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Let x = (x1, ..., xn) ∈ R
n and x′ = (x2, ..., xn). Let D1 ⊂ R

n−1 be a bounded

domain and let the boundary ∂D1 be smooth such that ∂D1 ⊂ {x′ ∈ R
n−1; 0 <

|x′| < ρ}. For κ > 0 and δ > 0, let γ ∈ C2(D1) satisfy γ(0) = 0 and







γ(x′) < −κ|x′|2 + δ, x′ ∈ D1,

γ(x′) = −κ|x′|2 + δ, x′ ∈ ∂D1.

(1)

We set






Qδ = {(x, t); x′ ∈ D1, γ(x
′) < x1 < −κ|x′|2 − κt2 + δ},

Ω = Qδ ∩ {t = 0}, Γ = {x ∈ R
n; x1 = γ(x′), x′ ∈ D1},

(2)

for 0 < δ ≤ δ0, and

ψ(x, t) = − 1

2κ
x1 −

1

2
|x′|2 − 1

2
t2 +

1

2κ
δ0. (3)

Then Qδ = {(x, t); x′ ∈ D1, x1 > γ(x′), ψ(x, t) > 1
2κ (δ0 − δ)}. We set

T ≡ 1√
κ

√

max
x′∈D1

(δ − γ(x′) − κ|x′|2), ρ0 =

(

ρ2 + max{| min
|x′|≤ρ

γ(x′)|2, δ2}
)

1

2

.

(4)

Then |x| < ρ0 if x ∈ Ω, and Qδ ⊂ Ω × [−T, T ].
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2 A. AMIROV AND M. YAMAMOTO

We consider

P (x, t, ∂)u ≡ p(x, t)∂2
t u−

n
∑

ℓ,m=1

aℓm(x, t)∂ℓ∂mu+

n
∑

ℓ=1

aℓ(x, t)∂ℓu+r(x, t)u = f(x, t),

(5)

where p, aℓm = amℓ ∈ C1(Ω × [−T, T ]), aℓ, r ∈ L∞(Ω × (−T, T )), p > 0 on Ω ×

[−T, T ] and
∑n
ℓ,m=1 aℓm(x, t)ξℓξm > 0 for (x, t) ∈ Ω × [−T, T ] and ξ′ ∈ R

n. Here

we use the following notations: t = xn+1, ∂n+1 = ∂t = ∂
∂t

, ∂ℓ = ∂
∂xℓ

, 1 ≤ ℓ ≤ n,

ξ = (ξ1, ..., ξn+1) ∈ R
n+1, ξ′ = (ξ1, ..., ξn), ∇′ = (∂1, ..., ∂n), ∇ = (∂1, ..., ∂n, ∂t).

Henceforth
∑

ℓ,m means the sum where the suffixes ℓ,m vary over 1, . . . n if we do

not specify, and we omit the (x, t)-dependency if there is no fear of confusion. For

example,
∑

j =
∑n
j=1 and p∂2

t u means p(x, t)∂2
t u(x, t).

We assume that there exists a constant θ0 > 0 such that

µ0(x, t, ξ
′) ≡

∑

ℓ,m,k

{2a1k(x, t)(∂kaℓm)(x, t) − 4akm(∂ka1ℓ)}ξℓξm

−2
∑

k

a1k(∂kp)
(Aξ′, ξ′)

p
− 2p

∑

ℓ

|∂ta1ℓ|
{

ξ2ℓ +
(Aξ′, ξ′)

p

}

≥ θ0|ξ′|2 (6)

for any (x, t) ∈ Ω × [−T, T ] and ξ′ ∈ R
n satisfying

±t
√

p(x, t)(A(x, t)ξ′, ξ′) =
1

2κ

∑

j

a1jξj +

n
∑

k=2

∑

j

akjξjxk. (7)

Here and henceforth A (x, t) = (aℓm(x, t))1≤ℓ,m≤n and (·, ·) denotes the scalar

product in R
n.

Case 1. We consider a case where aℓℓ = 1, aℓm = 0 if ℓ 6= m, and p is t-independent.

Then (6) is reduced to

2
∂1p(x)

p(x)
≤ −θ0, x ∈ Ω.

This means that the wave speed increases in the x1-direction.
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Case 2. Let γ(x′) = 0, that is, let the subboundary Γ be flat. Moreover let p ≡ 1,

a11 = 1 and a12 = . . . = a1n = 0 and aℓm, 2 ≤ ℓ,m ≤ n are t-independent.

