.8 for the case where f(ξ) does not grow

up more rapidly than φ(ξ), for example, φ(ξ) = ξ and f(ξ) = (ξ + 1){log(ξ + 1)}b
(b ∈ (1, 2]). In Theorem 1.5, we require only conditions (A2) and (A3) so that we

can treat the case where f(ξ) grows up more slowly than φ(ξ), for example f(ξ) = ξp

and φ(ξ) = ξm with 1 < p ≤ m.

As an immediate consequence of Corollary 1.3 and Theorem 1.8, we can get a

necessary and sufficient condition on u0 for blow-up with the least blow-up time.

Theorem 1.11. Assume (A1)(A2)(A4). Let u0 6≡ 0 and let u be a weak solution of

(1.1)(1.2). Then u blows up at the least blow-up time if and only if u0 satisfies

(1.23) sup
x∈RN

Aρ(x;u0) = ‖u0‖∞.

Remark 1.12. Similarly as in Remark 1.9, the condition (1.23) in Theorem 1.11 can

be replaced by each of the following two conditions:

(A9) There exists a sequence {xn} ⊂ RN satisfying (1.20).

(A10)

sup
x∈RN

ÃR(x;u0) = ‖u0‖∞ for each R > 1.

Here, we mention the case where f(ξ) does not grow up more rapidly than φ(ξ).

Let the initial data u0(x) = u0(r) (r = |x|) be a radially symmetric function in

x, which is nonincreasing in r ≥ 0 and has a compact support. Consider a blow-

up solution u of the special equation (1.3) with the blow-up time T > 0; the case

corresponds to p ≤ m. It is well known that the blow-up phenomena are much

different from each other in the cases p > m and p < m: Roughly speaking, the

solution blows up only at the origin and the support of u(·, t) remains bounded as

t ↑ T if p > m, whereas the solution blows up in whole RN and the support of u(·, t)
9



spreads out to the whole RN as t ↑ T if p < m (see [9, 10, 15]). We note that when

p = m, different phenomena from them also occur (see e.g. [10]). In our problem,

Theorem 1.5 holds for all cases p > m, p = m and p < m, but in Theorem 1.8 we

have no results for the case p ≤ m, as said in Remark 1.10. So, in Theorem 1.8,

different phenomena might occur for p ≤ m.

The methods of the proofs of Theorem 1.5 and 1.8 are quite different from those

of Giga-Umeda [11, 12]. As above said, the methods of [11, 12] strongly depend

on the semilinearity of the equation (φ(u) = u) and use heavily the expression of a

solution by the heat kernel, and so we can not apply their methods to the quasilinear

case φ(u). Our methods of the proofs are based on the comparison principle (or

the maximum principle) and the smoothing effect. Especially, the equicontinuity

of solutions (a kind of the smoothing effect) due to [5], which depends only on

the supremum of solutions, plays an important role. Furthermore, in the proof of

Theorem 1.5, the estimate for solutions which arises in the comparison theorem due

to [2] (see Proposition 2.3 and Lemma 4.1) plays a crucial role. As to Theorem 1.8,

our method relies on construction of a suitable supersolution which has no blow-up

points in the interior of the considered domain, and the construction is done by

using the result of [15] (see Lemma 2.8) which leads to the existence of a single

point blow-up solution.

The rest of the paper is organized as follows. In the next section §2, we define

a weak solution of (1.1) and give several preliminary propositions. In §3, we show

Theorem 1.2 and Corollary 1.3. We show in §4 Theorem 1.5 and in §5 Theorems 1.8

and 1.11. In Appendix A, for the convenience of readers we prove the comparison

theorem for solutions (Proposition 2.3), which leads to Lemma 4.1 for the proof of

Theorem 1.5. Finally, in Appendix B, we show that conditions (A5)ψ∼(A8)ψ are

equivalent.

2. Definitions and preliminaries

In this section, we define a weak solution of (1.1) and give preliminary proposi-

tions. We begin with the definition of a weak solution of (1.1). Let G be a domain

in RN with smooth boundary ∂G.
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Definition 2.1. By a weak solution of equation (1.1) in G × (0, T ), we mean a

function u(x, t) in Ḡ× [0, T ) such that

(i) u(x, t) ≥ 0 in Ḡ× [0, T ) and ∈ BC(Ḡ× [0, τ ]) (bounded continuous) for each

0 < τ < T ,

(ii) For any bounded domain Ω ⊂ G with smooth boundary ∂Ω, 0 < τ < T and

nonnegative ϕ(x, t) ∈ C2,1(Ω̄× [0, T )) which vanishes on the boundary ∂Ω,

(2.1)

∫

Ω

u(x, τ)ϕ(x, τ) dx−
∫

Ω

u(x, 0)ϕ(x, 0) dx

=

∫ τ

0

∫

Ω

{u∂tϕ+ φ(u)4ϕ+ f(u)ϕ} dx dt−
∫ τ

0

∫

∂Ω

φ(u)∂νϕdSdt,

where ν denote the outer unit normal to the boundary.

A supersolution [or subsolution] is similarly defined with the equality of (2.1)

replaced by ≥ [ or ≤ ].

Comparison theorems are given in the case where the domain G is bounded and in

the case where G = RN , as follows. The first comparison theorem (Proposition 2.2)

is for a bounded domain G and was already proved by Aronson-Crandall-Peletier [1]

when the boundary ∂G is smooth. The second comparison theorem (Proposition 2.3)

is for G = RN . This comparison theorem was shown by Bertsch-Kersner-Peletier [2]

and leads to an important lemma (see Lemma 4.1), which plays a crucial role in the

proof of Theorem 1.5 as well as the result about the equicontinuity of solutions (see

Proposition 2.5). Proposition 2.3 will be shown in Appendix A for the convenience

of readers.

Proposition 2.2 (the comparison theorem in the case of a bounded domain). As-

sume (A1)(A2). Let G be a bounded domain in RN with smooth boundary ∂G. Let

u (or v) be a supersolution (or a subsolution) of (1.1) in G× (0, T ). If u ≥ v on the

parabolic boundary of G× (0, T ), then we have u ≥ v in the whole Ḡ× [0, T ).

Proof. See [1]. ¤

Proposition 2.3 (the comparison theorem in the case of G = RN). Assume

(A1)(A2). Let u (or v) be a supersolution (or a subsolution) of (1.1) in RN×(0, T ).

Assume for some M > 0,

(2.2) u(x, t), v(x, t) ≤M for (x, t) ∈ RN × [0, T ).