We set ρ = κ, D1 = {x′ ∈ R
n−1; |x′| < κ} and δ = κ3 in (2) - (4). Then

Ω = {x; 0 < x1 < −κ|x′|2 + κ3, |x′| < κ}. Let

n
∑

ℓ,m=2

(∂1aℓm(0, 0))ξℓξm ≥ θ0

n
∑

j=2

|ξj |2 for (ξ2, ..., ξn) ∈ R
n−1. (8)

Then for small κ > 0, condition (6) is satisfied for (x, t) ∈ Ω× [−T, T ] and ξ′ ∈ R
n

satisfying (7).

In fact, for small κ > 0, if (x, t) ∈ Ω × [−T, T ], then |x| + |t| ≤ C1κ by (2) - (4),

so that

2

n
∑

ℓ,m=2

(∂1aℓm(x, t))ξℓξm ≥ θ0

n
∑

j=2

|ξj |2 (9)

for (x, t) ∈ Ω × [−T, T ] and (ξ2, ..., ξn) ∈ R
n−1, if κ > 0 is sufficiently small.

Here and henceforth Cj denote generic constants which are independent of κ. Let

(x, t) ∈ Ω × [−T, T ] and ξ′ ∈ R
n satisfy (7). We note that (7) is reduced to

ξ1 + 2κ
n
∑

k,j=2

akjξjxk = ±2κt
√

p(x, t)(A(x, t)ξ′, ξ′).

Hence |ξ1|2 ≤ C2κ
(

∑n
j=2 |ξj |2 + |ξ1|2

)

, and we see that
∑n
j=2 |ξj |2 ≥ C3|ξ′|2 if

κ > 0 is small. Therefore, since the left hand sides of (6) and (9) are same,

condition (9) yields (6) if κ > 0 is sufficiently small.

We note that (8) implies that the wave speed increases inward in the x1-direction

near (0, 0) ∈ Γ. By a suitable rotation, we can replace (8) by

n
∑

ℓ,m=2

(∇′aℓm(0, 0), ν)ξℓξm ≥ θ0

n
∑

j=2

|ξj |2 for (ξ2, ..., ξn),∈ R
n−1.
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where ν ∈ R
n is an arbitrarily fixed unit vector such that εν ∈ Ω with small ε > 0.

We set

µ1(x, t, ξ
′) =

n
∑

j=2





∑

k,ℓ,m

{4akm(∂kajℓ) − 2ajk(∂kaℓm)}ξℓξm + 2
∑

k

ajk(∂kp)
(Aξ′, ξ′)

p



xj

+t







2p
∑

ℓ,m

(∂taℓm)ξℓξm + 2(∂tp)(Aξ
′, ξ′)







+2|t|
∑

k,ℓ

|∂kp||akℓ|
(

ξ2ℓ +
(Aξ′, ξ′)

p

)

+ 2p

n
∑

j=2

∑

ℓ

|∂tajℓ||xj |
(

ξ2ℓ +
(Aξ′, ξ′)

p

)

+4

(

n
∑

k=2

|[Aξ′]k|2 + p(Aξ′, ξ′)

)

(10)

and we assume that

|µ1(x, t, ξ
′)| ≤ θ1|ξ′|2 for (x, t) ∈ Ω × [−T, T ] and ξ′ ∈ R

n satisfying (7). (11)

Here [Aξ′]k denotes the kth component of Aξ′ ∈ R
n. We set

α0 = min
(x,t)∈Ω×[−T,T ],|ξ′|=1

(A(x, t)ξ′, ξ′).

We state our first main first result.

Theorem 1. We assume (1), (6) with (7), (11) and

1

2κ
> max







T

(

‖p‖C1(Ω×[−T,T ])

α0

)
1

2

,
θ1

θ0







. (12)

Then there exist C = C(P, δ) > 0, η = η(P, δ) > 0 and s0 = s0(P, δ) > 0 such that

∫

Qδ

(s|∇u|2 + s3|u|2) exp(2seηψ)dxdt ≤ C

∫

Qδ

|Pu|2 exp(2seηψ)dxdt

for all s ≥ s0 and u ∈ H2
0 (Qδ).

The proof is given in Appendix and done by verifying the pseudoconvexity (e.g.,

[6], Theorem 3.2.1’ (p.52) in [8]), and the weight 1
2κ

for x1 in (3) is essential in order
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to take advantage of the increasing wave speed condition (6) in the x1-direction. A

similar weight function was firstly introduced in [1] for a hyperbolic equation (see

also [3]), whose weight function is same as a Carleman estimate in §1 of Chapter IV

in [13] for a parabolic equation. As for Carleman estimates for p∂2
t −∆, see [7], [8],

[11]. We refer to [9] which proves a Carleman estimate for a hyperbolic equation

(2) with p ≡ 1, but the used weight function prevents us from proving the unique

continuation across non-convex surface (see function (1.5) in [9]). As for related

recent papers, see [14], [17] and [19].