Put

(2.3) K = sup

{

φ(ξ)− φ(η)

ξ − η
+
|f(ξ)− f(η)|
|ξ − η| + 1 ; ξ 6= η and 0 ≤ ξ, η ≤M

}

.
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Then

(2.4)

∫

RN

[v(x, t)− u(x, t)]+e
−|x| dx ≤ e2Kt

∫

RN

[v(x, 0)− u(x, 0)]+e
−|x| dx,

where [a]+ = max{a, 0}.

Proof. See Appendix A. ¤

The next proposition follows from Proposition 2.3 and the maximum principle.

Proposition 2.4. Assume (A1)(A2) and assume u0 6≡ 0. Let u be a weak solution

of (1.1)(1.2). Put M = ‖u0‖L∞(RN ) > 0. Then,

(2.5) u(x, t) ≤ vM(t) for (x, t) ∈ RN × (0, TM ).

If u0 6≡M , then

(2.6) u(x, t) < vM(t) for (x, t) ∈ RN × (0, TM ).

Proof. Since u0(x) ≤ ‖u0‖∞ = M in RN and vM(t) is a solution of (1.1)(1.2) with

the initial data u0 ≡M , (2.5) holds by the comparison theorem (Proposition 2.3).

Next, assuming u0 6≡ M , we prove (2.6). We note that u(x, t) is a C∞-function

in the region of (x, t) ∈ RN × (0, T ) where u(x, t) > 0 by virtue of the usual

regularization method (see e.g. Ladyzenskaja et al. [14]).

Assume contrary that for some (x1 t1) ∈ RN × (0, TM ), u(x1, t1) = vM(t1) > 0.

Then, u(x, t) > 0 in D = Bd(x1)× (t1 − d′, t1 + d′) ⊂ RN × (0, TM) for small d > 0

and d′ > 0, and so u ∈ C∞(D).

Put w = φ(u) and wM = φ(vM). Then, w ≤ wM in RN × (0, TM ), and w and wM
satisfy the same equation

(2.7) ∂tβ(w) = ∆w + g(w) in D,

where β(η) = φ−1(η) (the inverse function of η = φ(ξ)) and g(η) = f(φ−1(η)). We

note that β ′(η) = 1/φ′(φ−1(η)) > 0 for η > 0. So, putting z = w − wM we have

β′(w)zt −∆z + {β̃′ × (wM)t − g̃}z = 0 in D,

where

g̃ =

∫ 1

0

g′(θw + (1− θ)wM) dθ

and β̃′ is similarly defined. Hence, putting h(x, t) = z(x, t)eγt (γ > 0) further, we

obtain

ht −
1

β′(w)
∆h = (γ − C1(x, t))h in D

where C1(x, t) = {β̃′ × (wM)t − g̃}/β ′(w).
We choose γ > 0 large to satisfy γ > sup(x,t)∈D |C1(x, t)|. Since h ≤ 0 in D and

h(x1, t1) = 0, the strong maximum principle (Theorem 5, p173 of [17]) implies that

h = 0 in Bd(x1)× (t1−d′, t1]. Thus, repeating this operation, we get h = zeγt = 0 in

RN × [0, t1], that is, w = wM in RN × [0, t1] and so u = vM in RN × [0, t1]. Indeed,
12



this result is shown by using a contradiction argument. Therefore u0 ≡ M . This

contradicts the assumption u0 6≡ M and so we get u < vM in RN × (0, TM ). The

proof is complete. ¤

The next proposition due to DiBenedetto [5] is the result concerned with the

equicontinuity of solutions, which plays an important role in the proofs of Theorem

1.5 and 1.8.

Proposition 2.5 (the equicontinuity of solutions). Assume (A1)-(A3) and assume

u0 6≡ 0. Let M = ‖u0‖∞ > 0 and let u be a weak solution of (1.1)(1.2). Then, for

any ε > 0 and R > 0, there exists a continuous nondecreasing function ω = ωε,R,M :

R̄+ → R̄+ with ωε,R,M (0) = 0 depending only on ε, R and M such that

|u(x1,t1)− u(x2, t2)| ≤ ω(|x1 − x2|+ |t1 − t2|1/2)(2.8)

for (x1, t1), (x2, t2) ∈ B̄R × [ε, TM − ε].

Proof. We note that u(x, t) ≤ vM(t) in RN × (0, TM). So, this proposition follows

from Lemma 5.2 of [5]. ¤

Finally, we assume condition (A4) and show the next important proposition for

the proof of Theorem 1.8(ii). This proposition will follow from the result of [15] (see

Lemma 2.8 below).

Let R > 0 and M > 0. Let w0 ∈ C2(B̄R) be a radially symmetric positive

function in x, which satisfies that w0(r) = w0(x) (r = |x|) is nondecreasing in r ≥ 0,

w0(R) =M and 0 < w0(0) < M . Further, we assume

(2.9) ∆φ(w0) + f(w0) ≥ 0 in B̄R.

Proposition 2.6. Assume (A2)(A4). Let w be a weak solution to the problem

(2.10)















wt = ∆φ(w) + f(w) in BR × (0, TM ),

w(x, t) = vM(t) on |x| = R, t > 0,

w(x, 0) = w0(x) in BR.

Then,

(2.11) sup
(x,t)∈K×(0,TM )

w(x, t) <∞

for each compact subset K of BR.

We need two lemmas.

Lemma 2.7. Assume (A2). Let w be a weak solution of (2.10). Then,

(2.12) 0 < w(x, t) ≤ vM(t) in B̄R × [0, TM )
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and w ∈ C∞(BR × (0, TM )). Furthermore, for each t ∈ (0, TM), w(x, t) = w(r, t)

(r = |x|) is radially symmetric in x ∈ BR and satisfies ∂w/∂r > 0 in (r, t) ∈
(0, R)× (0, TM), and for each x ∈ BR, w(x, t) is nondecreasing in t ≥ 0.

Proof. Since w0(x) > 0 in BR, we see that w > 0 in BR × (0, TM) by the positivity

of solutions (see Lemma 2.1 of [15]) and so w ∈ C∞(BR × (0, TM )) (see the proof of

Proposition 2.4). Since vM is a solution of (1.1)(1.2) with the initial data u0 ≡ M

and w ≤ vM on the parabolic boundary of BR × (0, TM ), the comparison theorem

(Proposition 2.2) implies that w(x, t) ≤ vM(t) in the whole B̄R × [0, TM ).

Next, we show the monotonicity of the solution w with respect to t. The method

of the proof is the same as that of [3]. We note that w0(x) is a subsolution of (1.1).

Since w0(x) ≤ w on the parabolic boundary of BR × (0, TM), we see by Proposition

2.2 that w0(x) ≤ w(x, t) in (x, t) ∈ BR × (0, TM ). Hence, applying Proposition 2.2

to w(x, t) and w(x, t + t1) for each t1 ∈ (0, TM ), we have w(x, t) ≤ w(x, t + t1) in

BR × (0, TM − t1) and so w(x, t) is nondecreasing in t ≥ 0 for each x ∈ RN .

Since equation (1.1) is invariant under the rotation in x, we see by the uniqueness

of solutions (Proposition 2.2) that for each t ∈ (0, TM ), the solution w(x, t) = w(r, t)

(r = |x|) is also radially symmetric in x.

Finally, we shall show that wr(r, t) > 0 in r ∈ (0, R) for each t ∈ (0, TM). Let

` ∈ (0, R). For any x = (x1, x
′) ∈ R ×RN−1, the reflection of x in the hyperplain

{x1 = `} is denoted by σ`, that is,

σ`x = (2`− x1, x
′).

Set Ω` = {x = (x1, x
′) ∈ R × RN−1 ; x ∈ BR, ` < x1 < R}. We note that

σ`Ω` = {σ`x ; x ∈ Ω`} ⊂ BR. Let T ∈ (0, TM). For the above aim, we will prove

that σ`w ≤ w in Ω` × (0, T ), where σ`w is the reflection of w in the hyperplain

{x1 = `}, that is,
σ`w(x, t) = w(σ`x, t).

Clearly, σ`w is also a solution of the equation of (2.10) in Ω` × (0, TM). We note

that the comparison theorem (Proposition 2.2) can not be applied directly, since the

boundary ∂Ω` is not smooth at x = (`, x′) with |x| = R. So, we consider a solution

wn (n ≥ 1) to the problem

(2.13)















wt = ∆φ(w) + f(w) in BR × (0, TM ),

w(x, t) = vM(t) + 1/n on |x| = R, t > 0,

w(x, 0) = w0(x) + 1/n in BR

and compare wn and σ`w in Ω` × (0, T ) for large n ≥ 1. Then, we see that w < wn

in B̄R × [0, TM ) as in the proof of Proposition 2.4, and wn ↓ w as n → ∞ locally

uniformly in B̄R× [0, TM ) (see [6]). We note that σ`w(x, t) ≤ vM(t) < vM(t)+1/n =

wn(x, t) on {x ; |x| = R, x1 > `} × (0, T ) and σ`w(x, t) = w(x, t) < wn(x, t) on

{x ; |x| ≤ R, x1 = `} × (0, T ). We also note that σ`w(x, 0) ≤ w(x, 0) < wn(x, 0) in
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Ω` by the assumption on w0. Hence, there exists a domain Gn ⊂ Ω` with smooth

boundary ∂Gn such that σ`w < wn in (Ω`\Gn) × (0, T ). Applying Proposition 2.2

to σ`w and wn in Gn× (0, T ), we have σ`w ≤ wn in Gn× (0, T ) and so σ`w ≤ wn in

Ω` × (0, T ). Letting n→∞, we get σ`w ≤ w in Ω` × (0, T ).

Thus, as in the proof of Lemma 3.1 of [19] (see also [7]), we get ∂w/∂r > 0 in

(r, t) ∈ (0, R) × (0, T ) and so ∂w/∂r > 0 in (r, t) ∈ (0, R) × (0, TM ). The proof is

complete. ¤

The next lemma is due to [15].

Lemma 2.8. Assume (A2)(A4). Let G be a domain in RN with smooth boundary

∂G and let u > 0 be a weak solution of (1.1) in G× (0, T ). Let Ω ⊂ G be a domain.

If

(2.14) ∂tu(x, t) ≥ 0 in Ω× (0, T ),

and if there exist ν ∈ SN−1 and δ > 0 such that

(2.15) ν · ∇u(x, t) ≤ −δ|∇u(x, t)| < 0 in Ω× (0, T ),

then u does not uniformly blow-up in Ω:

(2.16) inf
x∈Ω

u(x, t) ≤ L <∞ in t ∈ (0, T ).

Proof. This lemma is proved in [15] (see Lemma 4.1 of [15]). ¤

Proof of Proposition 2.6. Let 0 < r1 < R and put Ωγ = {x = (x1, · · · , xN) ∈
RN ; r1 < x1 < r1 + γ, −γ < xj < γ, j = 2, · · · , N} for γ > 0. Choose γ > 0

small enough to satisfy Ωγ ⊂ BR. Put ν = (−1, 0, · · · , 0) ∈ RN . Then, we have by

Lemma 2.7,

ν · ∇w(x, t) = − ∂w

∂x1
= −x1

r
|∇w| ≤ −r1

R
|∇w| < 0 in Ωγ × (0, TM)

where r = |x|. Also, from Lemma 2.7, we get ∂tw(x, t) ≥ 0 in Ωγ × (0, TM). Thus,

applying Lemma 2.8 we obtain

w(x, t) ≤ w(r1, t) = inf
x∈Ωγ

w(x, t) ≤ L′ <∞ in |x| ≤ r1, t ∈ (0, TM ).

Since r1 ∈ (0, R) can be chosen arbitrarily, we get (2.11). The proof is complete. ¤

3. Blow-up with the least blow-up time

In this section, we prove Theorem 1.2 and Corollary 1.3, which present the prop-

erty of a blow-up solution with the least blow-up time.

Proof of Theorem 1.2. (i) (i) is already shown in Proposition 2.4.
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(ii) Let u0 6≡ ‖u0‖∞ and let u be a blow-up solution of (1.1)(1.2) with the least

blow-up time TM where M = ‖u0‖∞ (> 0). Assume contrary that for some t1 ∈
[0, TM ),

(3.1) lim
R→∞

sup
|x|≥R

u(x, t1) < vM(t1).

We first consider the case t1 ∈ (0, TM ). Combining (3.1) and (1.8) we get

(3.2) L = sup
x∈RN

u(x, t1) < vM(t1).

Hence, by the comparison theorem we have u(x, t) ≤ vL(t− t1) in RN × (t1, t1+TL)

and so TM ≥ t1 + TL, where vL is a solution of (1.5) with M replaced by L, and TL
is the blow-up time of vL:

TL =

∫ ∞

L

dξ

f(ξ)
.

On the other hand, clearly TM = t1 + TvM (t1) < t1 + TL. This is a contradiction to

TM ≥ t1 + TL.

Next, we consider the case t1 = 0. Putting w0(r) = sup|y|≥r u0(y) for r ≥ 0, we see

that w0(x) = w0(r) (r = |x|) is a radially symmetric continuous function in x ∈ RN

and is a nonincreasing function in r ≥ 0. Further, it satisfies

u0(x) ≤ w0(x) ≤M in x ∈ RN

and

lim
r→∞

w0(r) < M.