If the coefficients aℓm are sufficiently smooth, then Carleman estimates are con-

structed by assuming the existence of a function ϕ (x, t) whose level surfaces are

pseudoconvex with respect to operator P (see [6]). The pseudoconvexity is easily

checked in the case when the coefficients aℓm and p are sufficiently close to constants

in the C1 norm. In [14, 19], the pseudoconvexty condition is replaced with the as-

sumption of existence of some positive function d (x) whose Hessian with respect to

the Riemannian metric associated to P is uniformly positive in Ω. In this case, ϕ has

form ϕ(x, t) = d(x)− µt2. In [17], it was shown that under some conditions on the

curvature of the Riemannian space, one can take d(x) to be the function s2(x, x0)

which is the square of the Riemannian distance from some fixed point x0 ∈ R
n to a

point x ∈ Ω and it was found the connection between the Hessian of this function

and the sectional curvatures of the Riemannian space. Although the condition on

the curvature in [17] has a certain geometric sense, it is difficult to check when this

condition holds. On the other hand, our condition (6) is directly verified and in

some cases, it can be interpreted physically by means of the classical Snell law on

the refraction: the inward increase of the wave speed is one sufficient condition for
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the non-existence of closed geodesics, which implies the unique continuation across

Γ as a direct consequence of Theorem 1. Moreover the essential difference of our

paper is that [17] is not applicable to the unique continuation or inverse problems

when observation data are restricted on a non-convex part of the domain. Other

difference of this paper from [14, 17, 19] is that we can treat t-dependent principal

parts.

Next we apply Theorem 1 to the unique continuation and an inverse problem.

Problem 1. Find a function u = u(x, t) satisfying (5) in Ω× (−T, T ) and Cauchy

conditions

u = g,
∂u

∂ν
= h on Γ × (−T, T ). (13)

If all the coefficients in (5) are analytic and the surface Γ is non-characteristic,

then the uniqueness of a solution to Problem 1 follows from the Holmgren theorem

(e.g., [6]). In [8, 9], the uniqueness of a solution to Problem 1 in the small for

convex Γ was proved by using the technique of Carleman estimates. The uniqueness

in Problem 1 in the case where the coefficients of (5) do not depend on t or are

analytic in t (and Ω is not necessarily convex near Γ) was studied in [15, 18].

In this work, unlike in the existing works, in the case where the coefficients of

(5) are not assumed to be analytic in any of the variables (x, t) and the domain Ω

may be concave near Γ, we discuss the uniqueness and the conditional stability for

Problem 1.

Theorem 2. Suppose (1), (6) and (12). Suppose also that u ∈ H2(Ω × (−T, T ))

satisfies the equation Pu = 0 in Ω× (−T, T ) and u = ∂u
∂ν

= 0 on Γ× (−T, T ). Then

there exists a neighbourhood V of the surface Γ and T1 ∈ (0, T ) such that u = 0 on



HYPERBOLIC CARLEMAN ESTIMATE 7

(V ∩ Ω) × (−T1, T1).

The examples for the non-uniqueness in Cauchy problems in [9, 12] show that

condition (6) is essential for Theorem 2.

Theorem 3. Suppose (1), (6) and (12). Moreover assume that u ∈ H2(Ω ×

(−T, T )) satisfies (13) and the equation Pu = f in Ω × (−T, T ). Then there exist

a neighbourhood V of the surface Γ, a number T1 ∈ (0, T ), and constants C > 0,

θ ∈ (0, 1) such that

‖u‖H1((V∩Ω)×(−T1,T1)) ≤ CEθ(E1−θ + ‖u‖1−θ
H1(Ω×(−T,T))),

where

E = ‖f‖L2(Ω×(−T,T)) + ‖g‖
H

3

2 (Γ×(−T,T ))
+ ‖g‖H2(−T,T ;L2(Γ))

+‖h‖H2(−T,T ;L2(Γ)) + ‖h‖
L2(−T,T ;H

1

2 (Γ))
.

Now consider the following inverse problem.

Problem 2. Suppose that the coefficients of P do not depend on t. Let u satisfy

(5), (13) and

u(x, 0) = a(x), x ∈ Ω. (14)

Then determine a pair of functions (u, r).