Hence, letting w(x, t) be a solution of (1.1) with the initial data w0(x), we also

see that for each t ∈ (0, TM), w(x, t) = w(r, t) (r = |x|) is a radially symmetric

continuous function in x ∈ RN and is a nonincreasing function in r ≥ 0. We

further see that w(x, t) is a blow-up solution with the least blow-up time TM , since

u(x, t) ≤ w(x, t) ≤ vM(t) in (x, t) ∈ RN × (0, TM) by the comparison theorem.

Applying Proposition 2.4 to w(x, t), we have for each t ∈ (0, TM),

w(x, t) ≤ w(0, t) < vM(t) in x ∈ RN .

So, similarly as in the case t1 ∈ (0, TM ), we can lead to a contradiction.

Thus, for any case we lead to a contradiction and hence we get (1.9).

(iii) Let u be a solution of (1.1)(1.2) satisfying (1.9). Then, for any t ∈ (0, TM)

with M = ‖u0‖∞, there exists xt ∈ RN such that |xt| ≥ 1/(TM − t) and u(xt, t) ≥
vM(t) − 1. Since limt↑TM vM(t) = ∞, we see that the solution u blows up at space

infinity at the time t = TM . ¤

Proof of Corollary 1.3. Let u be a blow-up solution of (1.1)(1.2) with the least blow-

up time TM where M = ‖u0‖∞ (> 0). Then, because of Theorem 1.2, there exists a

sequence {(xn, tn)} ⊂ RN×(0, TM ) such that |xn| → ∞, tn ↑ TM and u(xn, tn)→∞
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as n → ∞. Since xn/|xn| ∈ SN−1, there exists a subsequence {xnj} ⊂ {xn} such

that
xnj
|xnj |

→ ψ as n→∞

for some ψ ∈ SN−1. Thus, we see that ψ is a blow-up direction. The proof is

complete. ¤

4. Directional Blow-up

Assume (A1)-(A3). Let u0 6≡ 0. In this section we prove Theorem 1.5 in which

a sufficient condition on u0 for directional blow-up with the least blow-up time is

given. The next lemma which immediately follows from Proposition 2.3 plays a

crucial role in the proof.

Lemma 4.1. Assume (A1)-(A3). Let u0 6≡ 0 and let u be a weak solution of

(1.1)(1.2). Put M = ‖u0‖∞. Then,
∫

RN

|vM(t)− u(x, t)|e−|x| dx ≤ CM(t)

∫

RN

|M − u0(x)|e−|x| dx(4.1)

for t ∈ (0, TM ),

where CM(t) > 0 is an increasing function of t which depends only on M , and goes

to ∞ as t ↑ TM .

Proof. We note that vM(t) is a solution of (1.1) with the initial dataM . (4.1) follows

from Proposition 2.3 and (2.5). ¤

Proof of Theorem 1.5. Let ψ ∈ SN−1 and suppose that u0 satisfies (A5)ψ for ψ.

Then, there exists a sequence {xn} ⊂ RN satisfying limn→∞ |xn| =∞
and limn→∞ xn/|xn| = ψ such that

(4.2) lim
n→∞

Aρ(xn;u0) = ‖u0‖∞.

Let u be a weak solution of (1.1)(1.2). We first show (1.19). Put un(x, t) =

u(xn + x, t). Since un is a weak solution of (1.1), Lemma 4.1 implies that
∫

RN

|vM(t)− un(x, t)|ρ(x) dx(4.3)

≤ CM(t)

∫

RN

|‖u0‖∞ − u0(x+ xn)|ρ(x) dx

= CM(t)(‖u0‖∞ − Aρ(xn;u0)) for t ∈ (0, TM).

On the other hand, we note that un(x, t) ≤ vM(t) in RN × (0, TM ). Let R > 0

and ε > 0 and consider un in B̄R × [ε, TM − ε]. Then, by virtue of Proposition

2.5, the sequence of solutions {un} is equicontinuous and uniformly bounded in

B̄R × [ε, TM − ε], whence there exists a subsequence of {unj} ⊂ {un} such that
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unj → w uniformly in B̄R× [ε, TM −ε] as nj →∞ for some w ∈ C(B̄R× [ε, TM −ε]).
Letting n = nj →∞ in (4.3), we have by the condition (4.2),

(4.4)

∫

BR

|vM(t)− w(x, t)|ρ(x) dx = 0,

that is, w(x, t) = vM(t) in (x, t) ∈ B̄R × [ε, TM − ε]. Since the limit w = vM is

independent of choice of a subsequence {nj}, we see that un → w = vM uniformly

in B̄R × [ε, TM − ε] as n→∞, which shows (1.19).

From (1.19), the solution u of (1.1)(1.2) blows up at the least blow-up time and

ψ is a blow-up direction of u. The proof is complete. ¤

5. Directional non-blow-up

Assume (A1)(A2)(A4). Let u0 6≡ ‖u0‖∞ and consider a blow-up solution with the

least blow-up time. In this section, we shall prove Theorem 1.8, in which a blow-up

direction ψ ∈ SN−1 is completely characterized by the profile of the initial data (see

condition (A5)ψ), when f(ξ) grows up more rapidly than φ(ξ) (see condition (A4)).

Since it is shown in Theorem 1.5 that condition (A5)ψ is a sufficient condition for

directional blow-up in the direction ψ ∈ SN−1, it is enough to show that the condition

(A5)ψ is also a necessary condition for directional blow-up in ψ. In fact, we prove its

contraposition : “If u0 does not satisfy (A5)ψ for some ψ ∈ SN−1, then ψ is a non-

blow-up direction”, that is, directional non-blow-up in ψ is obtained there. At the

same time, it is shown that the blow-up set S is empty. Theorem 1.11 immediately

follows from Theorem 1.8.

In order to get directional non-blow-up, the next proposition is a key proposition.

Proposition 5.1. Assume (A1)(A2)(A4) and assume u0 6≡ 0. Let u be a blow-

up solution of (1.1)(1.2) with the least blow-up time TM where M = ‖u0‖∞. Let

0 < L < ‖u0‖∞ =M . If

(5.1) Aρ(0;u0) ≤ L

where Aρ(x;u0) is defined by (1.16), then there exists a constant CM,L > 0 depending

only on M and L such that

(5.2) u(0, t) ≤ CM,L for t ∈ (0, TM ).

We need several lemmas.

Lemma 5.2. Assume (A1)(A2)(A4) and assume u0 6≡ 0. Let M = ‖u0‖∞ and let u

be a blow-up solution of (1.1)(1.2) with the least blow-up time TM . Let 0 < L < M
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and assume (5.1). Then, there exists a t1 = t1(M,L) ∈ (0, TM/2) depending only on

M and L such that

(5.3) Aρ(0;u(t1)) =

∫

RN

ρ(x)u(x, t1) dx ≤
M + L

2
= L1 (< M).

Hence, there exists a constant R0 = R0(M,L) > 0 such that

(5.4)
1

∫

BR0

ρ(x) dx

∫

BR0

ρ(x)u(x, t1) dx ≤
M + L1

2
= L2 (< M).

Proof. We first show (5.3). Choose t0 = t0(M) ∈ (0, TM/2) small to satisfy vM(t0) ≤
M + 1. Then, by Proposition 2.4, we have

(5.5) u(x, t) ≤ vM(t) ≤ vM(t0) ≤M + 1 for (x, t) ∈ RN × (0, t0].

Since ρ ∈ L1(RN), there exists a sequence of nonnegative functions {ρn} ⊂
C∞0 (RN) such that ρn → ρ in L1(RN) as n → ∞. Hence, there exists n0 ≥ 1

depending only on M, L such that

(5.6) ‖ρ− ρn0
‖L1(RN ) <

M − L

4(2M + 1)
.

We further choose t1 = t1(M,L) ∈ (0, t0) small such that

(5.7) t1

{

φ(M + 1)

∫

RN

|∆ρn0
(x)| dx+ sup

0≤ξ≤M+1
f(ξ)

∫

RN

ρn0
(x) dx

}

<
M − L

4
.

Considering ϕ = ρn0
(x) as a test function in (2.1) with τ = t1, we have

∫

RN

u(x, t1)ρn0
(x) dx(5.8)

=

∫ t1

0

∫

RN

{φ(u)4ρn0
(x) + f(u)ρn0

(x)} dx dt+
∫

RN

u0(x)ρn0
(x) dx.

Hence, by (5.1), (5.5), (5.6) and (5.7) we get

Aρ(0;u(t1)) ≤
∫

RN

u(x, t1)ρn0
(x) dx+ (M + 1)‖ρ− ρn0

‖L1(RN )

≤
∫ t1

0

∫

RN

{φ(M + 1)|∆ρn0
(x)|+ sup

0≤ξ≤M+1
f(ξ)× ρn0

(x)} dxdt

+ (2M + 1)‖ρ− ρn0
‖L1(RN ) + Aρ(0;u0)

<
M − L

4
+
M − L

4
+ L =

M + L

2
= L1.

So we obtain (5.3).

Next, we show (5.4). Putting

ε(R) =

∫

|x|>R

ρ(x) dx
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we get by (5.3), (5.5) and (1.17),

1
∫

BR
ρ(x) dx

∫

BR

ρ(x)u(x, t1) dx(5.9)

=
1

∫

BR
ρ(x) dx

∫

BR

ρ(x)u(x, t1) dx− Aρ(0;u(t1)) + Aρ(0;u(t1))

≤
ε(R)

∫

BR
ρ(x)u(x, t1) dx−

∫

BR
ρ(x) dx

∫

|x|>R
ρ(x)u(x, t1) dx

∫

BR
ρ(x) dx

+ L1

≤ (M + 1)ε(R) + L1.

Thus, if we choose R > 0 large to satisfy

ε(R) <
(M − L1)

2(M + 1)
,

then
1

∫

BR
ρ(x) dx

∫

BR

ρ(x)u(x, t1) dx < L1 +
M − L1

2
=
M + L1

2
= L2.

¤

Hence, we have

Lemma 5.3. Let u be as in Lemma 5.2. Then, there exists x0 ∈ BR0
such that

(5.10) u(x0, t1) ≤ L2,

where t1, L2 and R0 are as in Lemma 5.2. Furthermore, there exists a r0 =

r0(t1,M, L2, R0) ∈ (0, R0) such that

(5.11) u(x, t1) <
M + L2

2
= L3 (< M) for |x− x0| ≤ r0.

Proof. (5.10) follows from (5.4).

For the proof of (5.11), we use the equicontinuity of solutions (Proposition 2.5).

Let ω = ωt1,2R0,M be as in Proposition 2.5 with ε = t1 and R = 2R0. We choose

r0 = r0(M,L2, ω) ∈ (0, R0) small to satisfy

ω(r) <
M − L2

2
for 0 ≤ r ≤ r0.

Then, we have

u(x, t1) = u(x, t1)− u(x0, t1) + u(x0, t1)

≤ ω(|x− x0|) + u(x0, t1) ≤
M − L2

2
+ L2 = L3

for x ∈ B̄r0(x0) ⊂ B2R0
.

The proof is complete. ¤
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Now, let t1, r0, M, R0 and L3 be constants as in Lemma 5.3 and let w0 ∈ C(B̄R0+2)

be a radially symmetric function in x satisfying that w0(r) = w0(x) (r = |x|) is

nondecreasing in r ≥ 0 and

w0(x)











= vM(t1) if r0 ≤ |x| ≤ R0 + 2,

≥ L3 if r0/2 ≤ |x| < r0,

= L3 if 0 ≤ |x| < r0/2.

(5.12)

We note that u(x + x0, t1) ≤ w0(x) in BR0+2. Consider the initial boundary value

problem










wt = ∆φ(w) + f(w) in (x, t) ∈ BR0+2 × (t1, TM),

w(x, t) = vM(t) on |x| = R0 + 2, t1 < t < TM ,

w(x, t1) = w0(x) in x ∈ BR0+2.

(5.13)

Lemma 5.4. Let w be a solution of (5.13). Then,

(5.14) sup
(x,t)∈BR0

×(t1,TM )

w(x, t) <∞.

Proof. We will use Proposition 2.6. Let w be a solution to the problem (5.13). Then,

as in the proof of (2.6),

w(x, t) < vM(t) in (x, t) ∈ BR0+2 × (t1, TM ).

Let t2 ∈ (t1, TM ). Then, because of the continuity of w,

(5.15) sup
x∈BR0+1

w(x, t2) ≡M ′ < vM(t2).

Now, put

w̃0(x) = φ−1(b|x|2 + φ(M ′)) with b =
φ(vM(t2))− φ(M ′)

(R0 + 1)2
,

where ξ = φ−1(η) is the inverse function of η = φ(ξ). Then, ∆φ(w̃0) + f(w̃0) ≥ 0,

w(x, t2) ≤M ′ ≤ w̃0(x) ≤ vM(t2) in x ∈ BR0+1 and w̃0(x) = vM(t2) on |x| = R0 + 1.