Inverse problems similar to Problem 2 were firstly studied in [5] by a method

of Carleman estimates. After [5], there have appeared many works where similar

methods were used [1, 2, 4, 7-11, 20]. See also [16]. In all of these works, except in

[1, 2], inverse problems for hyperbolic equations were studied under the assumption

that Ω is convex near Γ.
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Theorem 4. Suppose (1), (6) and (12). Let uj ∈ H2(Ω × (−T, T )), j = 1, 2,

satisfy (14) and

p(x)∂2
t uj −

∑

ℓ,m

aℓm(x)∂ℓ∂muj +
∑

ℓ

aℓ(x)∂ℓuj + rj(x)uj = 0

in Ω × (−T, T ). Let

∂tuj ∈ H2(Ω × (−T, T )) ∩ L∞(Ω × (−T, T )),

and ‖∂tuj‖L∞(Ω×(−T,T)), ‖uj‖H2(Ω×(−T,T)), ‖∂tuj‖H2(Ω×(−T,T)), ‖rj‖L∞(Ω) ≤M1,

j = 1, 2. Suppose also that |a(x)| > 0 on Ω. Then there exist a neighbourhood V of

the surface Γ, and constants C > 0 and θ ∈ (0, 1), which depend on M1, p, aℓm, aℓ

such that

‖r1 − r2‖L2(V ∩Ω) ≤ C

{

1
∑

k=0

(‖∂kt (u1 − u2)‖
H

3

2 ((−T,T );L2(Γ))
+ ‖∂kt (u1 − u2)‖H2((−T,T );L2(Γ))

+

∥

∥

∥

∥

∂kt

(

∂

∂ν
(u1 − u2)

)
∥

∥

∥

∥

H2((−T,T );L2(Γ))

+

∥

∥

∥

∥

∂kt

(

∂

∂ν
(u1 − u2)

)
∥

∥

∥

∥

L2((−T,T );H
1

2 (Γ))

}θ

.

Theorems 2 and 3 are proved by the method of Carleman estimates, and Theorem

4 is proved by the method in [5] with a modification by [7]. Although our Carleman

estimate requires the compact supports for u, we note that Ω can be concave near

Γ and on the rest of ∂Ω, functions under consideration need not to vanish thanks

to a usual cutoff function.

Similar results formulated above were obtained in [3] for simpler hyperbolic equa-

tion.

Appendix. Proof of Theorem 1.

Let

p(x, t, ξ) =
∑

ℓ,m

aℓm(x, t)ξℓξm − p(x, t)ξ2n+1
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for ξ = (ξ1, ..., ξn+1) ∈ R
n+1.

First we will verify

(A∇′ψ,∇′ψ) − p|∂tψ|2 > 0, (x, t) ∈ Ω × [−T, T ]. (A1)

In fact,

(A∇′ψ,∇′ψ) − p|∂tψ|2 ≥ α0|∇′ψ|2 − ‖p‖C(Ω×[−T,T ])T
2

≥α0

(

(

1

2κ

)2

+ |x′|2
)

− ‖p‖C(Ω×[−T,T ])T
2 ≥ α0

(

1

2κ

)2

− ‖p‖C(Ω×[−T,T ])T
2 > 0

by (12).

Now, for the proof of the theorem, it is sufficient to verify the positivity of

J(x, t, ξ) for (x, t, ξ) ∈ Ω × [−T, T ] × (Rn+1 \ {0}) satisfying (A2) and (A3) (e.g.,

Theorem 3.2.1’ (p.52) in Isakov [8]):

J(x, t, ξ) =

n+1
∑

j,k=1

{(

∂k
∂P

∂ξj

)

∂P

∂ξk
− (∂kP )

∂2P

∂ξj∂ξk

}

∂jψ +

n+1
∑

j,k=1

(∂j∂kψ)
∂P

∂ξj

∂P

∂ξk

≡J1 + J2.

pξn+1∂tψ =
∑

j,k

akj(∂kψ)ξj . (A2)

pξ2n+1 = (Aξ′, ξ′). (A3)

We calculate J1 and J2. First we have

∂kP =
∑

ℓ,m

(∂kaℓm)ξℓξm − (∂kp)ξ
2
n+1, 1 ≤ k ≤ n

∂n+1P = ∂tP =
∑

ℓ,m

(∂taℓm)ξℓξm − (∂tp)ξ
2
n+1,

∂P

∂ξj
= 2

∑

ℓ

ajℓξℓ, ∂k

(

∂P

∂ξj

)

= 2
∑

ℓ

(∂kajℓ)ξℓ, 1 ≤ j ≤ n, 1 ≤ k ≤ n + 1,
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∂P

∂ξn+1
= −2pξn+1, ∂k

(

∂P

∂ξn+1

)

= −2(∂kp)ξn+1, 1 ≤ k ≤ n+ 1,

∂2P

∂ξj∂ξk
= 2ajk, 1 ≤ j, k ≤ n,

∂2P

∂ξj∂ξn+1
= 0, 1 ≤ j ≤ n,

∂2P

∂ξ2n+1

= −2p.