Let w̃ be a solution to the problem














w̃t = ∆φ(w̃) + f(w̃) in BR0+1 × (t2, TM),

w̃(x, t) = vM(t) on |x| = R0 + 1, t2 < t < TM ,

w̃(x, t1) = w̃0(x) in x ∈ BR0+1.

(5.16)

The comparison theorem implies w(x, t) ≤ w̃(x, t) in (x, t) ∈ BR0+1 × (t2, TM ).

Therefore, applying Proposition 2.6 to w̃ in BR0+1 × (t2, TM), we have

sup
(x,t)∈BR0

×(t2,TM )

w(x, t) ≤ sup
(x,t)∈BR0

×(t2,TM )

w̃(x, t) <∞,

which leads to (5.14). ¤
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Proof of Proposition 5.1. Let u, x0, t1, r0, M, R0 and L3 be as in Lemma 5.3 and

let w and w0 be as in Lemma 5.4. We note that w depends only on t1, r0, M , R0
and L3 .

Since ux0
(x, t) = u(x + x0, t) is also a solution of (1.1), ux0

(x, t1) ≤ w0(x) in

x ∈ BR0+2 and ux0
(x, t) ≤ vM(t) on |x| = R0 + 2, t > t1, the comparison theorem

implies that

ux0
(x, t) = u(x+ x0, t) ≤ w(x, t) in (x, t) ∈ BR0+2 × (t1, TM).

It follows from Lemma 5.4 and 0 ∈ BR0
(x0) that

u(0, t) ≤ sup
(x,t)∈BR0

(x0)×(t1,TM )

u(x, t) ≤ sup
(x,t)∈BR0

×(t1,TM )

w(x, t) = CM,L <∞ in (t1, TM).

The proof is complete. ¤

Proof of Theorem 1.8. Assume u0 6≡ ‖u0‖∞. Let u be a blow-up solution of (1.1)(1.2)

with the least blow-up time TM where M = ‖u0‖∞. We first show (ii). It is enough

to show that if a direction ψ ∈ SN−1 is a blow-up direction, then the initial data u0
satisfies (A5)ψ for ψ. For this aim, we prove its contraposition.

Let ψ ∈ SN−1. Suppose that the initial data u0 does not satisfy condition (A5)ψ
for ψ. Then, there exists an open neighborhood D of ψ in SN−1 such that

(5.17) sup
x/|x|∈D

Aρ(x;u0) = L < M = ‖u0‖∞.

Let x0 ∈ RN satisfy x0/|x0| ∈ D. We note that ux0
(x, t) = u(x+ x0, t) is a solution

of (1.1) with the initial data u0(x+ x0). We further note that by (5.17),

Aρ(0;ux0
(x, 0)) = Aρ(x0;u0) ≤ L.

Hence, applying Proposition 5.1 to ux0
we have

u(x0, t) = ux0
(0, t) ≤ CM,L for t ∈ (0, TM)

where CM,L > 0 is a constant depending only on M and L. Thus, we obtain

sup
x/|x|∈D

u(x, t) ≤ CM,L for t ∈ (0, TM),

that is, ψ is a non-blow-up direction.

Next, we show (i). Let x0 ∈ RN and R > 0. Then, since u0(x) 6≡ ‖u0‖∞, we see

sup
y∈BR(x0)

Aρ(0;uy(x, 0)) = sup
y∈BR(x0)

Aρ(y;u0) ≡ L̃ < ‖u0‖∞ =M.

Hence, similarly as above, we have

u(y, t) = uy(0, t) ≤ CM,L̃ for (y, t) ∈ BR(x0)× (0, TM )

and so x0 6∈ S. Since x0 ∈ RN can be chosen arbitrarily, we get S = ∅. The proof

is complete. ¤

Proof of Theorem 1.11. Theorem 1.11 follows from Corollary 1.3 and Theorem 1.8.

¤
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6. Appendix A

In this section, we prove Proposition 2.3. As is mentioned in §2, the proposition

was shown by Bertsch-Kersner-Peletier [2]. However, for the convenience of readers,

we present the details of the proof.

Proof of Proposition 2.3. Let u (or v) be a supersolution (or a subsolution) of (1.1)

in RN × (0, T ). Assume (2.2) for some M > 0. Let R > 0. Then, we have for any

nonnegative function ϕ ∈ C2,1(B̄R × [0, T )) which vanishes on the boundary ∂BR,
∫

BR

(v(x, τ)− u(x, τ))ϕ(x, τ) dx−
∫ ∫

Qτ

(v − u)(ϕt + φ̃4ϕ) dxdt(6.1)

≤
∫

BR

(v(x, 0)− u(x, 0))ϕ(x, 0) dx+

∫ ∫

Qτ

(v − u)f̃ϕ dxdt

−
∫ τ

0

∫

∂BR

{φ(v)− φ(u)} ∂νϕdSdt,

where Qτ = BR × (0, τ) (τ < T ), ν denotes the outer unit normal to the boundary

and

g̃(x, t) =
g(v)− g(u)

v − u
=

∫ 1

0

g′(θv + (1− θ)u) dθ.

Here, we note that

(6.2) 0 ≤ φ̃+ 1 ≤ K in Qτ

and

(6.3) ‖f̃‖L∞(Qτ ) ≤ K,

where K is defined by (2.3).

We take a sequence of smooth positive functions {φn} ⊂ C∞(RN × (−∞,∞))

satisfying the following conditions (see [1]):

1

n
≤ φn ≤ ‖φ̃‖L∞(Qτ ) +

1

n
in Qτ ,(6.4)

φn − φ̃√
φn

→ 0 in L2(Qτ ) as n→∞.(6.5)

For example, consider

Jε(x, t) = (ρ̃ε ∗ Φ)(x, t) = ε−N−1
∫ ∞

−∞

∫

RN

ρ̃((x− y)/ε, (t− τ)/ε)Φ(y, τ) dydτ,

where ρ̃(x, t) = π−(N+1)/2e−|x|
2−t2 and

Φ =







φ̃ in Qτ

0 in (RN ×R)\Qτ ,

and choose ε = εn > 0 to satisfy ‖Jε−φ̃‖L2(Qτ ) < 1/n. One can choose φn = Jεn+1/n

(n = 1, 2, · · · ) as desired functions.
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Let χ ∈ C∞0 (RN) satisfy 0 ≤ χ ≤ 1 and choose R0 > 0 large to satisfy suppχ ⊂
BR0

. Let R > 2R0 and ε > 0, and let ψn,ε,R ∈ C∞(B̄R× [0, τ ]) (n ≥ 1) be a solution

of














ψt + φn∆ψ = Kψ in BR × [0, τ),

ψ = 0 on ∂BR × [0, τ),

ψ(x, τ) = χe−
√
|x|2+ε in BR.

(6.6)

We need the following lemma. ¤

Lemma 6.1. The following hold when n ≥ 1, ε > 0 and R > 2R0:

(i) 0 ≤ ψn,ε,R ≤ e−|x| in Q̄τ ;

(ii)
∫ ∫

Qτ
φn(4ψn,ε,R)2 dxdt < C;

(iii) sup0≤t≤τ
∫

BR
|∇ψn,ε,R|2(t) dx < C;

(iv) 0 ≤ −∂νψn,ε,R ≤ C
R
e−R/2 on ∂BR × [0, τ ] ,

where C > 0 is a constant depending only on χ (independent of n, ε and R).

Proof. We first show (i) and (iv). We change variables of ψn,ε,R as ζ(x, t) = ψn,ε,R(x, τ−
t). Then ζ is a solution to the problem















ζt − φ̂n∆ζ = −Kζ in BR × (0, τ ],

ζ = 0 on ∂BR × (0, τ ],

ζ(x, 0) = χe−
√
|x|2+ε in BR,

(6.7)

where φ̂n(x, t) = φn(x, τ − t). Let w(x) = e−|x|. We compare w and ζ in B̄R× [0, τ ].

Note that

φ̂n ≤ ‖φ̃‖L∞(Qτ ) +
1

n
≤ K in Qτ .

Hence, w is a supersolution of the equation of (6.7) in BR\{0} × [0, τ ], since

−φ̂n∆w = −φ̂n
(

1− N − 1

r

)

w ≥ −φ̂nw ≥ −Kw in BR\{0},

where r = |x|.
Thus, putting z = ζ − w we have

(6.8)















zt − φ̂n∆z ≤ −Kz in BR\{0} × (0, τ ],

z = −e−R < 0 on ∂BR × (0, τ ],

z(x, 0) ≤ −(1− χ)e−|x| ≤ 0 in BR.

We shall show z ≤ 0 in B̄R × [0, τ ].

We first show that for each t ∈ (0, τ ], z(x, t) in B̄R never attains the maximum

value at x = 0. Assume contrary that for some t ∈ (0, τ ] z(x, t) in B̄R attains

the maximum value at x = 0. Then, z(x, t) ≤ z(0, t), that is, ζ(x, t) − ζ(0, t) ≤
w(x)− w(0) = e−|x| − 1 in BR. Hence,

∂ζ

∂x1
(0, t) = lim

h→+0

ζ(h, 0, · · · , 0, t)− ζ(0, t)

h
≤ lim

h→+0

e−h − 1

h
= −1
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and
∂ζ

∂x1
(0, t) = lim

h→−0

ζ(h, 0, · · · , 0, t)− ζ(0, t)

h
≥ lim

h→−0

eh − 1

h
= 1.

This is a contradiction and so we see that for each t ∈ (0, τ ], z(x, t) in B̄R never

attains the maximum value at x = 0.

We now prove that z ≤ 0 in B̄R × [0, τ ]. Assume contrary that z in B̄R × [0, τ ]

attains the maximum value at (x, t) = (x1, t1) ∈ B̄R × [0, τ ] and z(x1.t1) > 0.

Then, (x1, t1) ∈ BR\{0} × (0, τ ] and so zt(x1, t1) ≥ 0 and ∆z(x1, t1) ≤ 0. Hence,

zt(x1, t1)− φ̂n(x1, t1)∆z(x1, t1) ≥ 0 > −Kz(x1, t1). This is a contradiction to (6.8),

and so we get z ≤ 0 in B̄R × [0, τ ], that is, ψn,ε,R ≤ w = e−|x| in B̄R × [0, τ ]. Thus,

we get (i).

In order to prove (iv), we use a solution w̃ to the problem

(6.9)















∆w̃ = w̃ in BR\B̄R0
,

w̃ = e−R0 on |x| = R0,

w̃ = 0 on |x| = R.

Then, the comparison theorem implies that 0 ≤ w̃ ≤ w = e−|x| in BR\B̄R0
and

w̃(x) = w̃(r) (r = |x|) is a radially symmetric function in x ∈ BR\B̄R0
. Furthermore,

−φ̂n∆w̃ ≥ −Kw̃ by inequalities w̃ ≥ 0 and φ̂n ≤ K. Hence, as in the proof of (i),

it is not difficult to see that ψn,ε,R(x, τ − t) = ζ(x, t) ≤ w̃(x) in B̄R\BR0
× [0, τ ],

since ζ(x, 0) = 0 ≤ w̃(x) in B̄R\BR0
and ζ(x, t) = ψn,ε,R(x, τ − t) ≤ w̃(x) on

∂(BR\B̄R0
)× [0, τ ]. Therefore, we have

(6.10) 0 ≤ −∂νψn,ε,R(x, t) ≤ −∂νw̃(x) on |x| = R and t ∈ [0, τ ].

On the other hand, let ξ(x) be a nonnegative C∞-function in RN satisfying that

ξ(x) = 0 in |x| ≤ 1 and ξ(x) = 1 in |x| ≥ 2. Put ξR(x) = ξ(2x/R). Multiplying the

both sides of the equation of (6.9) by ξR and integrating by parts over BR\B̄R/2, we

get

(6.11)

∫

|x|=R

∂νw̃ dS +

∫

R/2≤|x|≤R

w̃∆ξR dx =

∫

R/2≤|x|≤R

w̃ξR dx.

Hence, noting 0 ≤ w̃(x) ≤ e−|x| in BR\B̄R0
and w̃(x) = w̃(r) (r = |x|) we have

−∂νw̃(R)
∫

|x|=R

dS ≤
∫

R/2≤|x|≤R

w̃∆ξR dx

≤ 4

R2
sup

1≤|x|≤2

|∆ξ|
∫

R/2≤|x|≤R

dx× e−R/2,

that is,

−∂νw̃(R) ≤ sup
1≤|x|≤2

|∆ξ| × 4

R2

∫

R/2≤|x|≤R
dx

∫

|x|=R
dS

e−R/2 ≤ C

R
e−R/2 for R > 2R0.