Then we have

J1 =
∑

j,k

{(

∂k
∂P

∂ξj

)

∂P

∂ξk
− (∂kP )

∂2P

∂ξj∂ξk

}

∂jψ

+
∑

k

{(

∂k
∂P

∂ξn+1

)

∂P

∂ξk
− (∂kP )

∂2P

∂ξn+1∂ξk

}

∂n+1ψ

+
∑

j

{(

∂n+1
∂P

∂ξj

)

∂P

∂ξn+1
− (∂n+1P )

∂2P

∂ξj∂ξn+1

}

∂jψ

+

{

∂n+1

(

∂P

∂ξn+1

)

∂P

∂ξn+1
− (∂n+1P )

∂2P

∂ξ2n+1

}

∂n+1ψ

≡J11 + J12 + J13 + J14.

First we obtain

J11 =
∑

j,k







4
∑

ℓ,m

akm(∂kajℓ)ξℓξm − 2
∑

ℓ,m

ajk(∂kaℓm)ξℓξm + 2ajk(∂kp)ξ
2
n+1







∂jψ

= −





∑

k,ℓ,m

{4akm(∂ka1ℓ) − 2a1k(∂kaℓm)} ξℓξm + 2
∑

k

a1k(∂kp)ξ
2
n+1





1

2κ

−
n
∑

j=2





∑

k,ℓ,m

{4akm(∂kajℓ) − 2ajk(∂kaℓm)} ξℓξm + 2
∑

k

ajk(∂kp)ξ
2
n+1



xj ,

J12 =
∑

k

−2(∂kp)ξn+1

(

2
∑

ℓ

akℓξℓ

)

(−t) = 4t
∑

k,ℓ

(∂kp)akℓξℓξn+1,

J13 =
∑

j

(

2
∑

ℓ

(∂tajℓ)ξℓ

)

(−2pξn+1)∂jψ = −4p
∑

j,ℓ

(∂tajℓ)ξℓξn+1∂jψ

=
4p

2κ

∑

ℓ

(∂ta1ℓ)ξℓξn+1 + 4p

n
∑

j=2

∑

ℓ

(∂tajℓ)ξℓξn+1xj
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and

J14 =







2p
∑

ℓ,m

(∂taℓm)ξℓξm − 2p(∂tp)ξ
2
n+1 + 4p(∂tp)ξ

2
n+1







(−t).

Hence

J1 =

[

∑

k,ℓ,m

{2a1k(∂kaℓm) − 4akm(∂ka1ℓ)}ξℓξm − 2
∑

k

a1k(∂kp)ξ
2
n+1

+4p
∑

ℓ

(∂ta1ℓ)ξℓξn+1

]

1

2κ

+

n
∑

j=2





∑

k,ℓ,m

{2ajk(∂kaℓm) − 4akm(∂kajℓ)}ξℓξm −
∑

k

2ajk(∂kp)ξ
2
n+1



xj

+4t
∑

k,ℓ

(∂kp)akℓξℓξn+1 + 4p

n
∑

j=2

∑

ℓ

(∂tajℓ)ξℓξn+1xj − t







2p
∑

ℓ,m

(∂taℓm)ξℓξm + 2p(∂tp)ξ
2
n+1







.

Moreover we obtain

J2 =
n+1
∑

j,k=1

(∂j∂kψ)
∂P

∂ξj

∂P

∂ξk
=
n+1
∑

k=2

(∂2
kψ)

(

∂P

∂ξk

)2

= − 4

n
∑

k=2





∑

j

akjξj





2

− 4p2ξ2n+1 = −4

n
∑

k=2

|[Aξ′]k|2 − 4p2ξ2n+1.

By (A3) we have

ξ2n+1 =
(Aξ′, ξ′)

p

and

2|ξℓξn+1| ≤ ξ2ℓ + ξ2n+1 = ξ2ℓ +
(Aξ′, ξ′)

p
.

Consequently

J ≥ µ0(x, t, ξ
′)

1

2κ
− µ1(x, t, ξ

′).

Recall that µ0 and µ1 are defined by (6) and (10).

By (6), (11) and (12), we have

J ≥
(

θ0
1

2κ
− θ1

)

|ξ′|2 > 0.
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Finally we note that (A2) is equivalent to (7). Thus the proof of Theorem 1 is

complete.
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