Thus, we get (iv).
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Finally, we prove (ii) and (iii). Multiply the both sides of the equation of (6.6)

by ∆ψn,ε,R and integrate by parts over BR × (t, τ) (t < τ). Then

1

2

∫

BR

|∇ψn,ε,R|2(t) dx+
∫ τ

t

∫

BR

φn(4ψn,ε,R)2 dxdt+K

∫ τ

t

∫

BR

|∇ψn,ε,R|2 dxdt

=
1

2

∫

BR

|∇ψn,ε,R|2(τ) dx ≤
∫

RN

(

|∇χ|2 + |χ|2
)

dx,

which is reduced to (ii) and (iii). ¤

Proof of Proposition 2.3 (continued). Put ϕ(x, t) = ψn,ε,R(x, t) as a test function in

(6.1). Then for τ ∈ (0, TM),

∫

BR

(v(x, τ)− u(x, τ))χe−
√
|x|2+ε dx

(6.12)

≤
∫ ∫

Qτ

(v − u){(φ̃− φn)∆ψn,ε,R} dxdt

+

∫

BR

[v(x, 0)− u(x, 0)]+ψn,ε,R(x, 0) dx+

∫ ∫

Qτ

[(K + f̃)(v − u)]+ψn,ε,R dxdt

−
∫ τ

0

∫

∂BR

[φ(v)− φ(u)]+∂νψn,ε,R dSdt,

where [u]+ = max{u, 0}, since ∂νψn,ε,R ≤ 0 on ∂BR × (0, τ).

We note by Lemma 6.1 and (6.5) that

‖(φ̃− φn)4ψn,ε,R‖L1(Qτ )

≤ ‖(φ̃− φn)/
√

φn‖L2(Qτ )
‖
√

φn∆ψn,ε,R‖L2(Qτ )
→ 0 ( as n→∞).

Hence, if n→∞ in (6.12), we obtain by Lemma 6.1, (2.2) and (6.3),
∫

BR

(v(x, τ)− u(x, τ))χe−
√
|x|2+ε dx(6.13)

≤
∫

BR

[v(x, 0)− u(x, 0)]+e
−|x| dx+ 2K

∫ ∫

Qτ

[v − u]+e
−|x| dxdt

+ Aφ(M)τRN−2e−R/2,

where A is a positive constant independent of ε and R. So, letting R → ∞ and

ε ↓ 0 in (6.13) we have
∫

RN

(v(x, τ)− u(x, τ))χe−|x| dx

≤
∫

RN

[v(x, 0)− u(x, 0)]+e
−|x| dx+ 2K

∫ τ

0

∫

RN

[v − u]+e
−|x| dxdt

for any χ ∈ C∞0 (RN) satisfying 0 ≤ χ ≤ 1,
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whence,
∫

RN

[v(x, τ)− u(x, τ)]+e
−|x| dx

≤
∫

RN

[v(x, 0)− u(x, 0)]+e
−|x| dx+ 2K

∫ τ

0

∫

RN

[v − u]+e
−|x| dxdt

for τ ∈ (0, T ).

Thus, by Gronwall’s lemma we obtain (2.4). The proof is complete. ¤

7. Appendix B

Let ψ ∈ SN−1. Let {Rn} (Rn > 1) be a sequence of numbers diverging to ∞ as

n→∞. Assume that u0 satisfies condition (A1). In this section, we shall show the

next proposition.

Proposition 7.1. Conditions (A5)ψ, (A6)ψ, (A7)ψ and (A8)ψ are equivalent.

We first get the next lemma.

Lemma 7.2. Conditions (A5)ψ, (A6)ψ and (A7)ψ are equivalent.

Proof. We first show that (A6)ψ is equivalent to (A7)ψ. Clearly, (1.20) implies (1.21).

So, for the proof, it is enough to show that if for some sequence {xn} ⊂ RN , (1.21)

holds for each R > 1, then there exists a subsequence {xnj} ⊂ {xn} satisfying

(7.1) u0(x+ xnj)→ ‖u0‖∞ as nj →∞ a. e. in RN .

Assume that for some sequence {xn} ⊂ RN , (1.21) holds for each R > 1. Then,

we see that for each R > 1, u0(x + xn) → ‖u0‖∞ in L1(BR) as n → ∞. Hence, for

each R > 1, there exists a subsequence {xnj} ⊂ {xn} such that

u0(x+ xnj)→ ‖u0‖∞ as nj →∞ a. e. in BR.

Therefore, by the diagonal method we can choose a subsequence {xnj} ⊂ {xn}
satisfying (7.1). Thus, we see that (A6)ψ is equivalent to (A7)ψ.

Similarly, we also see that (A5)ψ is equivalent to (A6)ψ.

The proof is complete. ¤

Hence, for the proof of Proposition 7.1, it is enough to show that (A7)ψ is equiv-

alent to (A8)ψ. For this aim, we need the next lemma.

Lemma 7.3. Let R > 1. If for some sequence {xn} ⊂ RN ,

(7.2) lim
n→∞

ÃR(xn;u0) = ‖u0‖∞,
then

(7.3) lim
n→∞

inf
r∈[1,R]

Ãr(xn;u0) = ‖u0‖∞.
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Proof. Let R > 1 and assume (7.2) for some sequence {xn} ⊂ RN . Assume contrary

that (7.3) does not hold. Then, there exist a subsequence {xnj} ⊂ {xn}, a sequence

{rj} ⊂ [1, R] and a number L ∈ (0, ‖u0‖∞) such that

Ãrj(xnj ;u0) ≤ L for all j ≥ 1.

Hence,

ÃR(xnj ;u0) =

∫

|x−xnj |<rj
u0(x) dx+

∫

rj<|x−xnj |<R
u0(x) dx

|BR(xnj)|

≤
L|Brj(xnj)|+ ‖u0‖∞

∫

rj<|x−xnj |<R
dx

|BR(xnj)|

≤ ‖u0‖∞ − (‖u0‖∞ − L)
|B1|
|BR|

for all j ≥ 1.

This is a contradiction to (7.2) and so we get (7.3). ¤

Proof of Proposition 7.1. We only prove that (A7)ψ is equivalent to (A8)ψ.

Clearly, condition (A8)ψ leads to condition (A7)ψ.

Conversely, we assume (A7)ψ. Then, there exists a sequence {xn} ⊂ RN satisfying

limn→∞ |xn| = ∞ and limn→∞ xn/|xn| = ψ such that for any R > 1, (1.21) holds.

Hence, by Lemma 7.3 we get for each R > 1,

lim
n→∞

inf
r∈[1,R]

Ãr(xn;u0) = ‖u0‖∞.

So, for any n ≥ 1, we can choose mn ≥ n such that mn > mn−1 (n ≥ 2) and

‖u0‖∞ −
1

n
≤ inf

r∈[1,Rn]
Ãr(xmn

;u0) ≤ ‖u0‖∞,

from which,

lim
n→∞

inf
r∈[1,Rn]

Ãr(xmn
;u0) = ‖u0‖∞.

Therefore, we get (1.22) with {xn} replaced by {xmn
}. The proof is complete. ¤
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